

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.41

DOI: https://doi.org/10.24867/33BE07Nedic

PLATFORMA ZA VIZUALIZACIJU DISTRIBUIRANIH ALGORITAMA NA PRIMERU

KLASE ALGORITAMA ZA IZBOR LIDERA

PLATFORM FOR VISUALIZING DISTRIBUTED ALGORITHMS ON THE EXAMPLE

OF A CLASS OF ALGORITHMS FOR LEADER ELECTION

Aleksandra Nedić, Fakultet tehničkih nauka, Novi Sad

Oblast – ELEKTROTEHNIKA I RAČUNARSTVO

Kratak sadržaj – U radu je predstavljena proširiva

platforma za vizualizaciju distribuiranih algoritama za

izbor lidera u sinhronim mrežama. Platforma omogućava

korisniku da dodaje nove algoritme pored predefinisanih,

kao i da manipuliše sistemom kroz dinamičko dodavanje i

uklanjanje čvorova koji učestvuju u izvršavanju

algoritama. Detaljno se razmatraju implementirani

algoritmi za izbor lidera, različite topologije i tehnološke

osnove platforme, uz prikaz njenih ključnih elemenata i

načina funkcionisanja. Rad takođe opisuje specifikaciju i

arhitekturu sistema, kao i implementaciju platforme.

Ključne reči: distribuirani algoritmi, biranje lidera,

topologije, Chang-Roberts, Gallager-Humblet-Spira,

Hirschberg-Sinclair, Bully, Hypercube

Abstract – The paper presents an extensible platform for

visualizing distributed algorithms for leader election in

synchronous networks. The platform allows the user to add

new algorithms in addition to predefined ones, as well as

to manipulate the system through dynamic addition and

removal of nodes participating in the execution of

algorithms. The implemented algorithms for the selection

of leaders, different topologies and technological

foundations of the platform are discussed in detail, with a

presentation of its key elements and ways of functioning.

The paper also describes the system specification and

system architecture, as well as the platform

implementation.

Keywords: distributed algorithms, leader election,

topologies,fklas Chang-Roberts, Gallager-Humblet-Spira,

Hirschberg-Sinclair, Bully, Hypercube

1. UVOD

U kontekstu izgradnje kompleksnih sistema, postoje dva

glavna pristupa: monolitni i distribuirani. Monolitne

arhitekture integrišu sve komponente u jedan proces, dok

distribuirani sistemi funkcionišu kroz više povezanih

čvorova bez centralnog autoriteta. To čini praćenje

komunikacije, stanja čvorova i toka izvršavanja algoritama

složenim. Zbog toga je razvijena edukativna platforma

koja vizuelno prikazuje rad distribuiranih

__

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji je mentor bio

dr Milan Stojkov, docent

algoritama, uključujući topologiju sistema, razmenu

poruka i tabelu rutiranja. Platforma inicijalno podržava

algoritme za izbor lidera (engl. Leader Election) [1] u

sinhronim mrežama. Omogućava korisnicima interaktivno

razumevanje ponašanja distribuiranih sistema i algoritama

nakon izbora lidera. Platforma je proširiva i omogućava

jednostavno dodavanje novih algoritama putem Python

skripti.

2. TOPOLOGIJE

Topologija unutar distribuiranih sistema predstavlja način

na koji čvorovi komuniciraju i sarađuju. Ona definiše

organizaciju čvorova i putanje preko kojih se podaci

prenose. Topologije definisane u okviru platforme jesu

prsten [2], hiperkocka [3], meš [4] i mreža.

2.1. Prsten

Prsten topologija je struktura u distribuiranim sistemima u

kojoj su čvorovi povezani u krug. Svaki čvor je direktno

povezan sa svoja susedna dva čvora formirajući zatvoreni

krug. Podaci se kreću kroz prsten od jednog do drugog

čvora dok ne stignu do željenog odredišta.

2.2. Hiperkocka

Hiperkocka je složena struktura u distribuiranim sistemima

koja povezuje čvorove tako da formira graf koji predstavlja

n-dimenzionalnu kocku. Za n dimenzija, broj čvorova u

hiperkocki mora biti 2n. Svakom čvoru je dodeljen binarni

broj od n bitova, a čvorovi su povezani ako se njihovi

binarni kodovi razlikuju u tačno jednom bitu.

