Zbornik radova Fakulteta tehniékih nauka, Novi Sad

UDK: 004.42:004.738.12
DOI: https://doi.org/10.24867/33BE09Pavlovic

FAGL — JEZIK SPECIFICAN ZA DOMEN IMPLEMENTACIJE VEB APLIKACIJA

FAGL - A DOMAIN-SPECIFIC LANGUAGE FOR WEB APPLICATION
IMPLEMENTATION

Lazar Pavlovié, Fakultet tehnickih nauka, Novi Sad

Oblast — ELEKTROTEHNICKO I RACUNARSKO
INZENJERSTVO

Kratak sadrzaj — U ovom radu opisan je razvoj FAGL
Jjezika specificnog za domen za opis i generisanje veb
aplikacija. Rad pruza uwvid u konkretnu sintaksu jezika,
dizajn, arhitekturu i implementaciju ovog reSenja.
Poredenje sa pet postojecih resenja, omogucilo je kriticku
evaluaciju mogucnosti i funkcionalnosti razvijenog FAGL
jezika koja je pokazala da su postavljeni ciljevi rada
ostvareni razvojem tekstualnog JSD-a koji je jednostavan
za koriséenje, lak za ucenje i sadrzi sve neophodne
funkcionalnosti.

Kljuéne re€i: Jezik specifican za domen, textX, Python,
generator koda, veb aplikacija

Abstract — This work describes the development of the
FAGL domain-specific language for the description and
generation of web applications. The paper provides insight
into the specific syntax of the language, its design,
architecture, and implementation. A comparison with five
existing solutions enabled a critical evaluation of the
features and functionalities of the developed FAGL
language, demonstrating that the goals of the study were
achieved through the development of a textual DSL that is
user-friendly, easy to learn, and includes all necessary
functionalities.

Keywords: Domain specific language, textX, Python, code
generator, web application

1. UVOD

Kao odgovor na sve sloZenije zahteve trZiSta i potrebe za
Sto ve¢om produktivnoSéu, raste potraznja za
automatizovanim razvojem softverskih resenja koja se
mogu brzo i efikasno implementirati. Takode, napredak u
tehnologijama kao $to su vestacka inteligencija, Internet of
Things i Cloud computing stvara nove prilike i zahteve u
razvoju inovativnih softverskih resenja.

Racunar izvrsava zadatke na osnovu instrukcija zapisanih
na programskom jeziku. JON imaju primenu u izradi
softvera u razli¢itim domenima primene. Domen se moze
posmatrati s dva aspekta: horizontalnog, koji se odnosi na
tehni¢ke aspekte sistema, i vertikalnog, koji obuhvata
poslovne aspekte i specifi¢ne potrebe organizacije.

NAPOMENA:
Ovaj rad proistekao je iz master rada ¢iji mentor je bio
dr Igor Dejanovié, red. prof.

Horizontalni ili tehnicki domen moze biti: bekend
aplikacija, frontend aplikacija, bezbednost, baze podataka,
blok¢ejn, obrada podataka, vestacka inteligencija, mobilne
aplikacije. Vertikalni ili poslovni domen je oblast u kojoj
se softver primenjuje: finansije, osiguranje, zdravstvo,
administracija i mnogi drugi.

Potrebe za daljim poveéavanjem efikasnosti i
omogucéavanjem programiranja ne-tehnickom osoblju
kvalifikovanom za odredene oblasti, dovele su do nastanka
malih specijalizovanih programskih jezika — Jezika
Specificnih za Domen (JSD). Iako JON jezici nude veliku
fleksibilnost programeru prilikom razvoja softvera,
upotreba JSD-a za razvoj vise sli¢nih softvera za isti domen
(bilo horizontalni ili vertikalni) donosi brojne benefite:
veéu produktivnost programera, kvalitetnija reSenja
opisana u manje linija programskog koda, manji broj
bagova, bolji kvalitet programskog koda, bolje modeliranje
slozenih sistema [1].

