gﬁyj Zbornik radova Fakulteta tehnickih nauka, Novi Sad

UDK: 4.41
DOI: https://doi.org/10.24867/31 BE18Rapic

MIGRACIJA MIKROSERVISNE ARHITEKTURE NA BEZSERVERSKO OKRUZENJE
UZ KORISCENJE AWS SERVISA

MIGRATION FROM MICROSERVICE ARCHITECTURE TO A SERVERLESS
PLATFORM USING AWS SERVICES

Marko Rapi¢, Fakultet tehnickih nauka, Novi Sad

Oblast - ELEKTROTEHNIKA I RACUNARSTVO

Kratak sadrzaj — Ovaj rad istrazuje prelazak sa
mikroservisne arhitekture na bezserversku infrastrukturu u
cloud okruzenju. Implementacija koristi AWS servise,
ukljucujuci API Gateway, DynamoDB i Lambda funkcije,
radi poboljsanja performansi i smanjenja troskova. Nova
arhitektura omogucava efikasnije upravljanje sistemom i
integrisano pracenje putem alata za monitoring.

Kljuéne reéi: Bezserversko okruzenje, Mikroservisi, AWS

Abstract — This paper explores the transition from
microservices architecture to serverless infrastructure in a
cloud environment. The implementation utilizes AWS
services, including API Gateway, DynamoDB and Lambda
functions, to improve performance and reduce costs. The
new architecture enables more efficient system
management and integrated monitoring.

Keywords: Serverless environment, Microservices, AWS

1. UVOD

Sa sve ve¢im zahtevima za skalabilnos¢u i optimizacijom
resursa, bezserverska arhitektura postaje dominantan trend
u Cloud okruzenju. Ovaj pristup omogucava kompanijama
da se fokusiraju na razvoj poslovne logike, dok
infrastruktura i upravljanje resursima ostaju u nadleznosti
Cloud platforme.

Rad istrazuje proces migracije mikroservisne aplikacije na
bezserversku arhitekturu, fokusirajué¢i se na tehnicke
izazove, najbolje prakse i korake neophodne za uspesnu
implementaciju. Migrirana aplikacija prvobitno je
razvijena kao Freelance platforma za povezivanje
slobodnih radnika i poslodavaca, omogucavajuéi kreiranje
i upravljanje projektima, kao i pracenje toka rada.

ReSenje je zasnovano na koriS¢enjem Amazon Web
Services (AWS) platforme, s posebnim fokusom na AWS
Lambda funkcije koje omogucéavaju izvrSavanje
bezserverskog koda u oblaku. Ove funkcije su razvijene u
.NET ekosistemu, koriste¢i C# programski jezik, ¢ime je
obezbedena kompatibilnost sa postoje¢om bazom koda
originalne aplikacije.

Jedinstvenost ovakvog resenja ogleda se u sposobnosti da
iskoristi prednosti bezserverske infrastrukture uz
zadrzavanje glavnih osobina mikroservisne arhitekture.

NAPOMENA:

Ovaj rad proistekao je iz master rada ¢iji mentor je bio
dr Miroslay Zari¢, redovni profesor
2. KORISCENE TEHNOLOGIJE

Kao $to je ve¢ pomenuto, resenje se zasniva na kori$¢enju
AWS platforme i njenih servisa. U ovom poglavlju bice
opisani kljucni servisi koji su koriS¢eni za uspeSnu
implementaciju aplikacije u bezserverskom okruzenju.

2.1. AWS Lambda

AWS Lambda [1] je servis koji omogucava pokretanje koda
bez potrebe za upravljanjem serverima. Ovaj bezserverski
pristup znaci da se moze pokrenuti kod kao odgovor na
dogadaje kao Sto su promene podataka, HTTP zahtevi, ili
aktivnosti u drugim AWS servisima. Lambda automatski
skalira aplikaciju pokretanjem koda kao odgovor na svaki
okida¢, bez obzira na obim saobraéaja.

