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Oblast - MATEMATIKA U TEHNICI 

Kratak sadržaj – U ovom radu istražen je algoritam 

optimizacije kolonijom mrava (Ant Colony Optimization - 

ACO), koji se koristi za rješavanje kompleksnih 

optimizacijskih  problema.  

Poseban fokus stavljen je na problem trgovačkog putnika 

(Traveling Salesman Problem - TSP), gde je potrebno 

pronaći najkraću moguću putanju koja prolazi kroz zadati 

skup gradova.  

Praktični dio rada je urađen u programskom jeziku 

Python. U radu je implementiran ACO algoritam, 

eksperimentisano je sa različitim parametrima, i 

analizirane su performanse algoritma.  Rezultati su 

pokazali efikasnost i adaptivnost ACO algoritma, kao i 

uticaj različitih parametara na njegovu performansu. 

Ključne reči: Optimizacija kolonijom mrava (ACO), 

Problem trgovačkog putnika (TSP), Optimizacijski 

algoritmi, Python, Performanse algoritma, Analiza 

parametara 

Abstract – In this paper, the Ant Colony Optimization 

(ACO) algorithm, used for solving complex optimization 

problems, is investigated. Special focus is placed on the 

Traveling Salesman Problem (TSP), where the objective is 

to find the shortest possible route that passes through a 

given set of cities. The practical part of the study was 

conducted in the Python programming language. The ACO 

algorithm was implemented, various parameters were 

experimented with, and the algorithm's performance was 

analyzed. The results demonstrated the efficiency and 

adaptability of the ACO algorithm, as well as the impact of 

different parameters on its performance. 

Keywords: Ant Colony Optimization (ACO), Traveling 

Salesman Problem (TSP), Optimization Algorithms 

Python, Algorithm Performance 

Parameter Analysis 

1. UVOD 

Problemi optimizacije su veoma važni u oblasti nauke i 

industrije. Neki primjeri problema optimizacije iz stvarnog 

života su pravljenje rasporeda, pravljenje reda vožnje, 

planiranje kapaciteta, problem trgovačkog putnika, 

problem rasporeda grupne radnje, itd. Mnogi algoritmi 

optimizacije su razvijeni iz ovog razloga.  

 

______________________________________ 
NAPOMENA: 

Ovaj rad proistekao je iz master rada čiji mentor je bio 

dr Nebojša Ralević, red. prof. 

Optimizacija kolonijom mrava je jedan od njih. 

Optimizacija kolonijom mrava je probabilistička tehnika 

za pronalaženje optimalnih putanja.Algoritam optimizacije 

kolonijom mrava se koristi za rješavanje različitih 

računarskih problema. 

Ovaj algoritam je uveden na osnovu ponašanja mrava u 

potrazi za hranom za traženje puta između svoje kolonije i 

izvorne hrane. U početku se koristio za rješavanje dobro 

poznatog problema trgovačkog putnika. Kasnije se koristi 

za rješavanje različitih teških problema optimizacije. U 

ovom radu detaljno je razmotrena teorijska osnova ACO 

algoritma, kao i njegova primjena u različitim oblastima sa 

posebnim fokusom na problem trgovačkog putnika TSP. 

U ovom problemu dati su skup lokacija i udaljenosti 

između njih. Problem se sastoji u nalaženju zatvorene 

šetnje minimalne dužine koja prolazi kroz svaku lokaciju 

tačno jednom (osim one prve u koju se i vraća). 

 

2. OPTIMIZACIJA KOLONIJOM MRAVA 

Optimizacija kolonijom mrava (Ant Colony Optimization 

-ACO) je metaheuristički algoritam inspirisan ponašanjem 

stvarnih mrava u prirodi, posebno načinom na koji oni 

pronalaze najkraći put između kolonije i izvora hrane. Ovaj 

algoritam je prvi put predložio Marko Dorigo 1990-ih 

godina, i od tada je postao jedan od najpoznatijih pristupa 

u rјešavanju složenih problema optimizacije.  

Mravi koriste hemijski trag poznat kao feromon kako bi 

komunicirali međusobno. Kada mrav pronađe izvor hrane, 

na putu nazad do kolonije ostavlja trag feromona. Ostali 

mravi imaju veću vјerovatnoću da prate puteve sa većom 

koncentracijom feromona, što dovodi do formiranja sve 

efikasnijih puteva kako se više mrava kreće tom rutom. 

Ovaj princip je osnova ACO algoritma: mravi virtuelno 

ostavljaju tragove feromona na putevima između različitih 

tačaka problema koje treba optimizovati, i postepeno 

pronalaze optimalno rešenje kroz iterativnu optimizaciju. 

