g?ﬁ Zbornik radova Fakulteta tehniékih nauka, Novi Sad

UDK: 4.41
DOI: https://doi.org/10.24867/33BE07Nedic

PLATFORMA ZA VIZUALIZACIJU DISTRIBUIRANIH ALGORITAMA NA PRIMERU
KLASE ALGORITAMA ZA 1ZBOR LIDERA

PLATFORM FOR VISUALIZING DISTRIBUTED ALGORITHMS ON THE EXAMPLE
OF A CLASS OF ALGORITHMS FOR LEADER ELECTION

Aleksandra Nedi¢, Fakultet tehnickih nauka, Novi Sad

Oblast - ELEKTROTEHNIKA I RACUNARSTVO

Kratak sadrzaj — U radu je predstavijena proSiriva
platforma za vizualizaciju distribuiranih algoritama za
izbor lidera u sinhronim mrezama. Platforma omogucava
korisniku da dodaje nove algoritme pored predefinisanih,
kao i da manipulise sistemom kroz dinamicko dodavanje i
uklanjanje c¢vorova koji ucestvuju u izvrSavanju
algoritama. Detaljno se razmatraju implementirani
algoritmi za izbor lidera, razlicite topologije i tehnoloske
osnove platforme, uz prikaz njenih kljucnih elemenata i
nacina funkcionisanja. Rad takode opisuje specifikaciju i
arhitekturu sistema, kao i implementaciju platforme.

Kljuéne refi: distribuirani algoritmi, biranje lidera,
topologije, ~ Chang-Roberts, Gallager-Humblet-Spira,
Hirschberg-Sinclair, Bully, Hypercube

Abstract — The paper presents an extensible platform for
visualizing distributed algorithms for leader election in
synchronous networks. The platform allows the user to add
new algorithms in addition to predefined ones, as well as
to manipulate the system through dynamic addition and
removal of nodes participating in the execution of
algorithms. The implemented algorithms for the selection
of leaders, different topologies and technological
foundations of the platform are discussed in detail, with a
presentation of its key elements and ways of functioning.
The paper also describes the system specification and

system architecture, as well as the platform
implementation.
Keywords: distributed algorithms, leader election,

topologies,fklas Chang-Roberts, Gallager-Humblet-Spira,
Hirschberg-Sinclair, Bully, Hypercube

1. UVOD

U kontekstu izgradnje kompleksnih sistema, postoje dva
glavna pristupa: monolitni i1 distribuirani. Monolitne
arhitekture integrisu sve komponente u jedan proces, dok
distribuirani sistemi funkcioniSu kroz viSe povezanih
¢vorova bez centralnog autoriteta. To c¢ini pracenje
komunikacije, stanja ¢vorova i toka izvr§avanja algoritama
slozenim. Zbog toga je razvijena edukativna platforma
koja vizuelno prikazuje rad distribuiranih

NAPOMENA:
Ovaj rad proistekao je iz master rada ¢iji je mentor bio
dr Milan Stojkov, docent

algoritama, ukljucuju¢i topologiju sistema, razmenu
poruka i tabelu rutiranja. Platforma inicijalno podrzava
algoritme za izbor lidera (engl. Leader Election) [1] u
sinhronim mrezama. Omogucava korisnicima interaktivno
razumevanje ponasanja distribuiranih sistema i algoritama
nakon izbora lidera. Platforma je prosiriva i omogucava
jednostavno dodavanje novih algoritama putem Python
skripti.

2. TOPOLOGIJE

Topologija unutar distribuiranih sistema predstavlja nacin
na koji ¢vorovi komuniciraju i saraduju. Ona definise
organizaciju ¢vorova i putanje preko kojih se podaci
prenose. Topologije definisane u okviru platforme jesu
prsten [2], hiperkocka [3], mes [4] i mreza.

2.1. Prsten

Prsten topologija je struktura u distribuiranim sistemima u
kojoj su ¢vorovi povezani u krug. Svaki ¢vor je direktno
povezan sa svoja susedna dva ¢vora formirajuci zatvoreni
krug. Podaci se krecu kroz prsten od jednog do drugog
¢vora dok ne stignu do Zeljenog odredista.

2.2. Hiperkocka

Hiperkocka je slozena struktura u distribuiranim sistemima
koja povezuje ¢vorove tako da formira graf koji predstavlja
n-dimenzionalnu kocku. Za n dimenzija, broj ¢vorova u
hiperkocki mora biti 2". Svakom ¢voru je dodeljen binarni
broj od n bitova, a ¢vorovi su povezani ako se njihovi
binarni kodovi razlikuju u ta¢no jednom bitu.

