

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 004.42:004.738.12

DOI: https://doi.org/10.24867/33BE09Pavlovic

FAGL – JEZIK SPECIFIČAN ZA DOMEN IMPLEMENTACIJE VEB APLIKACIJA

FAGL – A DOMAIN-SPECIFIC LANGUAGE FOR WEB APPLICATION

IMPLEMENTATION

Lazar Pavlović, Fakultet tehničkih nauka, Novi Sad

Oblast – ELEKTROTEHNIČKO I RAČUNARSKO

INŽENJERSTVO

Kratak sadržaj – U ovom radu opisan je razvoj FAGL

jezika specifičnog za domen za opis i generisanje veb

aplikacija. Rad pruža uvid u konkretnu sintaksu jezika,

dizajn, arhitekturu i implementaciju ovog rešenja.

Poređenje sa pet postojećih rešenja, omogućilo je kritičku

evaluaciju mogućnosti i funkcionalnosti razvijenog FAGL

jezika koja je pokazala da su postavljeni ciljevi rada

ostvareni razvojem tekstualnog JSD-a koji je jednostavan

za korišćenje, lak za učenje i sadrži sve neophodne

funkcionalnosti.

Ključne reči: Jezik specifičan za domen, textX, Python,

generator koda, veb aplikacija

Abstract – This work describes the development of the

FAGL domain-specific language for the description and

generation of web applications. The paper provides insight

into the specific syntax of the language, its design,

architecture, and implementation. A comparison with five

existing solutions enabled a critical evaluation of the

features and functionalities of the developed FAGL

language, demonstrating that the goals of the study were

achieved through the development of a textual DSL that is

user-friendly, easy to learn, and includes all necessary

functionalities.

Keywords: Domain specific language, textX, Python, code

generator, web application

1. UVOD

Kao odgovor na sve složenije zahteve tržišta i potrebe za

što većom produktivnošću, raste potražnja za

automatizovanim razvojem softverskih rešenja koja se

mogu brzo i efikasno implementirati. Takođe, napredak u

tehnologijama kao što su veštačka inteligencija, Internet of

Things i Cloud computing stvara nove prilike i zahteve u

razvoju inovativnih softverskih rešenja.

Računar izvršava zadatke na osnovu instrukcija zapisanih

na programskom jeziku. JON imaju primenu u izradi

softvera u različitim domenima primene. Domen se može

posmatrati s dva aspekta: horizontalnog, koji se odnosi na

tehničke aspekte sistema, i vertikalnog, koji obuhvata

poslovne aspekte i specifične potrebe organizacije.

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je bio

dr Igor Dejanović, red. prof.

Horizontalni ili tehnički domen može biti: bekend

aplikacija, frontend aplikacija, bezbednost, baze podataka,

blokčejn, obrada podataka, veštačka inteligencija, mobilne

aplikacije. Vertikalni ili poslovni domen je oblast u kojoj

se softver primenjuje: finansije, osiguranje, zdravstvo,

administracija i mnogi drugi.

Potrebe za daljim povećavanjem efikasnosti i

omogućavanjem programiranja ne-tehničkom osoblju

kvalifikovanom za određene oblasti, dovele su do nastanka

malih specijalizovanih programskih jezika – Jezika

Specifičnih za Domen (JSD). Iako JON jezici nude veliku

fleksibilnost programeru prilikom razvoja softvera,

upotreba JSD-a za razvoj više sličnih softvera za isti domen

(bilo horizontalni ili vertikalni) donosi brojne benefite:

veću produktivnost programera, kvalitetnija rešenja

opisana u manje linija programskog koda, manji broj

bagova, bolji kvalitet programskog koda, bolje modeliranje

složenih sistema [1].

