

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.9

DOI: https://doi.org/10.24867/33BE08Bajat

MEĐUREPREZENTACIJE IZVORNOG KODA RUSTC KOMPAJLERA

INTERMEDIATE REPRESENTATIONS OF THE SOURCE CODE IN THE RUSTC

COMPILER

Aleksa Bajat, Fakultet tehničkih nauka, Novi Sad

Oblast – ELEKTROTEHNIČKO I RAČUNARSKO

INŽENJERSTVO

Kratak sadržaj – Ovaj rad istražuje arhitekturu prednjeg

kraja (engl. frontend) Rust kompajlera (rustc), sa fokusom

na ključnu ulogu koju međureprezentacije izvornog koda

igraju u procesu prevođenja. Analizirane su faze od

leksičke analize i parsiranja do generisanja Apstraktnog

Sintaksnog Stabla (ASS), preko Međureprezentacije

Visokog Nivoa (MVN/HIR), Tipizirane MVN

(TMVN/THIR), do Međureprezentacije Srednjeg Nivoa

(MSN/MIR). Rad objašnjava kako svaka od ovih

reprezentacija omogućava ključne funkcionalnosti Rust

jezika, uključujući proveru tipova, dijagnostiku grešaka,

inkrementalno kompajliranje, proveru pozajmljivanja

(borrow checking) i pripremu za dalju optimizaciju i

generaciju koda u LLVM-u. Cilj je da se prikaže kako

generisanje infrastrukture doprinosi garancijama

memorijske bezbednosti i visokim performansama Rust

programskog jezika.

Ključne reči: Rust, rustc, kompajler, frontend,

međureprezentacije, АSS, MVN, TMVN, MSN, LLVM,

analiza koda, optimizacija

Abstract – This paper explores the architecture of the Rust

compiler's (rustc) frontend, focusing on the crucial role of

intermediate representations (IRs) of source code in the

compilation process. Phases from lexical analysis and

parsing to the generation of the Abstract Syntax Tree

(AST), through the High-Level Intermediate

Representation (HIR), Typed HIR (THIR), to the Mid-Level

Intermediate Representation (MIR) are analyzed. The

paper explains how each of these representations enables

key features of the Rust language, including type checking,

error diagnostics, incremental compilation, borrow

checking, and preparation for further optimization and

code generation in LLVM. The aim is to demonstrate how

generation of compiler infrastructure contributes to Rust's

guarantees of memory safety and high performance.

Keywords: Rust, rustc, compiler, frontend, intermediate

representations, AST, HIR, THIR, MIR, LLVM, code

analysis, optimization

__

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je bio

dr Dunja Vrbaški, doc.

1. UVOD

Programski jezik Rust je stekao značajnu popularnost

zahvaljujući svom fokusu na memorijsku bezbednost bez

upotrebe sakupljača smeća (engl. garbage collector) i

visokim performansama koje pariraju jezicima kao što su

C i C++. Ove karakteristike čine ga idealnim za razvoj

sistemskog softvera, operativnih sistema, veb servera i

drugih aplikacija gde su performanse i bezbednost kritične

[1]. Postizanje ovih ciljeva zahteva sofisticiran kompajler,

rustc, čiji prednji kraj (frontend) igra ključnu ulogu u

analizi, validaciji i transformaciji izvornog koda.

Prednji kraj rustc kompajlera koristi niz

međureprezentacija (engl. Intermediate Representations)

kako bi postepeno transformisao izvorni kod u formu

pogodnu za dalje faze kompajliranja, uključujući

optimizaciju i generaciju koda od strane LLVM bekenda

[13]. Svaka međureprezentacija služi specifičnoj svrsi,

omogućavajući različite vrste analiza i transformacija.

Razumevanje ovih reprezentacija je ključno za

razumevanje kako Rust postiže svoje garancije.

