i,
Tl

Zbornik radova Fakulteta tehnickih nauka, Novi Sad

UDK: 51
DOI: https://doi.org/10.24867/32JV01Josic

OPTIMIZACIJA KOLONIJOM MRAVA
ANT COLONY OPTIMIZATION
Nikolina JoS$i¢, Fakultet tehnickih nauka, Novi Sad

Oblast - MATEMATIKA U TEHNICI

Kratak sadrzaj — U ovom radu istrazen je algoritam
optimizacije kolonijom mrava (Ant Colony Optimization -
ACO), koji se koristi za rjesavanje kompleksnih
optimizacijskih problema.
Poseban fokus stavljen je na problem trgovackog putnika
(Traveling Salesman Problem - TSP), gde je potrebno
pronaci najkracu mogucu putanju koja prolazi kroz zadati
skup gradova.
Prakticni dio rada je uraden u programskom jeziku
Python. U radu je implementiran ACO algoritam,
eksperimentisano je sa razlicitim parametrima, i
analizirane su performanse algoritma. Rezultati su
pokazali efikasnost i adaptivnost ACO algoritma, kao i
uticaj razlicitih parametara na njegovu performansu.

Kljuéne reci: Optimizacija kolonijom mrava (ACO),

Problem trgovackog putnika (TSP), Optimizacijski
algoritmi, Python, Performanse algoritma, Analiza
parametara

Abstract — In this paper, the Ant Colony Optimization
(ACO) algorithm, used for solving complex optimization
problems, is investigated. Special focus is placed on the
Traveling Salesman Problem (TSP), where the objective is
to find the shortest possible route that passes through a
given set of cities. The practical part of the study was
conducted in the Python programming language. The ACO
algorithm was implemented, various parameters were
experimented with, and the algorithm's performance was
analyzed. The results demonstrated the efficiency and
adaptability of the ACO algorithm, as well as the impact of
different parameters on its performance.

Keywords: Ant Colony Optimization (ACO), Traveling
Salesman Problem (TSP), Optimization Algorithms
Python, Algorithm Performance
Parameter Analysis

1.UVOD

Problemi optimizacije su veoma vazni u oblasti nauke i
industrije. Neki primjeri problema optimizacije iz stvarnog
zivota su pravljenje rasporeda, pravljenje reda vozZnje,
planiranje kapaciteta, problem trgovackog putnika,
problem rasporeda grupne radnje, itd. Mnogi algoritmi
optimizacije su razvijeni iz ovog razloga.

NAPOMENA:
Ovaj rad proistekao je iz master rada ¢iji mentor je bio
dr Nebojsa Ralevi¢, red. prof.

Optimizacija kolonijjom mrava je jedan od njih.
Optimizacija kolonijom mrava je probabilisticka tehnika
za pronalazenje optimalnih putanja.Algoritam optimizacije
kolonijom mrava se koristi za rjeSavanje razlicitih
racunarskih problema.

Ovaj algoritam je uveden na osnovu ponasanja mrava u
potrazi za hranom za traZenje puta izmedu svoje kolonije i
izvorne hrane. U pocetku se koristio za rjeSavanje dobro
poznatog problema trgovackog putnika. Kasnije se koristi
za rjeSavanje razliCitih teSkih problema optimizacije. U
ovom radu detaljno je razmotrena teorijska osnova ACO
algoritma, kao i njegova primjena u razli¢itim oblastima sa
posebnim fokusom na problem trgovackog putnika TSP.
U ovom problemu dati su skup lokacija i udaljenosti
izmedu njih. Problem se sastoji u nalazenju zatvorene
Setnje minimalne duZine koja prolazi kroz svaku lokaciju
tac¢no jednom (osim one prve u koju se i vraca).

2. OPTIMIZACIJA KOLONIJOM MRAVA
Optimizacija kolonijom mrava (Ant Colony Optimization
-ACO) je metaheuristicki algoritam inspirisan ponaSanjem
stvarnih mrava u prirodi, posebno nacinom na koji oni
pronalaze najkraci put izmedu kolonije i izvora hrane. Ovaj
algoritam je prvi put predlozio Marko Dorigo 1990-ih
godina, i od tada je postao jedan od najpoznatijih pristupa
u rjesavanju sloZenih problema optimizacije.