Prema vrsti konkretne sintakse JSD se dele na grafičke,

tekstualne i tabelarne [2]. U literaturi su opisani JSD-ovi

različite kompleksnosti, fleksibilnosti i mogućnosti

primene. Jednostavnija rešenja najčešće imaju ograničene

funkcionalnosti za opis sistema, generisanje programskog

koda i upravljanje korisnicima [2,3]. JSD koji nude veće

mogućnosti za opisivanje sistema u kontekstu

mikroservisnih aplikacija i poseduju generatore za više

platformi često imaju složenu sintaksu, koja se znatno

razlikuje od JON. Zbog toga njihova primena zahteva

značajan angažman programera i dodatno vreme za

prilagođavanje [1,4,5]. Bez obzira na nivo složenosti,

većini JSD-ova nedostaju mogućnosti za validaciju

vrednosti atributa [1,2,4,5], kao i podrška za automatsko

generisanje frontend aplikacija [2,4,5].

Polazeći od prednosti i nedostataka tekstualnih JSD-ova

opisanih u literaturi, cilj ovog rada bio je razvoj tekstualnog

JSD-a koji je intuitivan za korišćenje, jednostavan za

učenje i koji integriše sve neophodne funkcionalnosti za

sveobuhvatno rešavanje problema.

2. ARHITEKTURA I DIZAJN REŠENJA

FAGL JSD opisan u ovom radu implementiran je

korišćenjem Python programskog jezika i biblioteka:

io.StringIO, os, textX, jinja2, i click. Projekat je razvijen na

Python interpreteru, verzija 3.10.0, a virtuelno okruženje

kreirano je pomoću alata virtualenv.

Arhitektura softvera zasniva se na modularnom pristupu, a

glavni moduli su: model, parser, checker,

1304

https://doi.org/10.24867/33BE09Pavlovic

generator_config, generator_backend i

generator_frontend.

Faze u radu programa su:

1. Parsiranje programa napisanog na FAGL jeziku

2. Provere nad učitanim modelom

3. Generisanje programskog koda

Konkretna sintaksa FAGL JSD-a definisana je pomoću

metamodela koji uključuje semantičke informacije o

njemu. Za definiciju metamodela korišćena je biblioteka

textX [6]. Parsiranje programa napisanog na FAGL jeziku

obavlja se korišćenjem textX biblioteke i gramatike,

odnosno metamodela. Rezultat parsiranja programa je

učitan program konvertovan na klase definisane u modulu

Model. Provere nad učitanim modelom obezbeđuju

adekvatnost ulaznog programa za generisanje validnog

programskog koda na JON. U poslednjoj fazi, vrši se

generisanje programskog koda, koje obuhvata generisanje

programskog koda bekend i frontend aplikacije, kao krajnji

rezultat rada programa.

Bekend aplikacija implementirana je na Go programskom

jeziku, pomoću generator_backend generatora. Oslanja se

na Gin framework za kreiranje aplikativnog servera, dok za

rad sa sqllite bazom podataka koristi GORM Objektno

Relacioni Maper. Generisana frontend aplikacija

implementirana je pomoću Vue3.js framework-a.

Generisanje aplikacija vrši se na osnovu ulaznih podataka

i šablona definisanih upotrebom biblioteke jinja2.

Komunikacija između frontend i bekend aplikacije

realizovana je upotrebom REST arhitekturnog stila.

3. KONKRETNA SINTAKSA FAGL JEZIKA

FAGL omogućava definisanje programa u jednom fajlu, ali

je zbog kvalitetnijeg programskog koda i veće čitljivosti

moguće napisati programski kod u više fajlova, koje je

potrebno importovati. U svakom fajlu definiše se naziv

paketa, importi i elementi jezika. Glavni elementi

konkretne sintakse FAGL jezika su: konstanta (Constant),

entitet (Entity), enumeracija (Enum), uloga (Role),

restrikcija (Restriction) i servis (Service), koji su u

metamodelu definisani posebnim pravilima.

