Zbornik radova Fakulteta tehnickih nauka, Novi Sad

UDK: 4.9
DOI: https://doi.org/10.24867/33BE08Bajat

MEDUREPREZENTACIJE IZVORNOG KODA RUSTC KOMPAJLERA

INTERMEDIATE REPRESENTATIONS OF THE SOURCE CODE IN THE RUSTC
COMPILER

Aleksa Bajat, Fakultet tehnickih nauka, Novi Sad

Oblast — ELEKTROTEHNICKO I RACUNARSKO
INZENJERSTVO

Kratak sadrzaj — Ovaj rad istrazuje arhitekturu prednjeg
kraja (engl. frontend) Rust kompajlera (rustc), sa fokusom
na kljucnu ulogu koju medureprezentacije izvornog koda
igraju u procesu prevodenja. Analizirane su faze od
leksicke analize i parsiranja do generisanja Apstraktnog
Sintaksnog Stabla (ASS), preko Medureprezentacije
Visokog ~ Nivoa (MVN/HIR), Tipizirane ~ MVN
(TMVN/THIR), do Medureprezentacije Srednjeg Nivoa
(MSN/MIR). Rad objasnjava kako svaka od ovih
reprezentacija omogucava kljucne funkcionalnosti Rust
Jezika, ukljucujuci proveru tipova, dijagnostiku gresaka,
inkrementalno kompajliranje, proveru pozajmljivanja
(borrow checking) i pripremu za dalju optimizaciju i
generaciju koda u LLVM-u. Cilj je da se prikaze kako
generisanje infrastrukture doprinosi garancijama
memorijske bezbednosti i visokim performansama Rust
programskog jezika.

Kljucéne vreci: Rust, rustc, kompajler, frontend,
medureprezentacije, ASS, MVN, TMVN, MSN, LLVM,
analiza koda, optimizacija

Abstract — This paper explores the architecture of the Rust
compiler's (rustc) frontend, focusing on the crucial role of
intermediate representations (IRs) of source code in the
compilation process. Phases from lexical analysis and
parsing to the generation of the Abstract Syntax Tree
(AST), through the High-Level Intermediate
Representation (HIR), Typed HIR (THIR), to the Mid-Level
Intermediate Representation (MIR) are analyzed. The
paper explains how each of these representations enables
key features of the Rust language, including type checking,
error diagnostics, incremental compilation, borrow
checking, and preparation for further optimization and
code generation in LLVM. The aim is to demonstrate how
generation of compiler infrastructure contributes to Rust's
guarantees of memory safety and high performance.

Keywords: Rust, rustc, compiler, frontend, intermediate
representations, AST, HIR, THIR, MIR, LLVM, code
analysis, optimization

NAPOMENA:
Ovaj rad proistekao je iz master rada ¢iji mentor je bio
dr Dunja Vrbaski, doc.

1. UVOD

Programski jezik Rust je stekao znacajnu popularnost
zahvaljujuéi svom fokusu na memorijsku bezbednost bez
upotrebe sakupljaca smeca (engl. garbage collector) i
visokim performansama koje pariraju jezicima kao §to su
C i C++. Ove karakteristike ¢ine ga idealnim za razvoj
sistemskog softvera, operativnih sistema, veb servera i
drugih aplikacija gde su performanse i bezbednost kriti¢ne
[1]. Postizanje ovih ciljeva zahteva sofisticiran kompajler,
rustc, Ciji prednji kraj (frontend) igra kljuénu ulogu u
analizi, validaciji i transformaciji izvornog koda.

Prednji kraj rustc kompajlera koristi niz
medureprezentacija (engl. Intermediate Representations)
kako bi postepeno transformisao izvorni kod u formu
pogodnu za dalje faze kompajliranja, ukljucujudi
optimizaciju i generaciju koda od strane LLVM bekenda
[13]. Svaka medureprezentacija sluzi specificnoj svrsi,
omogucavajuéi razliCite vrste analiza i transformacija.
Razumevanje ovih reprezentacija je kljuéno za
razumevanje kako Rust postize svoje garancije.