ACO algoritam za problem trgovačkog putnika 

Problem trgovačkog putnika (TSP) je jedan od najčešćih 

problema optimizacije koji ACO algoritam rešava. Cilj je 

pronaći najkraći put koji polazi iz jednog grada, prolazi 

kroz sve druge tačno jednom, i vraća se u početni grad. 

ACO koristi veštačke mrave koji pretražuju prostor 

mogućih rješenja, imitirajući ponašanje stvarnih mrava.  

Vjerovatnoća da mrav pređe sa jednog čvora i u drugi 

čvor j je definisana formulom:  

𝑃𝑖𝑗 =
[𝜏𝑖𝑗(𝑡)]𝛼 ∙ [𝜂𝑖𝑗]𝛽

∑𝑘𝜖𝐽[𝜏𝑖𝑘(𝑡)]𝛼 ∙ [𝜂𝑖𝑘]𝛽
 

gdje su: 
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• 𝜏𝑖𝑗(𝑡) - količina feromona na putu između 

čvorova i i j u trenutku t,  

• 𝜂𝑖𝑗 – heuristička vrijednost , obično definisana 

kao recipročna vrijednost udaljenosti između i i j 

(𝜂𝑖𝑗 = 1/dij), 

• α i β su parametri koji kontrolišu relativan značaj 

feromona i heurističke informacije, 

• J je skup neposjećenih čvorova. 

Ažuriranje feromona 

Nakon svake iteracije, tragovi feromona se ažuriraju kako 

bi odražavali kvalitet pronađenih rješenja. Proces 

isparavanja feromona je ključan za sprječavanje 

preuranjene konvergencije na suboptimalna rješenja. 

Ažuriranje feromona za svaki put (i,j) odvija se po formuli: 

 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) ∙  𝜏𝑖𝑗(𝑡) + ∑ ∆𝜏𝑖𝑗
𝑘

𝑚

𝑘=1

 

gdje je: 

• ρ – faktor isparavanja feromona (0 <ρ<1), 

• ∆𝜏𝑖𝑗
𝑘  – količina feromona koju ostavlja k-ti mrav. 

Količina feromona koju jedan mrav ostavlja 

proporcionalna je kvalitetu njegovog rješenja (obrnuto 

proporcionalna dužini puta koji je prešao): 

∆𝜏𝑖𝑗
𝑘 =

𝑄

𝐿𝑘
 

gdje je: 

• Q – konstanta. 

• Lk – dužina puta kojeg je prešao k- ti mrav. 

3. Praktična primjena 

Proces pretrage 

Na početku pretrage, svi mravi su postavljeni nasumično 

na različite čvorove grafa koji predstavlja problem. Svaki 

mrav pretražuje prostor mogućih rješenja koristeći pravilo 

proporcionalno količini feromona i heurističke vrijednosti, 

birajući sledeći čvor na osnovu vjerovatnoće Pij. Kako 

iteracije napreduju, putevi sa većom koncentracijom 

feromona postaju popularniji, što vodi ka globalnom 

optimizovanom rješenju. 

ACO algoritam je fleksibilan i lako se može prilagoditi 

različitim problemima optimizacije, uključujući probleme 

rasporeda, rutiranja i druge kombinatorne probleme. 

Optimizacija kolonijom mrava (ACO) implementirana je u 

Python programskom jeziku zbog njegove jednostavnosti, 

bogatog seta biblioteka i čitljivog koda. Python omogućava 

brzu prototipizaciju i vizualizaciju složenih algoritama, što 

je idealno za testiranje i analizu performansi ACO 

algoritma. 

Implementacija ACO algoritma uključuje nekoliko 

ključnih koraka: 

1. Inicijalizacija kolonije mrava: Svaki mrav predstavlja 

potencijalno rešenje problema, npr. za TSP problem, mrav 

predstavlja rutu između gradova. 

2. Izbor sledećeg čvora: Koristi se pravilo proporcionalno 

feromonima i heurističkim vrednostima kako bi mravi 

birali sledeći čvor. 

3. Ažuriranje feromona: Nakon što svi mravi završe 

iteraciju, tragovi feromona se ažuriraju, uzimajući u obzir 

dužinu pređenih ruta. 

4. Kriterijum zaustavljanja. 

 

3.1. Grafički korisnički interfejs (GUI) 

Jedan od ključnih elemenata praktične primjene ACO 

algoritma je razvoj grafičkog korisničkog interfejsa (GUI). 

GUI omogućava korisnicima da vizualno prate proces 

optimizacije i podešavaju parametre kao što su broj 

iteracija, broj mrava, stopa isparavanja feromona i početne 

vrijednosti feromona. Za razvoj GUI-ja u Pythonu 

korištena je biblioteka Tkinter, koja omogućava 

jednostavno kreiranje prozora, dugmadi, polja za unos i 

grafikona. 

