

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.41

DOI: https://doi.org/10.24867/31BE18Rapic

MIGRACIJA MIKROSERVISNE ARHITEKTURE NA BEZSERVERSKO OKRUŽENJE

UZ KORIŠĆENJE AWS SERVISA

MIGRATION FROM MICROSERVICE ARCHITECTURE TO A SERVERLESS

PLATFORM USING AWS SERVICES

Marko Rapić, Fakultet tehničkih nauka, Novi Sad

Oblast – ELEKTROTEHNIKA I RAČUNARSTVO

Kratak sadržaj – Ovaj rad istražuje prelazak sa

mikroservisne arhitekture na bezserversku infrastrukturu u

cloud okruženju. Implementacija koristi AWS servise,

uključujući API Gateway, DynamoDB i Lambda funkcije,

radi poboljšanja performansi i smanjenja troškova. Nova

arhitektura omogućava efikasnije upravljanje sistemom i

integrisano praćenje putem alata za monitoring.

Ključne reči: Bezserversko okruženje, Mikroservisi, AWS

Abstract – This paper explores the transition from

microservices architecture to serverless infrastructure in a

cloud environment. The implementation utilizes AWS

services, including API Gateway, DynamoDB and Lambda

functions, to improve performance and reduce costs. The

new architecture enables more efficient system

management and integrated monitoring.

Keywords: Serverless environment, Microservices, AWS

1. UVOD

Sa sve većim zahtevima za skalabilnošću i optimizacijom

resursa, bezserverska arhitektura postaje dominantan trend

u Cloud okruženju. Ovaj pristup omogućava kompanijama

da se fokusiraju na razvoj poslovne logike, dok

infrastruktura i upravljanje resursima ostaju u nadležnosti

Cloud platforme.

Rad istražuje proces migracije mikroservisne aplikacije na

bezserversku arhitekturu, fokusirajući se na tehničke

izazove, najbolje prakse i korake neophodne za uspešnu

implementaciju. Migrirana aplikacija prvobitno je

razvijena kao Freelance platforma za povezivanje

slobodnih radnika i poslodavaca, omogućavajući kreiranje

i upravljanje projektima, kao i praćenje toka rada.

Rešenje je zasnovano na korišćenjem Amazon Web

Services (AWS) platforme, s posebnim fokusom na AWS

Lambda funkcije koje omogućavaju izvršavanje

bezserverskog koda u oblaku. Ove funkcije su razvijene u

.NET ekosistemu, koristeći C# programski jezik, čime je

obezbeđena kompatibilnost sa postojećom bazom koda

originalne aplikacije.

Jedinstvenost ovakvog rešenja ogleda se u sposobnosti da

iskoristi prednosti bezserverske infrastrukture uz

zadržavanje glavnih osobina mikroservisne arhitekture.

__

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je bio

dr Miroslav Zarić, redovni profesor

2. KORIŠĆENE TEHNOLOGIJE

Kao što je već pomenuto, rešenje se zasniva na korišćenju

AWS platforme i njenih servisa. U ovom poglavlju biće

opisani ključni servisi koji su korišćeni za uspešnu

implementaciju aplikacije u bezserverskom okruženju.

2.1. AWS Lambda

AWS Lambda [1] je servis koji omogućava pokretanje koda

bez potrebe za upravljanjem serverima. Ovaj bezserverski

pristup znači da se može pokrenuti kod kao odgovor na

događaje kao što su promene podataka, HTTP zahtevi, ili

aktivnosti u drugim AWS servisima. Lambda automatski

skalira aplikaciju pokretanjem koda kao odgovor na svaki

okidač, bez obzira na obim saobraćaja.

