E‘Z%ﬁ Zbornik radova Fakulteta tehni¢kih nauka, Novi Sad

UDK: 621.38
DOI: https://doi.org/10.24867/33BE03Stamenkovic

FORMALNA VERIFIKACIJA DVOJEZGARNOG JEDNO-CIKLUSNOG RISC-V
PROCESORA I DELA MEMORIJSKOG PODSISTEMA

FORMAL VERIFICATION OF A DUAL CORE SINGLE-CYCLE RISC-V CORE WITH
PART OF MEMORY SUBSYSTEM

Petar Stamenkovi¢, Fakultet tehnickih nauka, Novi Sad

Oblast - ELEKTROTEHNIKA I RACUNARSTVO

Kratak sadrzaj — U ovom radu je prikazan nacin verifikacije
dvojezgarnog jedno-ciklusnog RISC-V procesora i dela
memorijskog podsistema pomolu formalnih metoda i
JasperGold alata kreiranog od strane kompanije Cadence. Dat
je osnovni opis dizajna koji se verifikuje, osnovni operatori
SystemVerilog jezika koji se koristi kao i verifikacione tehnike
koje su upotrebljene za efikasniju verifikaciju sistema.

Kljuéne reci: Formalna verifikacija, RISC-V, Memorijski
podsistem, Pokrivenost dizajna, Kes memorija

Abstract — This paper presents the way that dual core single-
cycle RISC-V processor with part of memory subsystem is
verified with formal methods by using a formal tool JasperGold
developed by Cadence. Basic description of design is given,
alongside with basic SystemVerilog operators and verification
tecniques that were used for efficent verification of the system.

Keywords: Formal verification, RISC-V, Memory subsystem,
Design coverage, Cache memory

1.UVOD

Formalna verifikacija podrazumeva upotrebu alata koji
matematicki analiziraju dostizna stanja u dizajnu umesto da
proracunavaju vrednosti za konkretno zadate ulazne vektore.
Danas predstavlja veoma efikasan i temeljit nacin verifikacije
jer teoretski moze da potvrdi totalno odsustvo greski, uz
idealno napisane osobine. Alat pruza ogroman broj
mogucénosti 1 veliki broj aplikacija koje olakSavaju proveru
odredenih aspekata sistema kao $to su provera pokrivesnoti
(Coverage app), provera validnosti napisanih osobina (FPV),
provera ekvivalentsnoti sistema (SEQ) i tako dalje. Formalna
verifikacija sa sobom nosi neke veoma vazne prednosti u
odnosu na verifikaciju baziranu na simulaciji i neke od njih su:

1. Za jednostavne RTL modele nema potrebe za
pisanjem test okruzenja.

2. Lako ispitivanje nama nepoznatog sistema.

NAPOMENA: Ovaj rad proistekao je iz master rada ¢iji
mentor je bio dr Vuk Vranjkovié, vanr. prof.

3. Efikasnije i uglavnom kraée vreme proveravanja.

4. Omogucena je potpuna pokrivenost

5. Dostupnost kontra-primera

6. Dostupnost analize beskona¢nih putanja
U radu je najviSe koriS¢ena FPV aplikacija koja radi sa
osobinama. Osobina (property) je jezicka konstrukcija koja
formalno opisuje neki aspekt digitalnog sistema i predstavlja
uopstenje ve¢ poznate assert naredbe. DefiniSu se pomocéu
HDL jezika od kojih je u ovom radu koris¢en SystemVerilog.

Na njih se primenjuju verifikacione akcije assert, assume ili
cover.

2. KRATAK OPIS PROJEKTOVANOG DIZAJNA

Kao $to je pomenuto, projektovani dizajn je RISC-V sistem
i on se sastoji od slede¢ih komponenti :

e Dva RISC-V jedno-ciklusna
sopstvenim L1 ke§ memorijama.

procesora sa

e Globalna magistrala sa kontrolerom.
e Deljena L2 ke§ memorija sa ke$ kontrolerom.
e Globalna memorija za podatke.