2. PUT IZVORNOG KODA U RUSTC

KOMPAJLERU

Proces kompajliranja u rustc frontendu započinje

leksičkom analizom i parsiranjem, nastavlja se kroz

nekoliko nivoa međureprezentacija gde se vrše ključne

analize i transformacije, a završava se generacijom

Međureprezentacije Srednjeg Nivoa (MSN) koja se potom

prosleđuje LLVM-u za dalju optimizaciju i generaciju

mašinskog koda. U tipično struktuiranom kompajleru

svaka od međureprezentacija predstavlja poseban program

i posebno izvršavanje. Ovakvi kompajleri se nazivaju

kompajleri zasnovani na prolascima - arhitektura cevi. Rust

kompajler je u tranziciji između kompajlera zasnovanog na

prolascima i kompajlera zasnovanog na potražnji.

Kompajler zasnovan na potražnji koristi upite nad

izvornim kodom i simultono izvršava velike celine

kompajliranja. Izvršavanje upita je memoizovano. Samo

prvi poziv upita izvršava komputacije, dok je svaki naredni

keširan. Sve međureprezentacije nakon ASS se zasnivaju

na sistemu upita, tj. samo lekser i parser rade po principu

arhitekture cevi. Dugoročni cilj je refaktorizacija

kompajlera tako da celokupan proces radi na osnovu

sistema upita.

1300

https://doi.org/10.24867/33BE08Bajat

2.1. OD TOKENA DO APSTRAKTNOG

SINTAKSNOG STABLA (АSS)

Prvi korak je leksička analiza, gde rustc_lexer, kao lekser

niskog nivoa, čita izvorni kod kao niz karaktera, grupiše ih

u lekseme (npr. ključne reči, identifikatori, operatori) i

proizvodi tok tokena. Svaki token obično sadrži tip i,

opciono, vrednost. Rust-ov lekser je ručno implementiran,

što omogućava finu kontrolu nad procesom tokenizacije i

rezultira detaljnijim i korisnijim porukama o greškama.

Nakon toga, rustc_parse::lexer, lekser višeg nivoa,

dodatno obrađuje ove tokene. U ovoj fazi, vrši se

interniranje simbola (engl. symbol interning), gde se

stringovi poput identifikatora smeštaju u posebnu

memorijsku oblast (arenu) tako da svaki jedinstveni string

ima samo jednu kopiju. Ovo optimizuje upotrebu memorije

i ubrzava poređenje simbola. Takođe se koriste strukture

kao što su Span i SpanData za praćenje lokacije svakog

tokena u izvornom kodu, što je ključno za preciznu

dijagnostiku grešaka. Pre samog parsiranja, vrši se i

rezolucija zagrada, gde se tok tokena strukturira u stabla

tokena (TokenTree), olakšavajući kasniju obradu.

Parser zatim koristi ovaj obrađeni tok tokena da generiše

Apstraktno Sintaksno Stablo (ASS ili AST), koje

predstavlja hijerarhijsku strukturu izvornog koda [3]. ASS

verno odražava strukturu korisničkog koda, eksplicitno

prikazujući, na primer, prvenstvo operatora. Koren ASS-a

je obično Crate struktura, dok su osnovni gradivni blokovi

Item-i (npr. funkcije, strukture, moduli), koji sadrže

atribute, jedinstveni identifikator (NodeId) i Span. Iako je

ASS osnova za dalje analize, nije direktno pogodan za sve

operacije zbog svoje bliskosti originalnom izvornom kodu.

U ovoj fazi se vrši i ekspanzija makroa – moćne Rust-ove

karakteristike koja omogućava metaprogramiranje ("kod

koji generiše kod") i smanjuje potrebu za ponavljajućim

kodom. Takođe, započinje inicijalna rezolucija imena, gde

kompajler pokušava da poveže imena korišćena u kodu sa

njihovim definicijama, koristeći koncept "rebara" (engl.

ribs) za upravljanje vidljivošću imena u različitim

opsezima (engl. scopes). Pre prelaska na sledeću

reprezentaciju, ASS se validira, posebno nakon ekspanzije

makroa koji mogu generisati sintaktički nekompletan ili

neispravan kod.