2.2. AWS DynamoDB

DynamoDB [2] je brza, fleksibilna NoSQL baza podataka
u potpunosti upravljana od strane AWS-a. Kao
bezserverska baza podataka, ona automatski upravlja
resursima, skaliranjem i1 dostupno$éu, omogucavajuéi
programerima da se fokusiraju na razvoj aplikacija bez
brige o infrastrukturi. DynamoDB podrzava DynamoDB
Streams, §to omogucava hvatanje i skladiStenje svih
promena koje se deSavaju u tabeli, ukljucujuci operacije
dodavanja, azuriranja i brisanja podataka.

2.3. AWS API Gateway

AWS Api Gateway [3] servis sluzi za kreiranje,
objavljivanje, odrzavanje i osiguranje API-a. API Gateway
deluje kao "prednja vrata" za aplikacije, omogucavajuéi im
pristup podacima, poslovnoj logici ili funkcionalnostima iz
backend servisa. Ovaj servis podrzava kreiranje RESTful i
WebScoket API-a, omogucavaju¢i 1 podrsku za
realnovremenu dvosmernu komunikaciju.

2.4. AWS Cognito

AWS Cognito [4] je servis za upravljanje autentifikacijom
i autorizacijom korisnika u veb aplikacijama. Ovaj servis
omogucava programerima da lako dodaju registraciju,
prijavljivanje i pristupne kontrole u aplikacije. Njegova
glavna prednost je jednostavna integracija sa ostalim A WS
servisima radi poboljSanja sigurnosti i upravljanja
korisnickim pristupom.

2.5. AWS CloudWatch

AWS CloudWatch [5] je servis za nadgledanje i upravljanje
resursima na A WS-u. Omogucava prikupljanje, praenje i

600

https://doi.org/10.24867/31BE18Rapic

analizu metrike, logova i dogadaja sa razlicitth AWS
servisa i aplikacija u realnom vremenu. CloudWatch je
klju¢an za upravljanje i optimizaciju AWS okruzenja, jer
omoguéava uvid u stanje i performanse.

2.6. AWS EventBridge

AWS EventBridge [6] je servis za upravljanje dogadajima
u realnom vremenu, koji omogucava aplikacijama da se
lako integriSu i reaguju na dogadaje iz razli¢itih izvora.
EventBridge omogucava izgradnju aplikacija koje odmah
reaguju na promene u sistemu putem dogadaja.

3. SPECIFIKACIJA ARHITEKTURE SISTEMA

U specifikaciji fokus je na nefunkcionalnim zahtevima i
arhitekturi sistema nakon migracije. Funkcionalni zahtevi
same aplikacije nisu posebno razmatrani, jer se radi o
prenctom reSenju gde su oni ostali u potpunosti
nepromenjeni.

3.1. Nefunkcionalni zahtevi

U implementaciji nefunkcionalni zahtevi su od klju¢nog
znaCaja za efikasnost i pouzdanost sistema. Fokus je
stavljen na sledece aspekte:

e Migracija na bezserversku arhitekturu putem
AWS servisa, omogucavaju¢i skalabilnost i
minimiziranje infrastrukturnog odrzavanja

e DevOps Pipeline za ASP.NET servis koji ostaje
van bezserverskog okruZenja, uz automatski CI-
CD proces za izgradnju, testiranje i isporuku

e Monitoring i logovanje preko AWS CloudWatch
servisa, obezbedujuéi uvid u performanse,
stabilnost i sigurnost sistema

3.1. Arhitektura sistema

Posmatrajuci arhitekturu sistema nakon migracije, klju¢na
razlika u odnosu na originalno resenje lezi u prelasku na
bezserversku infrastrukturu. Iako su funkcionalnosti
postoje¢ih komponenti ostale nepromenjene, sistem sada
koristi AWS servise za efikasnije upravljenje resursima i
skalabilnost. Na slici 1. prikazana je arhitektura nakon
migracije, a nakon slike sledi opis kljuénih komponenti
sistema.

Komponenta ,,Identitet i pristup“ (/dentity) predstavlja
centralnu komponentu za upravljanje identitetom i pravom
pristupa korisnika i igra kljuénu ulogu u osiguravanju
autentikacije i autorizacije sistema.

Komponenta ,,Profil klijenta™ (Client/Employer) zaduzena
je za upravljanje profilima klijenata.