2.2. AWS DynamoDB

DynamoDB [2] je brza, fleksibilna NoSQL baza podataka

u potpunosti upravljana od strane AWS-a. Kao

bezserverska baza podataka, ona automatski upravlja

resursima, skaliranjem i dostupnošću, omogućavajući

programerima da se fokusiraju na razvoj aplikacija bez

brige o infrastrukturi. DynamoDB podržava DynamoDB

Streams, što omogućava hvatanje i skladištenje svih

promena koje se dešavaju u tabeli, uključujući operacije

dodavanja, ažuriranja i brisanja podataka.

2.3. AWS API Gateway

AWS Api Gateway [3] servis služi za kreiranje,

objavljivanje, održavanje i osiguranje API-a. API Gateway

deluje kao "prednja vrata" za aplikacije, omogućavajući im

pristup podacima, poslovnoj logici ili funkcionalnostima iz

backend servisa. Ovaj servis podržava kreiranje RESTful i

WebScoket API-a, omogućavajući i podršku za

realnovremenu dvosmernu komunikaciju.

2.4. AWS Cognito

AWS Cognito [4] je servis za upravljanje autentifikacijom

i autorizacijom korisnika u veb aplikacijama. Ovaj servis

omogućava programerima da lako dodaju registraciju,

prijavljivanje i pristupne kontrole u aplikacije. Njegova

glavna prednost je jednostavna integracija sa ostalim AWS

servisima radi poboljšanja sigurnosti i upravljanja

korisničkim pristupom.

2.5. AWS CloudWatch

AWS CloudWatch [5] je servis za nadgledanje i upravljanje

resursima na AWS-u. Omogućava prikupljanje, praćenje i

600

https://doi.org/10.24867/31BE18Rapic

analizu metrike, logova i događaja sa različitih AWS

servisa i aplikacija u realnom vremenu. CloudWatch je

ključan za upravljanje i optimizaciju AWS okruženja, jer

omogućava uvid u stanje i performanse.

 2.6. AWS EventBridge

AWS EventBridge [6] je servis za upravljanje događajima

u realnom vremenu, koji omogućava aplikacijama da se

lako integrišu i reaguju na događaje iz različitih izvora.

EventBridge omogućava izgradnju aplikacija koje odmah

reaguju na promene u sistemu putem događaja.

3. SPECIFIKACIJA ARHITEKTURE SISTEMA

U specifikaciji fokus je na nefunkcionalnim zahtevima i

arhitekturi sistema nakon migracije. Funkcionalni zahtevi

same aplikacije nisu posebno razmatrani, jer se radi o

prenetom rešenju gde su oni ostali u potpunosti

nepromenjeni.

3.1. Nefunkcionalni zahtevi

U implementaciji nefunkcionalni zahtevi su od ključnog

značaja za efikasnost i pouzdanost sistema. Fokus je

stavljen na sledeće aspekte:

• Migracija na bezserversku arhitekturu putem

AWS servisa, omogućavajući skalabilnost i

minimiziranje infrastrukturnog održavanja

• DevOps Pipeline za ASP.NET servis koji ostaje

van bezserverskog okruženja, uz automatski CI-

CD proces za izgradnju, testiranje i isporuku

• Monitoring i logovanje preko AWS CloudWatch

servisa, obezbeđujući uvid u performanse,

stabilnost i sigurnost sistema

3.1. Arhitektura sistema

Posmatrajući arhitekturu sistema nakon migracije, ključna

razlika u odnosu na originalno rešenje leži u prelasku na

bezserversku infrastrukturu. Iako su funkcionalnosti

postojećih komponenti ostale nepromenjene, sistem sada

koristi AWS servise za efikasnije upravljenje resursima i

skalabilnost. Na slici 1. prikazana je arhitektura nakon

migracije, a nakon slike sledi opis ključnih komponenti

sistema.

Komponenta „Identitet i pristup“ (Identity) predstavlja

centralnu komponentu za upravljanje identitetom i pravom

pristupa korisnika i igra ključnu ulogu u osiguravanju

autentikacije i autorizacije sistema.

Komponenta „Profil klijenta“ (Client/Employer) zadužena

je za upravljanje profilima klijenata.