2.3. Meš

Meš topologija predstavlja strukturu u kojoj postoje tri

vrste čvorova u zavisnosti od broja suseda. Čvorovi u

uglovima imaju dva suseda, čvorovi na ivicama imaju tri,

dok unutrašnji čvorovi imaju četiri suseda. Ukupan broj

veza m u meš topologiji veličine izračunava se formulom

𝑚 = 2𝑎𝑏 − 𝑎 − 𝑏, što predstavlja horizontalne i vertikalne

veze između čvorova.

2.4. Mreža

Mreža je univerzalan naziv za topologiju u kojoj su čvorovi

povezani na određeni način. Ukoliko je unutar mreže svaki

čvor povezan sa ostalim čvorovima, u pitanju je kompletna

mreža, dok je parcijalna mreža ona mreža u kojoj nisu svi

čvorovi direktno povezani jedan sa drugim. Kod

kompletnih mreža prenos podataka je veoma brz i ovakva

1296

https://doi.org/10.24867/33BE07Nedic

mreža je korisna u sistemima u kojima je minimalno

kašnjenje ključno.

3. ALGORITMI ZA BIRANJE LIDERA

Algoritmi za biranje lidera igraju veoma važnu ulogu u

distribuiranim sistemima jer omogućavaju izbor jednog

čvora koji će preuzeti ulogu koordinatora. Ovaj proces je

ključan za osiguranje efikasnosti, stabilnosti i organizacije

sistema. Koordinator deluje kao centralna tačka koja

upravlja zadacima poput sinhronizacije čvorova i

upravljanja resursima, što omogućava usklađenu

komunikaciju i sprečava nastanak konflikata.

3.1. Chang-Roberts algoritam

Chang-Roberts algoritam [5] bira lidera u sistemima sa

unidirekcionom prstenastom topologijom gde svaki čvor

ima jedinstveni identifikator (ID). Bilo koji čvor može

pokrenuti algoritam slanjem poruke sa svojim ID-jem

susedu u smeru kazaljke na satu i time postaje učesnik.

Prilikom primanja poruke, čvor:

1. prosleđuje poruku ako je ID u njoj veći od njegovog,

2. šalje svoju poruku ako je ID u njoj manji i nije

učesnik,

3. ignoriše poruku ako je ID manji i već je učesnik,

4. proglašava se liderom ako je ID jednak njegovom.

3.2. Bully algoritam

Bully algoritam [6] je algoritam za biranje lidera u

sistemima u kojima svaki čvor ima svoj ID i u kojima je

mreža potpuno povezana, te svaki čvor može direktno

komunicirati jedan sa drugim. Za lidera se bira onaj čvor

koji ima najveći ID. Proces započinje čvor koji otkrije da

trenutni lider više nije aktivan, ukoliko, na primer, ne

odgovara na poruke. Čvor pokreće proces za izbor tako što

šalje poruku svim čvorovima koji imaju veći ID od njega.

Ukoliko ne dobije odgovor od čvorova sa većim ID-jem,

taj čvor proglašava sebe liderom. Ako čvor sa većim ID-

jem odgovori na poruku inicijatoru, on preuzima proces

izbora lidera i šalje poruku čvorovima koji imaju veći ID

od njega.

3.3. Hypercube algoritam

Hypercube algoritam [7] koristi se u distribuiranim

sistemima sa hiperkockastom topologijom. Za hiperkocku

dimenzije k postoji ukupno 2𝑘 čvorova, pri čemu svaki

čvor ima binarni ID dužine k bita. Algoritam pokreće bilo

koji čvor slanjem poruke sa svojim ID-jem susedima u k

koraka. U svakom koraku poruka se šalje susedu koji se

razlikuje u jednom bitu — počevši od najmanje značajnog

(desnog) ka najznačajnijem (levom) bitu. Po prijemu

poruke, čvor:

1. ukoliko je ID iz poruke veći od njegovog ID-ja, čvor

označava sebe da nije lider

2. ukoliko je ID iz poruke manji od njegovog ID-ja, a

čvor do sada nije bio označen kao ne-lider, čvor

označava sebe kao lidera

Čvor zatim šalje svoj ID ostalim susedima. Po završetku k

koraka, čvor koji je označen kao lider postaje lider, dok

ostali završavaju rad.