2.2. MEĐUREPREZENTACIJA VISOKOG NIVOA

(MVN ili HIR)

ASS se zatim "snižava" (engl. lowering) u

Međureprezentaciju Visokog Nivoa (MVN) [4]. MVN je

apstraktnija reprezentacija koja pojednostavljuje mnoge

konstrukcije iz ASS-a; na primer, for petlje se prevode u

while let konstrukcije, if let izrazi u match izraze, a impl

Trait u parametrima funkcija u odgovarajuće generičke

argumente. Svrha ovog snižavanja je da se smanji broj

različitih sintaksnih formi (sintaksni šećer) sa kojima

kasnije faze kompajlera moraju da rade, čime se

pojednostavljuje analiza. HIR Crate struktura sadrži

informacije o celokupnom kodu paketa, uključujući i

delove koji možda nisu direktno pozvani, što je važno za

analizu eksternih biblioteka. HIR je ključan za sistem upita

(engl. query system) rustc-a. Sistem upita funkcioniše kao

baza podataka kompajlera gde se rezultati različitih analiza

(upita) keširaju (memoizacija). Svaki upit je funkcija koja

mapira jedinstveni ključ (npr. identifikator stavke) na

rezultat (npr. tip stavke, telo funkcije u MVN-u). Ako se

upit ponovo pozove sa istim ključem, vraća se keširani

rezultat umesto ponovnog izračunavanja. Ovo je temelj

inkrementalnog kompajliranja: prilikom izmene koda,

samo oni upiti čije su zavisnosti promenjene moraju

ponovo da se izvrše. Sistem upita zahteva da provajderi

upita budu determinističke funkcije i održava direkcioni

aciklični graf (DAG) poziva upita kako bi se izbegli

ciklusi. Za stabilnu identifikaciju čvorova grafa između

različitih kompajliranja koriste se DefPath i DefPathHash

strukture, kao i "otisci prsta" (engl. fingerprints) za

efikasno poređenje stanja. Na MVN-u se vrše mnoge

semantičke analize, kao što su rezolucija osobina (engl.

trait resolution) i provere koherentnosti.

2.3. TIPIZIRANA MEĐUREPREZENTACIJA

VISOKOG NIVOA (TMVN ili THIR)

Nakon MVN-a, generiše se Tipizirana Međureprezentacija

Visokog Nivoa (TMVN). TMVN obogaćuje MVN

informacijama o tipovima za svaki izraz i deo koda unutar

tela funkcija; dakle, TMVN se generiše samo za izvršni

kod [5]. TMVN je efemerna reprezentacija, što znači da se

delovi generišu "na zahtev" i ne čuvaju se kompletno u

memoriji tokom celog procesa, čime se smanjuje

memorijski otisak kompajlera. U TMVN-u, mnoge

implicitne operacije iz izvornog koda postaju eksplicitne:

automatska referenciranja i dereferenciranja, pozivi

metoda na osobinama, i preklopljeni operatori se prevode

u eksplicitne pozive funkcija. Takođe, uništenje opsega

(engl. scope destruction) je eksplicitno predstavljeno.

TMVN služi kao osnova za dve važne provere:

1. Provera bezbednosti (engl. check_unsafety):

Algoritam analizira unsafe kontekste, proverava

da li se unsafe operacije (npr. dereferenciranje

sirovog pokazivača) pozivaju van unsafe bloka, i

da li unsafe blokovi zaista sadrže unsafe kod (ako

ne, generiše se upozorenje - lint).

2. Provera iscrpnosti šablona (engl. pattern

matching exhaustiveness): Za konstrukcije kao

što su match, if let, while let, let else, pa čak i za

argumente funkcija koji koriste destrukturiranje,

TMVN omogućava proveru da li su svi mogući

slučajevi pokriveni. Pored iscrpnosti, proverava

se i "korisnost" svake grane, kako bi se

detektovale nedostižne (redundantne) grane koda.