Blok Sema sistema je data na slici 1 na sledecoj stranici.
Projektovanje sistema je radeno u 3 faze, gde je prva faza
podrazumevala procesor koji sadrzi i ke§ memoriju i data
memory komponentu za podatke. U nastavku je ustanovljeno
da to nije optimalno, pa je u fazi 2 data memory komponenta
izbacena van procesora. Konacno faza 3 sadrzi ceo sistem i
njegovo povezivanje. Svaku fazu je pratila jednostavna
verifikacija i pisanje kratkih test scenarija za simulaciju u
okviru alata Vivado.

2.1. RISC-V JEDNO-CIKLUSNI PROCESOR

Srce ovog sistema predstavlja upravo pomenuti RISC-V
procesor. Inicijalno, procesor je sadrzao osnovne komponente
RISC-V arhitekture a zatim je po fazama dodato ostalo.
Procesor podrzava instrukcije tipova R, I,L, S, U, B iJ. Sadrzi
sopstvenu L1 memoju koja je direktno mapirana i ima 256
lokacija i uz nju je i kes kontroler za istu.

1287

https://doi.org/10.24867/33BE03Stamenkovic

Valid + Payload/Snoop

<

CPU 1

o]

Valid + Payload/Snoop

CPU2

=l

Y N

Bus Controller Memory

L2

Slika 1 : Blok Sema projektovanog sistema

Protkol koherenntnosti koji je odabran za ovaj rad je MESI
i on je takode implementiran u okviru L1 ke§ memorije.
Sustinski, ako se desi pogodak (cache hif) u L1 kes
memoriji procesora koji trazi podatak, on se jednostavno
upisuje u registar. Ako se desi promasaj (cache miss), prvo
proveravamo dostupnost podatka u drugom procesoru,
zatim u L2 ke§ memoriji i na samom kraju u globalnoj
memoriji za podatke koja predstavlja poslednji nivo
memorijske hijerarhije. Procesor se sastoji od sledecih
komponenti: aritmeticko-logicka jedinica (4ALU),
instrukciona memorija, sabira¢ (sa 4 i sa poljem imm),
modul za grananje (branch condition), kontroler samog
procesora (kontorlni signali), modul za generisanje
konstante (immediate generator), programski broja¢(PC),
multiplekseri, registarski fajl, modul za prosledivanje
podatka koji se upisuje u registarski fajl (write back) i L1
kes memorija sa svojim kontrolerom.

Bitno je napomenuti da se magistrali pristupa samo u
sluc¢aju L ili S tipa instrukcija i da u sluéaju istovremenog
pristupa oba procesora postoji implementriana arbitraza
koja odlucuje koji ¢e imati prednost u tom momentu.
Inicijalno, prednost ima prvi procesor. Upis u sve memorije
kao i registarski fajl se izvrSava na opadajucu ivicu taktnog
signala dok je Citanje iz svih asinhrono.

2.2. Ostatak sistema

Procesor je instanciran dva puta i oba su povezana na
zajednicku magistalu koja za cilj ima efikasno rutiranje i
prosledivanje podataka, bilo to od strane drugog procesora
ili L2 memorije. Magistrala dobija informacije kao $to su
adresa, operacija, tag kao i sam podatak i pomocu istih
odlucuje gde se Sta Salje. Takode, poseduje indikatore o
tome gde se podatak moze naci, Sto delom predstavlja
snoop protokol. Ukoliko jezgro 1 nema podatak, magistrala
¢e proveriti da li ga ima drugo jezgro i tek u sluéaju da ga
nema ¢e se osvrnuti na ostatak sistema.

