g?ﬁ Zbornik radova Fakulteta tehniékih nauka, Novi Sad

UDK: 4.9
DOI: https://doi.org/10.24867/33BE12Vasic

RAZVOJ SAVREMENIH VEB APLIKACIJA U .NET EKOSISTEMU PRIMENOM
WEBASSEMBLY 1 BLAZOR TEHNOLOGIJA

DEVELOPMENT OF MODERN WEB APPLICATIONS IN THE .NET ECOSYSTEM
THROUGH THE USE OF WEBASSEMBLY AND BLAZOR TECHNOLOGIES

NataSa Vasié, Fakultet tehnickih nauka, Novi Sad

Oblast - ELEKTROTEHNICKO I RACUNARSKO
INZENJERSTVO

Kratak sadrzaj — U ovom radu prikazano je istrazivanje
WebAssembly i Blazor tehnologija, sa ciljem da se
predstave njihovi osnovni koncepti, prednosti i prakticne
primene. WebAssembly bajtkod moze se izvrsavati u
razlicitim okruzenjima, ali u ovom radu fokus je na .NET
okviru zbog njegovih Sirokih mogucnosti i popularnosti
medu programerima. Dat je pregled mogucnosti koje ove
tehnologije pruzaju uz doprinos boljem razumevanju
njihove primene u savremenoj industriji.

Kljuéne reci: WebAssembly,
tehnologije, veb aplikacija

Blazor, .NET, veb

Abstract — This paper presents a study of WebAssembly
and Blazor technologies, aiming to introduce their
fundamental concepts, advantages and practical
applications. WebAssembly bytecode can be executed in
various environments, however this paper focuses on its
use within the .NET ecosystem due to its extensive
capabilities and popularity among developers. The paper
provides an overview of the opportunities these
technologies offer and contributes to a better
understanding of their application in modern industry.

Keywords: WebAssembly, .NET,
technologies, web application

Blazor, web

1. UVOD

Razvoj veb tehnologija omogucio je pojavu kompleksnih
aplikacija kao $to su igrice, razliciti audio i video softveri i
slicne aplikacije, te zahtevi za efikasnos$¢u i sigurnoscu
rastu. JavaScript, HTML i CSS i dalje dominiraju u razvoju
veb aplikacija, ali zbog svojih ogranicenja ne mogu u
potpunosti da ispune te zahteve. WebAssembly, otvoreni
standard koji omoguéava izvrSavanje binarnog koda
direktno u pregledacu, uspeo je da ispuni zahteve [1, 2]. U
okviru .NET Blazor tehnologije WebAssembly se koristi
kao klju¢na tehnologija za pokretanje aplikacija u veb
pregledacima. Blazor je Ul framework koji omogucava
razvoj interaktivnih veb aplikacija koriste¢i C# i .NET
umesto koris¢enja JavaScript jezika.

NAPOMENA:
Ovaj rad proistekao je iz master rada ¢iji mentor je bila
dr Dunja Vrbaski, docent

Blazor omogucava programerima da koriste poznate alate
i biblioteke iz .NET okruZenja. Ovaj pristup eliminise
potrebu za dva programera, jednog za JavaScript, a drugog
za backend u klasinom veb projektu, povecava
produktivnost i omogucéava kreiranje aplikacija koje mogu
da se pokrenu na svim modernim pregleda¢ima [3].

2. WEBASSEMBLY

WebAssembly (Wasm) je tip koda koji se moze izvrSavati
u modernim veb pregledac¢ima. To je jezik niskog nivoa
slican asembleru koji koristi kompaktan binarni format i
omoguéava izvrSavanje sa performansama bliskim
nativnim. Pruza moguénost kompajliranja programskih
jezika kao sto su C/C++, C#, Rust i drugi u oblik pogodan
za izvr$avanje unutar veb pregledaca. Dizajniran je da
funkcioniSe ~ uporedo sa JavaScript jezikom,
omoguéavaju¢i im da rade zajedno [4]. Razvijen je u
saradnji Cetiri glavne kompanije koje se bave razvojem
pregledaca — Google, Microsoft, Mozilla i Apple [1].
Prema W3C organizaciji, WebAssembly je Cetvrti jezik za
veb koji omogucava izvrsavanje koda u pregledacu [5].
JavaScript, HTML i CSS su ostala tri jezika [2].
WebAssembly je dizajniran da bude kompaktan, brz i
siguran, a da pritom omogucava validaciju, kompilaciju i
bezbedno izvrSavanje uz minimalne troskove. Nezavisan je
od programskih jezika, hardvera i platforme. Od samog
pocetka dizajniran je sa formalnom semantikom [1].