Komponenta ,,Profil slobodnog radnika“ (Freelancer) ima
ulogu upravljanja profilima slobodnih radnika unutar
sistema. Ova komponenta je odgovorna za igradnju i
upravljanje licnim profilima slobodnih radnika,
omogucavajuci manipulaciju svim elementima profila.

Komponenta ,,Posao*“ (Job) ima za cilj upravljanje
celokupnim zivotnim ciklusom posla na Freelance
platformi. Ova komponenta omogucava klijentima da
objavljuju poslove 1 slobodnim radnicima da Salju
predloge, Sto dalje moze rezultovati uspesno sklopljenom
poslu. Iz navedenog moze se zakljuciti da ova komponenta

ima centralnu ulogu u povezivanju slobodnih radnika i
klijenata.

SPA Web app.

A

%5

sng jusag

(j2uueyo aquasgns / ysnand)

Slika 1. Arhitektura sistema nakon migracije

Komponenta ,,Povratna informacija®“ (Feedback)
posvecena je dobijanju i deljenju ocena i komentara
izmedu klijenata i slobodnih radnika. Ova komponenta
omogucava ucesnicima obostrano ucenje i podelu iskustva.

Komponenta ,,Notifikacije i chat* (Chat/Notifications)
omogucava komunikaciju (izmedu klijenata i slobodnih
radnika) i notifikacije u realnom vremenu. Chat
funkcionalnost omoguéava direktan dijalog i razmenu
informacija, dok notifikacije informi$u korisnike o vaznim
dogadajima na platformi.

EventBus je komponenta koja omogucava komunikaciju
izmedu razli¢itih komponenti sistema putem definisanih
integracionih dogadaja. Koristi se za prosledivanje
informacija o dogadajima bez direktne sprege izmedu
komponenti.

API Gataway je komponenta koja predstavlja sloj koji
pruza jednostavan i ujedinjen interfejs za klijentske
aplikacije. Ona obezbeduje mapiranje 1 agregaciju
podataka sa viSe razliCitih servisa, ¢ime se smanjuje broj
zahteva klijenta ka serverskoj strani i olakSava upravljanje.

SPA veb aplikacija je komponenta zaduZena za interakciju
sa korisnikom.

3. IMPLEMENTACIJA

U ovom poglavlju bi¢e opisana implementacija klju¢nih
servisa Freelance platforme nakon migracija na
bezserversku infrastrukturu. U opisima implementacija
fokus ¢e biti na tehnoloskim promenama. Takode, bice
objasnjena interna komunikacija servisa koris¢enjem A WS
EventBridge-a, a na kraju ¢e biti predstavljeno resenje za
monitoring 1 upravljanje logovima pomocéu AWS
CloudWatch-a.

601

3.1. Mikroservisi

Tokom procesa migracije, mikroservisi su preneti sa
ASP.NET radnog okvira na AWS Lambda servise, uz
koris¢enje DynamoDB-a za skladistenje podataka. Svaki
od mikroservisa zadrzao je svoje osnovne funkcionalnosti,
ali je u okviru nove arhitekture prilagoden za rad u
bezserverskom okruzenju.

3.1.1 Identitet i pravo pristupa

U novoj arhitekturi sistema, servis za identitet i pravo
pristupa migriran je na AWS Cognito servis.

Cognito obezbeduje gotovo reSenje za upravljanje
korisnicima, autentifikaciju i autorizaciju. Role u sistemu
sada su definisane kroz Cognito grupe, koje omogucavaju
razlikovanje izmedu slobodnih radnika i poslodavaca,
putem grupa Freelancer i Employer.

Za prijavu korisnika koristi se Cognito Hosted UlI, koji nudi
unapred pripremljen interfejs za prijavu na sistem, dok je
registracija implementirana kao AWS Lambda funkcija.
Ova Lambda funkcija ima zadatak da registruje korisnika
u Cognito sistemu i doda ga u odredenu grupu. Takode,
kreira i domenskog korisnika, bilo da je re¢ o slobodnom
radniku ili poslodavcu.