2.3. Me§

Mes topologija predstavlja strukturu u kojoj postoje tri
vrste &vorova u zavisnosti od broja suseda. Cvorovi u
uglovima imaju dva suseda, ¢vorovi na ivicama imaju tri,
dok unutra$nji ¢vorovi imaju Cetiri suseda. Ukupan broj
veza m u me$ topologiji veli¢ine izra¢unava se formulom
m = 2ab — a — b, $to predstavlja horizontalne i vertikalne
veze izmedu ¢vorova.

2.4. Mreza

MreZa je univerzalan naziv za topologiju u kojoj su ¢vorovi
povezani na odredeni nacin. Ukoliko je unutar mreze svaki
¢vor povezan sa ostalim ¢vorovima, u pitanju je kompletna
mreza, dok je parcijalna mreza ona mreza u kojoj nisu svi
¢vorovi direktno povezani jedan sa drugim. Kod
kompletnih mreza prenos podataka je veoma brz i ovakva

1296

https://doi.org/10.24867/33BE07Nedic

mreza je korisna u sistemima u kojima je minimalno
kasnjenje kljucno.

3. ALGORITMI ZA BIRANJE LIDERA

Algoritmi za biranje lidera igraju veoma vaznu ulogu u
distribuiranim sistemima jer omoguéavaju izbor jednog
¢vora koji ¢e preuzeti ulogu koordinatora. Ovaj proces je
kljucan za osiguranje efikasnosti, stabilnosti i organizacije
sistema. Koordinator deluje kao centralna tacka koja
upravlja zadacima poput sinhronizacije C¢vorova i
upravljanja resursima, S$to omogucéava uskladenu
komunikaciju i sprecava nastanak konflikata.

3.1. Chang-Roberts algoritam

Chang-Roberts algoritam [5] bira lidera u sistemima sa
unidirekcionom prstenastom topologijom gde svaki ¢vor
ima jedinstveni identifikator (ID). Bilo koji ¢vor moze
pokrenuti algoritam slanjem poruke sa svojim ID-jem
susedu u smeru kazaljke na satu i time postaje ucesnik.
Prilikom primanja poruke, ¢vor:

1. prosleduje poruku ako je ID u njoj veci od njegovog,

2. 8alje svoju poruku ako je ID u njoj manji i nije

ucesnik,

3. ignoriSe poruku ako je ID manji i ve¢ je ucesnik,

4. proglasava se liderom ako je ID jednak njegovom.

3.2. Bully algoritam

Bully algoritam [6] je algoritam za biranje lidera u
sistemima u kojima svaki ¢vor ima svoj ID i u kojima je
mreZa potpuno povezana, te svaki ¢vor moze direktno
komunicirati jedan sa drugim. Za lidera se bira onaj ¢vor
koji ima najveéi ID. Proces zapocinje ¢vor koji otkrije da
trenutni lider viSe nije aktivan, ukoliko, na primer, ne
odgovara na poruke. Cvor pokreée proces za izbor tako §to
Salje poruku svim ¢vorovima koji imaju veéi ID od njega.
Ukoliko ne dobije odgovor od ¢vorova sa ve¢im ID-jem,
taj ¢vor proglasava sebe liderom. Ako ¢vor sa ve¢im ID-
jem odgovori na poruku inicijatoru, on preuzima proces
izbora lidera i Salje poruku ¢vorovima koji imaju ve¢i ID
od njega.

3.3. Hypercube algoritam

Hypercube algoritam [7] koristi se u distribuiranim
sistemima sa hiperkockastom topologijom. Za hiperkocku
dimenzije k postoji ukupno 2¥ &vorova, pri ¢emu svaki
¢vor ima binarni ID duzine k bita. Algoritam pokrece bilo
koji ¢vor slanjem poruke sa svojim ID-jem susedima u &
koraka. U svakom koraku poruka se $alje susedu koji se
razlikuje u jednom bitu — pocevsi od najmanje znac¢ajnog
(desnog) ka najznacajnijem (levom) bitu. Po prijemu
poruke, ¢vor:

1. ukoliko je ID iz poruke vec¢i od njegovog ID-ja, ¢vor

oznacava sebe da nije lider

2. ukoliko je ID iz poruke manji od njegovog ID-ja, a

¢vor do sada nije bio oznacen kao ne-lider, ¢vor

oznacava sebe kao lidera
Cvor zatim $alje svoj ID ostalim susedima. Po zavrsetku k
koraka, ¢vor koji je oznacen kao lider postaje lider, dok
ostali zavr$avaju rad.