2. PUT IZVORNOG KODA U RUSTC
KOMPAJLERU

Proces kompajliranja u rustc frontendu zapocCinje
leksickom analizom 1 parsiranjem, nastavlja se kroz
nekoliko nivoa medureprezentacija gde se vrSe kljucne
analize i transformacije, a zavrSava se generacijom
Medureprezentacije Srednjeg Nivoa (MSN) koja se potom
prosleduje LLVM-u za dalju optimizaciju i generaciju
masinskog koda. U tipi¢no struktuiranom kompajleru
svaka od medureprezentacija predstavlja poseban program
i posebno izvrSavanje. Ovakvi kompajleri se nazivaju
kompajleri zasnovani na prolascima - arhitektura cevi. Rust
kompajler je u tranziciji izmedu kompajlera zasnovanog na
prolascima i kompajlera zasnovanog na potraznji.
Kompajler zasnovan na potraznji koristi upite nad
izvornim kodom i simultono izvrSava velike celine
kompajliranja. IzvrSavanje upita je memoizovano. Samo
prvi poziv upita izvrSava komputacije, dok je svaki naredni
kesiran. Sve medureprezentacije nakon ASS se zasnivaju
na sistemu upita, tj. samo lekser i parser rade po principu
arhitekture cevi. Dugoro¢ni cilj je refaktorizacija
kompajlera tako da celokupan proces radi na osnovu
sistema upita.

1300

https://doi.org/10.24867/33BE08Bajat

2.1. OD TOKENA DO APSTRAKTNOG
SINTAKSNOG STABLA (ASS)

Prvi korak je leksic¢ka analiza, gde rustc lexer, kao lekser
niskog nivoa, ¢ita izvorni kod kao niz karaktera, grupise ih
u lekseme (npr. kljucne reci, identifikatori, operatori) i
proizvodi tok tokena. Svaki token obi¢no sadrzi tip i,
opciono, vrednost. Rust-ov lekser je ru¢no implementiran,
Sto omogucava finu kontrolu nad procesom tokenizacije i
rezultira detaljnijim i korisnijim porukama o greskama.

Nakon toga, rustc parse::lexer, lekser viSeg nivoa,
dodatno obraduje ove tokene. U ovoj fazi, vrsi se
interniranje simbola (engl. symbol interning), gde se
stringovi poput identifikatora smeStaju u posebnu
memorijsku oblast (arenu) tako da svaki jedinstveni string
ima samo jednu kopiju. Ovo optimizuje upotrebu memorije
i ubrzava poredenje simbola. Takode se koriste strukture
kao Sto su Span i SpanData za pracenje lokacije svakog
tokena u izvornom kodu, §to je klju¢no za preciznu
dijagnostiku gresaka. Pre samog parsiranja, vrs$i se i
rezolucija zagrada, gde se tok tokena strukturira u stabla
tokena (TokenTree), olakSavajuci kasniju obradu.

Parser zatim koristi ovaj obradeni tok tokena da generise
Apstraktno Sintaksno Stablo (ASS ili AST), koje
predstavlja hijerarhijsku strukturu izvornog koda [3]. ASS
verno odrazava strukturu korisnickog koda, eksplicitno
prikazujuéi, na primer, prvenstvo operatora. Koren ASS-a
je obic¢no Crate struktura, dok su osnovni gradivni blokovi
Item-1 (npr. funkcije, strukture, moduli), koji sadrze
atribute, jedinstveni identifikator (Nodeld) i Span. lako je
ASS osnova za dalje analize, nije direktno pogodan za sve
operacije zbog svoje bliskosti originalnom izvornom kodu.
U ovoj fazi se vrsi i ekspanzija makroa — moéne Rust-ove
karakteristike koja omogucava metaprogramiranje ("kod
koji generiSe kod") i smanjuje potrebu za ponavljajuc¢im
kodom. Takode, zapo¢inje inicijalna rezolucija imena, gde
kompajler pokusava da poveze imena koris¢ena u kodu sa
njihovim definicijama, koriste¢i koncept "rebara" (engl.
ribs) za upravljanje vidljivos¢u imena u razliCitim
opsezima (engl. scopes). Pre prelaska na sledecu
reprezentaciju, ASS se validira, posebno nakon ekspanzije
makroa koji mogu generisati sintakticki nekompletan ili
neispravan kod.