Deljena L2 ke§ memorija je set-asocijativna sa dva kanala i
ima 1024 lokacije koje su podeljene u 512 setova (4 puta
veci kapacitet od LI). Algoritam zamene podataka unutar
kanala koji se koristi je LRU i implementiran je pomoc¢u
LRU bita koji je sastavni deo svake linije u L2 memoriji.
Od trenutka kada su oba podatka validna unutar jednog seta
u memoriji, LRU biti tih kanala moraju uvek biti suprotni.
Globalna memorija za podatke predstavlja poslednji nivo
memorijske hijerarhije i nakon odluke u fazi 2, izbacena je
van procesora. Njoj pristupamo u slucaju da podatak nije

1288

dostupan niti u jednom od procesora niti u L2 ke$ memoriji.
Tokom rada, njen kapacitet je bio 1024 kako bi se alatu
olaksala provera osobina, medutim nakon iste, moguce je
povecati njen kapacitet.

3. PROCES VERIFIKACIJE PROJEKTOVANOG
SISTEMA

Slicno procesu projektovanja, i proces verifikacije je
raden u 3 faze. Verifikacija procesora koji je imao i kes
memoriju 1 data memory komponentu predstavalja
verifikaciju faze 1 dok je verifikacija finalne verzije
procesora bez data memory komponente predstavljena sa
verifikacijom faze 2. Verifikacija celokupno povezanog
sistema je verifikacija faze 3. Kao §to je pomenuto, pre
same formalne verifikacije pisani su jednostavni testovi
za test okruzenje u okviru alata Vivado gde je proverena
osnovna funkcionalnost sistema za par smisljenih ulaznih
kombinacija instrukcija.

3.1. Verifikacioni plan

Verifikacioni plan predstavlja prvi korak u svakoj
verifikaciji i predstavlja bitan dokument jer se upravo na
njega ceo verifikacioni tim oslanja. Sastavlja se na osnovu
funkcionalne specifikacije sistema i preporuka je pisati ga
,hladne glave® kako bi rastereCeni obuhvatili sve bitne
tacke za proveru sistema.

Faza 1 i faza 2 su pokrivene istim verifikacionim planom
obzirom da obe obuhvataju proveru procesora uz
modifikaciju pomenute data memory komponente. Radi se
provera svih komponenti unutar procesora kao i proveri
tranzicija masina stanja i MESI protkola koherentnosti.
Faza 3 je pokrivena drugim verifikacionim planom i on
podrazumeva proveru interakcija izmedu svih komponenti
sistema kao $to su deSavanje nakon flush operacije, provera
oba kanala u jednom setu L2 memorije, LRU biti i sli¢no.
Takode se proverava i upis i Citanje kako iz L2 ke§
memorije, tako i iz globalne memorije za podatke.

3.2. Verifikaciono okruZenje

Za razvijanje verifikacionog okruZenja je kori§¢ena metoda
referentog modela, to jest, napisana je checker komponenta.
Za povezivanje ove komponente i samog dizajna se
koristila bind komanda i napisana skripta. Sli¢no kao i za
verifikacioni plan, i u ovom sluaju su napisana dva
referentna modela, jedan za verifikaciju procesora i jedan
za verifikaciju celokupnog sistema. U ovim fajlovima su

pisane osobine koje za ulogu imaju proveru funkcionalnosti
sistema. Oba referentna modela imaju slicnu strukturu i ona
se sastoji od sledecih delova :

PrRd/-
PrWr/-

Slika 2 : MESI protkoll?

Deklaracija portova dizajna procesora odnosno
sistema

Sekcija za definisanje
parametara i struktura.
Sekcija za definisanje restrikcija 1 ogranicenja
(assumes)

Sekcija za definisanje tzv. grey box signala koji
idu kroz hijerarhiju i uzimaju se direktno iz
dizajna.