2.1. Primene

Google, eBay i Norton implementirali su WebAssembly u
svoje projekte kako bi unapredili performanse. Primeri
primene ukljucuju ¢itace bar kodova [7], masinsko ucenje
sa TensorFlow.js bibliotekom [8], prepoznavanje
obrazaca, graficke alate, kompresiju podataka,
kriptografske biblioteke, igrice, obradu slika, numericke
proratune 1 druge specijalizovane zadatke [6].
Jednostavnost 1 univerzalnost podstakla je njegovu
primenu u razli¢itim domenima, ukljuCujuc¢i serversku
stranu u kombinaciji sa Node.js, serverless racunarstvo u
oblaku, Internet stvari (IoT) i integrisane uredaje, pa ¢ak i
kao samostalno okruzenje za izvrSavanje [9]. Unutar
pregledaca koristi se i za uredivanje slika i video sadrzaja,

podrzava razli¢ite vrste igrica, razvoj aplikacija,
prepoznavanje slika, VPN i drugo. Izvan pregledaca koristi
se za distribuciju raCunarskih igara, izvrSavanje

nepoverljivog koda na serveru, server-side aplikacije i
sli¢no [10].

1316

https://doi.org/10.24867/33BE12Vasic

2.2. Razlozi za razvoj novih veb tehnologija

JavaScript je dugo bio jedina opcija za kreiranje
interaktivnih aplikacija u pregledacu. Medutim, razvoj
aplikacija koje zahtevaju visoke performanse procesora,
kao §to su igre, bio je ograni¢en zbog slabih performansi.
Da bi se resili problemi napravljeni su brojni pokusaji da
se prednosti nativnog koda prenesu na veb. Adobe je
promovisao Flash platformu, Microsoft je predlozio
ActiveX, Google uvodi Native Client tehnologiju [11].

2.3. Prethodna resenja

ActiveX kojeg je uveo Microsoft, Flash platforma koju je
promovisao Adobe, Native Client kojeg je predloZio
Google i asm.js, prvi su pokusali da reSe izazove sigurnog,
brzog i prenosivog koda niskog nivoa. Medutim, to nisu u
potpunosti uspeli jer je svaki od njih zahtevao dodatne
plugin-ove i bio vezan za specifiCan pregledac. Ove
tehnologije Cesto su imale problema sa sigurnoséu,
kompatibilno$¢u i performansama S$to je ogranicavalo
njihovu upotrebu [1, 11].

2.4. Struktura i funkcionalnost binarnih fajlova

Binarni format koda definisan je tako da moze da se
posmatra kao jezik sa sintaksom i strukturom. Ovaj format
olakSava razumevanje, a da pritom ne ugrozava kompaktnu
formu ili jednostavnost dekodiranja. Struktura u smislu
apstraktne sintakse moze se videti na Slici 1 [1].

value types) £:=i32 | i64 | 32 f64
packed types) tp =18 116|132

function types) ff =" = t*
(global types) g ::= mut” ¢

(instructions) e ::= unreachable | nop| drop | select |
block #f ¢" end | loop ff ¢" end |if if ¢" else " end |
bri | br.if i | br_table i" | return | call i | call_indirect {f |

(
(
(
(get local i | set.local i | tee_local ¢ | get.global i |

sat global | t.load (tp.sz)’ a o tstore ty’ a o
unopyy = dlz | ctz | popent current.memory | grow_memory | ¢.const c |
unopyy = neg | abs | ceil | floor | trunc | nearest | sqrt t.unap, | Lbinop, | ttestop, | trelop, | t.cvlop t.sx’
binop,y :=add | sub | mul | div.sz | rem_sz |

and | or | xor | shl | shr_sz | otl | rotr (functions) ~ f == ez func tf local t* ¢" | ez func ff im
bingp,,, = add | sub | mul | div | min | max | copysign (globals) ~ glob == ex" global fg * | ez* global fg im
testopy = eqz (tables) lab = ex” table n i* | ex” table n im
m],"\ s=eq|ne|It.sr | ghse |le_sr | gesr (memories) mem == ez” memory 1 | ez” memory n im
relop,y w=eq|ne|lt|gt|le|ge (imports) ~ im ::= import “name” “name”
cutop = convert | reinterpret (epors) erz=export “mame”
stu=s|u (modules) m ::= module f* glob" tab” mem”

Slika 1. WebAssembly pravila sintakse [1]

Neki od osnovnih koncepata koje WebAssembly koristi su
moduli, funkcije, instrukcije, lokalne varijable, globalne
varijable i tako dalje [1].