Constant je apstraktno pravilo za izbor RegularConst ili

GeneralConst elementa. RegularConst se koristi za

definisanje konstanti čije se vrednosti prikazuju na

korisničkom interfejsu, dok se GeneralConst primenjuje za

prikaz vrednosti konstanti sa predefinisanim imenima.

Enum element predstavlja tip podatka enumeracije sa

predefinisanim vrednostima (literali), što omogućava

definisanje i upravljanje kolekcijom imenovanih vrednosti,

poboljšava čitljivost i konzistentnost programskog koda.

Entity element opisuje klasu modela i sadrži minimalno

jedan atribut i reprezentaciju instance entiteta. Kako bi se

postigla jednostavnost sintakse, uvedeno je pravilo prema

kojem prvi atribut svakog Entity elementa mora imati ime

id i biti tipa uuid ili long. Ovo ograničenje nije

implementirano na nivou sintakse JSD-a, već je provera

ovog pravila obavljena u checker modulu, koji osigurava

njegovo sprovođenje. Atributi entiteta, odnosno uloga se

prepoznaju Attribute pravilom, definisanim u gramatici

jezika. Atributi su definisani tipom, kardinalitetom,

imenom i opciono validatorskim funkcijama. Za

validiranje vrednosti atributa u toku izvršavanja (engl. run-

time) generisanog programa u trenutnoj implementaciji

FAGL JSD-a postoji 26 različitih validatorskih funkcija,

koje su u gramatici definisane pravilom ValidationBlock.

Tip atributa definisan je apstraktnim pravilom Type, koje

predstavlja izbor između SimpleType i

ComplexTypeReference pravila. SimpleType predstavlja

izbor između prostih tipova definisanih u jeziku: uuid,

string, integer, date, float, bool i long.

ComplexTypeReference je apstraktno pravilo koje sadrži

referencu na kompleksni tip predstavljen ComplexType

pravilom koje predstavlja izbor između prethodno

definisanih entiteta, enumeracija ili uloga.

Role element koristi se za opis uloge korisnika sistema.

Sintaksa ovog elementa slična je sintaksi Entity elementa.

Predefinisana su imena prva tri atributa: id (uuid ili long

tipa), username (tipa string) i password (tipa string).

Nakon atributa navodi se reprezentacija instance uloge.

Restriction element predstavlja ograničenje prethodno

definisanog entiteta. Ograničenje se ogleda u navođenju

atributa čije vrednosti će korisnik moći da menja (ažurira).

Ovaj element jezika koristi se prilikom definisanja

servisnih metoda koje ažuriraju entitet (engl. update).

Service element predstavlja skup CRUD servisnih metoda

za jedan prethodno definisan entitet. Servisna metoda

definiše jednu od CRUD operacija, uloge autorizovane za

izvršavanje metode, povratni tip metode i njegov

kardinalitet, jedinstveno ime servisne metode, parametre

metode tipa restrikcije ili jedinstvenog identifikatora (ID),

a mogu da sadrže i poruke o grešci ili uspehu.

4. STUDIJA SLUČAJA

Mogućnosti FAGL JSD-a demonstrirane su na primeru

sistema za inventuru pića. Sistem je opisan sa dve

enumeracije, pet entiteta (klasa), dve uloge, četiri servisa i

12 generalnih i 59 regularnih konstanti. Enumeracije su

PakageStatus i TransactionType. Enumeracija

PakageStatus se koristi za opis statusa paketa i sadrži pet

literala: Available, Reserved, Expired, InConsuming i

Consumed. Enumeracija TransactionType se koristi za opis

tipa transakcije i sadrži literale In i Out. Entiteti su

Category, DrinkType, Location, Pakage i

InventoryTransaction. Definisane uloge su Worker i

Admin. Za entitete specificirani su servisi

DrinkTypeService, LocationService, PackageService i

CategoryService.