Na sledećoj slici je prikaz jednostavnog GUI-ja koji 

omogućava unos parametara ACO algoritma i pokretanje 

vizualizacije: 

 

Slika 1. Grafički korisnički interfejs GUI 

Korisnici mogu lako prilagoditi parametre i pratiti kako 

algoritam prolazi kroz iteracije, tražeći optimalno rješenje 

problema. Vizualizacija pokazuje kako se rute mjenjanju i 

konvergiraju ka optimalnim tokom vremena, što je 

posebno korisno za analizu performansi algoritma. 

 3.2. Vizualizacija rezultata 

Biblioteka Matplotlib koristi se za vizualizaciju pređenih 

ruta i feromonskih tragova u svakoj iteraciji. Na slici 2. je 

prikazan primer rute koju su mravi pronašli nakon nekoliko 

iteracija. Crne tačke predstavljaju gradove, a crte između 

njih predstavljaju rute koje mravi koriste. Debljina linije je 

proporcionalna količini feromona deponovanih na toj ruti, 

što omogućava vizuelno praćenje koji putevi su češće 

korišćeni. 
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Slika 2. Prikaz iteracije 

3.3. Mjerenja 

U ovoj podsekciji testiramo kako hiperparametri utiču na 

efikasnost agoritma. Parametri na raspolaganju su: n (broj 

mrava), m (broj gradova), 𝛼 (važnost traga), β (važnost 

vidljivosti) i ρ (faktor isparavanja), kao i stop faktor. 

 

 

Tabela 1. Mjerenja sa inicijalnim paramtrima programa 

sa random tačkama 

 

n m α β ρ 
Najkraća 

putanja 

Broj  

iteracija 

Stop  

faktor 

10 10 1 1 0.6 12 99 0 

10 10 1 1 0.6 17 99 0 

10 10 1 1 0.6 16 99 0 

10 10 1 1 0.6 10 21 2 

10 10 1 1 0.6 6 13 2 

10 10 1 1 0.6 9 91 10 

 

Tabela 2. Mjerenja sa inicijalnim paramtrima programa 

sa fiksnim tačkama 

 

n m α β ρ 
Najkraća 

putanja 

Broj  

iteracija 

Stop  

faktor 

10 10 1 1 0.6 14 99 0 

10 10 1 1 0.6 7 99 0 

10 10 1 1 0.6 7 99 0 

10 10 1 1 0.6 5 11 2 

10 10 1 1 0.6 7 15 2 

10 10 1 1 0.6 8 81 10 

 

U prve dijve tabele testiramo funkciju stop faktora. Ostali 

parametri su fiksirani, s tim da su u prvoj tabeli gradovi 

random generisani, a u drugoj fiksirani. 

Ako izostavimo stop faktor (odnosno postavimo ga na 0), 

onda algoritam vrshi 100 iteracija (unaprijed zadato). Ako 

je stop faktor 2, onda broj trenutne iteracije treba da bude 

duplo veći od broja najbolje iteracije kako bi se zaustavila 

pretraga. 

Posmatrajući ove dvije tabele vidimo da je najkraća putanja 

pronadjena već do 20. iteracije, tako da nam je broj koraka 

100 kao parametar zaustavljanja malo prevelik, to jest, 

bespotrebno se troše resursi, dakle bolje je staviti npr. da je 

stop faktor 2. 

U narednim tabelama ostavićemo istih 10 fiksiranih tačaka, 

stavićemo da je stop faktor 2 i menjati ostale parametre. 

U sledeće dve tabele mjenjamo α i β. Naime, u prethodnim 

tabelama su parametri α i β bili isti. U prvoj narednoj tabeli 

je β veća od α a drugoj α veća od β. 

 

Tabela 3. Mjerenja uz veću važnost vidljivosti 

 

n m α β ρ 
Najkraća 

putanja 

Broj  

iteracija 

Stop  

faktor 

10 10 2 3 0.6 6 13 2 

10 10 2 3 0.6 3 7 2 

10 10 2 3 0.6 7 15 2 

10 10 3 5 0.6 4 9 2 

10 10 3 5 0.6 4 9 2 

10 10 3 5 0.6 3 7 2 

10 10 1 2 0.6 7 15 2 

10 10 1 2 0.6 3 7 2 

10 10 1 2 0.6 4 9 2 

10 10 1 5 0.6 6 13 2 

10 10 1 5 0.6 2 5 2 

10 10 1 5 0.6 2 5 2 

 

Primjećujemo drastično poboljšanje uspjeha algoritma 

ukoliko mu povećamo zavisnost o vidljivosti (udaljenosti 

gradova). Naime, vidimo da je najkraća putanja najbrže 

nadjena kada je β mnogo veća od α. 

