

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 51
DOI: https://doi.org/10.24867/32JV01Josic

OPTIMIZACIJA KOLONIJOM MRAVA

ANT COLONY OPTIMIZATION

Nikolina Jošić, Fakultet tehničkih nauka, Novi Sad

Oblast - MATEMATIKA U TEHNICI

Kratak sadržaj – U ovom radu istražen je algoritam

optimizacije kolonijom mrava (Ant Colony Optimization -

ACO), koji se koristi za rješavanje kompleksnih

optimizacijskih problema.

Poseban fokus stavljen je na problem trgovačkog putnika

(Traveling Salesman Problem - TSP), gde je potrebno

pronaći najkraću moguću putanju koja prolazi kroz zadati

skup gradova.

Praktični dio rada je urađen u programskom jeziku

Python. U radu je implementiran ACO algoritam,

eksperimentisano je sa različitim parametrima, i

analizirane su performanse algoritma. Rezultati su

pokazali efikasnost i adaptivnost ACO algoritma, kao i

uticaj različitih parametara na njegovu performansu.

Ključne reči: Optimizacija kolonijom mrava (ACO),

Problem trgovačkog putnika (TSP), Optimizacijski

algoritmi, Python, Performanse algoritma, Analiza

parametara

Abstract – In this paper, the Ant Colony Optimization

(ACO) algorithm, used for solving complex optimization

problems, is investigated. Special focus is placed on the

Traveling Salesman Problem (TSP), where the objective is

to find the shortest possible route that passes through a

given set of cities. The practical part of the study was

conducted in the Python programming language. The ACO

algorithm was implemented, various parameters were

experimented with, and the algorithm's performance was

analyzed. The results demonstrated the efficiency and

adaptability of the ACO algorithm, as well as the impact of

different parameters on its performance.

Keywords: Ant Colony Optimization (ACO), Traveling

Salesman Problem (TSP), Optimization Algorithms

Python, Algorithm Performance

Parameter Analysis

1. UVOD

Problemi optimizacije su veoma važni u oblasti nauke i

industrije. Neki primjeri problema optimizacije iz stvarnog

života su pravljenje rasporeda, pravljenje reda vožnje,

planiranje kapaciteta, problem trgovačkog putnika,

problem rasporeda grupne radnje, itd. Mnogi algoritmi

optimizacije su razvijeni iz ovog razloga.

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je bio

dr Nebojša Ralević, red. prof.

Optimizacija kolonijom mrava je jedan od njih.

Optimizacija kolonijom mrava je probabilistička tehnika

za pronalaženje optimalnih putanja.Algoritam optimizacije

kolonijom mrava se koristi za rješavanje različitih

računarskih problema.

Ovaj algoritam je uveden na osnovu ponašanja mrava u

potrazi za hranom za traženje puta između svoje kolonije i

izvorne hrane. U početku se koristio za rješavanje dobro

poznatog problema trgovačkog putnika. Kasnije se koristi

za rješavanje različitih teških problema optimizacije. U

ovom radu detaljno je razmotrena teorijska osnova ACO

algoritma, kao i njegova primjena u različitim oblastima sa

posebnim fokusom na problem trgovačkog putnika TSP.

U ovom problemu dati su skup lokacija i udaljenosti

između njih. Problem se sastoji u nalaženju zatvorene

šetnje minimalne dužine koja prolazi kroz svaku lokaciju

tačno jednom (osim one prve u koju se i vraća).

2. OPTIMIZACIJA KOLONIJOM MRAVA

Optimizacija kolonijom mrava (Ant Colony Optimization

-ACO) je metaheuristički algoritam inspirisan ponašanjem

stvarnih mrava u prirodi, posebno načinom na koji oni

pronalaze najkraći put između kolonije i izvora hrane. Ovaj

algoritam je prvi put predložio Marko Dorigo 1990-ih

godina, i od tada je postao jedan od najpoznatijih pristupa

u rјešavanju složenih problema optimizacije.