2.2. MEDUREPREZENTACIJA VISOKOG NIVOA
(MVN ili HIR)

ASS se zatim ‘"snizava" (engl. lowering) u
Medureprezentaciju Visokog Nivoa (MVN) [4]. MVN je
apstraktnija reprezentacija koja pojednostavljuje mnoge
konstrukcije iz ASS-a; na primer, for petlje se prevode u
while let konstrukcije, if let izrazi u match izraze, a impl
Trait u parametrima funkcija u odgovarajuée genericke
argumente. Svrha ovog snizavanja je da se smanji broj
razli¢itih sintaksnih formi (sintaksni Secer) sa kojima
kasnije faze kompajlera moraju da rade, cime se
pojednostavljuje analiza. HIR Crate struktura sadrzi
informacije o celokupnom kodu paketa, ukljucujuéi i
delove koji mozda nisu direktno pozvani, §to je vazno za
analizu eksternih biblioteka. HIR je kljucan za sistem upita
(engl. query system) rustc-a. Sistem upita funkcionise kao

baza podataka kompajlera gde se rezultati razli¢itih analiza
(upita) kesiraju (memoizacija). Svaki upit je funkcija koja
mapira jedinstveni klju¢ (npr. identifikator stavke) na
rezultat (npr. tip stavke, telo funkcije u MVN-u). Ako se
upit ponovo pozove sa istim kljucem, vraca se keSirani
rezultat umesto ponovnog izracunavanja. Ovo je temelj
inkrementalnog kompajliranja: prilikom izmene koda,
samo oni upiti €ije su zavisnosti promenjene moraju
ponovo da se izvrSe. Sistem upita zahteva da provajderi
upita budu deterministicke funkcije i odrzava direkcioni
acikliéni graf (DAG) poziva upita kako bi se izbegli
ciklusi. Za stabilnu identifikaciju ¢vorova grafa izmedu
razli¢itih kompajliranja koriste se DefPath i DefPathHash
strukture, kao i "otisci prsta" (engl. fingerprints) za
efikasno poredenje stanja. Na MVN-u se vrSe mnoge
semanticke analize, kao Sto su rezolucija osobina (engl.
trait resolution) i provere koherentnosti.

2.3. TIPIZIRANA MEDUREPREZENTACIJA
VISOKOG NIVOA (TMVN ili THIR)
Nakon MVN-a, generiSe se Tipizirana Medureprezentacija
Visokog Nivoa (TMVN). TMVN obogacuje MVN
informacijama o tipovima za svaki izraz i deo koda unutar
tela funkcija; dakle, TMVN se generiSe samo za izvrsni
kod [5]. TMVN je efemerna reprezentacija, Sto znaci da se
delovi generiSu "na zahtev" i ne ¢uvaju se kompletno u
memoriji tokom celog procesa, ¢ime se smanjuje
memorijski otisak kompajlera. U TMVN-u, mnoge
implicitne operacije iz izvornog koda postaju eksplicitne:
automatska referenciranja i dereferenciranja, pozivi
metoda na osobinama, i preklopljeni operatori se prevode
u eksplicitne pozive funkcija. Takode, uniStenje opsega
(engl. scope destruction) je eksplicitno predstavljeno.

TMVN sluzi kao osnova za dve vazne provere:

1. Provera bezbednosti (engl. check unsafety):
Algoritam analizira unsafe kontekste, proverava
da li se unsafe operacije (npr. dereferenciranje
sirovog pokazivaca) pozivaju van unsafe bloka, i
da li unsafe blokovi zaista sadrze unsafe kod (ako
ne, generise se upozorenje - lint).

2. Provera iscrpnosti Sablona (engl. pattern
matching exhaustiveness): Za konstrukcije kao
Sto su match, if let, while let, let else, pa cak i za
argumente funkcija koji koriste destrukturiranje,
TMVN omoguéava proveru da li su svi moguci
slucajevi pokriveni. Pored iscrpnosti, proverava
se 1 "korisnost" svake grane, kako bi se
detektovale nedostizne (redundantne) grane koda.