Komponenta „Profil slobodnog radnika“ (Freelancer) ima

ulogu upravljanja profilima slobodnih radnika unutar

sistema. Ova komponenta je odgovorna za igradnju i

upravljanje ličnim profilima slobodnih radnika,

omogućavajući manipulaciju svim elementima profila.

Komponenta „Posao“ (Job) ima za cilj upravljanje

celokupnim životnim ciklusom posla na Freelance

platformi. Ova komponenta omogućava klijentima da

objavljuju poslove i slobodnim radnicima da šalju

predloge, što dalje može rezultovati uspešno sklopljenom

poslu. Iz navedenog može se zaključiti da ova komponenta

ima centralnu ulogu u povezivanju slobodnih radnika i

klijenata.

Slika 1. Arhitektura sistema nakon migracije

Komponenta „Povratna informacija“ (Feedback)

posvećena je dobijanju i deljenju ocena i komentara

između klijenata i slobodnih radnika. Ova komponenta

omogućava učesnicima obostrano učenje i podelu iskustva.

Komponenta „Notifikacije i chat“ (Chat/Notifications)

omogućava komunikaciju (između klijenata i slobodnih

radnika) i notifikacije u realnom vremenu. Chat

funkcionalnost omogućava direktan dijalog i razmenu

informacija, dok notifikacije informišu korisnike o važnim

događajima na platformi.

EventBus je komponenta koja omogućava komunikaciju

između različitih komponenti sistema putem definisanih

integracionih događaja. Koristi se za prosleđivanje

informacija o događajima bez direktne sprege između

komponenti.

API Gataway je komponenta koja predstavlja sloj koji

pruža jednostavan i ujedinjen interfejs za klijentske

aplikacije. Ona obezbeđuje mapiranje i agregaciju

podataka sa više različitih servisa, čime se smanjuje broj

zahteva klijenta ka serverskoj strani i olakšava upravljanje.

SPA veb aplikacija je komponenta zadužena za interakciju

sa korisnikom.

3. IMPLEMENTACIJA

U ovom poglavlju biće opisana implementacija ključnih

servisa Freelance platforme nakon migracija na

bezserversku infrastrukturu. U opisima implementacija

fokus će biti na tehnološkim promenama. Takođe, biće

objašnjena interna komunikacija servisa korišćenjem AWS

EventBridge-a, a na kraju će biti predstavljeno rešenje za

monitoring i upravljanje logovima pomoću AWS

CloudWatch-a.

601

3.1. Mikroservisi

Tokom procesa migracije, mikroservisi su preneti sa

ASP.NET radnog okvira na AWS Lambda servise, uz

korišćenje DynamoDB-a za skladištenje podataka. Svaki

od mikroservisa zadržao je svoje osnovne funkcionalnosti,

ali je u okviru nove arhitekture prilagođen za rad u

bezserverskom okruženju.

3.1.1 Identitet i pravo pristupa

U novoj arhitekturi sistema, servis za identitet i pravo

pristupa migriran je na AWS Cognito servis.

Cognito obezbeđuje gotovo rešenje za upravljanje

korisnicima, autentifikaciju i autorizaciju. Role u sistemu

sada su definisane kroz Cognito grupe, koje omogućavaju

razlikovanje između slobodnih radnika i poslodavaca,

putem grupa Freelancer i Employer.

Za prijavu korisnika koristi se Cognito Hosted UI, koji nudi

unapred pripremljen interfejs za prijavu na sistem, dok je

registracija implementirana kao AWS Lambda funkcija.

Ova Lambda funkcija ima zadatak da registruje korisnika

u Cognito sistemu i doda ga u određenu grupu. Takođe,

kreira i domenskog korisnika, bilo da je reč o slobodnom

radniku ili poslodavcu.

