

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.9

DOI: https://doi.org/10.24867/33BE12Vasic

RAZVOJ SAVREMENIH VEB APLIKACIJA U .NET EKOSISTEMU PRIMENOM

WEBASSEMBLY I BLAZOR TEHNOLOGIJA

DEVELOPMENT OF MODERN WEB APPLICATIONS IN THE .NET ECOSYSTEM

THROUGH THE USE OF WEBASSEMBLY AND BLAZOR TECHNOLOGIES

Nataša Vasić, Fakultet tehničkih nauka, Novi Sad

Oblast – ELEKTROTEHNIČKO I RAČUNARSKO

INŽENJERSTVO

Kratak sadržaj – U ovom radu prikazano je istraživanje

WebAssembly i Blazor tehnologija, sa ciljem da se

predstave njihovi osnovni koncepti, prednosti i praktične

primene. WebAssembly bajtkod može se izvršavati u

različitim okruženjima, ali u ovom radu fokus je na .NET

okviru zbog njegovih širokih mogućnosti i popularnosti

među programerima. Dat je pregled mogućnosti koje ove

tehnologije pružaju uz doprinos boljem razumevanju

njihove primene u savremenoj industriji.

Ključne reči: WebAssembly, Blazor, .NET, veb

tehnologije, veb aplikacija

Abstract – This paper presents a study of WebAssembly

and Blazor technologies, aiming to introduce their

fundamental concepts, advantages and practical

applications. WebAssembly bytecode can be executed in

various environments, however this paper focuses on its

use within the .NET ecosystem due to its extensive

capabilities and popularity among developers. The paper

provides an overview of the opportunities these

technologies offer and contributes to a better

understanding of their application in modern industry.

Keywords: WebAssembly, Blazor, .NET, web

technologies, web application

1. UVOD

Razvoj veb tehnologija omogućio je pojavu kompleksnih

aplikacija kao što su igrice, različiti audio i video softveri i

slične aplikacije, te zahtevi za efikasnošću i sigurnošću

rastu. JavaScript, HTML i CSS i dalje dominiraju u razvoju

veb aplikacija, ali zbog svojih ograničenja ne mogu u

potpunosti da ispune te zahteve. WebAssembly, otvoreni

standard koji omogućava izvršavanje binarnog koda

direktno u pregledaču, uspeo je da ispuni zahteve [1, 2]. U

okviru .NET Blazor tehnologije WebAssembly se koristi

kao ključna tehnologija za pokretanje aplikacija u veb

pregledačima. Blazor je UI framework koji omogućava

razvoj interaktivnih veb aplikacija koristeći C# i .NET

umesto korišćenja JavaScript jezika.

__

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je bila

dr Dunja Vrbaški, docent

Blazor omogućava programerima da koriste poznate alate

i biblioteke iz .NET okruženja. Ovaj pristup eliminiše

potrebu za dva programera, jednog za JavaScript, a drugog

za backend u klasičnom veb projektu, povećava

produktivnost i omogućava kreiranje aplikacija koje mogu

da se pokrenu na svim modernim pregledačima [3].

2. WEBASSEMBLY

WebAssembly (Wasm) je tip koda koji se može izvršavati

u modernim veb pregledačima. To je jezik niskog nivoa

sličan asembleru koji koristi kompaktan binarni format i

omogućava izvršavanje sa performansama bliskim

nativnim. Pruža mogućnost kompajliranja programskih

jezika kao što su C/C++, C#, Rust i drugi u oblik pogodan

za izvršavanje unutar veb pregledača. Dizajniran je da

funkcioniše uporedo sa JavaScript jezikom,

omogućavajući im da rade zajedno [4]. Razvijen je u

saradnji četiri glavne kompanije koje se bave razvojem

pregledača – Google, Microsoft, Mozilla i Apple [1].

Prema W3C organizaciji, WebAssembly je četvrti jezik za

veb koji omogućava izvršavanje koda u pregledaču [5].