Rad je započet unosom opisa sistema na FAGL jeziku

distribuiranim u šest fajlova. Komandom fagl definišu se

putanje ulaza i izlaza koda i pokreće program, koji generiše

programski kod. U cilju pokretanja bekend aplikacije

manuelno su uklonjeni neupotrebljeni import iskazi i

formatiran je generisani programski kod pomoću

goimports alata, nakon čega su instalirane zavisnosti

navedene u go.mod fajlu. Nakon pokretanja komande go

run server.go generisana bekend aplikacija je dostupna na

portu 8080. Instaliranjem zavisnosti navedenih u

package.json fajlu pomoću npm install komande, ispunjen

je uslov za pokretanje frontend aplikacije. Aplikacija se

pokreće komandom npm run dev, nakon čega je dostupna

na portu 5173. Pristup početnoj stranici frontend aplikacije

moguć je pomoću veb pretraživača, na adresi

http://localhost:5173/.

1305

Programski kod sistema za inventuru pića na FAGL jeziku

sadrži 269 linija. Generisana bekend aplikacija ima ukupno

2883 linija, a generisana frontend aplikacija 2469, što je

ukupno 5352 linija. Jednoj liniji koda na FAGL JSD-u

odgovara 19,9 linija generisanog programskog koda na

JON jezicima Go i JavaScript. Ova metrika prikazuje

veliku efikasnost i ubrzanje rada ostvareno upotrebom

FAGL JSD-a.

5. POREĐENJE SA DRUGIM REŠENJIMA

Analizom dostupne literature identifikovano je pet

relevantnih radova koji opisuju JSD slične namene:

MaGiC [1], CRUDyLeaf [2], DOMMLite [3], Silvera [4] i

MicroBuilder [5]. Svi ovi jezici kao i FAGL imaju

tekstualnu konkretnu sintaksu. Za razvoj JSD-a

(metaprogramiranje) koriste se različiti alati, biblioteke i

platforme. Na primer, jezik MaGiC razvijen je korišćenjem

alata Jetbrains MPS, dok su CRUDyLeaf, DOMMLite i

MicroBuilder kreirani pomoću Xtext-a. Za razliku od njih,

jezici Silvera i FAGL JSD, implementirani su pomoću

biblioteke textX, koja je inspirisana alatom Xtext.

Iako svi navedeni JSD imaju sličan domen, značajno se

razlikuju po svojim mogućnostima i načinu modelovanja.

Na primer, MaGiC koristi tri različita JSD-a za specifične

celine: mikroservisnu backend aplikaciju, klijentsku

aplikaciju i jezik za definisanje komunikacije između ove

dve aplikacije (eng. gateway). Silvera i MicroBuilder su

ograničeni na opis mikroservisnog backenda i ne

podržavaju modelovanje klijentskih aplikacija. S druge

strane, FAGL JSD, razvijen u ovom radu, dizajniran je za

modelovanje monolitne backend aplikacije. Po svojim

mogućnostima sličan je jezicima CRUDyLeaf i

DOMMLite, ali istovremeno nudi unapređene

funkcionalnosti uz veću jednostavnost korišćenja.

Generisanje programskog koda može se realizovati na više

načina. Autori jezika MaGiC koristili su Plaintextgen,

M2T generator, za kreiranje koda svih komponenti

aplikacije. Za generisanje koda jezici CRUDyLeaf i

MicroBuilder oslanjaju se na biblioteku Xtend, dok

DOMMLite koristi specijalizovani jezik Xpand za

definisanje šablona prema kojima se generiše kod. Za jezik

Silvera, navedeno je da se generisanje koda zasniva na

M2T transformacijama i korišćenju šablona za generisanje

Java koda, ali nije precizirano koja je biblioteka korišćena

za ovu svrhu. Za razliku od njih, FAGL JSD koristi M2T

transformaciju pomoću jinja2 biblioteke, čime se postiže

jednostavnost i fleksibilnost u radu sa šablonima.