Pomo¢ni kod (Auxillary code)

Sekcija za definisanje tvrdnji i pomoénih tacaka
pokrivenosti (asserts, covers)

pomoc¢nih signala,

Restrikcije su veoma bitan deo referentnog modela jer
ograni¢avaju vrednosti ulaza koje alat moZze da kreira.
Osobina koju alat dokaze, uz restrikcije koje nisu dobro
napisane, ne moze se smatrati validnom jer smo time mozda
maskirali gresku. Na primer, RISC-V arhitektura ne
dozvoljava da u registru x0 bude bilo koja vrednost sem 0.
Ukoliko ne napiSemo restrikciju koja osigurava da alat ne
kreira takvu instrukciju koja ¢e da radi upis u taj registar,
nasa osobina za upis u registarski fajl nece biti korektna.
Jo§ jedan primer su vrednosti maske za S ili L tip
instrukcije. Maska u ovim slu¢ajevima odreduje koji deo
reci od 32 bita ¢e biti upisan ili ucitan, byte (8 bita), half
word (/6 bita) ili word (32 bita). Po RISC-V standardu,
polje za masku je Siroko 3 bita pa je alatu dostupno 8
vrednosti za istu, iako za S postoje samo 3 vrednosti koje
se koriste i za L samo 5 vrednosti. Bez ogranicenja, alat bi
odmah dao kontra-primer sa jednom od vrednosti koje se
ne koriste, §to ne bi bilo korektno. Bitno je napomenuti da,
obzirom da sistem radi i na rastucu i na opadajucu ivicu
takta, svaka restrikcija mora imati svoju kopiju koja se
evaluira i na opadajucu ivicu.

1289

3.3. Tehnike formalne verifikacije

Kako bi se alatu olakSao rad i dokaz napisanih osobina,
koris¢ene su razne tehnike. One su pomogle i pri tome da
se kod organizuje i time inzinjeru olaksa da razume
povratnu informaciju alata.

Metoda crne kutije (black box) — Unutar instrukcione
memorije su ucitane instrukcije koje sistem treba da izvrsi.
Kako bi verifikacija bila preciznija, na ovu komponentu je
primenjena black box tehnika. Alat sada ne posmatra
unutrasnjost ove komponente i njenu funkcionalnost, veé
ima slobodu da na njene ulaze dovodi sve moguce vrednosti
koje poStuju zadate restrikcije. Obzirom da je ova
komponenta jednostavna i ne izvrSava neki napredan kod,
nije postojalo nikakvih mera opreza za primenu ove
tehnike. Nakon primene iste, trebalo je samo napisati
propratne restrikcije koje ¢e da osiguraju korektan rad
sistema. Preciznije, donjih 7 bita izlazne instrukcije je
moralo da ima jednu od 7 vrednosti za svaki od podrzanih
tipova instrukcije.

Pisanje pomoénog AUX koda — Kod kompleksnijih
dizajnova kao $to je ovaj, osobine mogu biti takode veoma
kompleksne i dugacke, §to nikako ne odgovara alatu.
Pomo¢ni kod omogucava da se kreiraju neki pomocni
signali koje kasnije mozemo da upotrebimo za poredenje u
okviru nekog dokaza. Na primer, za proveru programskog
brojaca bi na prvi pogled imali 7 provera za svaki tip
instrukcije. Medutim ukoliko samo napisemo jednostavni
pomo¢ni kod i kreiramo signal pc_ref koji prati promenu
vrednosti brojaca u referentnom modelu, kao $to je uradeno
u ovom projektu, dovoljna je samo jedna osobina koja
dokazuje validan rad programskog broja¢a. U nekom
drugom slu¢aju je bolje jednu osobinu rastaviti na vise
manjih osobina. Recimo da Zelimo da proverimo
skladistenje podataka u L1 ke§ memoriju. Postoje 3
vrednosti maske za S tip instrukcije tj. mozemo skladistiti
1, 2 ili 4 bajta. Teoretski je moguce napisati jednu osobinu
koja ¢e proveriti sve maske odjednom, ali obzirom da je
skladiStenje podataka kompleksna operacija za alat (jer
radi sa velikim brojem stanja), mnogo je pametnije i
efikasnije to uraditi sa 3 odvojene osobine.