JavaScript, HTML i CSS su ostala tri jezika [2].

WebAssembly je dizajniran da bude kompaktan, brz i

siguran, a da pritom omogućava validaciju, kompilaciju i

bezbedno izvršavanje uz minimalne troškove. Nezavisan je

od programskih jezika, hardvera i platforme. Od samog

početka dizajniran je sa formalnom semantikom [1].

2.1. Primene

Google, eBay i Norton implementirali su WebAssembly u

svoje projekte kako bi unapredili performanse. Primeri

primene uključuju čitače bar kodova [7], mašinsko učenje

sa TensorFlow.js bibliotekom [8], prepoznavanje

obrazaca, grafičke alate, kompresiju podataka,

kriptografske biblioteke, igrice, obradu slika, numeričke

proračune i druge specijalizovane zadatke [6].

Jednostavnost i univerzalnost podstakla je njegovu

primenu u različitim domenima, uključujući serversku

stranu u kombinaciji sa Node.js, serverless računarstvo u

oblaku, Internet stvari (IoT) i integrisane uređaje, pa čak i

kao samostalno okruženje za izvršavanje [9]. Unutar

pregledača koristi se i za uređivanje slika i video sadržaja,

podržava različite vrste igrica, razvoj aplikacija,

prepoznavanje slika, VPN i drugo. Izvan pregledača koristi

se za distribuciju računarskih igara, izvršavanje

nepoverljivog koda na serveru, server-side aplikacije i

slično [10].

1316

https://doi.org/10.24867/33BE12Vasic

2.2. Razlozi za razvoj novih veb tehnologija

JavaScript je dugo bio jedina opcija za kreiranje

interaktivnih aplikacija u pregledaču. Međutim, razvoj

aplikacija koje zahtevaju visoke performanse procesora,

kao što su igre, bio je ograničen zbog slabih performansi.

Da bi se rešili problemi napravljeni su brojni pokušaji da

se prednosti nativnog koda prenesu na veb. Adobe je

promovisao Flash platformu, Microsoft je predložio

ActiveX, Google uvodi Native Client tehnologiju [11].

2.3. Prethodna rešenja

ActiveX kojeg je uveo Microsoft, Flash platforma koju je

promovisao Adobe, Native Client kojeg je predložio

Google i asm.js, prvi su pokušali da reše izazove sigurnog,

brzog i prenosivog koda niskog nivoa. Međutim, to nisu u

potpunosti uspeli jer je svaki od njih zahtevao dodatne

plugin-ove i bio vezan za specifičan pregledač. Ove

tehnologije često su imale problema sa sigurnošću,

kompatibilnošću i performansama što je ograničavalo

njihovu upotrebu [1, 11].

2.4. Struktura i funkcionalnost binarnih fajlova

Binarni format koda definisan je tako da može da se

posmatra kao jezik sa sintaksom i strukturom. Ovaj format

olakšava razumevanje, a da pritom ne ugrožava kompaktnu

formu ili jednostavnost dekodiranja. Struktura u smislu

apstraktne sintakse može se videti na Slici 1 [1].

Slika 1. WebAssembly pravila sintakse [1]

Neki od osnovnih koncepata koje WebAssembly koristi su

moduli, funkcije, instrukcije, lokalne varijable, globalne

varijable i tako dalje [1].

Moduli su binarni fajlovi koji sadrže funkcije, globalne

promenljive, tabele i memoriju. Sastoje se od različitih

tipova sekcija kojih ima ukupno 11, od kojih su četiri

najvažnije: sekcija koda, sekcija podataka i sekcije importa

i eksporta. Dok moduli predstavljaju statičku strukturu,

instanca modula omogućava dinamičko izvršavanje sa

memorijom i stekom. Instanciranje modula obezbeđuje

okruženje kao što je JavaScript VM ili operativni sistem.

Sekcija koda predstavlja najveću sekciju obuhvatajući sve

funkcije modula. Slika 2 prikazuje primer funkcije iz ove

sekcije, koja uključuje osnovne operacije poput kontrolnih

naredbi, oduzimanja i množenja [1, 11].