Mravi koriste hemijski trag poznat kao feromon kako bi

komunicirali međusobno. Kada mrav pronađe izvor hrane,

na putu nazad do kolonije ostavlja trag feromona. Ostali

mravi imaju veću vјerovatnoću da prate puteve sa većom

koncentracijom feromona, što dovodi do formiranja sve

efikasnijih puteva kako se više mrava kreće tom rutom.

Ovaj princip je osnova ACO algoritma: mravi virtuelno

ostavljaju tragove feromona na putevima između različitih

tačaka problema koje treba optimizovati, i postepeno

pronalaze optimalno rešenje kroz iterativnu optimizaciju.

ACO algoritam za problem trgovačkog putnika

Problem trgovačkog putnika (TSP) je jedan od najčešćih

problema optimizacije koji ACO algoritam rešava. Cilj je

pronaći najkraći put koji polazi iz jednog grada, prolazi

kroz sve druge tačno jednom, i vraća se u početni grad.

ACO koristi veštačke mrave koji pretražuju prostor

mogućih rješenja, imitirajući ponašanje stvarnih mrava.

Vjerovatnoća da mrav pređe sa jednog čvora i u drugi

čvor j je definisana formulom:

𝑃𝑖𝑗 =
[𝜏𝑖𝑗(𝑡)]𝛼 ∙ [𝜂𝑖𝑗]𝛽

∑𝑘𝜖𝐽[𝜏𝑖𝑘(𝑡)]𝛼 ∙ [𝜂𝑖𝑘]𝛽

gdje su:

1195

https://doi.org/10.24867/32JV01Josic

• 𝜏𝑖𝑗(𝑡) - količina feromona na putu između

čvorova i i j u trenutku t,

• 𝜂𝑖𝑗 – heuristička vrijednost , obično definisana

kao recipročna vrijednost udaljenosti između i i j

(𝜂𝑖𝑗 = 1/dij),

• α i β su parametri koji kontrolišu relativan značaj

feromona i heurističke informacije,

• J je skup neposjećenih čvorova.

Ažuriranje feromona

Nakon svake iteracije, tragovi feromona se ažuriraju kako

bi odražavali kvalitet pronađenih rješenja. Proces

isparavanja feromona je ključan za sprječavanje

preuranjene konvergencije na suboptimalna rješenja.

Ažuriranje feromona za svaki put (i,j) odvija se po formuli:

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) ∙ 𝜏𝑖𝑗(𝑡) + ∑ ∆𝜏𝑖𝑗
𝑘

𝑚

𝑘=1

gdje je:

• ρ – faktor isparavanja feromona (0 <ρ<1),

• ∆𝜏𝑖𝑗
𝑘 – količina feromona koju ostavlja k-ti mrav.

Količina feromona koju jedan mrav ostavlja

proporcionalna je kvalitetu njegovog rješenja (obrnuto

proporcionalna dužini puta koji je prešao):

∆𝜏𝑖𝑗
𝑘 =

𝑄

𝐿𝑘

gdje je:

• Q – konstanta.

• Lk – dužina puta kojeg je prešao k- ti mrav.

3. Praktična primjena

Proces pretrage

Na početku pretrage, svi mravi su postavljeni nasumično

na različite čvorove grafa koji predstavlja problem. Svaki

mrav pretražuje prostor mogućih rješenja koristeći pravilo

proporcionalno količini feromona i heurističke vrijednosti,

birajući sledeći čvor na osnovu vjerovatnoće Pij. Kako

iteracije napreduju, putevi sa većom koncentracijom

feromona postaju popularniji, što vodi ka globalnom

optimizovanom rješenju.

ACO algoritam je fleksibilan i lako se može prilagoditi

različitim problemima optimizacije, uključujući probleme

rasporeda, rutiranja i druge kombinatorne probleme.

Optimizacija kolonijom mrava (ACO) implementirana je u

Python programskom jeziku zbog njegove jednostavnosti,

bogatog seta biblioteka i čitljivog koda. Python omogućava

brzu prototipizaciju i vizualizaciju složenih algoritama, što

je idealno za testiranje i analizu performansi ACO

algoritma.