Generatori na osnovu modela generišu programski kod na

JON jezicima, koji se može izvršavati. Kako postoji više

različitih JON jezika, jedno rešenje može da sadrži

generatore za više JON jezika. Iako je za osnovnu

funkcionalnost dovoljan samo jedan, prisustvo generatora

za više jezika povećava fleksibilnost i kvalitet rešenja.

Rešenja kao što su MaGiC i Silvera sadrže generatore za

različite JON jezike. Na primer, MaGiC nudi tri

generatora, po jedan za svaki JSD. Bekend aplikacije

(mikroservisi) i gateway generišu se u Node.js korišćenjem

Express frejmvorka ili u Python-u sa Flask frejmvorkom,

dok se frontend aplikacija generiše korišćenjem React

frameworka. Sa druge strane, jezik Silvera uključuje

generator za Java programski kod koji koristi Spring Boot

frejmvork. Dodatno, zahvaljujući modularnoj arhitekturi,

razvijeni su generatori i za druge JON jezike, poput

Python-a, C# i Go.

Ostala rešenja analizirana u ovom radu implementiraju

generatore samo za jedan JON jezik. Na primer, generator

CRUDyLeaf-a generiše bekend aplikaciju na Java

programskom jeziku koja koristi Spring Boot frejmvork.

DOMMLite generiše bekend aplikaciju u Python

programskom jeziku, koja koristi Django frejmvork, dok

MicroBuilder generiše Java programski kod koji se oslanja

na Spring, Spring Cloud i NetflixOSS frejmvorke. FAGL

razvijen u ovom radu, ima dva generatora: jedan za

monolitnu bekend aplikaciju na Go programskom jeziku i

drugi za frontend aplikaciju na JavaScript jeziku.

Osim MaGiC i FAGL rešenja, ostala razmatrana rešenja

nemaju implementirane generatore za frontend aplikacije.

Ovaj nedostatak generatora za frontend aplikacije

predstavlja značajan problem, jer iako se generisanje

bekend aplikacija može automatizovati, nije moguće

automatski generisati frontend kod, koji omogućava

interakciju sa aplikacijom krajnjim korisnicima, posebno

onim koji nisu tehnički osposobljeni. Iako DOMMLite ne

sadrži generator za frontend aplikaciju, zbog korišćenja

Django frejmvorka, bekend aplikacija generiše

administrativni interfejs koji se može koristiti za

upravljanje aplikacijom tokom razvoja ili nakon isporuke

krajnjim korisnicima. Međutim, ovo rešenje nije potpuno,

jer izmene u dizajnu ili funkcionalnostima frontend

aplikacije postaju znatno složenije i zahtevaju dodatno

manuelno podešavanje, što može biti prepreka za brzu

kastomizaciju i razvoj.

JSD-ovi CRUDyLeaf, Silvera i MaGiC omogućavaju

automatsko generisanje dokumentacije. CRUDyLeaf u te

svrhe koristi OpenAPI i Swagger, a Silvera generiše

dokumentaciju zasnovanu na OpenAPI specifikaciji.

MaGiC ide korak dalje, jer osim generisanja

dokumentacije pomoću SwaggerUI, omogućava i

generisanje infrastrukture za kontejnerizaciju i skripti koji

poboljšavaju korisničko iskustvo prilikom upotrebe alata.

S druge strane, FAGL slično DOMMLite i MicroBuilder,

ne podržava generisanje dokumentacije i infrastrukture za

kontejnerizaciju.