3.1.2 Upravljanje profilima slobodnih radnika

Originalna implementacija mikroservisa bila je bazirana na

Clean arhitekturi [7], koja je značajno olakšala proces

migracije. Clean arhitektura podrazumeva jasno odvajanje

logike sistema u nezavisne slojeve, što je omogućilo da se

tokom migracije fokusiramo uglavnom na prezentacioni

sloj. Konkretno, bilo je potrebno migrirati kod iz svakog

kontrolera u Lambda funkciju, čime je obezbeđena

besprekorna tranzicija ka bezserverskom okruženju.

Pored toga, u mikroservisu već je bio primenjen CQRS [8]

(Command Query Responsibility Segregation) šablon, koji

omogućava odvajanje operacija čitanja i pisanja u različite

module. Primena CQRS šablona u sistemu omogućila je

odvajanje modela pisanja i čitanja. Model pisanja

predstavlja niz događaja koji se čuvaju u DynamoDB tabeli

koja predstavlja skadište događaja (engl. event store). Za

svaki zapisani događaj, podešen je DynamoDB Stream koji

prati promene u tabeli i aktivira određene Lambda funkcije

kada dođe do promene. Model čitanja predstavlja

agregirane podatke o slobodnim radnicima, koji se čuvaju

u posebnoj DynamoDB tabeli.

Ovaj DynamoDB Stream mehanizam omogućava

automatsko obrađivanje događaja i njihovo korišćenje za

sinhronizaciju podataka između modela čitanja i pisanja,

čime se obezbeđuje konzistentnost i ažuriranost sistema.

3.1.3 Upravljanje poslovima

Poput prethodno opisanog servisa za upravljanje profilima

slobodnih radnika, i ovaj servis je zasnovan na čistoj

arhitekturi (Clean Architecture) i koristi CQRS šablon, ali

je ovde primenjeno hibridno rešenje. Dok su upiti

preobraženi u bezserversko okruženje, komande su

zadržane u originalnom ASP.NET servisu.

Ovde fokus neće biti na Lambda funkcijama koje obrađuju

model čitanja, jer im je implementacija identična kao u

prethodnom servisu. Umesto toga, pažnja će biti usmerena

na dva ključna aspekta: DevOps ciklus za ASP.NET servis

i proces deploy-a ovog servisa na AWS infrastrukturu.

Prvi DevOps ciklus automatski proverava izgradnju (engl.

build), prolaznost testova i SonarCloud [9] skeniranje koda

koristeći GitHub akcije [10]. Drugi DevOps ciklus, koji se

inicira ručno, radi deploy mikroservisa na AWS

infrastrukturu.

Osnovu infrastrukture čini AWS ECS [11] koji omogućava

upravljanje Docker [12] kontejnerima. U ovom slučaju,

koristi se AWS Fargate [13], koji omogućava da se

kontejneri izvršavaju bez potrebe za direktnim

upravljanjem serverima. Fargate samostalno određuje i

skalira potrebne resurse za svaki task, što značajno

pojednostavljuje upravljanje infrastrukturom. Svaki task u

ECS-u je definisan putem ECS task definition-a, koji

opisuje sve potrebne parametre za pokretanje kontejnera,

uključujući Docker sliku, mrežne portove, resurse kao što

su memorija i procesor, i ostale važne konfiguracije.

Ovaj servis dobio je novu funkcionalnost koja omogućava

korisnicima naprednu pretragu poslova koristeći AWS

OpenSearch [15]. Ova pretraga koristi OpenSearch kao

skladište podataka, dok se ažuriranje podataka

automatizuje putem Lambda funkcija koje se aktiviraju na

osnovu događaja poput kreiranja, ažuriranja ili brisanja

poslova u modelu pisanja. Prilikom zahteva za pretragu,

Lambda funkcija šalje upit OpenSearch-u i vraća

relevantne rezultate, čime je omogućen brz i efikasan

pristup poslovima u sistemu.

3.1.4 Chat i notifikacije

Implementacija chat sistema i notifikacija zahtevala je

rešenje koje omogućava komunikaciju u realnom vremenu.