3.1.2 Upravljanje profilima slobodnih radnika

Originalna implementacija mikroservisa bila je bazirana na
Clean arhitekturi [7], koja je znafajno olakSala proces
migracije. Clean arhitektura podrazumeva jasno odvajanje
logike sistema u nezavisne slojeve, $to je omoguéilo da se
tokom migracije fokusiramo uglavnom na prezentacioni
sloj. Konkretno, bilo je potrebno migrirati kod iz svakog
kontrolera u Lambda funkciju, ¢ime je obezbedena
besprekorna tranzicija ka bezserverskom okruzenju.

Pored toga, u mikroservisu vec¢ je bio primenjen CORS [8]
(Command Query Responsibility Segregation) Sablon, koji
omoguéava odvajanje operacija ¢itanja i pisanja u razlicite
module. Primena CORS §ablona u sistemu omogudila je
odvajanje modela pisanja i C¢itanja. Model pisanja
predstavlja niz dogadaja koji se Cuvaju u DynamoDB tabeli
koja predstavlja skadiste dogadaja (engl. event store). Za
svaki zapisani dogadaj, podesen je DynamoDB Stream koji
prati promene u tabeli i aktivira odredene Lambda funkcije
kada dode do promene. Model Ccitanja predstavlja
agregirane podatke o slobodnim radnicima, koji se ¢uvaju
u posebnoj DynamoDB tabeli.

Ovaj DynamoDB Stream mehanizam omogucava
automatsko obradivanje dogadaja i njihovo koris¢enje za
sinhronizaciju podataka izmedu modela Citanja i pisanja,
¢ime se obezbeduje konzistentnost i aZzuriranost sistema.

3.1.3 Upravljanje poslovima

Poput prethodno opisanog servisa za upravljanje profilima
slobodnih radnika, i ovaj servis je zasnovan na cistoj
arhitekturi (Clean Architecture) i koristi CORS $ablon, ali
je ovde primenjeno hibridno reSenje. Dok su upiti
preobrazeni u bezserversko okruzenje, komande su
zadrzane u originalnom ASP.NET servisu.

Ovde fokus nece biti na Lambda funkcijama koje obraduju
model Citanja, jer im je implementacija identi¢na kao u
prethodnom servisu. Umesto toga, paznja ¢e biti usmerena
na dva kljucna aspekta: DevOps ciklus za ASP.NET servis
i proces deploy-a ovog servisa na AWS infrastrukturu.

Prvi DevOps ciklus automatski proverava izgradnju (engl.
build), prolaznost testova i SonarCloud [9] skeniranje koda
koriste¢i GitHub akcije [10]. Drugi DevOps ciklus, koji se
inicira ru¢no, radi deploy mikroservisa na AWS
infrastrukturu.

Osnovu infrastrukture ¢ini AWS ECS [11] koji omogucéava
upravljanje Docker [12] kontejnerima. U ovom slucaju,
koristi se AWS Fargate [13], koji omogucava da se
kontejneri izvrSavaju bez potrebe za direktnim
upravljanjem serverima. Fargate samostalno odreduje i
skalira potrebne resurse za svaki task, Sto znacajno
pojednostavljuje upravljanje infrastrukturom. Svaki task u
ECS-u je definisan putem ECS task definition-a, koji
opisuje sve potrebne parametre za pokretanje kontejnera,
ukljucujuéi Docker sliku, mrezne portove, resurse kao $to
su memorija i procesor, i ostale vazne konfiguracije.

Ovaj servis dobio je novu funkcionalnost koja omogucava
korisnicima naprednu pretragu poslova koristeéi AWS
OpenSearch [15]. Ova pretraga koristi OpenSearch kao
skladiste podataka, dok se azuriranje podataka
automatizuje putem Lambda funkcija koje se aktiviraju na
osnovu dogadaja poput kreiranja, azuriranja ili brisanja
poslova u modelu pisanja. Prilikom zahteva za pretragu,
Lambda funkcija Salje upit OpenSearch-u i vraéa
relevantne rezultate, ¢ime je omoguéen brz i efikasan
pristup poslovima u sistemu.

