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Oblast – ELEKTROTEHNIKA I RAČUNARSTVO 

Kratak sadržaj – U radu je predstavljena proširiva 

platforma za vizualizaciju distribuiranih algoritama za 

izbor lidera u sinhronim mrežama. Platforma omogućava 

korisniku da dodaje nove algoritme pored predefinisanih, 

kao i da manipuliše sistemom kroz dinamičko dodavanje i 

uklanjanje čvorova koji učestvuju u izvršavanju 

algoritama. Detaljno se razmatraju implementirani 

algoritmi za izbor lidera, različite topologije i tehnološke 

osnove platforme, uz prikaz njenih ključnih elemenata i 

načina funkcionisanja. Rad takođe opisuje specifikaciju i 

arhitekturu sistema, kao i implementaciju platforme. 

Ključne reči: distribuirani algoritmi, biranje lidera, 

topologije, Chang-Roberts, Gallager-Humblet-Spira, 

Hirschberg-Sinclair, Bully, Hypercube 

Abstract – The paper presents an extensible platform for 

visualizing distributed algorithms for leader election in 

synchronous networks. The platform allows the user to add 

new algorithms in addition to predefined ones, as well as 

to manipulate the system through dynamic addition and 

removal of nodes participating in the execution of 

algorithms. The implemented algorithms for the selection 

of leaders, different topologies and technological 

foundations of the platform are discussed in detail, with a 

presentation of its key elements and ways of functioning. 

The paper also describes the system specification and 

system architecture, as well as the platform 

implementation. 

Keywords: distributed algorithms, leader election, 

topologies,fklas Chang-Roberts, Gallager-Humblet-Spira, 

Hirschberg-Sinclair, Bully, Hypercube 

 

1. UVOD 

U kontekstu izgradnje kompleksnih sistema, postoje dva 

glavna pristupa: monolitni i distribuirani. Monolitne 

arhitekture integrišu sve komponente u jedan proces, dok 

distribuirani sistemi funkcionišu kroz više povezanih 

čvorova bez centralnog autoriteta. To čini praćenje 

komunikacije, stanja čvorova i toka izvršavanja algoritama 

složenim. Zbog toga je razvijena edukativna platforma 

koja vizuelno prikazuje rad distribuiranih  
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algoritama, uključujući topologiju sistema, razmenu 

poruka i tabelu rutiranja. Platforma inicijalno podržava 

algoritme za izbor lidera (engl. Leader Election) [1] u 

sinhronim mrežama. Omogućava korisnicima interaktivno 

razumevanje ponašanja  distribuiranih sistema i algoritama 

nakon izbora lidera. Platforma je proširiva i omogućava 

jednostavno dodavanje novih algoritama putem Python 

skripti. 

2. TOPOLOGIJE 

Topologija unutar distribuiranih sistema predstavlja način 

na koji čvorovi komuniciraju i sarađuju. Ona definiše 

organizaciju čvorova i putanje preko kojih se podaci 

prenose. Topologije definisane u okviru platforme jesu 

prsten [2], hiperkocka [3], meš [4] i mreža. 

2.1. Prsten 

Prsten topologija je struktura u distribuiranim sistemima u 

kojoj su čvorovi povezani u krug. Svaki čvor je direktno 

povezan sa svoja susedna dva čvora formirajući zatvoreni 

krug. Podaci se kreću kroz prsten od jednog do drugog 

čvora dok ne stignu do željenog odredišta. 

2.2. Hiperkocka 

Hiperkocka je složena struktura u distribuiranim sistemima 

koja povezuje čvorove tako da formira graf koji predstavlja 

n-dimenzionalnu kocku. Za n dimenzija, broj čvorova u 

hiperkocki mora biti 2n. Svakom čvoru je dodeljen binarni 

broj od n bitova, a čvorovi su povezani ako se njihovi 

binarni kodovi razlikuju u tačno jednom bitu. 

2.3. Meš 

Meš topologija predstavlja strukturu u kojoj postoje tri 

vrste čvorova u zavisnosti od broja suseda. Čvorovi u 

uglovima imaju dva suseda, čvorovi na ivicama imaju tri, 

dok unutrašnji čvorovi imaju četiri suseda. Ukupan broj 

veza m u meš topologiji veličine  izračunava se formulom 

𝑚 = 2𝑎𝑏 − 𝑎 − 𝑏, što predstavlja horizontalne i vertikalne 

veze između čvorova. 