Prema vrsti konkretne sintakse JSD se dele na graficke,
tekstualne i tabelarne [2]. U literaturi su opisani JSD-ovi
razliite kompleksnosti, fleksibilnosti i mogucénosti
primene. Jednostavnija reSenja najces¢e imaju ograni¢ene
funkcionalnosti za opis sistema, generisanje programskog
koda i upravljanje korisnicima [2,3]. JSD koji nude vece
moguénosti za opisivanje sistema u kontekstu
mikroservisnih aplikacija i poseduju generatore za vise
platformi Cesto imaju sloZzenu sintaksu, koja se znatno
razlikuje od JON. Zbog toga njihova primena zahteva
znaCajan angazman programera i dodatno vreme za
prilagodavanje [1,4,5]. Bez obzira na nivo sloZenosti,
vecini JSD-ova nedostaju moguénosti za validaciju
vrednosti atributa [1,2,4,5], kao i podrska za automatsko
generisanje frontend aplikacija [2,4,5].

Polaze¢i od prednosti i nedostataka tekstualnih JSD-ova
opisanih u literaturi, cilj ovog rada bio je razvoj tekstualnog
JSD-a koji je intuitivan za koriS¢enje, jednostavan za
ucenje i koji integriSe sve neophodne funkcionalnosti za
sveobuhvatno reSavanje problema.

2. ARHITEKTURA I DIZAJN RESENJA

FAGL JSD opisan u ovom radu implementiran je
koris¢enjem Python programskog jezika i biblioteka:
i0.8tringlO, os, textX, jinja2, i click. Projekat je razvijen na
Python interpreteru, verzija 3.10.0, a virtuelno okruZenje
kreirano je pomocu alata virtualenv.

Arhitektura softvera zasniva se na modularnom pristupu, a
glavni moduli su: model, parser, checker,

1304

https://doi.org/10.24867/33BE09Pavlovic

generator_config, generator_backend i
generator_frontend.
Faze u radu programa su:
1. Parsiranje programa napisanog na FAGL jeziku
2. Provere nad ucitanim modelom

3. Generisanje programskog koda

Konkretna sintaksa FAGL JSD-a definisana je pomocu
metamodela koji ukljuuje semanticke informacije o
njemu. Za definiciju metamodela koris¢ena je biblioteka
textX [6]. Parsiranje programa napisanog na FAGL jeziku
obavlja se korisCenjem fextX biblioteke i gramatike,
odnosno metamodela. Rezultat parsiranja programa je
ucitan program konvertovan na klase definisane u modulu
Model. Provere nad ucitanim modelom obezbeduju
adekvatnost ulaznog programa za generisanje validnog
programskog koda na JON. U poslednjoj fazi, vrsi se
generisanje programskog koda, koje obuhvata generisanje
programskog koda bekend i frontend aplikacije, kao krajnji
rezultat rada programa.

Bekend aplikacija implementirana je na Go programskom
jeziku, pomocu generator backend generatora. Oslanja se
na Gin framework za kreiranje aplikativnog servera, dok za
rad sa sqllite bazom podataka koristi GORM Objektno
Relacioni Maper. Generisana frontend aplikacija
implementirana je pomocu Vue3js framework-a.
Generisanje aplikacija vr$i se na osnovu ulaznih podataka
i Sablona definisanih upotrebom biblioteke jinja2.
Komunikacija izmedu frontend i bekend aplikacije
realizovana je upotrebom REST arhitekturnog stila.

3. KONKRETNA SINTAKSA FAGL JEZIKA

FAGL omogucava definisanje programa u jednom fajlu, ali
je zbog kvalitetnijeg programskog koda i veée Citljivosti
moguce napisati programski kod u vise fajlova, koje je
potrebno importovati. U svakom fajlu definiSe se naziv
paketa, importi i elementi jezika. Glavni elementi
konkretne sintakse FAGL jezika su: konstanta (Constant),
entitet (Entity), enumeracija (Enum), uloga (Role),
restrikcija (Restriction) 1 servis (Service), koji su u
metamodelu definisani posebnim pravilima.