3.4. Gallager-Humblet-Spira algoritam

Gallager-Humblet-Spira algoritam [8] je algoritam za
pronalazenje minimalnog razapinjujuceg stabla (engl.
Minimum spanning tree) u povezanim grafovima.

Koristi se u distribuiranim sistemima kod kojih veze
izmedu ¢vorova imaju odredenu tezinu. Algoritam se
zasniva na ideji fragmentacije grafa, gde ¢vorovi i grane
formiraju fragmente koji se iterativno spajaju dok se ne
formira jedno stablo. Na pocetku algoritma, svaki ¢vor
predstavlja fragment za sebe i ima sopstveni ID. Jedan ¢vor
zapoCinje proces za izbor lidera tako Sto Salje poruku
susedu sa kojim ima vezu najmanje tezine. Kada ¢vor primi
poruku, on uporeduje svoj ID sa ID-jem iz poruke, ukoliko
je njegov ID manji, ova dva ¢vora se spajaju u jedan
fragment, a za ID fragmenta se uzima manji od ova dva.
Ovaj proces se nastavlja iterativno dok svi ¢vorovi ne
postanu deo jednog fragmenta, ¢iji ID ima najmanju
vrednost. Na ovaj nacin je formirano minimalno
razapinjujuce stablo, a lider postaje ¢vor ¢iji ID predstavlja
ID ¢&itavog fragmenta.

3.5. Hirschberg-Sinclair algoritam

Hirschberg-Sinclair algoritam [9] koristi se za izbor lidera
u distribuiranim sistemima sa bidirekcionom prstenastom
topologijom, gde svaki ¢vor ima jedinstven ID. Izvr§ava se
u vise iteracija, pri ¢emu poruke putuju na sve vecim
udaljenostima, udvostru¢uju¢i domet u svakoj iteraciji,
tako da vazi k < 2%, gde je k udaljenost, a i broj iteracije.
Algoritam pocinje slanjem izborne poruke (engl. election
message) u oba smera. Prilikom prijema izborne poruke,
¢vor uporeduje svoj ID sa ID-jem iz poruke:

1. prosleduje poruku ako je ve¢i ID i domet nije

dostignut,

2. Salje povratnu poruku ako je domet dostignut,

3. ignoriSe poruku ako je ID manji,

4. proglasava se liderom ako je ID isti.
U slucaju povratne poruke (eng. reply message), ukoliko
ID-jevi ¢vora i poruke nisu isti, ¢vor vrac¢a poruku svom
susedu, dok ukoliko su ID-jevi isti, i povratna poruka je
stigla iz oba smera, ¢vor je lokalni lider, ¢ime je jedna
iteracija zavrSena i ¢vor zapocinje sledecu fazu elekcije.

4. MODEL SISTEMA

4.1. Arhitektura sistema

U arhitekturi platforme centralnu ulogu ima task
manager, ¢vor zaduZen za upravljanje i orkestraciju
celokupnog sistema. On poseduje kompletnu konfiguraciju
sistema, ukljucuju¢i definicije ¢vorova, algoritama i
njihove komunikacione topologije. Ova konfiguracija se
¢uva u JSON formatu na fajl sistemu i povezuje sa Docker
kontejnerom putem bind mount mehanizma, S§to
omoguéava lako azuriranje bez potrebe za restartovanjem
sistema. Task manager je jedini ¢vor izloZen spoljasnjoj
mrezi i sluzi kao komunikaciona spona izmedu korisnicke
aplikacije i ostatka sistema. Koristi HTTP protokol za
prijem korisni¢kih zahteva, poput dodavanja ¢vorova ili
pokretanja algoritama, dok se WebSocket koristi za
dvosmernu komunikaciju u realnom vremenu,
omogucavaju¢i korisniku da prati status algoritama i
trenutno stanje ¢vorova. Osnovna funkcija task manager-a
je koordinacija - inicira i uklanja cvorove, pokrece

1297

algoritme, upravlja njihovim izvrSavanjem i prati njihov
status. Informacije o izvrSavanju prosleduje korisniku kako
bi on imao uvid u rad sistema u realnom vremenu. Pored
task manager-a, sistem se sastoji od vise ¢vorova koji
medusobno komuniciraju sinhrono putem HTTP-a kako bi
izvrSavali distribuirane algoritme. Svaki ¢&vor, takode,
asinhrono $alje informacije o svom stanju task manager-u
koriste¢i RabbitMQ message broker, ¢ime se omoguéava
azuriranje prikaza sistema u realnom vremenu.