2.4. MEDUREPREZENTACIJA SREDNJEG
NIVOA (MVN ili HIR)

Konacna reprezentacija u frontendu je Medureprezentacija
Srednjeg Nivoa (MIR). Uvodenje MSN je bilo motivisano
potrebom za preciznijom kontrolom nad tokom
izvrSavanja, lakSim sprovodenjem Rust-specificnih
optimizacija i pojednostavljivanjem procesa dokazivanja
memorijske bezbednosti, $to je bilo tesko postici direktnim
prevodenjem sa MVN-a ili TMVN-a na LLVM IR. MSN
je eksplicitna reprezentacija kontrolnog toka (control flow
graph - CFG) programa [5]. CFG se sastoji od osnovnih

1301

blokova (engl. basic blocks), gde svaki blok predstavlja niz
naredbi koje se izvrSavaju sekvencijalno, a poslednja
naredba u bloku, terminator (engl. terminator), odreduje u
koji slede¢i blok (ili blokove) ¢e se prec¢i. MSN koristi
LIFO stek za smeStanje argumenata funkcija, lokalnih
promenljivih i privremenih vrednosti. Memorijske lokacije
na steku se identifikuju preko "mesta" (engl. places, npr.
_1 za prvu lokalnu promenljivu, 0 za povratnu vrednost),
a pristupi poljima struktura ili dereferenciranje se
predstavljaju kao "projekcije" (npr. 1.polje, * 1). Izrazi
koji generiSu vrednosti nazivaju se "desne vrednosti"
(RValues).

U neoptimizovanom MSN, eksplicitno se koriste iskazi
StorageLive i StorageDead kako bi se oznacio pocetak i
kraj zivotnog veka svake lokalne promenljive, S§to
kompajleru daje jasnu informaciju o tome kada je
memorija za datu promenljivu validna i kada se moze
bezbedno osloboditi.

Na MSN se vrSi kljuéna analiza za Rust: analiza
pozajmljivanja (borrow checking). Ovo ukljucuje
implementaciju Neleksi¢kih Zivotnih Vekova (Non-
Lexical Lifetimes - NLL). Tradicionalni leksi¢ki Zivotni
vekovi su vezani za opsege u kodu i mogu biti previse
restriktivni. NLL, s druge strane, analizira stvarnu upotrebu
pozajmica unutar grafa kontrole toka, omogucéavajuci
preciznije 1 fleksibilnije odredivanje ta¢nog trajanja svake
pozajmice, Sto Cesto rezultira prihvatanjem koda koji bi sa
leksickim zivotnim vekovima bio odbijen. MSN takode
sluzi za Rust-specificne optimizacije; na primer,
kompleksne petlje ili match izrazi mogu biti dodatno
pojednostavljeni (npr. for petlja se preko loop { match ... }
sa goto naredbama moze transformisati u efikasnije switch
konstrukcije) pre nego sto se kod prosledi LLVM bekendu
za dalje, generalnije optimizacije i kona¢nu generaciju
masinskog koda.

3. ZNACAJ MEPUREPREZENTACIJA

Svaka od navedenih medureprezentacija u rustc frontendu
ima svoju specifi¢nu i kljuénu ulogu:

e ASS: Predstavlja vernu reprezentaciju izvornog
koda, sluzi kao osnova za makro ekspanziju i
inicijalnu rezoluciju imena. Njegova bliskost
izvornom kodu omoguéava precizne poruke o
sintaksnim greSkama.

e MVN: Kao apstrakcija nad ASS-om,
pojednostavljuje strukturu koda i kljucna je za rad
sistema upita, omogucéavajuéi semanti¢ke analize
i inkrementalno kompajliranje.

e TMVN: Obogacuju¢i HIR tipovima, omogucéava
detaljnu proveru tipova, proveru bezbednosti
unsafe koda i iscrpnosti i korisnosti $ablona, §to
su kljuéne komponente Rust-ove pouzdanosti.

e MSN: Kao eksplicitni graf kontrolnog toka,
fundamentalan je za analizu pozajmljivanja
(borrow checking) i implementaciju Neleksickih
Zivotnih Vekova (NLL), §to direktno doprinosi
memorijskoj bezbednosti. Takode, omogucava
Rust-specificne optimizacije.

Ova visefazna arhitektura, gde svaka IR resava specifican
skup problema, omogucava rustc-u da efikasno sprovodi
kompleksne analize neophodne za garantovanje
memorijske bezbednosti i generisanje efikasnog koda, $to
su dve klju¢ne prednosti Rust jezika. Modularnost pristupa
olakSava razvoj i odrzavanje kompajlera, dok sistem upita
dodatno doprinosi ukupnoj efikasnosti kroz memoizaciju i
inkrementalno kompajliranje. Precizne dijagnosticke
poruke su takode rezultat moguénosti da se greske lociraju
u odgovarajucoj fazi i na odgovaraju¢em nivou apstrakcije.