Mravi koriste hemijski trag poznat kao feromon kako bi
komunicirali medusobno. Kada mrav pronade izvor hrane,
na putu nazad do kolonije ostavlja trag feromona. Ostali
mravi imaju vecéu vjerovatnocu da prate puteve sa ve¢om
koncentracijom feromona, $to dovodi do formiranja sve
efikasnijih puteva kako se viSe mrava krece tom rutom.
Ovaj princip je osnova ACO algoritma: mravi virtuelno
ostavljaju tragove feromona na putevima izmedu razlic¢itih
tacaka problema koje treba optimizovati, i postepeno
pronalaze optimalno reSenje kroz iterativnu optimizaciju.
ACO algoritam za problem trgovackog putnika
Problem trgovackog putnika (TSP) je jedan od naj¢escih
problema optimizacije koji ACO algoritam resava. Cilj je
pronaci najkraci put koji polazi iz jednog grada, prolazi
kroz sve druge ta¢no jednom, i vraca se u pocetni grad.
ACO koristi veStacke mrave koji pretrazuju prostor
mogucih rjeSenja, imitiraju¢i ponasanje stvarnih mrava.
Vjerovatnoc¢a da mrav prede sa jednog ¢vora i u drugi
¢vor j je definisana formulom:

P = [75;(O)]% - [n1°
Y Y[t 1% - k)P

gdje su:

1195

https://doi.org/10.24867/32JV01Josic

+ 14;(¢) - koli¢ina feromona na putu izmedu

¢vorovajijutrenutkut,

* 1 — heuristiCka vrijednost , obi¢no definisana

kao reciprocna vrijednost udaljenosti izmedu i i j
(ni; = 1/dy),

* aiB su parametri koji kontroliSu relativan znacaj
feromona i heuristicke informacije,

* Jje skup neposjecenih ¢vorova.

AZuriranje feromona

Nakon svake iteracije, tragovi feromona se azuriraju kako
bi odrazavali kvalitet pronadenih rjeSenja. Proces
isparavanja feromona je kljuan za sprjecavanje
preuranjene konvergencije na suboptimalna rjeSenja.
Azuriranje feromona za svaki put (i,j) odvija se po formuli:

m
Tt +1) = (1—p)- 7y(6) + z Atk
k=1

gdje je:
» p—faktorisparavanja feromona (0 <p<1),

. A‘r{‘j — koli¢ina feromona koju ostavlja k-ti mrav.

Koli¢ina feromona koju jedan mrav ostavlja
proporcionalna je kvalitetu njegovog rjeSenja (obrnuto
proporcionalna duzini puta koji je presao):

Q
k _
ATU = E
gdje je:

* Q- konstanta.

* Ly—duZina puta kojeg je presao k- ti mrav.

3. Prakti¢na primjena
Proces pretrage

Na pocetku pretrage, svi mravi su postavljeni nasumi¢no
na razli¢ite ¢vorove grafa koji predstavlja problem. Svaki
mrav pretrazuje prostor mogucih rjeSenja koriste¢i pravilo
proporcionalno koli¢ini feromona i heuristicke vrijednosti,
birajuci slede¢i ¢vor na osnovu vjerovatnoce Pj. Kako
iteracije napreduju, putevi sa vecom koncentracijom
feromona postaju popularniji, §to vodi ka globalnom
optimizovanom rjesenju.

ACO algoritam je fleksibilan i lako se moze prilagoditi
razli¢itim problemima optimizacije, ukljucujuci probleme
rasporeda, rutiranja i druge kombinatorne probleme.
Optimizacija kolonijom mrava (ACO) implementirana je u
Python programskom jeziku zbog njegove jednostavnosti,
bogatog seta biblioteka i ¢itljivog koda. Python omogucava
brzu prototipizaciju i vizualizaciju slozenih algoritama, $to
je idealno za testiranje i analizu performansi ACO
algoritma.