3.1.4 Chat i notifikacije

Implementacija chat sistema i notifikacija zahtevala je
reSenje koje omoguéava komunikaciju u realnom vremenu.
S obzirom na potrebu za migracijom ovih servisa u
bezserversko okruzenje, kao idealno reSenje izabran je

AWS Api Gateway u kombinaciji sa WebSocket
protokolom.
U okviru WebSocket API Gateway-a, postoje

podrazumevane rute Sconnect 1 $disconnect koje se
automatski aktiviraju pri prikljucenju i prekidu konekcije
korisnika. U slucaju ovog servisa, kada se korisnik
priklju¢i na WebSocket, ruta Sconnect aktivira Lambda
funkciju koja cuva connectionld i sub (JWT token)
korisnika u DynamoDB tabeli. Pri prekidu konekcije, ruta
8disconnect aktivira funkciju koja uklanja ove podatke iz
iste tabele. Ruta sendMessage, koja je povezana sa
odgovarajuéom Lambda funkcijom, omogucéava slanje
poruka izmedju korisnika uz pomo¢ podataka koji se
¢uvaju u prethodno pomenutoj tabeli.

3.1.5 Povratne informacije

Servis “Povratne informacije” predstavlja relativno
jednostavan mikroservis. U procesu migracije u
bezserversko okruzenje, njegova logika je podeljena na
vise komandi, pri ¢emu je svaka komanda povezana sa
odgovaraju¢om Lambda funkcijom. Podaci o povratnim
informacijama cuvaju se u posebnoj DynamoDB tabeli,
namenjenoj iskljucivo za tu svrhu.

602

Kljucni aspekt servisa je obrada domenskog dogadaja
zavrsetka ugovora, koji okida Lambda funkciju koja kreira
zapis u DynamoDB tabeli kako bi pripremila prostor za
budu¢i unos povratnih informacija.

3.2 Komunikacija izmedu servisa

Nakon migracije sistema u bezserversko okruzenje, pitanje
komunikacije izmedu mikroservisa ostalo je podjednako
vazno kao i u originalnoj arhitekturi.

3.2.1 AWS EventBridge

U procesu migracije, za medusobnu komunikaciju putem
dogadaja koris¢en je AWS EventBridge. U ovom sistemu,
dogadaji stizu iz DynamoDB Stream-ova, ali pre nego Sto
budu poslati na EventBridge, prolaze kroz posrednicku
Lambda funkciju. Ova funkcija, koja deluje kao dispecer,
transformiSe dogadaje u prakti¢nu strukturu, buduéi da su
izvorni dogadaji iz DynamoDB Stream-a ¢esto neprikladni
za direktnu obradu u drugim servisima. Tek nakon te
transformacije, dogadaj se Salje na EventBridge, gde ga
drugi servisi mogu presresti i obraditi.

3.2.2 AWS API Gateway

AWS API Gateway sluzi kao centralna tacka za upravljanje
i usmeravanje HTTP zahteva u bezserverskom okruzenju.
U ovoj arhitekturi, API Gateway definiSe sve rute koje
vode do odgovarajué¢ih Lambda funkcija, gde svaka
funkcija obraduje konkretan HTTP zahtev. Ovaj Sablon
obezbeduje fleksibilnost i kontrolu nad komunikacijom
izmedu klijentskih aplikacija 1 mikroservisa,
omogucavajuci lako upravljanje i monitoring AP/ poziva.

U originalnoj ASP.NET aplikaciji, API Gateway nije sluzio
samo kao posrednik izmedu klijenta i servisa, ve¢ je takode
igrao ulogu API Composer-a. To je znacilo da je API
Gateway, za neke rute, agregirao podatke iz vise servisa i
dostavljao ih klijentima kao jedinstven odgovor. Ova
funkcija u bezserverskom okruzenju implementirana je
kroz specijalizovane Lambda funkcije. Ove Lambda
funkcije su odgovorne za skupljanje i agregiranje podataka
iz razli¢itih mikroservisa.

3.3 Monitoring — AWS CloudWatch

U sklopu migracije, AWS CloudWatch se pokazao kao
kljuéni alat za monitoring. Sa svim servisima koji su
rasporedeni na AWS-u, CloudWatch sam po sebi
obezbeduje sveobuhvatno resenje za pracenje performansi
i analizu metrika.