FAGL kao i svi razmatrani JSD-ovi podržava CRUD

operacije. MaGiC pored toga nudi funkcionalnosti za

definisanje specifičnih operacija poput GetEntitiesBy i

GetEntity. DOMMLite i MicroBuilder omogućavaju

pretragu entiteta pomoću operacije Search, što je naročito

korisno u scenarijima kada se obim podataka u sistemu

značajno poveća. DOMMLite i Silvera omogućavaju

definisanje metoda koje nemaju unapred definisano

ponašanje, što uvećava mogućnost operacija. U tom

slučaju nakon generisanja programskog koda, korisnik

manuelno implementira metode. U MicroBuilder-u,

operacija create je preimenovana u insert, a operacija read

zamenjena je funkcionalnošću search. Svi analizirani jezici

omogućavaju ažuriranje vrednosti svih atributa entiteta, ali

ne pružaju mogućnost definisanja atributa čije vrednosti se

mogu izmenjeni. Ovaj nedostatak uspešno je rešen u FAGL

JSD-u, uvođenjem restrikcija nad entitetima, što

omogućava preciznu kontrolu promena nad podacima.

Nijedan od prethodno analiziranih jezika ne nudi

mogućnost definisanja korisnika sistema i opisivanja

1306

dozvola (permisija) koje regulišu pristup određenim

metodama. Za razliku od njih, FAGL JSD omogućava obe

funkcionalnosti, čime značajno pojednostavljuje rad

korisnicima, eliminiše potrebe za naknadnim izmenama

generisanog koda radi implementacije autorizacije i

omogućava preciznije i efikasnije opisivanje sistema.

Još jedna slabost većine analiziranih JSD-ova je odsustvo

podrške za validacione funkcije, koje su od ključnog

značaja za proveru ispravnosti podataka unetih u sistem.

Ipak treba istaći da su validacione funkcije implementirane

u FAGL-u kao i u DOMMLite-u, čime oba jezika

omogućavaju kontrolu i pouzdanost prilikom obrade

podataka.

Sintakse analiziranih rešenja značajno se razlikuju po

složenosti. CRUDyLeaf se ističe izuzetno jednostavnom

sintaksom koja omogućava brzo usvajanje i skraćuje vreme

razvoja softvera. Međutim, ova jednostavnost dolazi sa

ograničenjima — CRUDyLeaf ne podržava opis

mikroservisne arhitekture, što ga čini neprikladnim za

kompleksnije projekte. MicroBuilder, takođe nudi

jednostavnu sintaksu, koja za razliku od CRUDyLeaf-a

omogućava opisivanje mikroservisne arhitekture. Ipak,

njegova sintaksa za definisanje tipova atributa (npr.

„%Single String%“) nije intuitivna, a entiteti se mogu

definisati samo unutar mikroservisa, što otežava rad sa

većim modelima i može rezultirati nepreglednim kodom.

Silvera JSD ima složeniju sintaksu koja je pogodna za

iskusne programere upoznate sa mikroservisnom

arhitekturom i njenim mogućnostima. Suprotno ovim

jezicima, MaGiC ima kompleksniju sintaksu, koja više

podseća na govorni jezik nego na standardne programske

jezike. Pored toga, korisnici MaGiC-a moraju da savladaju

čak tri različita JSD-a kako bi opisali ceo sistem, što

predstavlja značajnu prepreku za njegovu primenu.

Sintaksa FAGL jezika podseća na JON i po jednostavnosti

i preglednosti slična je sintaksi DOMMLite-a. Definisanje

entiteta i CRUD operacija u FAGL jeziku sintaksno je

najsličnije onome opisanom u Silvera-i.

Analizirana rešenja pružaju različite nivoe udobnosti za

programere. Rad sa MaGiC-om je zahtevan jer uključuje

instalaciju MPS softvera, nakon čega sledi čak 17 koraka

kako bi se kreirala najjednostavnija aplikacija. Autori

CRUDyLeaf, DOMMLite i MicroBuilder-a preporučuju

rad u okviru Eclipse alata, koji je poznat po brojnim

dokumentovanim nedostacima i često izaziva frustracije

kod korisnika [7]. S druge strane, rešenja Silvera i FAGL

su značajno jednostavnija za upotrebu. Ova rešenja

omogućavaju programerima da koriste bilo koji tekstualni

editor po sopstvenom izboru, čime se eliminiše potreba za

specijalizovanim softverom. Nakon instalacije u Python

virtuelno okruženje, FAGL se slično Silvera-i pokreće

intuitivno i brzo.