Slika 1. Jednostavna C funkcija sa leve strane i

odgovarajući WebAssembly bajtkod zajedno sa

tekstualnom reprezentacijom poznatom kao Wat format sa

desne strane [11]

Kod u modulu organizovan je u funkcije koje primaju

vrednosti kao parametre i vraćaju vrednosti kao rezultate,

prema definisanom tipu funkcije. Funkcije mogu

međusobno pozivati jedna drugu, uključujući rekurziju, ali

ne mogu biti ugnježdene [1].

Izvršavanje operacija u WebAssembly tehnologiji bazira

se na stek mašini. Funkcije se sastoje od instrukcija koje

manipulišu vrednostima na steku. Sistem sa tipom

omogućava statičko određivanje rasporeda steka, što

omogućava direktnu kompilaciju tokova podataka bez

stvarnog materijalizovanja steka. Ova organizacija steka

omogućava kompaktno predstavljanje programa [1].

Neke instrukcije mogu izazvati izuzetke koji odmah

prekidaju izvršavanje. WebAssembly kod ne može obraditi

izuzetke direktno, ali ih JavaScript okruženje može

obraditi. WebAssembly izuzetak će generisati (eng. throw)

JavaScript izuzetak koji sadrži trag steka (eng. stacktrace)

sa JavaScript i WebAssembly stekom. Trag steka se može

uhvatiti i pregledati uz pomoć JavaScript koda [1].

U funkcijama, lokalne promenljive se inicijalizuju na nulu

i njima se upravlja pomoću instrukcija get_local i set_local.

Instrukcija tee_local omogućava upis u lokalnu

promenljivu dok ulazna vrednost ostaje na steku [1].

Moduli mogu deklarisati globalne promenljive koje se

čitaju i pišu pomoću instrukcija get_global i set_global.

Globalne promenljive mogu biti promenljive ili

nepromenljive i moraju imati početnu vrednost koja je

konstantan izraz [1].

WebAssembly koristi linearnu memoriju koja predstavlja

veliki niz bajtova. Svaki modul može definisati samo jednu

memoriju koja se može deliti između različitih instanci

putem uvoza/izvoza. Memorija se kreira sa određenom

veličinom, ali se može dinamički proširivati pomoću

instrukcije za povećanje memorije. Usled nedostatka

memorije, proširenje neće uspeti i biće vraćena vrednost -

1 kao signal neuspeha. Trenutna veličina memorije može

se proveriti korišćenjem instrukcije za ispitivanje

memorijskog stanja. WebAssembly memorija definisana je

da koristi little-endian redosled bajtova, što znači da

platforme sa big-endian redosledom zahtevaju eksplicitne

konverzije endian redosleda. Ove konverzije mogu biti

optimizovane od strane WebAssembly kompajlera [1].

1317

2.5. Arhitektura

WebAssembly je dizajniran tako da ne definiše način na

koji se programi učitavaju u izvršno okruženje, niti kako se

obavljaju I/O operacije. Ovakva arhitektura omogućava

fleksibilnu integraciju WebAssembly tehnologije u

različita izvršna okruženja. Sistem koji implementira

WebAssembly preuzima odgovornost za učitavanje

modula, povezivanje uvoznih i izvoznih funkcija,

obezbeđivanje pristupa I/O operacijama i tajmerima, kao i

rukovanje izuzecima [1].

2.6. Performanse

Kompaktni binarni format omogućava brzo učitavanje i

dekodiranje. Analiza je dovela do sledećih zaključaka:

• WebAssembly kompajleri uglavnom su zasnovani na

LLVM-u, gde optimizacije nisu specifično prilagođene za

WebAssembly.

• JIT optimizacije značajno utiču na performanse

JavaScript jezika, dok za WebAssembly nema značajne

razlike u performansama između verzija sa i bez JIT-a.