2.4. MEĐUREPREZENTACIJA SREDNJEG

NIVOA (MVN ili HIR)

Konačna reprezentacija u frontendu je Međureprezentacija

Srednjeg Nivoa (MIR). Uvođenje MSN je bilo motivisano

potrebom za preciznijom kontrolom nad tokom

izvršavanja, lakšim sprovođenjem Rust-specifičnih

optimizacija i pojednostavljivanjem procesa dokazivanja

memorijske bezbednosti, što je bilo teško postići direktnim

prevođenjem sa MVN-a ili TMVN-a na LLVM IR. MSN

je eksplicitna reprezentacija kontrolnog toka (control flow

graph - CFG) programa [5]. CFG se sastoji od osnovnih

1301

blokova (engl. basic blocks), gde svaki blok predstavlja niz

naredbi koje se izvršavaju sekvencijalno, a poslednja

naredba u bloku, terminator (engl. terminator), određuje u

koji sledeći blok (ili blokove) će se preći. MSN koristi

LIFO stek za smeštanje argumenata funkcija, lokalnih

promenljivih i privremenih vrednosti. Memorijske lokacije

na steku se identifikuju preko "mesta" (engl. places, npr.

_1 za prvu lokalnu promenljivu, _0 za povratnu vrednost),

a pristupi poljima struktura ili dereferenciranje se

predstavljaju kao "projekcije" (npr. _1.polje, *_1). Izrazi

koji generišu vrednosti nazivaju se "desne vrednosti"

(RValues).

U neoptimizovanom MSN, eksplicitno se koriste iskazi

StorageLive i StorageDead kako bi se označio početak i

kraj životnog veka svake lokalne promenljive, što

kompajleru daje jasnu informaciju o tome kada je

memorija za datu promenljivu validna i kada se može

bezbedno osloboditi.

Na MSN se vrši ključna analiza za Rust: analiza

pozajmljivanja (borrow checking). Ovo uključuje

implementaciju Neleksičkih Životnih Vekova (Non-

Lexical Lifetimes - NLL). Tradicionalni leksički životni

vekovi su vezani za opsege u kodu i mogu biti previše

restriktivni. NLL, s druge strane, analizira stvarnu upotrebu

pozajmica unutar grafa kontrole toka, omogućavajući

preciznije i fleksibilnije određivanje tačnog trajanja svake

pozajmice, što često rezultira prihvatanjem koda koji bi sa

leksičkim životnim vekovima bio odbijen. MSN takođe

služi za Rust-specifične optimizacije; na primer,

kompleksne petlje ili match izrazi mogu biti dodatno

pojednostavljeni (npr. for petlja se preko loop { match ... }

sa goto naredbama može transformisati u efikasnije switch

konstrukcije) pre nego što se kod prosledi LLVM bekendu

za dalje, generalnije optimizacije i konačnu generaciju

mašinskog koda.

3. ZNAČAJ MEĐUREPREZENTACIJA

Svaka od navedenih međureprezentacija u rustc frontendu

ima svoju specifičnu i ključnu ulogu:

● ASS: Predstavlja vernu reprezentaciju izvornog

koda, služi kao osnova za makro ekspanziju i

inicijalnu rezoluciju imena. Njegova bliskost

izvornom kodu omogućava precizne poruke o

sintaksnim greškama.

● MVN: Kao apstrakcija nad ASS-om,

pojednostavljuje strukturu koda i ključna je za rad

sistema upita, omogućavajući semantičke analize

i inkrementalno kompajliranje.

● TMVN: Obogaćujući HIR tipovima, omogućava

detaljnu proveru tipova, proveru bezbednosti

unsafe koda i iscrpnosti i korisnosti šablona, što

su ključne komponente Rust-ove pouzdanosti.

● MSN: Kao eksplicitni graf kontrolnog toka,

fundamentalan je za analizu pozajmljivanja

(borrow checking) i implementaciju Neleksičkih

Životnih Vekova (NLL), što direktno doprinosi

memorijskoj bezbednosti. Takođe, omogućava

Rust-specifične optimizacije.

Ova višefazna arhitektura, gde svaka IR rešava specifičan

skup problema, omogućava rustc-u da efikasno sprovodi

kompleksne analize neophodne za garantovanje

memorijske bezbednosti i generisanje efikasnog koda, što

su dve ključne prednosti Rust jezika. Modularnost pristupa

olakšava razvoj i održavanje kompajlera, dok sistem upita

dodatno doprinosi ukupnoj efikasnosti kroz memoizaciju i

inkrementalno kompajliranje. Precizne dijagnostičke

poruke su takođe rezultat mogućnosti da se greške lociraju

u odgovarajućoj fazi i na odgovarajućem nivou apstrakcije.