Constant je apstraktno pravilo za izbor RegularConst ili
GeneralConst elementa. RegularConst se koristi za
definisanje konstanti c¢ije se vrednosti prikazuju na
korisni¢kom interfejsu, dok se GeneralConst primenjuje za
prikaz vrednosti konstanti sa predefinisanim imenima.

Enum element predstavlja tip podatka enumeracije sa
predefinisanim vrednostima (literali), S§to omogucava
definisanje i upravljanje kolekcijom imenovanih vrednosti,
poboljsava Citljivost 1 konzistentnost programskog koda.

Entity element opisuje klasu modela i sadrzi minimalno
jedan atribut i reprezentaciju instance entiteta. Kako bi se
postigla jednostavnost sintakse, uvedeno je pravilo prema
kojem prvi atribut svakog Entity elementa mora imati ime
id 1 biti tipa wwuid ili long. Ovo ograni¢enje nije
implementirano na nivou sintakse JSD-a, ve¢ je provera
ovog pravila obavljena u checker modulu, koji osigurava
njegovo sprovodenje. Atributi entiteta, odnosno uloga se
prepoznaju Attribute pravilom, definisanim u gramatici
jezika. Atributi su definisani tipom, kardinalitetom,
imenom 1 opciono validatorskim funkcijama. Za
validiranje vrednosti atributa u toku izvrSavanja (engl. run-

time) generisanog programa u trenutnoj implementaciji
FAGL JSD-a postoji 26 razlicitih validatorskih funkcija,
koje su u gramatici definisane pravilom ValidationBlock.
Tip atributa definisan je apstraktnim pravilom 7ype, koje
predstavlja izbor izmedu SimpleType i
ComplexTypeReference pravila. SimpleType predstavlja
izbor izmedu prostih tipova definisanih u jeziku: wuuid,
string, integer, date, float, bool 1 long.
ComplexTypeReference je apstraktno pravilo koje sadrzi
referencu na kompleksni tip predstavljen ComplexType
pravilom koje predstavlja izbor izmedu prethodno
definisanih entiteta, enumeracija ili uloga.

Role element koristi se za opis uloge korisnika sistema.
Sintaksa ovog elementa sli¢na je sintaksi Entity elementa.
Predefinisana su imena prva tri atributa: id (uuid ili long
tipa), username (tipa string) i password (tipa string).
Nakon atributa navodi se reprezentacija instance uloge.

Restriction element predstavlja ograni¢enje prethodno
definisanog entiteta. Ograni¢enje se ogleda u navodenju
atributa Cije vrednosti ¢e korisnik mo¢i da menja (azurira).
Ovaj element jezika koristi se prilikom definisanja
servisnih metoda koje azuriraju entitet (engl. update).

Service element predstavlja skup CRUD servisnih metoda
za jedan prethodno definisan entitet. Servisna metoda
definise jednu od CRUD operacija, uloge autorizovane za
izvrSavanje metode, povratni tip metode i njegov
kardinalitet, jedinstveno ime servisne metode, parametre
metode tipa restrikcije ili jedinstvenog identifikatora (/D),
a mogu da sadrze i poruke o gresci ili uspehu.

4. STUDIJA SLUCAJA

Mogu¢nosti FAGL JSD-a demonstrirane su na primeru
sistema za inventuru pica. Sistem je opisan sa dve
enumeracije, pet entiteta (klasa), dve uloge, Cetiri servisa i
12 generalnih i1 59 regularnih konstanti. Enumeracije su
PakageStatus i TransactionType. Enumeracija
PakageStatus se koristi za opis statusa paketa i sadrzi pet
literala: Available, Reserved, Expired, InConsuming i
Consumed. Enumeracija TransactionType se koristi za opis
tipa transakcije i sadrzi literale /n 1 Out. Entiteti su
Category, DrinkType, Location, Pakage i
InventoryTransaction. Definisane uloge su Worker i
Admin. Za entitete specificirani su servisi
DrinkTypeService, LocationService, PackageService i
CategoryService.