4. BEZBEDNO NEBEZBEDAN

Analiza je provedena 2023. godine da se 12% paketa u Rust
ekosistemu direktno oslanja na nestabilne funkcionalnosti,
dok je 44% paketa indirektno zavisilo od nestabilnih
funkcionalnosti da bi se kompajliralo. Procentualna
zavisnost prema nestabilnim funkcionalnostima je visoka
ali analiza nije sprovedena da se izra¢una procenat masivno
koris¢enih paketa sa direktnim ili tranzitivnim
zavisonstima, kao i procenat nestabilnih funkcionalnosti na
kojima se ovakvi paketi zasnivaju [9].

Kapije funkcionalnosti su mehanizam na osnovu kog se
kontrolise vidljivost funkcionalnosti u odredenom skupu
alata (stable, beta, nightly). Funkcionalnost moze biti
prihvaéena, nestabilna, nezavrSena ili obrisana. Kapije
funkcionalnosti se ne briSu fizicki iz koda, veé¢ uz
adekvatan opis sluze kao perzistentno obrazlozenje odluke
da funkcionalnost nije podobna za razvoj.

Odobravanje funkcionalnosti je rigorozan ali transparentan
proces. Svaka znacajna promena koja nije refaktorizacija
ili dokumentovanje mora pro¢i kroz sledece faze:

1. Zahtev za komentare (RFC): Proces zapocinje
kreiranjem RFC dokumenta koji detaljno
obrazlaze svrhu nove funkcionalnosti i njen opsti
dizajn. Ovaj dokument je javan i podlozan
diskusiji od strane Rust tima i celokupne
zajednice. Odobrenje RFC-a daje zeleno svetlo za
pocetak razvoja, ali ne garantuje konacno
prihvatanje.

2. Razvoj i testiranje: Nakon odobrenja,
funkcionalnost se implementira i detaljno testira.

3. Proces stabilizacije: Kada je funkcionalnost
razvijena 1 testirana bez znacajnih primedbi,
pokrece se formalni zahtev za stabilizaciju, koji se
sastoji iz Cetiri klju¢na dela:

e Azuriranje dokumentacije:
Dokumentacija se premesta iz interne
"nestabilne knjige" (Unstable Book) u
zvani¢nu dokumentaciju za korisnike
(Rust Reference).

e Stabilizacioni izvestaj: Kreira se
izvestaj koji sadrzi primere koris¢enja,
linkove ka dokumentaciji i testove koji
pokrivaju grani¢ne slucajeve.

e Period finalnog komentara (FCP):
Tim ponovo pregleda ceo predlog kako
bi se postigao konacni konsenzus.

e Stabilizacioni Pull Request: Ukoliko je
konsenzus pozitivan, kreira se finalni

1302

zahtev za povlacenjem (pull request).

Njegov cilj je da tehnicki omoguci

funkcionalnost u stabilnoj verziji jezika,

uklanjajuci oznaku nestabilnosti i

gresku koja sprecava njeno koriséenje

van nocéne (nightly) verzije kompajlera.

4. Beta i stabilna verzija: Nakon uspesne

stabilizacije, funkcionalnost postaje dostupna
korisnicima u beta verziji za finalno testiranje,
pre nego S§to konacno postane deo sledece
stabilne distribucije Rust-a.

4. ZAKLJUCAK

Medureprezentacije izvornog koda u prednjem kraju rustc
kompajlera ¢ine slozen, ali visoko efikasan sistem. Kroz
pazljivo dizajnirane faze transformacije i analize — od ASS-
a, precko MVN-a i TMVN-a, do MSN-a — kompajler
postepeno prevodi, proverava i optimizuje korisnicki kod.
Ova slojevita arhitektura je temelj na kojem Rust gradi
svoje jedinstvene prednosti: garantovanu memorijsku
bezbednost bez sakupljaca smeca, konkurentnost bez rizika
od "dataraces", i visoke performanse uporedive sa C i C++.