2.4. Mreža 

Mreža je univerzalan naziv za topologiju u kojoj su čvorovi 

povezani na određeni način. Ukoliko je unutar mreže svaki 

čvor povezan sa ostalim čvorovima, u pitanju je kompletna 

mreža, dok je parcijalna mreža ona mreža u kojoj nisu svi 

čvorovi direktno povezani jedan sa drugim. Kod 

kompletnih mreža prenos podataka je veoma brz i ovakva 
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mreža je korisna u sistemima u kojima je minimalno 

kašnjenje ključno. 

3. ALGORITMI ZA BIRANJE LIDERA 

Algoritmi za biranje lidera igraju veoma važnu ulogu u  

distribuiranim sistemima jer omogućavaju izbor jednog 

čvora koji će preuzeti ulogu koordinatora. Ovaj proces je 

ključan za osiguranje efikasnosti, stabilnosti i organizacije 

sistema. Koordinator deluje kao centralna tačka koja 

upravlja zadacima poput sinhronizacije čvorova i 

upravljanja resursima, što omogućava usklađenu 

komunikaciju i sprečava nastanak konflikata. 

3.1. Chang-Roberts algoritam 

Chang-Roberts algoritam [5] bira lidera u sistemima sa 

unidirekcionom prstenastom topologijom gde svaki čvor 

ima jedinstveni identifikator (ID). Bilo koji čvor može 

pokrenuti algoritam slanjem poruke sa svojim ID-jem 

susedu u smeru kazaljke na satu i time postaje učesnik. 

Prilikom primanja poruke, čvor: 

1. prosleđuje poruku ako je ID u njoj veći od njegovog, 

2. šalje svoju poruku ako je ID u njoj manji i nije 

učesnik, 

3. ignoriše poruku ako je ID manji i već je učesnik, 

4. proglašava se liderom ako je ID jednak njegovom. 

3.2. Bully algoritam 

Bully algoritam [6] je algoritam za biranje lidera u 

sistemima u kojima svaki čvor ima svoj ID i u kojima je 

mreža potpuno povezana, te svaki čvor može direktno 

komunicirati jedan sa drugim. Za lidera se bira onaj čvor 

koji ima najveći ID. Proces započinje čvor koji otkrije da 

trenutni lider više nije aktivan, ukoliko, na primer, ne 

odgovara na poruke. Čvor pokreće proces za izbor tako što 

šalje poruku svim čvorovima koji imaju veći ID od njega. 

Ukoliko ne dobije odgovor od čvorova sa većim ID-jem, 

taj čvor proglašava sebe liderom. Ako čvor sa većim ID-

jem odgovori na poruku inicijatoru, on preuzima proces 

izbora lidera i šalje poruku čvorovima koji imaju veći ID 

od njega.  

3.3. Hypercube algoritam 

Hypercube algoritam [7] koristi se u distribuiranim 

sistemima sa hiperkockastom topologijom. Za hiperkocku 

dimenzije k postoji ukupno 2𝑘 čvorova, pri čemu svaki 

čvor ima binarni ID dužine k bita. Algoritam pokreće bilo 

koji čvor slanjem poruke sa svojim ID-jem susedima u k 

koraka. U svakom koraku poruka se šalje susedu koji se 

razlikuje u jednom bitu — počevši od najmanje značajnog 

(desnog) ka najznačajnijem (levom) bitu. Po prijemu 

poruke, čvor: 

1. ukoliko je ID iz poruke veći od njegovog ID-ja, čvor 

označava sebe da nije lider 

2. ukoliko je ID iz poruke manji od njegovog ID-ja, a 

čvor do sada nije bio označen kao ne-lider, čvor 

označava sebe kao lidera 

Čvor zatim šalje svoj ID ostalim susedima. Po završetku k 

koraka, čvor koji je označen kao lider postaje lider, dok 

ostali završavaju rad. 

 

 

 

3.4. Gallager-Humblet-Spira algoritam 

Gallager-Humblet-Spira algoritam [8] je algoritam za 

pronalaženje minimalnog razapinjujućeg stabla (engl. 

Minimum spanning tree) u povezanim grafovima. 