3.4. Gallager-Humblet-Spira algoritam

Gallager-Humblet-Spira algoritam [8] je algoritam za

pronalaženje minimalnog razapinjujućeg stabla (engl.

Minimum spanning tree) u povezanim grafovima.

Koristi se u distribuiranim sistemima kod kojih veze

između čvorova imaju određenu težinu. Algoritam se

zasniva na ideji fragmentacije grafa, gde čvorovi i grane

formiraju fragmente koji se iterativno spajaju dok se ne

formira jedno stablo. Na početku algoritma, svaki čvor

predstavlja fragment za sebe i ima sopstveni ID. Jedan čvor

započinje proces za izbor lidera tako što šalje poruku

susedu sa kojim ima vezu najmanje težine. Kada čvor primi

poruku, on upoređuje svoj ID sa ID-jem iz poruke, ukoliko

je njegov ID manji, ova dva čvora se spajaju u jedan

fragment, a za ID fragmenta se uzima manji od ova dva.

Ovaj proces se nastavlja iterativno dok svi čvorovi ne

postanu deo jednog fragmenta, čiji ID ima najmanju

vrednost. Na ovaj način je formirano minimalno

razapinjujuće stablo, a lider postaje čvor čiji ID predstavlja

ID čitavog fragmenta.

3.5. Hirschberg-Sinclair algoritam

Hirschberg-Sinclair algoritam [9] koristi se za izbor lidera

u distribuiranim sistemima sa bidirekcionom prstenastom

topologijom, gde svaki čvor ima jedinstven ID. Izvršava se

u više iteracija, pri čemu poruke putuju na sve većim

udaljenostima, udvostručujući domet u svakoj iteraciji,

tako da važi 𝑘 ⩽ 2𝑖, gde je k udaljenost, a i broj iteracije.

Algoritam počinje slanjem izborne poruke (engl. election

message) u oba smera. Prilikom prijema izborne poruke,

čvor upoređuje svoj ID sa ID-jem iz poruke:

1. prosleđuje poruku ako je veći ID i domet nije

dostignut,

2. šalje povratnu poruku ako je domet dostignut,

3. ignoriše poruku ako je ID manji,

4. proglašava se liderom ako je ID isti.

U slučaju povratne poruke (eng. reply message), ukoliko

ID-jevi čvora i poruke nisu isti, čvor vraća poruku svom

susedu, dok ukoliko su ID-jevi isti, i povratna poruka je

stigla iz oba smera, čvor je lokalni lider, čime je jedna

iteracija završena i čvor započinje sledeću fazu elekcije.

4. MODEL SISTEMA

4.1. Arhitektura sistema

U arhitekturi platforme centralnu ulogu ima task

manager, čvor zadužen za upravljanje i orkestraciju

celokupnog sistema. On poseduje kompletnu konfiguraciju

sistema, uključujući definicije čvorova, algoritama i

njihove komunikacione topologije. Ova konfiguracija se

čuva u JSON formatu na fajl sistemu i povezuje sa Docker

kontejnerom putem bind mount mehanizma, što

omogućava lako ažuriranje bez potrebe za restartovanjem

sistema. Task manager je jedini čvor izložen spoljašnjoj

mreži i služi kao komunikaciona spona između korisničke

aplikacije i ostatka sistema. Koristi HTTP protokol za

prijem korisničkih zahteva, poput dodavanja čvorova ili

pokretanja algoritama, dok se WebSocket koristi za

dvosmernu komunikaciju u realnom vremenu,

omogućavajući korisniku da prati status algoritama i

trenutno stanje čvorova. Osnovna funkcija task manager-a

je koordinacija - inicira i uklanja čvorove, pokreće

1297

algoritme, upravlja njihovim izvršavanjem i prati njihov

status. Informacije o izvršavanju prosleđuje korisniku kako

bi on imao uvid u rad sistema u realnom vremenu. Pored

task manager-a, sistem se sastoji od više čvorova koji

međusobno komuniciraju sinhrono putem HTTP-a kako bi

izvršavali distribuirane algoritme. Svaki čvor, takođe,

asinhrono šalje informacije o svom stanju task manager-u

koristeći RabbitMQ message broker, čime se omogućava

ažuriranje prikaza sistema u realnom vremenu.