S obzirom na potrebu za migracijom ovih servisa u

bezserversko okruženje, kao idealno rešenje izabran je

AWS Api Gateway u kombinaciji sa WebSocket

protokolom.

U okviru WebSocket API Gateway-a, postoje

podrazumevane rute $connect i $disconnect koje se

automatski aktiviraju pri priključenju i prekidu konekcije

korisnika. U slučaju ovog servisa, kada se korisnik

priključi na WebSocket, ruta $connect aktivira Lambda

funkciju koja čuva connectionId i sub (JWT token)

korisnika u DynamoDB tabeli. Pri prekidu konekcije, ruta

$disconnect aktivira funkciju koja uklanja ove podatke iz

iste tabele. Ruta sendMessage, koja je povezana sa

odgovarajućom Lambda funkcijom, omogućava slanje

poruka izmedju korisnika uz pomoć podataka koji se

čuvaju u prethodno pomenutoj tabeli.

3.1.5 Povratne informacije

Servis “Povratne informacije” predstavlja relativno

jednostavan mikroservis. U procesu migracije u

bezserversko okruženje, njegova logika je podeljena na

više komandi, pri čemu je svaka komanda povezana sa

odgovarajućom Lambda funkcijom. Podaci o povratnim

informacijama čuvaju se u posebnoj DynamoDB tabeli,

namenjenoj isključivo za tu svrhu.

602

Ključni aspekt servisa je obrada domenskog događaja

završetka ugovora, koji okida Lambda funkciju koja kreira

zapis u DynamoDB tabeli kako bi pripremila prostor za

budući unos povratnih informacija.

3.2 Komunikacija između servisa

Nakon migracije sistema u bezserversko okruženje, pitanje

komunikacije između mikroservisa ostalo je podjednako

važno kao i u originalnoj arhitekturi.

3.2.1 AWS EventBridge

U procesu migracije, za međusobnu komunikaciju putem

događaja korišćen je AWS EventBridge. U ovom sistemu,

događaji stižu iz DynamoDB Stream-ova, ali pre nego što

budu poslati na EventBridge, prolaze kroz posredničku

Lambda funkciju. Ova funkcija, koja deluje kao dispečer,

transformiše događaje u praktičnu strukturu, budući da su

izvorni događaji iz DynamoDB Stream-a često neprikladni

za direktnu obradu u drugim servisima. Tek nakon te

transformacije, događaj se šalje na EventBridge, gde ga

drugi servisi mogu presresti i obraditi.

3.2.2 AWS API Gateway

AWS API Gateway služi kao centralna tačka za upravljanje

i usmeravanje HTTP zahteva u bezserverskom okruženju.

U ovoj arhitekturi, API Gateway definiše sve rute koje

vode do odgovarajućih Lambda funkcija, gde svaka

funkcija obrađuje konkretan HTTP zahtev. Ovaj šablon

obezbeđuje fleksibilnost i kontrolu nad komunikacijom

između klijentskih aplikacija i mikroservisa,

omogućavajući lako upravljanje i monitoring API poziva.

U originalnoj ASP.NET aplikaciji, API Gateway nije služio

samo kao posrednik između klijenta i servisa, već je takođe

igrao ulogu API Composer-a. To je značilo da je API

Gateway, za neke rute, agregirao podatke iz više servisa i

dostavljao ih klijentima kao jedinstven odgovor. Ova

funkcija u bezserverskom okruženju implementirana je

kroz specijalizovane Lambda funkcije. Ove Lambda

funkcije su odgovorne za skupljanje i agregiranje podataka

iz različitih mikroservisa.

3.3 Monitoring – AWS CloudWatch

U sklopu migracije, AWS CloudWatch se pokazao kao

ključni alat za monitoring. Sa svim servisima koji su

raspoređeni na AWS-u, CloudWatch sam po sebi

obezbeđuje sveobuhvatno rešenje za praćenje performansi

i analizu metrika.