Arhitektura sistema prikazana je na slici 1.

RabbitMQ *

Usop 1

KopHcHKuKK
HHTEPEIC
nnargopme

- Task Manager - (GRS —

Kopmcris

Usop 4 Uscp 3

SLIKA 1: ARHITEKTURA RESENJA

4.2 Funkcionalnosti sistema

Platforma je namenjena jednoj vrsti korisnika i ne zahteva
autentifikaciju. Korisnik moze pregledati listu dostupnih
algoritama, izabrati neki i pratiti njegovo izvrSavanje na
grafickom prikazu.

Postoji 1 posebna stranica za pregled celog sistema,
ukljucujuci ¢vorove sa parametrima i tabele rutiranja koje
prikazuju ucesnike i njihove veze. Na toj stranici korisnik
moze dodavati nove algoritme, menjati ¢vorove i njihove
karakteristike, kao i dodavati nove ¢vorove unosom
podataka. Takode, moze menjati tabele rutiranja postoje¢ih
algoritama i time prilagodavati topologiju sistema.

4.3. Model podataka

Model podataka platforme je jednostavan i odnosi se na
konfiguraciju koja definiSe algoritme koji su dostupni u
sistemu, ¢vorove zajedno sa njihovim karakteristikama i
tabele rutiranja koje definiSu topologiju algoritama.
Konfiguracija sistema predstavljena je klasom Config, koja
sadrzi atribute nodes, algorithms, routing. Atribut nodes
predstavlja listu ¢vorova koji su prisutni u sistemu i
prikazani su klasom Node, atribut algorithms oznacava
algoritme unutar sistema i oni su predstavljeni klasom
Algorithm, dok atribut routing predstavlja tabelu rutiranja
za svaki algoritam i unutar platforme je modelovan klasom
Routing. Klasa Node sadrzi atribute id, url, active,
is_participant koji definiSu osnovne karakteristike ¢vora u
sistemu. Klasa Algorithm sadrzi dva atributa, name koji
predstavlja ime algoritma, i file name koji oznaava naziv
Python skripte u kojoj je algoritam implementiran. Tabela
rutiranja, predstavljena klasom Routing, modeluje
topologiju komunikacije izmedu <&vorova za svaki
algoritam. Klasa Routing sadrzi dinamicke parametre, gde
svaki klju¢ predstavlja ime algoritma, a njegova vrednost
je re¢nik u kome su kljucevi ID-jevi ¢vorova, dok su
vrednosti liste objekata koji opisuju rute. Svaka ruta je
predstavljena klasom Route koji sadrzi atribute id (ID
odrediSnog ¢vora) i ur/ (adresa odredisnog ¢vora).

Klasni dijagram prikazan je na slici 2.

Config
- nodes: List[Node]
- algorithms: List[Algorithm]
- routing: Routing
0.” 0.* 0..1
| S— 1 1
Node Algorithm Routing
- id: number) .
- url: string - name: string - [algorithm_name: str]:
- active: boolean - file_name: string Dict[string, List[Route]]
- is_participant:
booclean T
[
Route
- id: string
- url: string

SLIKA 2: KLASNI DIJAGRAM

5. IMPLEMENTACIJA

Serverska strana platforme sastoji se iz viSe servisa koji
igraju razli¢ite uloge. Svaki servis predstavlja ¢vor i
implementiran je u Python programskom jeziku uz pomo¢
FastAPI radnog okvira za lakSu komunikaciju izmedu
servisa i klijentske strane.

Svaki servis je kontejnerizovan radi lakSeg skaliranja
¢vorova. Za kontejnerizaciju se koristi Docker alat, a u
Docker Compose datoteci, pored servisa koji predstavljaju
¢vorove, definisan je 1 RabbitMQ =za asinhronu
komunikaciju, kao i volumen koji je deljen izmedu task
manager-a i ostalih ¢vorova, a predstavlja direktorijum u
kojem su smestene sve Python skripte koje predstavljaju
implementaciju algoritama. Na ovaj nacin, bez prekidanja
rada platforme korisnici mogu da definiSu nove algoritme
koji ¢e biti odmah dostupni ¢vorovima na izvrSavanje.
Kompletna konfiguracija platforme koju c¢ine dostupni
¢vorovi i algoritmi, kao i tabela rutiranja za svaki od
algoritama smeStena je u JSON datoteci i njoj moze da
pristupi centralni ¢vor radi orkestracije zadataka.