Upotreba nedeterministicke konstante (location based
coupling) — Nedeterministicka konstanta ili jo§ poznato kao
i slobodna varijabla je varijabla koju alat zadaje tokom
provere. Ova tehnika podrazumeva proveru jedne
nedeterministi¢ke lokacije i Cesto se koristi upravo za
adrese i tagove kod ke§ memorija. Na ovaj nacin se
apstrahuju svi elementi osim lokacije koja se proverava,
¢ime se drasti¢no smanjuje prostor koji alat mora da ispita.
Ovo se Cesto koristi u slu¢ajevima:

Kada sistem ima dosta simetri¢nih elemenata kao
Sto su tabele, memorije ili nizovi.

Kada sistem ima veliki adresni prostor, kao §to je
DMA kontroler ili memorija.

Uz ovu tehniku je potrebno napisati restrikciju koja drzi

ovu varijablu stabilnom, jer ona ne sme da se menja tokom
jedne iteracije rada alata. Takode, ako je potrebno, moguce
je ograniciti i vrednost ove varijable. Tehnika se uglavnom
primenjuje u osobinama tako $to se evaluacija iste radi pri
podudaranju adrese koju je doveo alat i pomenute varijable.
Graficki prikaz ove tehnike je dat na slici 3.

DUT

Memory

Memory Abstraction
Hold data just
for address IV

Check address N

Slika 3 : Location based coupling!®

Za vecinu osobina je koris¢eno pisanje pomoé¢nog AUX
koda i za sve kompleksnije osobine (rad sa memorijama)
je koriS¢ena nedetermisnitcka konstanta. Medutim, postoje
i osobine za koje ovo nije bilo potrebno. Ovo su uglavnom
jednostavne osobine za koje je dovoljno koristiti dostupne
portove i grey-box signale kako bi se dokaz napisao. Primer
jedne takve osobine je dat ispod ovog pasusa.

property checking transition from IDLE to DMEM_ WRITE;
top.cache L2.state ==2'000 &&
top.cache L2.cache hit out==2'b01 |=>
top.cache L2.state ==2'b01;

endproperty

Napisana osobina jednostavno proverava da li se prelazi u
stanje DMEM_WRITE u slu¢aju promasaja u memoriji.
Sve osobine koje su napisane su dokazane i sve pronadene
greske u svim fazama su ispravljene i dokumentovane u
samom radu.

4. ANALIZA REZULTATA

Nakon §to su sve osobine napisane i dokazane, poslednji
korak je upotreba Coverage aplikacije u okviru alata. Njena
uloga je da nam pruzi metriku i povratnu informaciju o
tome koliko smo dizajna pokrili sa naSim osobinama, da li
su sva granjanja proverena i sli¢no.

Formalni alat nudi 3 tipa pokrivenosti :

1. Stimuli coverage — Koji kod ili funkcionalnost je
dostizna pomo¢nu formalnog alata? Koje osobine
alat moze da pokrije?

Checker coverage — Ova pokrivenost nam daje
informaciju o tome da li je verifikacija zavrSena i
koliko dizajna je pokriveno pomocu napisanih
tvrdnji.

Formal coverage Kombinacija rezultata
prethodne dve metrike. Tacka u okviru ove
pokrivenosti se smatra ,,pokrivenom® ako je ista
,pokrivena™ i u Stimuli i u Checker metrici. Ova

1290

metrika nam daje

pokrivenosti sistema.
Aplikacija je pokrenuta nakon pisanja oba referetna
modela, na kraju faze 2 i na kraju faze 3.
Nakon verifikacije procesora, aplikacija je pokazala
maksimalnu pokrivenost (slika 4) nakon odredenog
vremena. Ovime smo dobili zeleno svetlo da nastavimo sa
verifikacijom ostatka sistema.

informaciju o ukupnoj

I e L e "= chesker setings [owt coe + <01 2]

>

Jex Jrorm:
o1
o I >

nnmim

LT

I

Slika 4 : Pokrivenost nakon verifikacije

procesora

Nakon uspesne verifikacije celokupnog sistema, aplikacija
je pokrenuta i nakon faze 3.