 Za svaki od korišćenih AWS servisa – kao što su API

Gateway, Cognito, DynamoDB i Lambda funkcije –

CloudWatch automatski generiše specifične panele koji

predstavljaju vitalne metrike. Ovo je znatno ubrzalo

dobijenje uvida u zdravlje i performanse sistema bez

potrebe za dodatnim konfiguracijama.

4. ZAKLJUČAK

U ovom radu analiziran je proces migracije postojećeg

sistema sa mikroservisne arhitekture na bezserversku

infrastrukturu, sa ciljem povećanja skalabilnosti,

smanjenja troškova i optimizacije upravljanja resursima.

Mikroservisna arhitektura, iako veoma efikasna u radu sa

kompleksnim sistemima, sa porastom broja korisnika

donosi izazove u održavanju infrastrukture i upravljanju

resursima. Ovi izazovi doveli su do potrebe za prelaskom

na fleksibilniju arhitekturu koja omogućava lakše

prilagođavanje rastućim zahtevima tržišta.

Migracija na bezserversku infrastrukturu baziranu na AWS

uslugama, kao što su Lambda funkcije, API Gateway i

DynamoDB, omogućila je automatsko skaliranje resursa i

značajno smanjenje operativnih troškova. Ova arhitektura

je pojednostavila upravljanje sistemom, jer Lambda

funkcije reaguju isključivo na događaje, što eliminiše

potrebu za stalnim upravljanjem serverima.

Postavljanjem infrastrukture na AWS otvorene su

mogućnosti za dalje unapređenje sistema kroz integraciju

sa drugim AWS uslugama. Na primer, primena AWS

OpenSearch-a omogućila bi obradu velikih količina

podataka u realnom vremenu, dok bi korišćenje mašinskog

učenja i veštačke inteligencije moglo doprineti poboljšanju

performansi i personalizaciji usluga kroz analizu podataka

i predviđanje korisničkih potreba.

5. LITERATURA

[1] AWS Lambda servis za pokretanje koda u oblaku u

bezserverskom okruženju

https://aws.amazon.com/lambda/

[2] AWS DynamoDB bezserverska NoSQL baza podataka

https://aws.amazon.com/dynamodb/

[3] AWS API Gateway servis za kreiranje ulazne tačke za

aplikacije https://aws.amazon.com/api-gateway/

[4] AWS Cognito servis za autentifikaciju i autorizaciju

korisnika https://aws.amazon.com/cognito/

[5] AWS CloudWatch servis za nadgledanje i upravljanje

resursima https://aws.amazon.com/cloudwatch/

[6] AWS EventBridge servis za upravljanje dogadjajima u

realnom vremenu

https://aws.amazon.com/eventbridge/

[7] Clean arhitektura https://blog.cleancoder.com/uncle-

bob/2012/08/13/the-clean-architecture.html

[8] CQRS šablon

https://martinfowler.com/bliki/CQRS.html?ref=blog.f

unda.nl

[9] SonarCloud Scan

https://github.com/marketplace/actions/sonarcloud-

scan

[10] GitHub Actions https://github.com/features/actions

[11] AWS ECS servis za orkestraciju kontejnera

https://aws.amazon.com/ecs/

[12] Docker https://www.docker.com/

[13] AWS Fargate servis za beserversko pokretanje

kontejnera https://aws.amazon.com/fargate/

[15] AWS OpenSearch servis za pretraživanje i analizu

velikih količina podataka

https://aws.amazon.com/opensearch-service/

Kratka biografija:

Marko Rapić rođen je 26.02.2000.

godine u Novom Sadu. Godine 2019.

upisao je Fakultet Tehničkih Nauka u

Novom sadu, odsek Računarstvo i

automatika. Osnovne studije završio

je u septembru 2023. Od oktobra

2023. upisuje Master akademske

studije.

kontakt: rapic.marko26@gmail.com

603