Implementacija ACO algoritma uključuje nekoliko

ključnih koraka:

1. Inicijalizacija kolonije mrava: Svaki mrav predstavlja

potencijalno rešenje problema, npr. za TSP problem, mrav

predstavlja rutu između gradova.

2. Izbor sledećeg čvora: Koristi se pravilo proporcionalno

feromonima i heurističkim vrednostima kako bi mravi

birali sledeći čvor.

3. Ažuriranje feromona: Nakon što svi mravi završe

iteraciju, tragovi feromona se ažuriraju, uzimajući u obzir

dužinu pređenih ruta.

4. Kriterijum zaustavljanja.

3.1. Grafički korisnički interfejs (GUI)

Jedan od ključnih elemenata praktične primjene ACO

algoritma je razvoj grafičkog korisničkog interfejsa (GUI).

GUI omogućava korisnicima da vizualno prate proces

optimizacije i podešavaju parametre kao što su broj

iteracija, broj mrava, stopa isparavanja feromona i početne

vrijednosti feromona. Za razvoj GUI-ja u Pythonu

korištena je biblioteka Tkinter, koja omogućava

jednostavno kreiranje prozora, dugmadi, polja za unos i

grafikona.

Na sledećoj slici je prikaz jednostavnog GUI-ja koji

omogućava unos parametara ACO algoritma i pokretanje

vizualizacije:

Slika 1. Grafički korisnički interfejs GUI

Korisnici mogu lako prilagoditi parametre i pratiti kako

algoritam prolazi kroz iteracije, tražeći optimalno rješenje

problema. Vizualizacija pokazuje kako se rute mjenjanju i

konvergiraju ka optimalnim tokom vremena, što je

posebno korisno za analizu performansi algoritma.

 3.2. Vizualizacija rezultata

Biblioteka Matplotlib koristi se za vizualizaciju pređenih

ruta i feromonskih tragova u svakoj iteraciji. Na slici 2. je

prikazan primer rute koju su mravi pronašli nakon nekoliko

iteracija. Crne tačke predstavljaju gradove, a crte između

njih predstavljaju rute koje mravi koriste. Debljina linije je

proporcionalna količini feromona deponovanih na toj ruti,

što omogućava vizuelno praćenje koji putevi su češće

korišćeni.

1196

Slika 2. Prikaz iteracije

3.3. Mjerenja

U ovoj podsekciji testiramo kako hiperparametri utiču na

efikasnost agoritma. Parametri na raspolaganju su: n (broj

mrava), m (broj gradova), 𝛼 (važnost traga), β (važnost

vidljivosti) i ρ (faktor isparavanja), kao i stop faktor.

Tabela 1. Mjerenja sa inicijalnim paramtrima programa

sa random tačkama

n m α β ρ
Najkraća

putanja

Broj

iteracija

Stop

faktor

10 10 1 1 0.6 12 99 0

10 10 1 1 0.6 17 99 0

10 10 1 1 0.6 16 99 0

10 10 1 1 0.6 10 21 2

10 10 1 1 0.6 6 13 2

10 10 1 1 0.6 9 91 10

Tabela 2. Mjerenja sa inicijalnim paramtrima programa

sa fiksnim tačkama

n m α β ρ
Najkraća

putanja

Broj

iteracija

Stop

faktor

10 10 1 1 0.6 14 99 0

10 10 1 1 0.6 7 99 0

10 10 1 1 0.6 7 99 0

10 10 1 1 0.6 5 11 2

10 10 1 1 0.6 7 15 2

10 10 1 1 0.6 8 81 10

U prve dijve tabele testiramo funkciju stop faktora. Ostali

parametri su fiksirani, s tim da su u prvoj tabeli gradovi

random generisani, a u drugoj fiksirani.