Arhitektura sistema prikazana je na slici 1.

4.2 Funkcionalnosti sistema

Platforma je namenjena jednoj vrsti korisnika i ne zahteva

autentifikaciju. Korisnik može pregledati listu dostupnih

algoritama, izabrati neki i pratiti njegovo izvršavanje na

grafičkom prikazu.

Postoji i posebna stranica za pregled celog sistema,

uključujući čvorove sa parametrima i tabele rutiranja koje

prikazuju učesnike i njihove veze. Na toj stranici korisnik

može dodavati nove algoritme, menjati čvorove i njihove

karakteristike, kao i dodavati nove čvorove unosom

podataka. Takođe, može menjati tabele rutiranja postojećih

algoritama i time prilagođavati topologiju sistema.

4.3. Model podataka

Model podataka platforme je jednostavan i odnosi se na

konfiguraciju koja definiše algoritme koji su dostupni u

sistemu, čvorove zajedno sa njihovim karakteristikama i

tabele rutiranja koje definišu topologiju algoritama.

Konfiguracija sistema predstavljena je klasom Config, koja

sadrži atribute nodes, algorithms, routing. Atribut nodes

predstavlja listu čvorova koji su prisutni u sistemu i

prikazani su klasom Node, atribut algorithms označava

algoritme unutar sistema i oni su predstavljeni klasom

Algorithm, dok atribut routing predstavlja tabelu rutiranja

za svaki algoritam i unutar platforme je modelovan klasom

Routing. Klasa Node sadrži atribute id, url, active,

is_participant koji definišu osnovne karakteristike čvora u

sistemu. Klasa Algorithm sadrži dva atributa, name koji

predstavlja ime algoritma, i file_name koji označava naziv

Python skripte u kojoj je algoritam implementiran. Tabela

rutiranja, predstavljena klasom Routing, modeluje

topologiju komunikacije između čvorova za svaki

algoritam. Klasa Routing sadrži dinamičke parametre, gde

svaki ključ predstavlja ime algoritma, a njegova vrednost

je rečnik u kome su ključevi ID-jevi čvorova, dok su

vrednosti liste objekata koji opisuju rute. Svaka ruta je

predstavljena klasom Route koji sadrži atribute id (ID

odredišnog čvora) i url (adresa odredišnog čvora).

Klasni dijagram prikazan je na slici 2.

5. IMPLEMENTACIJA

Serverska strana platforme sastoji se iz više servisa koji

igraju različite uloge. Svaki servis predstavlja čvor i

implementiran je u Python programskom jeziku uz pomoć

FastAPI radnog okvira za lakšu komunikaciju između

servisa i klijentske strane.

Svaki servis je kontejnerizovan radi lakšeg skaliranja

čvorova. Za kontejnerizaciju se koristi Docker alat, a u

Docker Compose datoteci, pored servisa koji predstavljaju

čvorove, definisan je i RabbitMQ za asinhronu

komunikaciju, kao i volumen koji je deljen između task

manager-a i ostalih čvorova, a predstavlja direktorijum u

kojem su smeštene sve Python skripte koje predstavljaju

implementaciju algoritama. Na ovaj način, bez prekidanja

rada platforme korisnici mogu da definišu nove algoritme

koji će biti odmah dostupni čvorovima na izvršavanje.

Kompletna konfiguracija platforme koju čine dostupni

čvorovi i algoritmi, kao i tabela rutiranja za svaki od

algoritama smeštena je u JSON datoteci i njoj može da

pristupi centralni čvor radi orkestracije zadataka.