Konfiguracija se ucitava u sistem i zadrzava u radnoj
memoriji prilikom pokretanja centralnog c¢vora.
Konfiguracija se nalazi u globalnom objektu tipa Config i
pri svakom klijentovom zahtevu za pokretanje algoritama
koriste se podaci iz konfiguracije, a u slu¢aju izmena, nova
konfiguracija se zapisuje u JSON datoteku.

Prilikom pokretanja servisa, pored ucitavanja
konfiguracije, na pozadinskoj niti ucitava se i statistika
¢vorova poput zauzeca memorije 1 koriSéenja procesorske
mo¢iuz pomo¢ docker.py biliboteke, kako bi korisnik imao
uvid u njihov kapacitet prilikom izvrSavanja algoritama.
Na kraju, task manager na pozadinskoj niti otvara
konekceiju sa RabbitMQ servisom kako bi bio spreman da
konzumira podatke koji mu pristizu od strane ¢vorova i
prosleduje ih klijentu.

Centralni ¢vor se sastoji iz Cetiri krajnje tacake koje
pruzaju funkcionalnosti platforme. Postoji krajnja tacka za
dobavljanje konfiguracije koja ¢e biti prikazana korisniku
radi uvida i manipulacije sistema, zatim postoji mogucnost
izmene konfiguracije pri ¢emu se mogu dodavati ili
uklanjati ¢vorovi koji su specificirani u konfiguraciji i
poslednje dve krajnje tacke odnose se na pokretanje
algoritma i dodavanje novih algoritama.

Task manager zapoCinje izvrSavanje algoritama
inicijalizacijom svih ¢vorova koji se nalaze u tabeli
rutiranja za odredeni algoritam. Pod inicijalizacijom se
podrazumeva slanje podataka potrebnih za izvrSavanje

1298

algoritma. Kada su svi ¢vorovi uspe$no inicijalizovani,
task manager na slucajan nacin bira jedan ¢vor koji ¢e
zapoceti izvrSavanje algoritma za biranje lidera.

Cvor sadrzi pet krajnjih tadaka koje omoguéavaju
inicijalizaciju ¢vora, pokretanje algoritma, deaktivaciju
¢vora, prijem poruke od strane drugog cvora prilikom
izvrSavanja algoritma i izvrSavanje krajnje funkcije nakon
Sto je lider izabran.

Svaki ¢vor sadrzi globalnu promenljivu koja predstavlja
instancu klase Node i koja se inicijalizuje prilikom
inicijalizacije samog ¢vora. Unutar klase Node cuvaju se
podaci koje task manager Salje C¢voru prilikom
inicijalizacije.

Klasa Node ima nekoliko metoda, a najbitnije su metoda
za zapofinjanje izvrSavanja algoritma, metoda za slanje
poruke narednom ¢voru, metoda za obradu odgovora koji
je naredni ¢vor poslao i metoda za izracunavanje sume
sluc¢ajno odabranih brojeva.

Kako bi platforma bila proSiriva i kako bi mogla da
izvrSava veliki broj razliCitih algoritama, sve S$to je
zajednicko svim algoritmima nalazi se u okviru metoda ove
klase, dok je sve specifiéno za odredeni algoritam
smesteno u posebnom modulu. Klasa Node pretpostavlja
da svaki modul sadrzi tri funkcije, a to su:

1. run_algorithm(node_data, routing_table),
2. handle_message(node_data, routing_table, data)
3. handle result(node_data, routing_table, result)

Ove tri funkcije zajedno predstavljaju implementaciju
odredenog distribuiranog algoritma.

Nakon §to je zavrSen algoritam, odabrani lider $alje poruku
task manager-u ¢ime ga obaveStava da je izvrSavanje
zavrSeno. Task manager zatim poziva funkciju za
izraCunavanje zbira brojeva za svaki od ¢vorova. Nakon §to
svi ¢vorovi vrate rezultat, task manager izraCunava ukupan
zbir koji je stigao sa svih ¢vorova. Konacan rezultat,
zajedno sa medurezultatima prosleduje se korisniku kao
konacan korak algoritama za biranje lidera.