Moduli su binarni fajlovi koji sadrze funkcije, globalne
promenljive, tabele i memoriju. Sastoje se od razlicitih
tipova sekcija kojih ima ukupno 11, od kojih su cetiri
najvaznije: sekcija koda, sekcija podataka i sekcije importa
i eksporta. Dok moduli predstavljaju staticku strukturu,
instanca modula omogucava dinamicko izvrSavanje sa
memorijom i stekom. Instanciranje modula obezbeduje
okruzenje kao $to je JavaScript VM ili operativni sistem.
Sekcija koda predstavlja najvecu sekciju obuhvatajuéi sve
funkcije modula. Slika 2 prikazuje primer funkcije iz ove
sekcije, koja ukljuéuje osnovne operacije poput kontrolnih
naredbi, oduzimanja i mnozenja [1, 11].

C program code Binary Text representation
20 00 get_local 0
42 00 i64.const 0
51 i6d.eq
int factorial(int n) { 04 Te if 164
if (n==0) 42 01 i64.const 1
return 1 05 else
else 20 00 get_local 1
return n * factorial(n-1) 20 00 get_local 1
} 42 01 i64.const 1
7d i64.sub
10 00 call 0
Te i64.mul
Ob end

Slika 1. Jednostavna C funkcija sa leve strane i
odgovarajuci WebAssembly bajtkod zajedno sa
tekstualnom reprezentacijom poznatom kao Wat format sa
desne strane [11]

Kod u modulu organizovan je u funkcije koje primaju
vrednosti kao parametre i vracaju vrednosti kao rezultate,
prema definisanom tipu funkcije. Funkcije mogu
medusobno pozivati jedna drugu, ukljucujuci rekurziju, ali
ne mogu biti ugnjezdene [1].

IzvrSavanje operacija u WebAssembly tehnologiji bazira
se na stek masini. Funkcije se sastoje od instrukcija koje
manipuliSsu vrednostima na steku. Sistem sa tipom
omogucéava statiCko odredivanje rasporeda steka, Sto
omogucéava direktnu kompilaciju tokova podataka bez
stvarnog materijalizovanja steka. Ova organizacija steka
omogucéava kompaktno predstavljanje programa [1].

Neke instrukcije mogu izazvati izuzetke koji odmah
prekidaju izvr§avanje. WebAssembly kod ne moze obraditi
izuzetke direktno, ali ih JavaScript okruZenje moze
obraditi. WebAssembly izuzetak ¢e generisati (eng. throw)
JavaScript izuzetak koji sadrzi trag steka (eng. stacktrace)
sa JavaScript i WebAssembly stekom. Trag steka se moze
uhvatiti i pregledati uz pomo¢ JavaScript koda [1].

U funkcijama, lokalne promenljive se inicijalizuju na nulu
injima se upravlja pomocu instrukcija get local i set local.
Instrukcija tee local omogucava upis u lokalnu
promenljivu dok ulazna vrednost ostaje na steku [1].

Moduli mogu deklarisati globalne promenljive koje se
¢itaju 1 piSu pomocu instrukcija get global i set global.
Globalne promenljive mogu biti promenljive ili
nepromenljive i moraju imati pocetnu vrednost koja je
konstantan izraz [1].

WebAssembly koristi linearnu memoriju koja predstavlja
veliki niz bajtova. Svaki modul moze definisati samo jednu
memoriju koja se moze deliti izmedu razli¢itih instanci
putem uvoza/izvoza. Memorija se kreira sa odredenom
veli¢inom, ali se moZe dinamicki proSirivati pomocu
instrukcije za povecanje memorije. Usled nedostatka
memorije, proSirenje nece uspeti i bice vracena vrednost -
1 kao signal neuspeha. Trenutna veli¢ina memorije moze
se proveriti koriS¢enjem instrukcije za ispitivanje
memorijskog stanja. WebAssembly memorija definisana je
da koristi little-endian redosled bajtova, §to znaci da
platforme sa big-endian redosledom zahtevaju eksplicitne
konverzije endian redosleda. Ove konverzije mogu biti
optimizovane od strane WebAssembly kompajlera [1].