Konfiguracija se učitava u sistem i zadržava u radnoj

memoriji prilikom pokretanja centralnog čvora.

Konfiguracija se nalazi u globalnom objektu tipa Config i

pri svakom klijentovom zahtevu za pokretanje algoritama

koriste se podaci iz konfiguracije, a u slučaju izmena, nova

konfiguracija se zapisuje u JSON datoteku.

Prilikom pokretanja servisa, pored učitavanja

konfiguracije, na pozadinskoj niti učitava se i statistika

čvorova poput zauzeća memorije i korišćenja procesorske

moći uz pomoć docker.py biliboteke, kako bi korisnik imao

uvid u njihov kapacitet prilikom izvršavanja algoritama.

Na kraju, task manager na pozadinskoj niti otvara

konekciju sa RabbitMQ servisom kako bi bio spreman da

konzumira podatke koji mu pristižu od strane čvorova i

prosleđuje ih klijentu.

Centralni čvor se sastoji iz četiri krajnje tačake koje

pružaju funkcionalnosti platforme. Postoji krajnja tačka za

dobavljanje konfiguracije koja će biti prikazana korisniku

radi uvida i manipulacije sistema, zatim postoji mogućnost

izmene konfiguracije pri čemu se mogu dodavati ili

uklanjati čvorovi koji su specificirani u konfiguraciji i

poslednje dve krajnje tačke odnose se na pokretanje

algoritma i dodavanje novih algoritama.

Task manager započinje izvršavanje algoritama

inicijalizacijom svih čvorova koji se nalaze u tabeli

rutiranja za određeni algoritam. Pod inicijalizacijom se

podrazumeva slanje podataka potrebnih za izvršavanje

SLIKA 1: ARHITEKTURA REŠENJA

SLIKA 2: KLASNI DIJAGRAM

1298

algoritma. Kada su svi čvorovi uspešno inicijalizovani,

task manager na slučajan način bira jedan čvor koji će

započeti izvršavanje algoritma za biranje lidera.

Čvor sadrži pet krajnjih tačaka koje omogućavaju

inicijalizaciju čvora, pokretanje algoritma, deaktivaciju

čvora, prijem poruke od strane drugog čvora prilikom

izvršavanja algoritma i izvršavanje krajnje funkcije nakon

što je lider izabran.

Svaki čvor sadrži globalnu promenljivu koja predstavlja

instancu klase Node i koja se inicijalizuje prilikom

inicijalizacije samog čvora. Unutar klase Node čuvaju se

podaci koje task manager šalje čvoru prilikom

inicijalizacije.

Klasa Node ima nekoliko metoda, a najbitnije su metoda

za započinjanje izvršavanja algoritma, metoda za slanje

poruke narednom čvoru, metoda za obradu odgovora koji

je naredni čvor poslao i metoda za izračunavanje sume

slučajno odabranih brojeva.

Kako bi platforma bila proširiva i kako bi mogla da

izvršava veliki broj različitih algoritama, sve što je

zajedničko svim algoritmima nalazi se u okviru metoda ove

klase, dok je sve specifično za određeni algoritam

smešteno u posebnom modulu. Klasa Node pretpostavlja

da svaki modul sadrži tri funkcije, a to su:

1. run_algorithm(node_data, routing_table),

2. handle_message(node_data, routing_table, data)

3. handle_result(node_data, routing_table, result)

Ove tri funkcije zajedno predstavljaju implementaciju

određenog distribuiranog algoritma.

Nakon što je završen algoritam, odabrani lider šalje poruku

task manager-u čime ga obaveštava da je izvršavanje

završeno. Task manager zatim poziva funkciju za

izračunavanje zbira brojeva za svaki od čvorova. Nakon što

svi čvorovi vrate rezultat, task manager izračunava ukupan

zbir koji je stigao sa svih čvorova. Konačan rezultat,

zajedno sa međurezultatima prosleđuje se korisniku kao

konačan korak algoritama za biranje lidera.