 

Tabela 4. Mjerenja uz veću važnost traga 

 

n m α β ρ 
Najkraća 

putanja 

Broj  

iteracija 

Stop  

faktor 

10 10 3 1 0.6 4 9 2 

10 10 3 1 0.6 6 13 2 

10 10 5 1 0.6 8 17 2 

10 10 5 1 0.6 6 13 2 

10 10 1 0 0.6 7 15 2 

10 10 1 0 0.6 8 17 2 

10 10 1 0 0.6 5 11 2 

10 10 2 0 0.6 7 15 2 

10 10 2 0 0.6 7 15 2 

10 10 2 0 0.6 10 21 2 

Naglaskom na trag mravi gube važnost najbližeg grada. U 

eksperimentima bez osjetljivosti na udaljenost (β=0) 

algoritam dolazi do najkraće putanje nakon mnogo koraka. 

Pokušaj da se malo poveća uloga traga u algoritmu bez 

mijenjanja koeficijenta α i β može se postići povećanjem 

faktora isparavanja. Smanjenjem ρ bi trebalo da poraste 

uticaj vidljivosti u odnosu na trag. Iz rezultata 

eksperimenata iz tabele 1. vidljivo je da faktor isparavanja 

ne utiče na rezultat tako jako kao sami α i β. 

U tabeli 6 provjerićemo da li broj mrava utiče na efikasnost 

algoritma za naših 10 fiksiranih tačaka. 

 

Tabela 5. Mjerenja važnosti faktora isparavanja 

 

n m α β ρ 
Najkraća 

putanja 

Broj  

iteracija 

Stop  

faktor 

10 10 1 1 0.4 7 15 2 

10 10 1 1 0.4 8 17 2 

10 10 1 1 0.4 7 15 2 

10 10 1 1 0.5 8 17 2 
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10 10 1 1 0.5 6 13 2 

10 10 1 1 0.5 4 9 2 

10 10 1 1 0.7 9 19 2 

10 10 1 1 0.7 7 15 2 

10 10 1 1 0.7 4 9 2 

10 10 1 1 0.8 7 15 2 

10 10 1 1 0.8 4 9 2 

10 10 1 1 0.8 7 15 2 

 

Međutim, eksperimentalni rezultati takođe ukazuju na neke 

izazove i ograničenja ACO algoritma. Na primjer, 

performanse algoritma mogu značajno varirati u zavisnosti 

od inicijalnih parametara, što zahtjeva pažljivo 

podešavanje kako bi se postigli najbolji rezultati. Takođe, 

vrijeme izvršavanja algoritma može postati problematično 

za vrlo velike ili kompleksne instance TSP-a, gde broj 

mogućih rješenja eksponencijalno raste sa brojem gradova. 

Medjutim, u ovom konkretnom radu uveli smo stop faktor, 

koji omogućava da se algoritam zaustavi u relativno 

kratkom vremenu. 

 

Ovaj rad je demonstrirao da ACO algoritam, iako već 

dobro poznat u teoriji optimizacije, ima ogroman 

potencijal za praktične primjene, posebno kada se 

kombinuje sa savremenim tehnologijama kao što su Python 

i grafički korisnički interfejsi. Iako postoje izazovi u vezi 

sa performansama i skalabilnošću, ovi problemi su rješivi 

kroz dalja istraživanja i unapređenja algoritma.

Tabela 6. Mjenjanje broja mrava 

 

n m α β ρ 
Najkraća 

putanja 

Broj  

iteracija 

Stop  

faktor 

2 10 1 1 0.6 9 19 2 

2 10 1 1 0.6 5 10 2 

6 10 1 1 0.6 10 21 2 

6 10 1 1 0.6 5 11 2 

10 10 1 1 0.6 7 15 2 

10 10 1 1 0.6 1 3 2 

10 10 1 1 0.6 5 11 2 

14 10 1 1 0.6 12 25 2 

14 10 1 1 0.6 8 17 2 

18 10 1 1 0.6 13 27 2 

18 10 1 1 0.6 10 21 2 

20 10 1 1 0.6 14 29 2 

20 10 1 1 0.6 9 19 2 

 

Vidimo da se povećanjem broja mrava efikasnost 

algoritma ne povećava, kao i da se u slučaju jednakog broja 

mrava i gradova algoritam zaustavio nakon samo 3 

iteracije. Zaključujemo da nema smisla uzimati veći broj 

mrava, nego je bolje uzeti isti ili manji broj mrava od 

gradova. 

6. ZAKLJUČAK 

Evaluacija rezultata implementacije pokazala je da ACO 

algoritam može efikasno da rješava problem trgovačkog 

putnika, često nalazeći optimalne ili blizu optimalne rute. 

Jedna od prednosti ovog algoritma je njegova sposobnost 

da se prilagodi različitim konfiguracijama problema, uz 

relativno brz proces konvergencije ka optimalnom 

rješenju. 
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