• Performanse JavaScript-a i WebAssembly-ja variraju u

zavisnosti od pregledača i platforme. Na desktop

računarima Firefox pruža bolje rezultate u izvršavanju

WebAssembly koda u odnosu na Chrome, dok Edge

postiže najlošije rezultate. Nasuprot tome, na mobilnim

uređajima, Firefox je sporiji od Chrome-a, dok Edge

nadmašuje oba pregledača. Performanse JavaScript jezika

takođe variraju u zavisnosti od platforme. Tako je na

desktop računarima Firefox sporiji u odnosu na Chrome,

dok je na mobilnim uređajima brži.

• WebAssembly zahteva više memorije u poređenju sa

JavaScript jezikom. Ovo se može pripisati činjenici da

WebAssembly koristi linearni model memorije koji ne

oslobađa memoriju automatski, dok JavaScript koristi

sakupljanje smeća za automatsko oslobađanje memorije

[6].

Rezultati pokazuju da iako se očekuje da WebAssembly

bude brži od JavaScript jezika, to nije uvek slučaj i

performanse mogu značajno varirati. Kada WebAssembly

želi da pristupi ili manipuliše DOM-om, mora da zatraži od

JavaScript-a da izvrši te operacije. Ova upotreba uvodi

dodatno opterećenje, što može smanjiti performanse

WebAssembly koda. WebAssembly se iz tog razloga

koristi za zadatke koji zahtevaju intenzivno računanje [12].

JavaScript često postiže bolje rezultate u odnosu na

WebAssembly, naročito ako je ulaz u program velik.

Prilikom instanciranja WebAssembly modula, veliki deo

linearne memorije se inicijalizuje kako bi se simulirale

memorijske lokacije. Kada se linearna memorija potpuno

popuni, umesto oslobađanja memorije koja više nije u

upotrebi, ona se proširuje na veću veličinu. Nasuprot tome,

JavaScript koristi automatsko upravljanje memorijom,

koje dinamički prati alokaciju memorije i oslobađa onu

koja više nije potrebna. Ova dinamika čini JavaScript

efikasnijim u korišćenju memorije u poređenju sa

WebAssembly tehnologijom [6].

Još jedno od ključnih poboljšanja koje WebAssembly nudi

odnosi se na energetsku efikasnost, koja je u proseku

poboljšana za 30%. Iako JavaScript u nekim situacijama

daje bolje rezultate, opšte je prihvaćeno da je

WebAssembly ne samo brži od njega nego i koristi manje

energije, što ga čini boljim izborom za razvoj aplikacija

[2].

3. BLAZOR

Blazor je .NET frontend veb framework koji omogućava

kreiranje interaktivnih korisničkih interfejsa korišćenjem

programskog jezika C#, uz mogućnost deljenja aplikativne

logike između serverske i klijentske strane. Renderovanje

korisničkog interfejsa ostvaruje primenom HTML i CSS

koda, čime se omogućava široka podrška za različite

pregledače, uključujući i one na mobilnim uređajima.

Blazor pruža značajne prednosti kao što su pisanje koda u

C#, korišćenje postojećeg .NET ekosistema i integraciju sa

savremenim alatima kao što su Docker, Visual Studio i

Visual Studio Code, što doprinosi produktivnosti i

sigurnosti u procesu razvoja veb aplikacija [13].

Blazor aplikacije zasnivaju se na komponentama, koje

predstavljaju osnovne jedinice korisničkog interfejsa,

poput stranica, dijaloga ili formi za unos podataka.

Komponente su klase implementirane u C# jeziku koje

omogućavaju fleksibilno definisanje logike za prikaz

korisničkog interfejsa, upravljanje događajima,

ugnježdavanje i ponovno korišćenje. Ove komponente

mogu se deliti i distribuirati putem Razor biblioteka ili

NuGet paketa. Komponente se pišu u formi Razor stranica

sa ekstenzijom .razor i koriste Razor sintaksu koja

kombinuje HTML i C# kod. Ovaj pristup doprinosi većoj

produktivnosti i omogućava efikasnije programiranje

unutar integrisanih razvojnih okruženja kao što je Visual

Studio. U formalnom kontekstu ove komponente se

nazivaju Razor komponente, dok se neformalno često

nazivaju Blazor komponente [13].