Koristi se u distribuiranim sistemima kod kojih veze 

između čvorova imaju određenu težinu. Algoritam se 

zasniva na ideji fragmentacije grafa, gde čvorovi i grane 

formiraju fragmente koji se iterativno spajaju dok se ne 

formira jedno stablo. Na početku algoritma, svaki čvor 

predstavlja fragment za sebe i ima sopstveni ID. Jedan čvor 

započinje proces za izbor lidera tako što šalje poruku 

susedu sa kojim ima vezu najmanje težine. Kada čvor primi 

poruku, on upoređuje svoj ID sa ID-jem iz poruke, ukoliko 

je njegov ID manji, ova dva čvora se spajaju u jedan 

fragment, a za ID fragmenta se uzima manji od ova dva. 

Ovaj proces se nastavlja iterativno dok svi čvorovi ne 

postanu deo jednog fragmenta, čiji ID ima najmanju 

vrednost. Na ovaj način je formirano minimalno 

razapinjujuće stablo, a lider postaje čvor čiji ID predstavlja 

ID čitavog fragmenta. 

3.5. Hirschberg-Sinclair algoritam 

Hirschberg-Sinclair algoritam [9] koristi se za izbor lidera 

u distribuiranim sistemima sa bidirekcionom prstenastom 

topologijom, gde svaki čvor ima jedinstven ID. Izvršava se 

u više iteracija, pri čemu poruke putuju na sve većim 

udaljenostima, udvostručujući domet u svakoj iteraciji, 

tako da važi 𝑘 ⩽ 2𝑖, gde je k udaljenost, a i broj iteracije. 

Algoritam počinje slanjem izborne poruke (engl. election 

message) u oba smera. Prilikom prijema izborne poruke, 

čvor upoređuje svoj ID sa ID-jem iz poruke: 

1. prosleđuje poruku ako je veći ID i domet nije 

dostignut, 

2. šalje povratnu poruku ako je domet dostignut, 

3. ignoriše poruku ako je ID manji, 

4. proglašava se liderom ako je ID isti. 

U slučaju povratne poruke (eng. reply message), ukoliko 

ID-jevi čvora i poruke nisu isti, čvor vraća poruku svom 

susedu, dok ukoliko su ID-jevi isti, i povratna poruka je 

stigla iz oba smera, čvor je lokalni lider, čime je jedna 

iteracija završena i čvor započinje sledeću fazu elekcije.  

4. MODEL SISTEMA 

4.1. Arhitektura sistema 

U arhitekturi platforme centralnu ulogu ima task 

manager, čvor zadužen za upravljanje i orkestraciju 

celokupnog sistema. On poseduje kompletnu konfiguraciju 

sistema, uključujući definicije čvorova, algoritama i 

njihove komunikacione topologije. Ova konfiguracija se 

čuva u JSON formatu na fajl sistemu i povezuje sa Docker 

kontejnerom putem bind mount mehanizma, što 

omogućava lako ažuriranje bez potrebe za restartovanjem 

sistema. Task manager je jedini čvor izložen spoljašnjoj 

mreži i služi kao komunikaciona spona između korisničke 

aplikacije i ostatka sistema. Koristi HTTP protokol za 

prijem korisničkih zahteva, poput dodavanja čvorova ili 

pokretanja algoritama, dok se WebSocket koristi za 

dvosmernu komunikaciju u realnom vremenu, 

omogućavajući korisniku da prati status algoritama i 

trenutno stanje čvorova. Osnovna funkcija task manager-a 

je koordinacija - inicira i uklanja čvorove, pokreće 
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algoritme, upravlja njihovim izvršavanjem i prati njihov 

status. Informacije o izvršavanju prosleđuje korisniku kako 

bi on imao uvid u rad sistema u realnom vremenu. Pored 

task manager-a, sistem se sastoji od više čvorova koji 

međusobno komuniciraju sinhrono putem HTTP-a kako bi 

izvršavali distribuirane algoritme. Svaki čvor, takođe, 

asinhrono šalje informacije o svom stanju task manager-u 

koristeći RabbitMQ message broker, čime se omogućava 

ažuriranje prikaza sistema u realnom vremenu. 

Arhitektura sistema prikazana je na slici 1. 

4.2 Funkcionalnosti sistema 

Platforma je namenjena jednoj vrsti korisnika i ne zahteva 

autentifikaciju. Korisnik može pregledati listu dostupnih 

algoritama, izabrati neki i pratiti njegovo izvršavanje na 

grafičkom prikazu. 