Ako izostavimo stop faktor (odnosno postavimo ga na 0),

onda algoritam vrshi 100 iteracija (unaprijed zadato). Ako

je stop faktor 2, onda broj trenutne iteracije treba da bude

duplo veći od broja najbolje iteracije kako bi se zaustavila

pretraga.

Posmatrajući ove dvije tabele vidimo da je najkraća putanja

pronadjena već do 20. iteracije, tako da nam je broj koraka

100 kao parametar zaustavljanja malo prevelik, to jest,

bespotrebno se troše resursi, dakle bolje je staviti npr. da je

stop faktor 2.

U narednim tabelama ostavićemo istih 10 fiksiranih tačaka,

stavićemo da je stop faktor 2 i menjati ostale parametre.

U sledeće dve tabele mjenjamo α i β. Naime, u prethodnim

tabelama su parametri α i β bili isti. U prvoj narednoj tabeli

je β veća od α a drugoj α veća od β.

Tabela 3. Mjerenja uz veću važnost vidljivosti

n m α β ρ
Najkraća

putanja

Broj

iteracija

Stop

faktor

10 10 2 3 0.6 6 13 2

10 10 2 3 0.6 3 7 2

10 10 2 3 0.6 7 15 2

10 10 3 5 0.6 4 9 2

10 10 3 5 0.6 4 9 2

10 10 3 5 0.6 3 7 2

10 10 1 2 0.6 7 15 2

10 10 1 2 0.6 3 7 2

10 10 1 2 0.6 4 9 2

10 10 1 5 0.6 6 13 2

10 10 1 5 0.6 2 5 2

10 10 1 5 0.6 2 5 2

Primjećujemo drastično poboljšanje uspjeha algoritma

ukoliko mu povećamo zavisnost o vidljivosti (udaljenosti

gradova). Naime, vidimo da je najkraća putanja najbrže

nadjena kada je β mnogo veća od α.

Tabela 4. Mjerenja uz veću važnost traga

n m α β ρ
Najkraća

putanja

Broj

iteracija

Stop

faktor

10 10 3 1 0.6 4 9 2

10 10 3 1 0.6 6 13 2

10 10 5 1 0.6 8 17 2

10 10 5 1 0.6 6 13 2

10 10 1 0 0.6 7 15 2

10 10 1 0 0.6 8 17 2

10 10 1 0 0.6 5 11 2

10 10 2 0 0.6 7 15 2

10 10 2 0 0.6 7 15 2

10 10 2 0 0.6 10 21 2

Naglaskom na trag mravi gube važnost najbližeg grada. U

eksperimentima bez osjetljivosti na udaljenost (β=0)

algoritam dolazi do najkraće putanje nakon mnogo koraka.

Pokušaj da se malo poveća uloga traga u algoritmu bez

mijenjanja koeficijenta α i β može se postići povećanjem

faktora isparavanja. Smanjenjem ρ bi trebalo da poraste

uticaj vidljivosti u odnosu na trag. Iz rezultata

eksperimenata iz tabele 1. vidljivo je da faktor isparavanja

ne utiče na rezultat tako jako kao sami α i β.

U tabeli 6 provjerićemo da li broj mrava utiče na efikasnost

algoritma za naših 10 fiksiranih tačaka.

Tabela 5. Mjerenja važnosti faktora isparavanja

n m α β ρ
Najkraća

putanja

Broj

iteracija

Stop

faktor

10 10 1 1 0.4 7 15 2

10 10 1 1 0.4 8 17 2

10 10 1 1 0.4 7 15 2

10 10 1 1 0.5 8 17 2

1197

10 10 1 1 0.5 6 13 2

10 10 1 1 0.5 4 9 2

10 10 1 1 0.7 9 19 2

10 10 1 1 0.7 7 15 2

10 10 1 1 0.7 4 9 2

10 10 1 1 0.8 7 15 2

10 10 1 1 0.8 4 9 2

10 10 1 1 0.8 7 15 2

Međutim, eksperimentalni rezultati takođe ukazuju na neke

izazove i ograničenja ACO algoritma. Na primjer,

performanse algoritma mogu značajno varirati u zavisnosti

od inicijalnih parametara, što zahtjeva pažljivo

podešavanje kako bi se postigli najbolji rezultati. Takođe,

vrijeme izvršavanja algoritma može postati problematično

za vrlo velike ili kompleksne instance TSP-a, gde broj

mogućih rješenja eksponencijalno raste sa brojem gradova.