Rad je zapoCet unosom opisa sistema na FAGL jeziku
distribuiranim u Sest fajlova. Komandom fag/ definiSu se
putanje ulaza i izlaza koda i pokrece program, koji generise
programski kod. U cilju pokretanja bekend aplikacije
manuelno su uklonjeni neupotrebljeni import iskazi i
formatiran je generisani programski kod pomocu
goimports alata, nakon cega su instalirane zavisnosti
navedene u go.mod fajlu. Nakon pokretanja komande go
run server.go generisana bekend aplikacija je dostupna na
portu 8080. Instaliranjem zavisnosti navedenih u
package.json fajlu pomocu npm install komande, ispunjen
je uslov za pokretanje frontend aplikacije. Aplikacija se
pokre¢e komandom npm run dev, nakon Cega je dostupna
na portu 5173. Pristup pocetnoj stranici frontend aplikacije
mogu¢ je pomocu veb pretrazivata, na adresi
http://localhost:5173/.

1305

Programski kod sistema za inventuru pi¢a na FAGL jeziku
sadrzi 269 linija. Generisana bekend aplikacija ima ukupno
2883 linija, a generisana frontend aplikacija 2469, Sto je
ukupno 5352 linija. Jednoj liniji koda na FAGL JSD-u
odgovara 19,9 linija generisanog programskog koda na
JON jezicima Go i JavaScript. Ova metrika prikazuje
veliku efikasnost i ubrzanje rada ostvareno upotrebom
FAGL JSD-a.

5. POREDENJE SA DRUGIM RESENJIMA

Analizom dostupne literature identifikovano je pet
relevantnih radova koji opisuju JSD slicne namene:
MaGiC [1], CRUDyLeaf [2], DOMMLite [3], Silvera [4] i
MicroBuilder [5]. Svi ovi jezici kao i FAGL imaju
tekstualnu konkretnu sintaksu. Za razvoj JSD-a
(metaprogramiranje) koriste se razliciti alati, biblioteke i
platforme. Na primer, jezik MaGiC razvijen je kori§¢enjem
alata Jetbrains MPS, dok su CRUDyLeaf, DOMMLite i
MicroBuilder kreirani pomocéu Xtext-a. Za razliku od njih,
jezici Silvera 1 FAGL JSD, implementirani su pomocu
biblioteke fextX, koja je inspirisana alatom Xzext.

Iako svi navedeni JSD imaju sli¢an domen, znacajno se
razlikuju po svojim moguénostima i nac¢inu modelovanja.
Na primer, MaGiC koristi tri razli¢ita JSD-a za specificne
celine: mikroservisnu backend aplikaciju, klijentsku
aplikaciju i jezik za definisanje komunikacije izmedu ove
dve aplikacije (eng. gateway). Silvera i MicroBuilder su
ograniCeni na opis mikroservisnog backenda i ne
podrzavaju modelovanje klijentskih aplikacija. S druge
strane, FAGL JSD, razvijen u ovom radu, dizajniran je za
modelovanje monolitne backend aplikacije. Po svojim
mogucénostima sliCan je jezicima CRUDyLeaf i
DOMMLite, ali istovremeno nudi unapredene
funkcionalnosti uz ve¢u jednostavnost korisc¢enja.

Generisanje programskog koda moze se realizovati na vise
naCina. Autori jezika MaGiC koristili su Plaintextgen,
M2T generator, za kreiranje koda svih komponenti
aplikacije. Za generisanje koda jezici CRUDyLeaf i
MicroBuilder oslanjaju se na biblioteku Xfend, dok
DOMMLite koristi specijalizovani jezik Xpand za
definisanje Sablona prema kojima se generise kod. Za jezik
Silvera, navedeno je da se generisanje koda zasniva na
M2T transformacijama i koriS¢enju Sablona za generisanje
Java koda, ali nije precizirano koja je biblioteka koris¢ena
za ovu svrhu. Za razliku od njih, FAGL JSD koristi M2T
transformaciju pomocu jinja2 biblioteke, ¢ime se postize
jednostavnost i fleksibilnost u radu sa Sablonima.