4. BEZBEDNO NEBEZBEDAN

Analiza je provedena 2023. godine da se 12% paketa u Rust

ekosistemu direktno oslanja na nestabilne funkcionalnosti,

dok je 44% paketa indirektno zavisilo od nestabilnih

funkcionalnosti da bi se kompajliralo. Procentualna

zavisnost prema nestabilnim funkcionalnostima je visoka

ali analiza nije sprovedena da se izračuna procenat masivno

korišćenih paketa sa direktnim ili tranzitivnim

zavisonstima, kao i procenat nestabilnih funkcionalnosti na

kojima se ovakvi paketi zasnivaju [9].

Kapije funkcionalnosti su mehanizam na osnovu kog se

kontroliše vidljivost funkcionalnosti u određenom skupu

alata (stable, beta, nightly). Funkcionalnost može biti

prihvaćena, nestabilna, nezavršena ili obrisana. Kapije

funkcionalnosti se ne brišu fizički iz koda, već uz

adekvatan opis služe kao perzistentno obrazloženje odluke

da funkcionalnost nije podobna za razvoj.

Оdobravanje funkcionalnosti je rigorozan ali transparentan

proces. Svaka značajna promena koja nije refaktorizacija

ili dokumentovanje mora proći kroz sledeće faze:

1. Zahtev za komentare (RFC): Proces započinje

kreiranjem RFC dokumenta koji detaljno

obrazlaže svrhu nove funkcionalnosti i njen opšti

dizajn. Ovaj dokument je javan i podložan

diskusiji od strane Rust tima i celokupne

zajednice. Odobrenje RFC-a daje zeleno svetlo za

početak razvoja, ali ne garantuje konačno

prihvatanje.

2. Razvoj i testiranje: Nakon odobrenja,

funkcionalnost se implementira i detaljno testira.

3. Proces stabilizacije: Kada je funkcionalnost

razvijena i testirana bez značajnih primedbi,

pokreće se formalni zahtev za stabilizaciju, koji se

sastoji iz četiri ključna dela:

● Ažuriranje dokumentacije:

Dokumentacija se premešta iz interne

"nestabilne knjige" (Unstable Book) u

zvaničnu dokumentaciju za korisnike

(Rust Reference).

● Stabilizacioni izveštaj: Kreira se

izveštaj koji sadrži primere korišćenja,

linkove ka dokumentaciji i testove koji

pokrivaju granične slučajeve.

● Period finalnog komentara (FCP):

Tim ponovo pregleda ceo predlog kako

bi se postigao konačni konsenzus.

● Stabilizacioni Pull Request: Ukoliko je

konsenzus pozitivan, kreira se finalni

1302

zahtev za povlačenjem (pull request).

Njegov cilj je da tehnički omogući

funkcionalnost u stabilnoj verziji jezika,

uklanjajući oznaku nestabilnosti i

grešku koja sprečava njeno korišćenje

van noćne (nightly) verzije kompajlera.

4. Beta i stabilna verzija: Nakon uspešne

stabilizacije, funkcionalnost postaje dostupna

korisnicima u beta verziji za finalno testiranje,

pre nego što konačno postane deo sledeće

stabilne distribucije Rust-a.

4. ZAKLJUČAK

Međureprezentacije izvornog koda u prednjem kraju rustc

kompajlera čine složen, ali visoko efikasan sistem. Kroz

pažljivo dizajnirane faze transformacije i analize – od ASS-

a, preko MVN-a i TMVN-a, do MSN-a – kompajler

postepeno prevodi, proverava i optimizuje korisnički kod.

Ova slojevita arhitektura je temelj na kojem Rust gradi

svoje jedinstvene prednosti: garantovanu memorijsku

bezbednost bez sakupljača smeća, konkurentnost bez rizika

od "data races", i visoke performanse uporedive sa C i C++.

Svaka izmena ili proširenje Rust kompajlera podleže

rigoroznom i transparentnom procesu prihvatanja. Kroz

mehanizam Zahteva za komentare (RFC) i višefaznu

stabilizaciju, zajednica osigurava da se jezik razvija na

kontrolisan način, čuvajući integritet i bezbednosne

garancije koje kompajler pruža.