Medjutim, u ovom konkretnom radu uveli smo stop faktor,

koji omogućava da se algoritam zaustavi u relativno

kratkom vremenu.

Ovaj rad je demonstrirao da ACO algoritam, iako već

dobro poznat u teoriji optimizacije, ima ogroman

potencijal za praktične primjene, posebno kada se

kombinuje sa savremenim tehnologijama kao što su Python

i grafički korisnički interfejsi. Iako postoje izazovi u vezi

sa performansama i skalabilnošću, ovi problemi su rješivi

kroz dalja istraživanja i unapređenja algoritma.

Tabela 6. Mjenjanje broja mrava

n m α β ρ
Najkraća

putanja

Broj

iteracija

Stop

faktor

2 10 1 1 0.6 9 19 2

2 10 1 1 0.6 5 10 2

6 10 1 1 0.6 10 21 2

6 10 1 1 0.6 5 11 2

10 10 1 1 0.6 7 15 2

10 10 1 1 0.6 1 3 2

10 10 1 1 0.6 5 11 2

14 10 1 1 0.6 12 25 2

14 10 1 1 0.6 8 17 2

18 10 1 1 0.6 13 27 2

18 10 1 1 0.6 10 21 2

20 10 1 1 0.6 14 29 2

20 10 1 1 0.6 9 19 2

Vidimo da se povećanjem broja mrava efikasnost

algoritma ne povećava, kao i da se u slučaju jednakog broja

mrava i gradova algoritam zaustavio nakon samo 3

iteracije. Zaključujemo da nema smisla uzimati veći broj

mrava, nego je bolje uzeti isti ili manji broj mrava od

gradova.

6. ZAKLJUČAK

Evaluacija rezultata implementacije pokazala je da ACO

algoritam može efikasno da rješava problem trgovačkog

putnika, često nalazeći optimalne ili blizu optimalne rute.

Jedna od prednosti ovog algoritma je njegova sposobnost

da se prilagodi različitim konfiguracijama problema, uz

relativno brz proces konvergencije ka optimalnom

rješenju.

7. LITERATURA

[1] Dorigo, M., Optimization, Learning and Natural

Algorithms (in Italian). PhD thesis, Dipartimento di

Elettronica, Politecnico di Milano, Milan, Italy, 1992.

[2] Dorigo, M., and Gambardella, L.M., Ant Colony

System: A Cooperative Learning Approach to the

Travelling Salesman Problem, IEEE Transactions on

Evolutionary Computation, 1, 53-66, (1997).

[3] Dorigo, M., and Gambardella, L.M., Ant Colony

System: A Cooperative Learning Approach to the

Travelling Salesman Problem, IEEE Transactions on

Evolutionary Computation, 1, 53-66, (1997).

[4] Lučić, P., and Teodorović, D., Transportation

Modeling: An Artificial Life Approach, Proceedings

of the 14th IEEE “International Conference on Tools

with Artificial Intelligence”, pp. 216-223, November

4-6, 2002 Washington D.C.

[5] Teodorović, D., Šelmić, M., Računarska inteligencija

u saobraćaju, Beograd, 2019.

Kratka biografija:

Nikolina Jošić rodjena je 14. juna 1985.

godine u Trebinju. Završila je gimnaziju

“Jovan Dučić'' 2004. godine. Diplomirala je

2013. godine na Elektrotehničkom

fakultetu u Banjaluci, smjer Elektronika i

telekomunikacije. U oktobru 2017. godine

upisuje master studije primjenjene

matematike na Fakultetu tehničkih nauka

u Novom Sadu.

1198