Generatori na osnovu modela generisu programski kod na
JON jezicima, koji se moze izvrSavati. Kako postoji vise
razli¢itih JON jezika, jedno reSenje moze da sadrzi
generatore za viSe JON jezika. lako je za osnovnu
funkcionalnost dovoljan samo jedan, prisustvo generatora
za vise jezika povecéava fleksibilnost i kvalitet reSenja.
Resenja kao $to su MaGiC i Silvera sadrze generatore za
razli¢ite JON jezike. Na primer, MaGiC nudi tri
generatora, po jedan za svaki JSD. Bekend aplikacije
(mikroservisi) 1 gateway generiSu se u Node.js koris¢enjem
Express frejmvorka ili u Python-u sa Flask frejmvorkom,
dok se frontend aplikacija generiSe koriS¢enjem React
frameworka. Sa druge strane, jezik Silvera ukljucuje
generator za Java programski kod koji koristi Spring Boot
frejmvork. Dodatno, zahvaljuju¢i modularnoj arhitekturi,

razvijeni su generatori 1 za druge JON jezike, poput
Python-a, C#1i Go.

Ostala reSenja analizirana u ovom radu implementiraju
generatore samo za jedan JON jezik. Na primer, generator
CRUDyLeaf-a generise bekend aplikaciju na Java
programskom jeziku koja koristi Spring Boot frejmvork.
DOMMLite generiSe bekend aplikaciju u Python
programskom jeziku, koja koristi Django frejmvork, dok
MicroBuilder generise Java programski kod koji se oslanja
na Spring, Spring Cloud i NetflixOSS frejmvorke. FAGL
razvijen u ovom radu, ima dva generatora: jedan za
monolitnu bekend aplikaciju na Go programskom jeziku i
drugi za frontend aplikaciju na JavaScript jeziku.

Osim MaGiC 1 FAGL resenja, ostala razmatrana reSenja
nemaju implementirane generatore za frontend aplikacije.
Ovaj nedostatak generatora za frontend aplikacije
predstavlja znacajan problem, jer iako se generisanje
bekend aplikacija moze automatizovati, nije moguce
automatski generisati frontend kod, koji omogucava
interakciju sa aplikacijom krajnjim korisnicima, posebno
onim koji nisu tehnicki osposobljeni. lako DOMMLite ne
sadrzi generator za frontend aplikaciju, zbog koris¢enja
Django frejmvorka, bekend aplikacija generiSe
administrativni interfejs koji se moze koristiti za
upravljanje aplikacijom tokom razvoja ili nakon isporuke
krajnjim korisnicima. Medutim, ovo reSenje nije potpuno,
jer izmene u dizajnu ili funkcionalnostima frontend
aplikacije postaju znatno slozenije i zahtevaju dodatno
manuelno podesavanje, Sto moze biti prepreka za brzu
kastomizaciju i razvoj.

JSD-ovi CRUDyLeaf, Silvera i MaGiC omogucavaju
automatsko generisanje dokumentacije. CRUDyLeaf u te
svrhe koristi OpenAPI 1 Swagger, a Silvera generiSe
dokumentaciju zasnovanu na OpenAdPI specifikaciji.
MaGiC ide korak dalje, jer osim generisanja
dokumentacije pomoéu SwaggerUl, omogucava i
generisanje infrastrukture za kontejnerizaciju i skripti koji
poboljsavaju korisni¢ko iskustvo prilikom upotrebe alata.
S druge strane, FAGL slicno DOMMLite i1 MicroBuilder,
ne podrzava generisanje dokumentacije i infrastrukture za
kontejnerizaciju.

FAGL kao i svi razmatrani JSD-ovi podrzava CRUD
operacije. MaGiC pored toga nudi funkcionalnosti za
definisanje specificnih operacija poput GetEntitiesBy i
GetEntity. DOMMLite 1 MicroBuilder omogucéavaju
pretragu entiteta pomocu operacije Search, $to je narocCito
korisno u scenarijima kada se obim podataka u sistemu
znacajno poveca. DOMMLite i Silvera omogucavaju
definisanje metoda koje nemaju unapred definisano
ponasanje, Sto uvecava mogucnost operacija. U tom
slu¢aju nakon generisanja programskog koda, korisnik
manuelno implementira metode. U MicroBuilder-u,
operacija create je preimenovana u insert, a operacija read
zamenjena je funkcionalno$éu search. Svi analizirani jezici
omoguéavaju azuriranje vrednosti svih atributa entiteta, ali
ne pruzaju mogucnost definisanja atributa Cije vrednosti se
mogu izmenjeni. Ovaj nedostatak uspesno je reSen u FAGL
JSD-u, wuvodenjem restrikcija nad entitetima, S§to
omogucava preciznu kontrolu promena nad podacima.