3.1. Tipovi

Blazor pruža različite tipove implementacije, među kojima

su server-side, client-side i hosted. Svaki od ovih tipova

dolazi sa specifičnim šablonima koji su dostupni unutar

Visual Studio okruženja. Nije moguće odrediti koji tip je

najbolji, budući da izbor zavisi od zahteva i potreba

projekta [3].

Server-side Blazor omogućava izvršavanje celokupne

aplikacione logike na serverskoj strani, koristeći

WebSocket tehnologiju za uspostavljanje komunikacije

između klijenta i servera. Prednost ovog pristupa leži u

mogućnosti pisanja frontend logike u programskom jeziku

C#, čime se pojednostavljuje razvoj aplikacije. Međutim,

ključni nedostatak ovog tipa je eliminacija potrebe za API

pozivima, jer se sve potrebne biblioteke direktno integrišu

u frontend, što može dovesti do smanjene efikasnosti ovog

rešenja [3].

Client-side Blazor funkcioniše isključivo na klijentskoj

strani unutar pregledača. Iako su stranice host-ovane na

serveru, sva logika se izvršava na klijentu. Ova opcija je

posebno pogodna za prezentacione veb sajtove ili

jednostavne veb aplikacije, ali može postati neefikasna u

situacijama kada je potrebna interakcija sa bazama

podataka ili kada aplikacija već koristi postojeće API

servise [3].

Hosted Blazor predstavlja najefikasnije rešenje, gde se

logika aplikacije izvršava na klijentskoj strani, čime se

optimizuje korišćenje resursa servera. Ovaj pristup

1318

integriše client-side Blazor sa posebnim API projektom,

omogućavajući im da funkcionišu zajedno kao jedna

celina. Ova kombinacija pruža optimalno rešenje za

aplikacije koje zahtevaju intenzivnu interakciju sa

serverom [3].

3.2. Blazor WebAssembly Hosted projekat – struktura

i sastavni delovi

Blazor WebAssembly šablon automatski kreira inicijalne

fajlove i strukuru direktorijuma prilikom generisanja

početnog projekta, uključujući demonstracioni kod koji

služi kao primer implementacije osnovnih funkcionalnosti.

Struktura projekta sastoji se od tri glavna segmenta:

klijentski deo (Client), serverskog dela (Server) i deljenih

resursa (Shared). Ova struktura omogućava jasno

razdvajanje poslovne logike aplikacije od korisničkog

interfejsa, pri čemu se zajednički kod održava u okviru

posebnog modula kako bi se olakšala njegova ponovna

upotreba i konzistentnost između klijentskog i serverskog

dela aplikacije.

3.3. Opšti pregled

Blazor pruža širok spektar funkcionalnosti, ali i dalje

postoje situacije u kojima je neophodno koristiti

JavaScript. Blazor omogućava jednostavnu i efikasnu

integraciju sa JavaScript kodom, olakšavajući pristupanje

skladištu podataka, rad sa fajlovima i korišćenje postojećih

JavaScript biblioteka. Interakcija sa JavaScript kodom u

Blazor aplikacijama ostvaruje se putem IJSRuntime

interfejsa koji se injektuje u odgovarajuću stranicu. HTML

elementi podržavaju širok spektar događaja, od kojih su

neki od njih generički, a drugi specifični za određene

elemente. Ovi događaji se mogu koristiti direktno u Blazor-

u bez potrebe za interakcijama sa JavaScript kodom [3].