Svaka izmena ili proSirenje Rust kompajlera podleze
rigoroznom 1 transparentnom procesu prihvatanja. Kroz
mehanizam Zahteva za komentare (RFC) i1 viSefaznu
stabilizaciju, zajednica osigurava da se jezik razvija na
kontrolisan nacin, cuvajuéi integritet i bezbednosne
garancije koje kompajler pruza.

Razumevanje ovih internih mehanizama i uloge svake
medureprezentacije je od velikog znacaja, ne samo za dalji
razvoj 1 unapredenje samog kompajlera (npr. poboljsanje
vremena kompajliranja ili uvodenje novih optimizacija),
ve¢ 1 za dublje razumevanje ponasanja Rust programa i
efikasnije koris¢enje naprednih mogucénosti jezika.

5. LITERATURA

[1] MSRC, “A proactive approach to more secure code |
MSRC Blog | Microsoft Security Re-

sponse Center,” Microsoft.com, Jul. 16, 2019.
https://msrc.microsoft.com/blog/2019/07/
a-proactive-approach-to-more-secure-code/ (pristupljeno
u septembru 2024.)

[2] “Parsing” Rochester.edu, 2024.
https://www.cs.rochester.edu/u/nelson/courses/csc_
173/grammars/parsing.html#:~:text=Recursive%2Ddesce
nt%?20parsing%20is%20one,
non%?2Dterminal%20with%20a%20procedure
(pristupljeno u septembru 2024.)

[3] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman,
Compilers: Principles, Techniques, and Tools, 2nd ed.
Boston, MA, USA: Addison-Wesley, 2006.

[4] “Getting Started - Rust Compiler Development
Guide,” Rust-lang.org, 2024. https:
//rustc-dev-guide.rust-lang.org/getting-started.html
(pristupljeno u Septembru 2024.)

[5] “Introduction - The Rust Reference,” Rust-lang.org,
2015. https://doc.rust-lang.org/
reference/introduction.html (pristupljeno u septembru
2024.)

[6] “Meet Safe and Unsafe - The Rustonomicon,” Rust-
lang.org, 2024. https://doc.rust-lang.
org/nomicon/meet-safe-and-unsafe.html (pristupljeno u
septembru 2024)

[7] “What are editions? - The Rust Edition Guide,” Rust-
lang.org, 2024. https://doc.rust-lang.
org/edition-guide/editions/ (pristupljeno u oktobru 2024.)

[8] “The Unstable Book - The Rust Unstable Book,”
Rust-lang.org, 2024. https://doc.rust-lang.
org/unstable-book/index.html (pristupljeno u oktobru
2024.)

[9] Li, Chenghao, et al. “Demystifying Compiler Unstable
Feature Usage and Impacts in the Rust Ecosys-
tem.” 26 Oct. 2023. arXiv, (pristupljeno u oktobru 2024.)

[10] Bugden W, Alahmar A. Rust: The programming
language for safety and performance. arXiv preprint
arXiv:2206.05503. 2022 Jun 11.

[11] P. Mainardi, “The Rising Threat of Software Supply
Chain Attacks: Managing Dependencies of Open Source
projects,” Linuxfoundation.eu, Aug. 15, 2023.
https://linuxfoundation.eu/newsroom/
the-rising-threat-of-software-supply-chain-attacks-
managing-dependencies-of-open-source-p

(pristupljeno u oktobru 2024.)

[12] “The Architecture of Open Source Applications
(Volume 1)LLVM,” Aosabook.org, 2024. https:
//aosabook.org/en/v1/llvm.html (pristupljeno u novembru
2024.)

[13] “The LLVM Compiler Infrastructure Project,”
Llvm.org, 2024. https://llvm.org/ (pristupljeno u
novembru 2024.)

Kratka biografija:

Aleksa Bajat roden je 2001. godine u Novom
Sadu. ZavrsSio je prirodno-matematicki smer
na engleskom jeziku u gimnaziji ”Jovan
Jovanovi¢ Zmaj” 2019. godine. Tokom sve
Cetiri godine gimnazije uspesno je pohadao
”Centar za mlade talente” kompanije
Schneider Electric. Godine 2019. upisao je
Fakultet Tehni¢kih Nauka u Novom Sadu, gde
je ispunio sve obaveze i polozio sve ispite
predvidene studijskim programom sa
prosecnom ocenom 9.03.

kontakt: aleksabajatlS@gmail.com

1303