6. ZAKLJUČAK

Razumevanje distribuiranih algoritama je izazovno zbog

paralelnog izvršavanja na velikom broju čvorova, složenih

topologija i načina komunikacije među čvorovima. Ovi

izazovi su motivisali razvoj platforme koja vizuelno i u

realnom vremenu prikazuje izvršavanje klasičnih

algoritama za izbor lidera u sinhronim mrežama,

omogućavajući praćenje topologije i stanja čvorova tokom

izvršavanja. Platforma se sastoji od centralnog servisa,

task managera, koji upravlja konfiguracijom, komunicira

sa klijentom i koordinira čvorove. Čvorovi zajednički

izvršavaju algoritme, a sistem je proširiv dodavanjem

novih algoritama putem Python skripti sa tri definisane

funkcije. Skaliranje je omogućeno dodavanjem ili

uklanjanjem čvorova. Buduća unapređenja uključuju

podršku za algoritme sa kašnjenjem poruka, čime bi se

omogućila šira vizualizacija, kao i debagovanje i korak-po-

korak izvršavanje za bolje razumevanje algoritama.

7. LITERATURA

[1] Shirali, M., Toroghi, A. H., & Vojdani, M. (2008).

Leader election algorithms: History and novel

schemes. In 2008 Third International Conference

on Convergence and Hybrid Information

Technology (pp. 1001-1006). IEEE.

https://doi.org/10.1109/ICCIT.2008.57

[2] Huang, M., & Bode, B. (2005). A performance

comparison of tree and ring topologies in distributed

systems. In 19th IEEE International Parallel and

Distributed Processing Symposium (pp. 8). IEEE.

https://doi.org/10.1109/IPDPS.2005.57

[3] Liu, H. (2009). The structural features of enhanced

hypercube networks. In 2009 Fifth International

Conference on Natural Computation (pp. 345-

348). IEEE.

https://doi.org/10.1109/ICNC.2009.191

[4] Santoro, N. (2006). Design and analysis of

distributed algorithms. Wiley.

[5] Chang, E., & Roberts, R. (1979). An improved

algorithm for decentralized extrema-finding in

circular configurations of processes.

Communications of the ACM , 22(5), 281-283.

https://doi.org/10.1145/359024.359027

[6] Garcia-Molina, H. (1982). Elections in a distributed

computing system. IEEE Transactions on

Computers, C-31(1), 48-59.

https://doi.org/10.1109/TC.1982.1675885

[7] McBryan, O. A., & Van de Velde, E. F. (1987).

Hypercube algorithms and implementations. SIAM

Journal on Scientific and Statistical

Computing, 8(2), s227-s287.

https://doi.org/10.1137/0908040

[8] Gallager, R. G., Humblet, P. A., & Spira, P. M.

(1983). A distributed algorithm for minimum-weight

spanning trees. ACM Transactions on

Programming Languages and Systems , 5(1), 66-

77. https://doi.org/10.1145/357195.357200

[9] Hirschberg, D. S., & Sinclair, J. B. (1980).

Decentralized extrema-finding in circular

configurations of processors. Communications of

the ACM, 23(11), 627-628.

https://doi.org/10.1145/359024.359029

 Kratka biografija:

Aleksandra Nedić rođena je 09.04.2000.

godine u Vranju. U školskoj 2019/20

godini upisuje osnovne studije na Fakultetu

tehničkih nauka, na smeru Softversko

inženjerstvo i informacione tehnologije,

koje završava školske 2022/23 sa

prosečnom ocenom 9.80. Master rad na

Fakultetu tehničkih nauka iz oblasti

Softversko inženjerstvo i informacione tehnologije, usmerenje

Elektronsko poslovanje odbranila je u školskoj 2024/25 godini.
kontakt: aleksandranedic843@gmail.com

1299

https://doi.org/10.1109/ICCIT.2008.57
https://doi.org/10.1109/IPDPS.2005.57
https://doi.org/10.1109/ICNC.2009.191
https://doi.org/10.1145/359024.359027
https://doi.org/10.1109/TC.1982.1675885
https://doi.org/10.1137/0908040
https://doi.org/10.1145/357195.357200
https://doi.org/10.1145/359024.359029
mailto:aleksandranedic843@gmail.com