4. ZAKLJUČAK

Rezultati ovog rada potvrdili su važnost integracije

WebAssembly i Blazor tehnologija u modernom razvoju

veb aplikacija. Implementacija WebAssembly tehnologije

omogućava visok nivo performansi i fleksibilnosti u

aplikacijama, omogućavajući izvršavanje koda na strani

klijenta mnogo brže nego tradicionalni pristup zasnovan na

JavaScript jeziku. Blazor koristeći C# jezik

pojednostavljuje razvoj, pružajući programerima

mogućnost da koriste poznat ekosistem i alate i smanjuje

potrebu za korišćenjem više programskih jezika.

Korišćenje ovih tehnologija dovelo je do ubrzanja razvoja

aplikacija, poboljšanja održavanja koda i smanjenja

upotrebe JavaScript koda.

5. LITERATURA

[1] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M.

Holman, D. Gohman, L. Wagner, A. Zakai, and J. F.

Bastien, „Bringing the Web up to Speed with

WebAssembly“, In Proceedings of the 38th ACM

SIGPLAN Conference on Programming Language

Design and Implementation, pp. 185-200, 2017.

[2] J. De Macedo, R. Abreu, R. Pereira, and J. Saraiva,

„WebAssembly versus JavaScript: Energy and

Runtime Performance“, In 2022 International

Conference on ICT for Sustainability (ICT4S), pp. 24-

34, 2022.

[3] T. Litvinavicius, Exploring Blazor: Creating Hosted,

Server-side, and Client-side Applications with C#, 1st

ed., 2019.

[4] Mozilla Developer Network, „WebAssembly“,

https://developer.mozilla.org/en-

US/docs/WebAssembly, (pristupljeno u septembru

2024.)

[5] World Wide Web Consortium, „World Wide Web

Consortium (W3C) brings a new language to the Web

as WebAssembly becomes a W3C Recommendation“,

https://www.w3.org/press-releases/2019/wasm/,

(pristupljeno u septembru 2024.)

[6] Y. Yan, T. Tu, L. Zhao, Y. Zhou, and W. Wang,

„Understanding the Performance of WebAssembly

Applications“, In Proceedings of the 21st ACM

Internet Measurement Conference, pp. 533-549, 2021.

[7] S. Padmanabhan, and P. Jha, „WebAssembly at eBay:

A Real-World Use Case“,

https://innovation.ebayinc.com/tech/engineering/weba

ssembly-at-ebay-a-real-world-use-case/, (pristupljeno

u oktobru 2024.)

[8] D. Smilkov, N. Thorat, and A. Yuan, „Introducing the

WebAssembly backend for TensorFlow.js“,

https://blog.tensorflow.org/2020/03/introducing-

webassembly-backend-for-tensorflow-js.html,

(pristupljeno u oktobru 2024.)

[9] D.Lehmann, J. Kinder, and M. Pradel, „Everything

Old is New Again: Binary Security of

WebAssembly“, In 29th USENIX Security

Symposium (USENIX Security 20), pp. 217-234,

2020.

[10] WebAssembly, „WebAssembly“,

https://webassembly.org/, (pristupljeno u septembru

2024.)

[11] M. Musch, C. Wressnegger, M. Johns, and K. Rieck,

„New Kid on the Web: A Study on the Prevalence of

WebAssembly in the Wild“, In Detection of

Intrusions and Malware, and Vulnerability

Assessment: 16th International Conference, DIMVA

2019, Gothenburg, Sweden, Springer International

Publishing, pp. 23-42, 2019.

[12] D. Kievits, „What effect does applying

WebAssembly have on a compute intensive client-

side application versus JavaScript?“, 2021.

[13] Microsoft, „ASP.NET Core Blazor“,

https://learn.microsoft.com/en-

us/aspnet/core/blazor/?view=aspnetcore-8.0,

(pristupljeno u avgutu 2024.)

Kratka biografija:

Nataša Vasić rođena je u

Novom Sadu 1999. god.

Master rad na Fakultetu

tehničkih nauka iz oblasti

Elektrotehnike i

računarstva odbranila je

2025.god.

kontakt:

natasavas00@gmail.com

1319