Nijedan od prethodno analiziranih jezika ne nudi
mogucénost definisanja korisnika sistema i1 opisivanja

1306

dozvola (permisija) koje reguliSu pristup odredenim
metodama. Za razliku od njih, FAGL JSD omogucava obe
funkcionalnosti, ¢ime znacajno pojednostavljuje rad
korisnicima, eliminiSe potrebe za naknadnim izmenama
generisanog koda radi implementacije autorizacije i
omogucava preciznije i efikasnije opisivanje sistema.

Jos jedna slabost vecine analiziranih JSD-ova je odsustvo
podrske za validacione funkcije, koje su od kljucnog
znacaja za proveru ispravnosti podataka unetih u sistem.
Ipak treba istaci da su validacione funkcije implementirane
u FAGL-u kao i u DOMMLite-u, ¢ime oba jezika
omogucavaju kontrolu i pouzdanost prilikom obrade
podataka.

Sintakse analiziranih reSenja znacajno se razlikuju po
sloZzenosti. CRUDyLeaf se istiCe izuzetno jednostavnom
sintaksom koja omogucava brzo usvajanje i skracuje vreme
razvoja softvera. Medutim, ova jednostavnost dolazi sa
ograniCenjima — CRUDylLeaf ne podrzava opis
mikroservisne arhitekture, Sto ga ¢ini neprikladnim za
kompleksnije projekte. MicroBuilder, takode nudi
jednostavnu sintaksu, koja za razliku od CRUDyLeaf-a
omogucava opisivanje mikroservisne arhitekture. Ipak,
njegova sintaksa za definisanje tipova atributa (npr.
»voSingle String%*®) nije intuitivna, a entiteti se mogu
definisati samo unutar mikroservisa, $to otezava rad sa
ve¢im modelima i moze rezultirati nepreglednim kodom.
Silvera JSD ima slozeniju sintaksu koja je pogodna za
iskusne programere upoznate sa mikroservisnom
arhitekturom i njenim moguénostima. Suprotno ovim
jezicima, MaGiC ima kompleksniju sintaksu, koja vise
podsec¢a na govorni jezik nego na standardne programske
jezike. Pored toga, korisnici MaGiC-a moraju da savladaju
cak tri razli¢ita JSD-a kako bi opisali ceo sistem, §to
predstavlja znacajnu prepreku za njegovu primenu.
Sintaksa FAGL jezika podse¢a na JON i po jednostavnosti
i preglednosti sli¢na je sintaksi DOMMLite-a. Definisanje
entiteta i CRUD operacija u FAGL jeziku sintaksno je
najsli¢nije onome opisanom u Silvera-i.

Analizirana reSenja pruzaju razli¢ite nivoe udobnosti za
programere. Rad sa MaGiC-om je zahtevan jer ukljucuje
instalaciju MPS softvera, nakon Cega sledi ¢ak 17 koraka
kako bi se kreirala najjednostavnija aplikacija. Autori
CRUDyLeaf, DOMMLite i MicroBuilder-a preporucuju
rad u okviru Eclipse alata, koji je poznat po brojnim
dokumentovanim nedostacima i Cesto izaziva frustracije
kod korisnika [7]. S druge strane, reSenja Silvera i FAGL
su znacajno jednostavnija za upotrebu. Ova reSenja
omogucavaju programerima da koriste bilo koji tekstualni
editor po sopstvenom izboru, ¢ime se eliminiSe potreba za
specijalizovanim softverom. Nakon instalacije u Python
virtuelno okruzenje, FAGL se sli¢no Silvera-i pokrece
intuitivno 1 brzo.