6. ZAKLJUČAK

Rad pruža uvid u tehničke mogućnosti FAGL jezika

specifičnog za domen, koji uključuje dva generatora

programskog koda. Detaljno su analizirani konkretna

sintaksa jezika, kao i dizajn, arhitektura i implementacija

ovog rešenja. Posebna pažnja posvećena je definisanju

atributa čije vrednosti korisnik može da ažurira,

specifikaciji korisnika sistema i implementaciji

autorizacije za pristup CRUD operacijama nad entitetima.

Rezultati rada prikazani su studijom slučaja, koja ilustruje

proces opisivanja sistema i njegovog generisanja na

konkretnom primeru. Takođe, izvršeno je poređenje

razvijenog rešenja sa pet postojećih JSD-ova, što je

omogućilo kritičku evaluaciju mogućnosti i

funkcionalnosti razvijenog FAGL jezika. Na osnovu ove

analize, može se zaključiti da su postavljeni ciljevi rada

ostvareni razvojem tekstualnog JSD-a koji je jednostavan

za korišćenje, lak za učenje i sadrži sve neophodne

funkcionalnosti. Fleksibilnost i lakoća korišćenja čine

FAGL pogodnim izborom, posebno za programere koji

traže efikasne alate bez suvišnih komplikacija.

Ovaj rad postavio je temelje za dalje unapređenje ovog

rešenja, razvojem generatora programskog koda za više

JON jezika, uvođenjem koncepata mikroservisne

arhitekture i dodavanjem novih funkcionalnosti kao što je

pretraga. Takođe, implementacija alata za generisanje

dokumentacije i infrastrukture za kontejnerizaciju otvorila

bi mogućnosti za dalja poboljšanja, čineći rešenje još

efikasnijim i fleksibilnijim.

7. LITERATURA

[1] A. Bucchiarone, C. Ciumedean, K. Soysal, N.

Dragoni, and V. Pech, "MaGiC: a DSL framework for

implementing language-agnostic microservice-based

web applications," Journal of Object Technology, vol.

22, no. 1, 2023.

[2] O. S. Gómez, R. H. Rosero, and K. Cortés-Verdín,

"CRUDyLeaf: a DSL for generating Spring Boot

REST APIs from entity CRUD operations,"

Cybernetics and Information Technologies, vol. 20,

no. 3, pp. 3–14, 2020.

[3] I. Dejanović, G. Milosavljević, B. Perišić, and M.

Tumbas, "A domain-specific language for defining

static structure of database applications," Computer

Science and Information Systems, vol. 7, no. 3, pp.

409–440, 2010.

[4] A. Suljkanović, B. Milosavljević, V. Inđić, and I.

Dejanović, "Developing microservice-based

applications using the silvera domain-specific

language," Applied Sciences, vol. 12, no. 13, p. 6679,

2022.

[5] B. Terzić, V. Dimitrieski, S. Kordić, G. Milosavljević,

and I. Luković, "MicroBuilder: a model-driven tool

for the specification of REST microservice

architectures," in Proc. Int. Conf. Inf. Soc. Technol.,

2017, pp. 179–184.

[6] I. Dejanović, R. Vaderna, G. Milosavljević, and Ž.

Vuković, "TextX: A Python tool for Domain-Specific

Languages implementation," Knowledge-Based

Systems, vol. 115, pp. 1-4, 2017.

[7] https://medium.com/@ashaytikekar/why-eclipse-

sucks-dd70e572c675 (pristupljeno u novembru 2024.)

Kratka biografija:

Lazar Pavlović rođen je u Požarevcu

2001. god. Master rad na Fakultetu

tehničkih nauka iz oblasti Elektrotehnike i

računarstva – Softversko inženjerstvo i

informacione tehnologije odbranio je

2024.god.

kontakt: lp.pavlovic.001@gmail.com

1307