Postoji i posebna stranica za pregled celog sistema, 

uključujući čvorove sa parametrima i tabele rutiranja koje 

prikazuju učesnike i njihove veze. Na toj stranici korisnik 

može dodavati nove algoritme, menjati čvorove i njihove 

karakteristike, kao i dodavati nove čvorove unosom 

podataka. Takođe, može menjati tabele rutiranja postojećih 

algoritama i time prilagođavati topologiju sistema. 

4.3. Model podataka 

Model podataka platforme je jednostavan i odnosi se na 

konfiguraciju koja definiše algoritme koji su dostupni u 

sistemu, čvorove zajedno sa njihovim karakteristikama i 

tabele rutiranja koje definišu topologiju algoritama. 

Konfiguracija sistema predstavljena je klasom Config, koja 

sadrži atribute nodes, algorithms, routing. Atribut nodes 

predstavlja listu čvorova koji su prisutni u sistemu i 

prikazani su klasom Node, atribut algorithms označava 

algoritme unutar sistema i oni su predstavljeni klasom 

Algorithm, dok atribut routing predstavlja tabelu rutiranja 

za svaki algoritam i unutar platforme je modelovan klasom 

Routing. Klasa Node sadrži atribute id, url, active, 

is_participant koji definišu osnovne karakteristike čvora u 

sistemu. Klasa Algorithm sadrži dva atributa, name koji 

predstavlja ime algoritma, i file_name koji označava naziv 

Python skripte u kojoj je algoritam implementiran. Tabela 

rutiranja, predstavljena klasom Routing, modeluje 

topologiju komunikacije između čvorova za svaki 

algoritam. Klasa Routing sadrži dinamičke parametre, gde 

svaki ključ predstavlja ime algoritma, a njegova vrednost 

je rečnik u kome su ključevi ID-jevi čvorova, dok su 

vrednosti liste objekata koji opisuju rute. Svaka ruta je 

predstavljena klasom Route koji sadrži atribute id (ID 

odredišnog čvora) i url (adresa odredišnog čvora). 

Klasni dijagram prikazan je na slici 2. 

 

 

5. IMPLEMENTACIJA 

Serverska strana platforme sastoji se iz više servisa koji 

igraju različite uloge. Svaki servis predstavlja čvor i 

implementiran je u Python programskom jeziku uz pomoć 

FastAPI radnog okvira za lakšu komunikaciju između 

servisa i klijentske strane. 

Svaki servis je kontejnerizovan radi lakšeg skaliranja 

čvorova. Za kontejnerizaciju se koristi Docker alat, a u 

Docker Compose datoteci, pored servisa koji predstavljaju 

čvorove, definisan je i RabbitMQ za asinhronu 

komunikaciju, kao i volumen koji je deljen između task 

manager-a i ostalih čvorova, a predstavlja direktorijum u 

kojem su smeštene sve Python skripte koje predstavljaju 

implementaciju algoritama. Na ovaj način, bez prekidanja 

rada platforme korisnici mogu da definišu nove algoritme 

koji će biti odmah dostupni čvorovima na izvršavanje. 

Kompletna konfiguracija platforme koju čine dostupni 

čvorovi i algoritmi, kao i tabela rutiranja za svaki od 

algoritama smeštena je u JSON datoteci i njoj može da 

pristupi centralni čvor radi orkestracije zadataka. 

Konfiguracija se učitava u sistem i zadržava u radnoj 

memoriji prilikom pokretanja centralnog čvora. 

Konfiguracija se nalazi u globalnom objektu tipa Config i 

pri svakom klijentovom zahtevu za pokretanje algoritama 

koriste se podaci iz konfiguracije, a u slučaju izmena, nova 

konfiguracija se zapisuje u JSON datoteku. 

Prilikom pokretanja servisa, pored učitavanja 

konfiguracije, na pozadinskoj niti učitava se i statistika 

čvorova poput zauzeća memorije i korišćenja procesorske 

moći uz pomoć docker.py biliboteke, kako bi korisnik imao 

uvid u njihov kapacitet prilikom izvršavanja algoritama. 

Na kraju, task manager na pozadinskoj niti otvara 

konekciju sa  RabbitMQ servisom kako bi bio spreman da 

konzumira podatke koji mu pristižu od strane čvorova i 

prosleđuje ih klijentu.  