6. ZAKLJUCAK

Razumevanje distribuiranih algoritama je izazovno zbog
paralelnog izvrSavanja na velikom broju ¢vorova, slozenih
topologija i nacina komunikacije medu ¢vorovima. Ovi
izazovi su motivisali razvoj platforme koja vizuelno i u
realnom vremenu prikazuje izvrSavanje klasi¢nih
algoritama za izbor lidera u sinhronim mrezama,
omogucavajuéi pracenje topologije i stanja ¢vorova tokom
izvrSavanja. Platforma se sastoji od centralnog servisa,
task managera, koji upravlja konfiguracijom, komunicira
sa klijentom i koordinira &vorove. Cvorovi zajednigki
izvrSavaju algoritme, a sistem je proSiriv dodavanjem
novih algoritama putem Python skripti sa tri definisane
funkcije. Skaliranje je omoguceno dodavanjem ili
uklanjanjem ¢vorova. Buduéa unapredenja ukljucuju
podrsku za algoritme sa kasnjenjem poruka, ¢ime bi se
omogucdila Sira vizualizacija, kao i debagovanje i korak-po-
korak izvrSavanje za bolje razumevanje algoritama.

7. LITERATURA
[1] Shirali, M., Toroghi, A. H., & Vojdani, M. (2008).
Leader election algorithms: History and novel

schemes. In 2008 Third International Conference
on Convergence and Hybrid Information
Technology (pp. 1001-1006). IEEE.
https://doi.org/10.1109/ICCIT.2008.57

[2] Huang, M., & Bode, B. (2005). A performance
comparison of tree and ring topologies in distributed
systems. In /9th IEEE International Parallel and
Distributed Processing Symposium (pp. 8). IEEE.
https://doi.org/10.1109/IPDPS.2005.57

[3] Liu, H. (2009). The structural features of enhanced
hypercube networks. In 2009 Fifth International
Conference on Natural Computation (pp. 345-
348). IEEE.
https://doi.org/10.1109/ICNC.2009.191

[4] Santoro, N. (2006). Design and analysis of
distributed algorithms. Wiley.

[5] Chang, E., & Roberts, R. (1979). An improved
algorithm for decentralized extrema-finding in
circular configurations of processes.
Communications of the ACM, 22(5), 281-283.
https://doi.org/10.1145/359024.359027

[6] Garcia-Molina, H. (1982). Elections in a distributed
computing system. [EEE Transactions on
Computers, C-31(1), 48-59.
https://doi.org/10.1109/TC.1982.1675885

[7] McBryan, O. A., & Van de Velde, E. F. (1987).
Hypercube algorithms and implementations. STAM
Journal on Scientific and Statistical
Computing, 8(2), s227-s287.
https://doi.org/10.1137/0908040

[8] Gallager, R. G., Humblet, P. A., & Spira, P. M.
(1983). A distributed algorithm for minimum-weight
spanning trees. ACM Transactions on
Programming Languages and Systems, 5(1), 66-
77. https://doi.org/10.1145/357195.357200

[9] Hirschberg, D. S., & Sinclair, J. B. (1980).
Decentralized extrema-finding in circular
configurations of processors. Communications of
the ACM, 23(11), 627-628.
https://doi.org/10.1145/359024.359029

Kratka biografija:

Aleksandra Nedi¢ rodena je 09.04.2000.
godine u Vranju. U Skolskoj 2019/20
godini upisuje osnovne studije na Fakultetu
tehniCkih nauka, na smeru Softversko
inzenjerstvo i informacione tehnologije,
koje zavrSava Skolske 2022/23 sa
prose¢nom ocenom 9.80. Master rad na
Fakultetu tehnickih nauka iz oblasti
Softversko inzenjerstvo i informacione tehnologije, usmerenje
Elektronsko poslovanje odbranila je u skolskoj 2024/25 godini.

kontakt: aleksandranedic843(@gmail.com

1299

https://doi.org/10.1109/ICCIT.2008.57
https://doi.org/10.1109/IPDPS.2005.57
https://doi.org/10.1109/ICNC.2009.191
https://doi.org/10.1145/359024.359027
https://doi.org/10.1109/TC.1982.1675885
https://doi.org/10.1137/0908040
https://doi.org/10.1145/357195.357200
https://doi.org/10.1145/359024.359029
mailto:aleksandranedic843@gmail.com