1317

2.5. Arhitektura

WebAssembly je dizajniran tako da ne definiSe nacin na
koji se programi ucitavaju u izvr$no okruzenje, niti kako se
obavljaju 1/O operacije. Ovakva arhitektura omogucava
fleksibilnu integraciju WebAssembly tehnologije u
razli¢ita izvrSna okruZenja. Sistem koji implementira
WebAssembly preuzima odgovornost za ulitavanje
modula, povezivanje uvoznih 1 izvoznih funkcija,
obezbedivanje pristupa I/O operacijama i tajmerima, kao i
rukovanje izuzecima [1].

2.6. Performanse

Kompaktni binarni format omogucéava brzo uéitavanje i
dekodiranje. Analiza je dovela do sledecih zakljucaka:

* WebAssembly kompajleri uglavnom su zasnovani na
LLVM-u, gde optimizacije nisu specificno prilagodene za
WebAssembly.

» JIT optimizacije znacajno uticu na performanse
JavaScript jezika, dok za WebAssembly nema znacajne
razlike u performansama izmedu verzija sa i bez JIT-a.

* Performanse JavaScript-a i WebAssembly-ja variraju u
zavisnosti od pregledaca i platforme. Na desktop
racunarima Firefox pruza bolje rezultate u izvrSavanju
WebAssembly koda u odnosu na Chrome, dok Edge
postize najloSije rezultate. Nasuprot tome, na mobilnim
uredajima, Firefox je sporiji od Chrome-a, dok Edge
nadmasuje oba pregledaca. Performanse JavaScript jezika
takode variraju u zavisnosti od platforme. Tako je na
desktop racunarima Firefox sporiji u odnosu na Chrome,
dok je na mobilnim uredajima brzi.

* WebAssembly zahteva vise memorije u poredenju sa
JavaScript jezikom. Ovo se moZze pripisati ¢injenici da
WebAssembly koristi linearni model memorije koji ne
oslobada memoriju automatski, dok JavaScript koristi
sakupljanje smeca za automatsko oslobadanje memorije
[6].

Rezultati pokazuju da iako se oc¢ekuje da WebAssembly
bude brzi od JavaScript jezika, to nije uvek slucaj i
performanse mogu znacajno varirati. Kada WebAssembly
zeli da pristupi ili manipuliSe DOM-om, mora da zatrazi od
JavaScript-a da izvr$i te operacije. Ova upotreba uvodi
dodatno opterecenje, S$to moze smanjiti performanse
WebAssembly koda. WebAssembly se iz tog razloga
koristi za zadatke koji zahtevaju intenzivno racunanje [12].
JavaScript Cesto postize bolje rezultate u odnosu na
WebAssembly, narocito ako je ulaz u program velik.
Prilikom instanciranja WebAssembly modula, veliki deo
linearne memorije se inicijalizuje kako bi se simulirale
memorijske lokacije. Kada se linearna memorija potpuno
popuni, umesto oslobadanja memorije koja viSe nije u
upotrebi, ona se prosiruje na ve¢u veli¢inu. Nasuprot tome,
JavaScript koristi automatsko upravljanje memorijom,
koje dinamicki prati alokaciju memorije i oslobada onu
koja vise nije potrebna. Ova dinamika ¢ini JavaScript
efikasnijim u kori§¢enju memorije u poredenju sa
WebAssembly tehnologijom [6].

Jos jedno od klju¢nih poboljsanja koje WebAssembly nudi
odnosi se na energetsku efikasnost, koja je u proseku
poboljsana za 30%. lako JavaScript u nekim situacijama
daje bolje rezultate, opSte je prihvaéeno da je
WebAssembly ne samo brzi od njega nego i koristi manje

energije, $to ga ¢ini boljim izborom za razvoj aplikacija

[2].

3. BLAZOR

Blazor je .NET frontend veb framework koji omogucava
kreiranje interaktivnih korisnickih interfejsa koris¢enjem
programskog jezika C#, uz mogucénost deljenja aplikativne
logike izmedu serverske i klijentske strane. Renderovanje
korisnickog interfejsa ostvaruje primenom HTML i CSS
koda, ¢ime se omogucava Siroka podrSka za razlicite
pregledace, ukljucujuéi i one na mobilnim uredajima.
Blazor pruza zna¢ajne prednosti kao §to su pisanje koda u
CH#, koriscenje postojeéeg .NET ekosistema i integraciju sa
savremenim alatima kao Sto su Docker, Visual Studio i
Visual Studio Code, S$to doprinosi produktivnosti i
sigurnosti u procesu razvoja veb aplikacija [13].