Centralni čvor se sastoji iz četiri krajnje tačake koje 

pružaju funkcionalnosti platforme. Postoji krajnja tačka za 

dobavljanje konfiguracije koja će biti prikazana korisniku 

radi uvida i manipulacije sistema, zatim postoji mogućnost 

izmene konfiguracije pri čemu se mogu dodavati ili 

uklanjati čvorovi koji su specificirani u konfiguraciji i 

poslednje dve krajnje tačke odnose se na pokretanje 

algoritma i dodavanje novih algoritama. 

Task manager započinje izvršavanje algoritama 

inicijalizacijom svih čvorova koji se nalaze u tabeli 

rutiranja za određeni algoritam. Pod inicijalizacijom se 

podrazumeva slanje podataka potrebnih za izvršavanje 

SLIKA 1: ARHITEKTURA REŠENJA  

SLIKA 2: KLASNI DIJAGRAM 
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algoritma. Kada su svi čvorovi uspešno inicijalizovani, 

task manager na slučajan način bira jedan čvor koji će 

započeti izvršavanje algoritma za biranje lidera. 

Čvor sadrži pet krajnjih tačaka koje omogućavaju 

inicijalizaciju čvora, pokretanje algoritma, deaktivaciju 

čvora, prijem poruke od strane drugog čvora prilikom 

izvršavanja algoritma i izvršavanje krajnje funkcije nakon 

što je lider izabran. 

Svaki čvor sadrži globalnu promenljivu koja predstavlja 

instancu klase Node i koja se inicijalizuje prilikom 

inicijalizacije samog čvora. Unutar klase Node čuvaju se 

podaci koje task manager šalje čvoru prilikom 

inicijalizacije. 

Klasa Node ima nekoliko metoda, a najbitnije su metoda 

za započinjanje izvršavanja algoritma, metoda za slanje 

poruke narednom čvoru, metoda za obradu odgovora koji 

je naredni čvor poslao i metoda za izračunavanje sume 

slučajno odabranih brojeva. 

Kako bi platforma bila proširiva i kako bi mogla da 

izvršava veliki broj različitih algoritama, sve što je 

zajedničko svim algoritmima nalazi se u okviru metoda ove 

klase, dok je sve specifično za određeni algoritam 

smešteno u posebnom modulu. Klasa Node pretpostavlja 

da svaki modul sadrži tri funkcije, a to su:  

1. run_algorithm(node_data, routing_table), 

2. handle_message(node_data, routing_table, data) 

3. handle_result(node_data, routing_table, result) 

Ove tri funkcije zajedno predstavljaju implementaciju 

određenog distribuiranog algoritma. 

Nakon što je završen algoritam, odabrani lider šalje poruku 

task manager-u čime ga obaveštava da je izvršavanje 

završeno. Task manager zatim poziva funkciju za 

izračunavanje zbira brojeva za svaki od čvorova. Nakon što 

svi čvorovi vrate rezultat, task manager izračunava ukupan 

zbir koji je stigao sa svih čvorova. Konačan rezultat, 

zajedno sa međurezultatima prosleđuje se korisniku kao 

konačan korak algoritama za biranje lidera. 

6. ZAKLJUČAK 

Razumevanje distribuiranih algoritama je izazovno zbog 

paralelnog izvršavanja na velikom broju čvorova, složenih 

topologija i načina komunikacije među čvorovima. Ovi 

izazovi su motivisali razvoj platforme koja vizuelno i u 

realnom vremenu prikazuje izvršavanje klasičnih 

algoritama za izbor lidera u sinhronim mrežama, 

omogućavajući praćenje topologije i stanja čvorova tokom 

izvršavanja. Platforma se sastoji od centralnog servisa, 

task managera, koji upravlja konfiguracijom, komunicira 

sa klijentom i koordinira čvorove. Čvorovi zajednički 

izvršavaju algoritme, a sistem je proširiv dodavanjem 

novih algoritama putem Python skripti sa tri definisane 

funkcije. Skaliranje je omogućeno dodavanjem ili 

uklanjanjem čvorova. Buduća unapređenja uključuju 

podršku za algoritme sa kašnjenjem poruka, čime bi se 

omogućila šira vizualizacija, kao i debagovanje i korak-po-

korak izvršavanje za bolje razumevanje algoritama. 
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