6. ZAKLJUCAK

Rad pruza uvid u tehnicke moguénosti FAGL jezika
specificnog za domen, koji ukljuuje dva generatora
programskog koda. Detaljno su analizirani konkretna
sintaksa jezika, kao i dizajn, arhitektura i implementacija
ovog reSenja. Posebna paznja posvecena je definisanju
atributa Cije vrednosti korisnik moze da aZzurira,
specifikaciji ~ korisnika sistema i implementaciji
autorizacije za pristup CRUD operacijama nad entitetima.

Rezultati rada prikazani su studijom slucaja, koja ilustruje
proces opisivanja sistema 1 njegovog generisanja na
konkretnom primeru. Takode, izvrSeno je poredenje
razvijenog reSenja sa pet postoje¢ih JSD-ova, Sto je
omoguéilo kriticku evaluaciju = moguénosti i
funkcionalnosti razvijenog FAGL jezika. Na osnovu ove
analize, moze se zakljuciti da su postavljeni ciljevi rada
ostvareni razvojem tekstualnog JSD-a koji je jednostavan
za koriS¢enje, lak za ucenje i sadrzi sve neophodne
funkcionalnosti. Fleksibilnost i lakoca kori§¢enja cine
FAGL pogodnim izborom, posebno za programere koji
traze efikasne alate bez suvi$nih komplikacija.

Ovaj rad postavio je temelje za dalje unapredenje ovog
reSenja, razvojem generatora programskog koda za vise
JON jezika, wuvodenjem koncepata mikroservisne
arhitekture i dodavanjem novih funkcionalnosti kao §to je
pretraga. Takode, implementacija alata za generisanje
dokumentacije i infrastrukture za kontejnerizaciju otvorila
bi moguénosti za dalja poboljSanja, Cine¢i reSenje jo$
efikasnijim i fleksibilnijim.

7. LITERATURA

[1] A. Bucchiarone, C. Ciumedean, K. Soysal, N.
Dragoni, and V. Pech, "MaGiC: a DSL framework for
implementing language-agnostic microservice-based
web applications," Journal of Object Technology, vol.
22, no. 1,2023.

[2] O. S. Gémez, R. H. Rosero, and K. Cortés-Verdin,
"CRUDyLeaf: a DSL for generating Spring Boot
REST APIs from entity CRUD operations,"
Cybernetics and Information Technologies, vol. 20,
no. 3, pp. 3—14, 2020.

[3] L. Dejanovi¢, G. Milosavljevié, B. Perisi¢, and M.
Tumbas, "A domain-specific language for defining
static structure of database applications," Computer
Science and Information Systems, vol. 7, no. 3, pp.
409-440, 2010.

[4] A. Suljkanovi¢, B. Milosavljevi¢, V. Indi¢, and 1.
Dejanovi¢, "Developing microservice-based
applications using the silvera domain-specific
language," Applied Sciences, vol. 12, no. 13, p. 6679,
2022.

[5] B. Terzi¢, V. Dimitrieski, S. Kordi¢, G. Milosavljevié,
and I. Lukovi¢, "MicroBuilder: a model-driven tool
for the specification of REST microservice
architectures," in Proc. Int. Conf. Inf. Soc. Technol.,
2017, pp. 179-184.

[6] 1. Dejanovi¢, R. Vaderna, G. Milosavljevi¢, and Z.
Vukovi¢, "TextX: A Python tool for Domain-Specific
Languages implementation," Knowledge-Based
Systems, vol. 115, pp. 1-4,2017.

[7] https://medium.com/@ashaytikekar/why-eclipse-
sucks-dd70e572¢675 (pristupljeno u novembru 2024.)

Kratka biografija:
Lazar Pavlovi¢ roden je u Pozarevcu
ﬁ 2001. god. Master rad na Fakultetu
= = tehnickih nauka iz oblasti Elektrotehnike i
= racunarstva — Softversko inzenjerstvo i
informacione tehnologije odbranio je
2024.god.
kontakt: Ip.pavlovic.001 @gmail.com

1307