Blazor aplikacije zasnivaju se na komponentama, koje
predstavljaju osnovne jedinice korisnickog interfejsa,
poput stranica, dijaloga ili formi za unos podataka.
Komponente su klase implementirane u C# jeziku koje
omogucavaju fleksibilno definisanje logike za prikaz
korisnickog interfejsa, upravljanje = dogadajima,
ugnjezdavanje i ponovno koriS¢enje. Ove komponente
mogu se deliti i distribuirati putem Razor biblioteka ili
NuGet paketa. Komponente se pisu u formi Razor stranica
sa ekstenzijom .razor i koriste Razor sintaksu koja
kombinuje HTML i C# kod. Ovaj pristup doprinosi vecoj
produktivnosti i omogucava efikasnije programiranje
unutar integrisanih razvojnih okruzenja kao Sto je Visual
Studio. U formalnom kontekstu ove komponente se
nazivaju Razor komponente, dok se neformalno cesto
nazivaju Blazor komponente [13].

3.1. Tipovi

Blazor pruza razli¢ite tipove implementacije, medu kojima
su server-side, client-side i hosted. Svaki od ovih tipova
dolazi sa specifi¢nim Sablonima koji su dostupni unutar
Visual Studio okruzenja. Nije moguée odrediti koji tip je
najbolji, budué¢i da izbor zavisi od zahteva i potreba
projekta [3].

Server-side Blazor omogucava izvrSavanje celokupne
aplikacione logike na serverskoj strani, koristeéi
WebSocket tehnologiju za uspostavljanje komunikacije
izmedu klijenta i servera. Prednost ovog pristupa lezi u
mogucénosti pisanja frontend logike u programskom jeziku
CH#, ¢ime se pojednostavljuje razvoj aplikacije. Medutim,
kljucni nedostatak ovog tipa je eliminacija potrebe za API
pozivima, jer se sve potrebne biblioteke direktno integrisu
u frontend, $to moze dovesti do smanjene efikasnosti ovog
reSenja [3].

Client-side Blazor funkcionise iskljué¢ivo na klijentskoj
strani unutar pregledaca. Iako su stranice host-ovane na
serveru, sva logika se izvrSava na klijentu. Ova opcija je
posebno pogodna za prezentacione veb sajtove ili
jednostavne veb aplikacije, ali moze postati neefikasna u
situacijama kada je potrebna interakcija sa bazama
podataka ili kada aplikacija ve¢ koristi postoje¢e API
servise [3].

Hosted Blazor predstavlja najefikasnije reSenje, gde se
logika aplikacije izvrSava na klijentskoj strani, ¢ime se
optimizuje koriS¢enje resursa servera. Ovaj pristup

1318

integriSe client-side Blazor sa posebnim API projektom,
omogucavaju¢i im da funkcioniSu zajedno kao jedna
celina. Ova kombinacija pruza optimalno reSenje za
aplikacije koje zahtevaju intenzivnu interakciju sa
serverom [3].

3.2. Blazor WebAssembly Hosted projekat — struktura
i sastavni delovi

Blazor WebAssembly Sablon automatski kreira inicijalne
fajlove 1 strukuru direktorijuma prilikom generisanja
pocetnog projekta, ukljucujuéi demonstracioni kod koji
sluzi kao primer implementacije osnovnih funkcionalnosti.
Struktura projekta sastoji se od tri glavna segmenta:
klijentski deo (Client), serverskog dela (Server) i deljenih
resursa (Shared). Ova struktura omogucava jasno
razdvajanje poslovne logike aplikacije od korisni¢kog
interfejsa, pri ¢emu se zajednicki kod odrzava u okviru
posebnog modula kako bi se olaksala njegova ponovna
upotreba i konzistentnost izmedu klijentskog i serverskog
dela aplikacije.

3.3. Opsti pregled

Blazor pruza Sirok spektar funkcionalnosti, ali i dalje
postoje situacije u kojima je neophodno Kkoristiti
JavaScript. Blazor omoguéava jednostavnu i efikasnu
integraciju sa JavaScript kodom, olakSavajuéi pristupanje
skladistu podataka, rad sa fajlovima i kori$¢enje postojecih
JavaScript biblioteka. Interakcija sa JavaScript kodom u
Blazor aplikacijama ostvaruje se putem IJSRuntime
interfejsa koji se injektuje u odgovarajucu stranicu. HTML
elementi podrzavaju Sirok spektar dogadaja, od kojih su
neki od njih genericki, a drugi specificni za odredene
elemente. Ovi dogadaji se mogu koristiti direktno u Blazor-
u bez potrebe za interakcijama sa JavaScript kodom [3].