 Razumevanje ovih internih mehanizama i uloge svake

međureprezentacije je od velikog značaja, ne samo za dalji

razvoj i unapređenje samog kompajlera (npr. poboljšanje

vremena kompajliranja ili uvođenje novih optimizacija),

već i za dublje razumevanje ponašanja Rust programa i

efikasnije korišćenje naprednih mogućnosti jezika.

5. LITERATURA

[1] MSRC, “A proactive approach to more secure code |

MSRC Blog | Microsoft Security Re-

sponse Center,” Microsoft.com, Jul. 16, 2019.

https://msrc.microsoft.com/blog/2019/07/

a-proactive-approach-to-more-secure-code/ (pristupljeno

u septembru 2024.)

[2] “Parsing” Rochester.edu, 2024.

https://www.cs.rochester.edu/u/nelson/courses/csc_

173/grammars/parsing.html#:~:text=Recursive%2Ddesce

nt%20parsing%20is%20one,

non%2Dterminal%20with%20a%20procedure

(pristupljeno u septembru 2024.)

[3] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman,

Compilers: Principles, Techniques, and Tools, 2nd ed.

Boston, MA, USA: Addison-Wesley, 2006.

[4] “Getting Started - Rust Compiler Development

Guide,” Rust-lang.org, 2024. https:

//rustc-dev-guide.rust-lang.org/getting-started.html

(pristupljeno u Septembru 2024.)

[5] “Introduction - The Rust Reference,” Rust-lang.org,

2015. https://doc.rust-lang.org/

reference/introduction.html (pristupljeno u septembru

2024.)

[6] “Meet Safe and Unsafe - The Rustonomicon,” Rust-

lang.org, 2024. https://doc.rust-lang.

org/nomicon/meet-safe-and-unsafe.html (pristupljeno u

septembru 2024)

[7] “What are editions? - The Rust Edition Guide,” Rust-

lang.org, 2024. https://doc.rust-lang.

org/edition-guide/editions/ (pristupljeno u oktobru 2024.)

[8] “The Unstable Book - The Rust Unstable Book,”

Rust-lang.org, 2024. https://doc.rust-lang.

org/unstable-book/index.html (pristupljeno u oktobru

2024.)

[9] Li, Chenghao, et al. “Demystifying Compiler Unstable

Feature Usage and Impacts in the Rust Ecosys-

tem.” 26 Oct. 2023. arXiv, (pristupljeno u oktobru 2024.)

[10] Bugden W, Alahmar A. Rust: The programming

language for safety and performance. arXiv preprint

arXiv:2206.05503. 2022 Jun 11.

[11] P. Mainardi, “The Rising Threat of Software Supply

Chain Attacks: Managing Dependencies of Open Source

projects,” Linuxfoundation.eu, Aug. 15, 2023.

https://linuxfoundation.eu/newsroom/

the-rising-threat-of-software-supply-chain-attacks-

managing-dependencies-of-open-source-p

(pristupljeno u oktobru 2024.)

[12] “The Architecture of Open Source Applications

(Volume 1)LLVM,” Aosabook.org, 2024. https:

//aosabook.org/en/v1/llvm.html (pristupljeno u novembru

2024.)

[13] “The LLVM Compiler Infrastructure Project,”

Llvm.org, 2024. https://llvm.org/ (pristupljeno u

novembru 2024.)

Kratka biografija:

Aleksa Bajat rođen je 2001. godine u Novom

Sadu. Završio je prirodno-matematički smer

na engleskom jeziku u gimnaziji ”Jovan

Jovanović Zmaj” 2019. godine. Tokom sve

četiri godine gimnazije uspešno je pohađao

”Centar za mlade talente” kompanije

Schneider Electric. Godine 2019. upisao je

Fakultet Tehničkih Nauka u Novom Sadu, gde

je ispunio sve obaveze i položio sve ispite

predviđene studijskim programom sa

prosečnom ocenom 9.03.

kontakt: aleksabajat15@gmail.com

1303