Usled manjka memorijskih resursa na virtuelnoj masini na
kojoj je bilo radeno, pri kraju rada aplikacije alat je izdao
upozorenje zbog kojeg je provera morala biti obustavljena
pred kraj. Ovime pokrivenost nije teoretski maksimalna,
medutim na slici 5 mozemo primetiti sledece stvari:

Novo dodate komponente su maksimalno
pokrivene, dok je alat ostavio samo ve¢ proverene
procesore za kraj.

Vecina funkcionalnosti kod procesora je
dokazana, zbog cega se pretpostavlja da bi i
ostatak bio dokazan sa vise dostupnih resursa.
Nema oblasti u koje alat ne moze uopste da ude
(crvene oblasti), ve¢ su preostale samo Zute oblasti
koje su ,,jos uvek nedokazane* (undetermined).

Coverage Analysis | ssert Analysis | waiver Table | console |
Coverage Analysis

Task(s) [<embedded>] Excludes [Waived, Deadcode, Reset =] Checker Setings [Froot Core + coI =]

Coverage Models.

Instance Jex [Formal coverage @] stimuli coverage @ | checker Coverage |
1032/1180 (87.46%) [EE] 1140/1180 (96 61%) [MNE] 1072/1180 (90.85%)

] 423477 (88.68%)

[75/75 (100.00%)

£ 0 top ltop)

@ [78,75 (100.00%)

@ I 408477 (8553%) NI 462/477 (96.86%) [N 423/477 (88.68%)
@ [130130 (10000%) [N 130/130 (10000%) [N 130/130 (100.00%)
@ I 44 110000%) [44 (100 00%) [/4 (10000%)

-2] 0/0 10.00%) [] 0/0 10.00%) [] 00 (0.00%)

T chk_ref_model top (ref_model_top)

Slika 5 : Pokrivenost nakon verifikacije sistema

Uz sve ove tacke kao i osobine koje su dokazane, odredeno
je da se na ovom mestu verufikacija zavrsi, a time i ovaj
projekat.

5. ZAKLJUCAK

Nakon analize rezultata je ustanovljeno da sistem sadrzi sve
osobine koje su predvidene po specifikaciji. Procesori
mogu da izvrSe sve instrukcije koje podrzavaju sa
korektnim rezultatima. Za verifikaciju su uspes$no
iskoris¢ene formalne metode i tehnike za smanjenje
kompleknosti. Sve pronadene greske su dokumentovane i
ispravljene i analiza rezultata pomoc¢u Coverage aplikacije
je dala dobar rezultat ¢ime zakljucujemo da je verifikacija
uspesno odradena.

6. LITERATURA

[1] E. Seligman, T. Schubert, M. V. A. K. Kumar, 4n
essential toolkit for modern VLSI Design

[2] T. Suh, Integration and evaluation of cache coherence
protocols for multiprocessor socs, 2006

[3]”Jasper expert course”, Cadence [Na mrezi]. Available:
https://www.cadence.com/en_US/home/training/all-

courses.html

Kratka biografija

\.’J

Petar Stamenkovié roden je u
Novom Sadu 2000. godine.
Diplomirao je na Fakultetu
tehnickih nauka, na smeru
Energetika, elektronika i
telekomunikacije 2023. godine.
Master rad na Fakultetu tehnickih
nauka iz oblasti Elektrotehnike i
racunarstva — Energetika,
elektronika i telekomunikacije
odbranio je 2025. godine.
Kontakt:
petarstamenkovic35@gmail.com

1291

https://www.cadence.com/en_US/home/training/all-courses.html
https://www.cadence.com/en_US/home/training/all-courses.html