Za svaki od koris¢enih AWS servisa — kao Sto su API
Gateway, Cognito, DynamoDB 1 Lambda funkcije —
CloudWatch automatski generiSe specificne panele koji
predstavljaju vitalne metrike. Ovo je znatno ubrzalo
dobijenje uvida u zdravlje i performanse sistema bez
potrebe za dodatnim konfiguracijama.

4. ZAKLJUCAK

U ovom radu analiziran je proces migracije postojeceg
sistema sa mikroservisne arhitekture na bezserversku
infrastrukturu, sa ciljem povecanja skalabilnosti,
smanjenja troskova i optimizacije upravljanja resursima.
Mikroservisna arhitektura, iako veoma efikasna u radu sa
kompleksnim sistemima, sa porastom broja korisnika
donosi izazove u odrzavanju infrastrukture i upravljanju

resursima. Ovi izazovi doveli su do potrebe za prelaskom
na fleksibilniju arhitekturu koja omoguéava lakse
prilagodavanje rastu¢im zahtevima trzista.

Migracija na bezserversku infrastrukturu baziranu na AWS
uslugama, kao $to su Lambda funkcije, API Gateway i
DynamoDB, omogudila je automatsko skaliranje resursa i
znacajno smanjenje operativnih troskova. Ova arhitektura
je pojednostavila upravljanje sistemom, jer Lambda
funkcije reaguju isklju¢ivo na dogadaje, Sto eliminiSe
potrebu za stalnim upravljanjem serverima.

Postavljanjem infrastrukture na AWS otvorene su
mogucnosti za dalje unapredenje sistema kroz integraciju
sa drugim AWS uslugama. Na primer, primena AWS
OpenSearch-a omogucila bi obradu velikih koli¢ina
podataka u realnom vremenu, dok bi kori§¢enje masinskog
ucenja i veStacke inteligencije moglo doprineti poboljSanju
performansi i personalizaciji usluga kroz analizu podataka
i predvidanje korisnickih potreba.

5. LITERATURA

[11 AWS Lambda servis za pokretanje koda u oblaku u
bezserverskom okruzenju
https://aws.amazon.com/lambda/

[2] AWS DynamoDB bezserverska NoSQOL baza podataka
https://aws.amazon.com/dynamodb/

[3] AWS API Gateway servis za kreiranje ulazne tacke za
aplikacije https://aws.amazon.com/api-gateway/

[4] AWS Cognito servis za autentifikaciju i autorizaciju
korisnika https://aws.amazon.com/cognito/

[5]1 AWS CloudWatch servis za nadgledanje i upravljanje
resursima https://aws.amazon.com/cloudwatch/

[6] AWS EventBridge servis za upravljanje dogadjajima u
realnom vremenu
https://aws.amazon.com/eventbridge/

[7] Clean arhitektura https://blog.cleancoder.com/uncle-
bob/2012/08/13/the-clean-architecture.html

[8] CORS §ablon
https://martinfowler.com/bliki/CQRS.html?ref=blog.f
unda.nl

[9] SonarCloud Scan
https://github.com/marketplace/actions/sonarcloud-
scan

[10] GitHub Actions https://github.com/features/actions

[11]1 AWS ECS servis za orkestraciju kontejnera
https://aws.amazon.com/ecs/

[12] Docker https://www.docker.com/

[13] AWS Fargate servis za beserversko pokretanje
kontejnera https://aws.amazon.com/fargate/

[15] AWS OpenSearch servis za pretrazivanje i analizu
velikih koli¢ina podataka
https://aws.amazon.com/opensearch-service/

Kratka biografija:

P

Marko Rapi¢ roden je 26.02.2000.
godine u Novom Sadu. Godine 2019.
upisao je Fakultet Tehnickih Nauka u
Novom sadu, odsek Racunarstvo i
automatika. Osnovne studije zavrSio
je u septembru 2023. Od oktobra
2023. upisuje Master akademske
studije.

kontakt: rapic.marko26(@gmail.com

7

-
¥

603