Implementacija ACO algoritma uklju¢uje nekoliko
kljucnih koraka:

1. Inicijalizacija kolonije mrava: Svaki mrav predstavlja
potencijalno reSenje problema, npr. za TSP problem, mrav
predstavlja rutu izmedu gradova.

2. Izbor sledeceg ¢vora: Koristi se pravilo proporcionalno
feromonima 1 heuristi¢kim vrednostima kako bi mravi
birali sledeci ¢vor.

3. Azuriranje feromona: Nakon S$to svi mravi zavrSe
iteraciju, tragovi feromona se azuriraju, uzimajuci u obzir
duzinu predenih ruta.

4. Kriterijum zaustavljanja.

3.1. Graficki korisnicki interfejs (GUI)

Jedan od klju¢nih elemenata prakticne primjene ACO
algoritma je razvoj grafi¢kog korisnickog interfejsa (GUI).
GUI omogucava korisnicima da vizualno prate proces
optimizacije i pode$avaju parametre kao §to su broj
iteracija, broj mrava, stopa isparavanja feromona i pocetne
vrijednosti feromona. Za razvoj GUI-ja u Pythonu
koristena je Dbiblioteka Tkinter, koja omogucava
jednostavno kreiranje prozora, dugmadi, polja za unos i
grafikona.

Na sledecoj slici je prikaz jednostavnog GUI-ja koji
omogucéava unos parametara ACO algoritma i pokretanje
vizualizacije:

gui_aco — a x

gui_aco
My Cool GUI Program!

Required Arguments

number_of_ants number_of_iterations

alpha beta

evaporation_rate stop_factor

Cancel Start

Slika 1. Graficki korisnicki interfejs GUI

Korisnici mogu lako prilagoditi parametre i pratiti kako
algoritam prolazi kroz iteracije, traze¢i optimalno rjesenje
problema. Vizualizacija pokazuje kako se rute mjenjanju i
konvergiraju ka optimalnim tokom vremena, Sto je
posebno korisno za analizu performansi algoritma.

3.2. Vizualizacija rezultata

Biblioteka Matplotlib koristi se za vizualizaciju predenih
ruta i feromonskih tragova u svakoj iteraciji. Na slici 2. je
prikazan primer rute koju su mravi pronasli nakon nekoliko
iteracija. Crne tacke predstavljaju gradove, a crte izmedu
njih predstavljaju rute koje mravi koriste. Debljina linije je
proporcionalna koli¢ini feromona deponovanih na toj ruti,
§to omoguéava vizuelno pracenje koji putevi su CesSée
korisc¢eni.

1196

[—<3"

#Ey FQ=
Slika 2. Prikaz iteracije
3.3. Mjerenja

U ovoj podsekciji testiramo kako hiperparametri uti¢u na
efikasnost agoritma. Parametri na raspolaganju su: n (broj
mrava), m (broj gradova), a (vaznost traga), (vaznost
vidljivosti) i p (faktor isparavanja), kao i stop faktor.

Tabela 1. Mjerenja sa inicijalnim paramtrima programa
sa random tackama

U sledeée dve tabele mjenjamo o i . Naime, u prethodnim
tabelama su parametri a i B bili isti. U prvoj narednoj tabeli
je B veéa od a a drugoj o veca od P.

Tabela 3. Mjerenja uz vecu vaznost vidljivosti

nlmlalp |p Najkrac¢a | Broj Stop
putanja iteracija faktor
10102 [3 |06 6 13 2
10102 [3 |06 3 7 2
10102 [3 |06 7 15 2
10103 [5 |06 4 9 2
10103 [5]0.6 4 9 2
10103 [5 |06 3 7 2
10101 [2 |06 7 15 2
10101 [2 |06 3 7 2
10101 [2]0.6 4 9 2
10101 [5 0.6 6 13 2
10101 [5 |06 2 5 2
10101 [5]0.6 2 5 2

Primjec¢ujemo drasticno poboljSanje uspjeha algoritma
ukoliko mu poveéamo zavisnost o vidljivosti (udaljenosti