4. ZAKLJUCAK

Rezultati ovog rada potvrdili su vaznost integracije
WebAssembly i Blazor tehnologija u modernom razvoju
veb aplikacija. Implementacija WebAssembly tehnologije
omogucéava visok nivo performansi i fleksibilnosti u
aplikacijama, omoguéavajudi izvrSavanje koda na strani
klijenta mnogo brze nego tradicionalni pristup zasnovan na
JavaScript jeziku. Blazor koriste¢éi C# jezik
pojednostavljuje razvoj, pruzajuéi programerima
mogucnost da koriste poznat ekosistem i alate i smanjuje
potrebu za koriS¢enjem vise programskih jezika.
Kori$éenje ovih tehnologija dovelo je do ubrzanja razvoja
aplikacija, poboljSanja odrzavanja koda i smanjenja
upotrebe JavaScript koda.

5. LITERATURA

[1] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M.
Holman, D. Gohman, L. Wagner, A. Zakai, and J. F.
Bastien, ,,Bringing the Web up to Speed with
WebAssembly*, In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language
Design and Implementation, pp. 185-200, 2017.

[2] J. De Macedo, R. Abreu, R. Pereira, and J. Saraiva,
»WebAssembly versus JavaScript: Energy and
Runtime Performance®, In 2022 International
Conference on ICT for Sustainability (ICT4S), pp. 24-
34, 2022.

[3] T. Litvinavicius, Exploring Blazor: Creating Hosted,
Server-side, and Client-side Applications with C#, 1st
ed., 2019.

[4] Mozilla Developer Network, ,,WebAssembly*,
https://developer.mozilla.org/en-
US/docs/WebAssembly, (pristupljeno u septembru
2024.)

[5] World Wide Web Consortium, ,,World Wide Web
Consortium (W3C) brings a new language to the Web
as WebAssembly becomes a W3C Recommendation®,
https://www.w3.org/press-releases/2019/wasm/,
(pristupljeno u septembru 2024.)

[6]Y. Yan, T. Tu, L. Zhao, Y. Zhou, and W. Wang,
,Understanding the Performance of WebAssembly
Applications®, In Proceedings of the 21st ACM
Internet Measurement Conference, pp. 533-549, 2021.

[71 S. Padmanabhan, and P. Jha, ,,WebAssembly at eBay:
A Real-World Use Case“,
https://innovation.ebayinc.com/tech/engineering/weba
ssembly-at-ebay-a-real-world-use-case/, (pristupljeno
u oktobru 2024.)

[8] D. Smilkov, N. Thorat, and A. Yuan, ,Introducing the
WebAssembly backend for TensorFlow.js*,
https://blog.tensorflow.org/2020/03/introducing-
webassembly-backend-for-tensorflow-js.html,
(pristupljeno u oktobru 2024.)

[9] D.Lehmann, J. Kinder, and M. Pradel, ,,Everything
Old is New Again: Binary Security of
WebAssembly*, In 29th USENIX Security
Symposium (USENIX Security 20), pp. 217-234,
2020.

[10] WebAssembly, ,,WebAssembly*,
https://webassembly.org/, (pristupljeno u septembru
2024.)

[11] M. Musch, C. Wressnegger, M. Johns, and K. Rieck,
,»,New Kid on the Web: A Study on the Prevalence of
WebAssembly in the Wild“, In Detection of
Intrusions and Malware, and Vulnerability
Assessment: 16th International Conference, DIMVA
2019, Gothenburg, Sweden, Springer International
Publishing, pp. 23-42, 2019.

[12] D. Kievits, ,,What effect does applying
WebAssembly have on a compute intensive client-
side application versus JavaScript?, 2021.

[13] Microsoft, ,,ASP.NET Core Blazor®,
https://learn.microsoft.com/en-
us/aspnet/core/blazor/?view=aspnetcore-8.0,
(pristupljeno u avgutu 2024.)

Kratka biografija:

NataSa Vasi¢ rodena je u
Novom Sadu 1999. god.
Master rad na Fakultetu
tehnickih nauka iz oblasti
Elektrotehnike i
racunarstva odbranila je
2025.god.

kontakt:
natasavas00@gmail.com

1319