Najkra¢a | Broj Stop gradova). Naime, vidimo da je najkraca putanja najbrze
n |mj|a |B |p
putanja__ | iteracija faktor nadjena kada je f mnogo veca od a.
10 | 10 | 1 1 0.6 12 99 0
10101 |1 106 17 99 0 Tabela 4. Mjerenja uz veéu vaznost traga
10 [10 | 1 1 0.6 16 99 0
10101 |1 |06] 10 21 2 Najkraca | Broj Stop
10 110 | 1 1 0.6 6 13 2 no|mjoeBgp putanja iteracija faktor
10 | 10 | 1 1 0.6 9 91 10 101013 1 0.6 4 9 2
10 | 10 | 3 1 0.6 6 13 2
Tabela 2. Mjerenja sa inicijalnim paramtrima programa 10105 |1 |06 8 17 2
sa fiksnim tackama 10105 |1 0.6 6 13 2
10 [10 | 1 0 10.6 7 15 2
n m " B 0 Najkraéa Broj Stop 10 | 10 | 1 0 0.6 8 17 2
putanja iteracija faktor 10101 [0 |0.6 5 11 2
10 | 10 | 1 1 0.6 14 99 0 10[10]2 |0 |06 7 15 2
10 | 10 | 1 1 0.6 7 99 0 10102 |0 |06 7 15 2
10 110 | 1 1 0.6 7 99 0 10[10(2 |0 |06 10 21 2
1010 |1 1 0.6 5 11 2
10101 |1 |06 7 15 2 Naglaskom na trag mravi gube vaznost najblizeg grada. U
10101 |1]0.6 8 81 10 eksperimentima bez osjetljivosti na udaljenost (P=0)

U prve dijve tabele testiramo funkciju stop faktora. Ostali
parametri su fiksirani, s tim da su u prvoj tabeli gradovi
random generisani, a u drugoj fiksirani.

Ako izostavimo stop faktor (odnosno postavimo ga na 0),
onda algoritam vrshi 100 iteracija (unaprijed zadato). Ako
je stop faktor 2, onda broj trenutne iteracije treba da bude
duplo ve¢i od broja najbolje iteracije kako bi se zaustavila
pretraga.

Posmatrajuéi ove dvije tabele vidimo da je najkraca putanja
pronadjena ve¢ do 20. iteracije, tako da nam je broj koraka
100 kao parametar zaustavljanja malo prevelik, to jest,
bespotrebno se trose resursi, dakle bolje je staviti npr. da je
stop faktor 2.

U narednim tabelama ostavi¢emo istih 10 fiksiranih tacaka,
staviéemo da je stop faktor 2 i menjati ostale parametre.

algoritam dolazi do najkrace putanje nakon mnogo koraka.

Pokusaj da se malo poveca uloga traga u algoritmu bez
mijenjanja koeficijenta o i f moZe se posti¢i povecanjem
faktora isparavanja. Smanjenjem p bi trebalo da poraste
uticaj vidljivosti u odnosu na trag. Iz rezultata
eksperimenata iz tabele 1. vidljivo je da faktor isparavanja
ne utice na rezultat tako jako kao sami a i f.

U tabeli 6 provjeri¢emo da li broj mrava utice na efikasnost
algoritma za nasih 10 fiksiranih tacaka.

Tabela 5. Mjerenja vaznosti faktora isparavanja

nmla B |p Najkrgc’a Broj) Stop
putanja iteracija faktor
10101 |1 |04 7 15 2
10110 | 1 1 0.4 8 17 2
10 [10 | 1 1 0.4 7 15 2
10101 |1]05 8 17 2

1197

10101 |1 |05 6 13 2
10101 |1 |05 4 9 2
10101 |1 107 9 19 2
100101 |1 107 7 15 2
10101 |1 |07 4 9 2
10101 |1 |08 7 15 2
10101 |1 |08 4 9 2
10101 |1 108 7 15 2

Medutim, eksperimentalni rezultati takode ukazuju na neke
izazove 1 ogranicenja ACO algoritma. Na primjer,
performanse algoritma mogu znacajno varirati u zavisnosti
od inicijalnih parametara, S§to zahtjeva pazljivo
podesavanje kako bi se postigli najbolji rezultati. Takode,

Tabela 6. Mjenjanje broja mrava

nomla B |p Najkrac¢a | Broj Stop
putanja iteracija faktor
2 10 | 1 1 |06 9 19 2
2 10 | 1 1 106 5 10 2
6 10 | 1 1 106 10 21 2
6 10 | 1 1 106 5 11 2
10 | 10 | 1 1 106 7 15 2
10 |10 | 1 1 |06 1 3 2
1010 [1 1 106 5 11 2
14110 [1 1 106 12 25 2
14110 [1 1 106 8 17 2
18 |10 | 1 1 106 13 27 2
18 110 | 1 1 |06 10 21 2
20 | 10 | 1 1 106 14 29 2
20 110 | 1 1 106 9 19 2

Vidimo da se povecanjem broja mrava efikasnost
algoritma ne povecéava, kao i da se u sluc¢aju jednakog broja
mrava i gradova algoritam zaustavio nakon samo 3
iteracije. Zakljucujemo da nema smisla uzimati veci broj
mrava, nego je bolje uzeti isti ili manji broj mrava od
gradova.

6. ZAKLJUCAK

Evaluacija rezultata implementacije pokazala je da ACO
algoritam moze efikasno da rjeSava problem trgovackog
putnika, Cesto nalazec¢i optimalne ili blizu optimalne rute.
Jedna od prednosti ovog algoritma je njegova sposobnost
da se prilagodi razli¢itim konfiguracijama problema, uz
relativno brz proces konvergencije ka optimalnom
rjeSenju.

7. LITERATURA

[1] Dorigo, M., Optimization, Learning and Natural
Algorithms (in Italian). PhD thesis, Dipartimento di
Elettronica, Politecnico di Milano, Milan, Italy, 1992.

[2] Dorigo, M., and Gambardella, L.M., Ant Colony
System: A Cooperative Learning Approach to the
Travelling Salesman Problem, IEEE Transactions on
Evolutionary Computation, 1, 53-66, (1997).

[3] Dorigo, M., and Gambardella, L.M., Ant Colony
System: A Cooperative Learning Approach to the

vrijeme izvr§avanja algoritma moze postati problemati¢no
za vrlo velike ili kompleksne instance TSP-a, gde broj
mogucih rjeSenja eksponencijalno raste sa brojem gradova.
Medjutim, u ovom konkretnom radu uveli smo stop faktor,
koji omogucéava da se algoritam zaustavi u relativno
kratkom vremenu.

Ovaj rad je demonstrirao da ACO algoritam, iako ve¢
dobro poznat u teoriji optimizacije, ima ogroman
potencijal za prakticne primjene, posebno kada se
kombinuje sa savremenim tehnologijama kao $to su Python
i graficki korisnicki interfejsi. Iako postoje izazovi u vezi
sa performansama i skalabilno$¢u, ovi problemi su rjesivi
kroz dalja istrazivanja i unapredenja algoritma.

Travelling Salesman Problem, IEEE Transactions on
Evolutionary Computation, 1, 53-66, (1997).

[4] Luci¢, P., and Teodorovié, D., Transportation
Modeling: An Artificial Life Approach, Proceedings
of the 14th IEEE “International Conference on Tools
with Artificial Intelligence”, pp. 216-223, November
4-6, 2002 Washington D.C.

[5] Teodorovi¢, D., Selmié¢, M., Radunarska inteligencija
u saobracaju, Beograd, 2019.

Kratka biografija:

Nikolina Josi¢ rodjena je 14. juna 1985.
godine u Trebinju. Zavrsila je gimnaziju
“Jovan Duci¢' 2004. godine. Diplomirala je
2013. godine na Elektrotehnickom
fakultetu u Banjaluci, smjer Elektronika i
telekomunikacije. U oktobru 2017. godine
upisuje master studije primjenjene
matematike na Fakultetu tehni¢kih nauka
u Novom Sadu.

1198

