Zbornik radova Fakulteta tehni¢ckih nauka, Novi Sad

UDK: 4.92
DOI: https://doi.org/10.24867/33BE13Ruzicic

RAZVOJ INTERPETERA U PROGRAMSKOM JEZIKU GO
DEVELOPMENT OF AN INTERPRETER IN THE GO PROGRAMMING LANGUAGE
Ratko RuziCi¢, Fakultet tehnickih nauka, Novi Sad

Oblast - RACUNARSTVO I AUTOMATIKA

Kratak sadrzaj — Ovaj rad bavi se izradom interpretera
hipotetickog programskog jezika, on predstavlja nastavak
prethodnog rada autora na temu kompajlera izradenog u
programskom jeziku C, koji je koristio alate ‘flex” i
“bison” za faze leksicke analize i parsiranja. Za razliku od
tog rada, interpretator predstavijen u ovoj tezi razvijen je
iskljucivo koris¢enjem standardne biblioteke programskog
jezika Go, bez oslanjanja na dodatne alate ili postojeci
kod.

Kljuéne re€i: Programski jezici, Interpreteri, Dinamicki
tipovi

Abstract — This paper explores the implementation of a
hypothetical programming language, it is an extension of
a previous paper by the same author of a compiler
implemented in C programming language using tools
“flex” and “bison” for lexical analysis and parsing. In
contrast to that paper, an interpreter presented here was
developed exclusively using a standard library of Go
programming language without relying on any other tools
or existing code.

Keywords: Programming
Dynamic types

languages, Interpreters,

1. UVOD
1.1. Definicija problema

Za pocetak neophodno je definisati programski jezik koji
bi imao sledece funkcionalne osobine:

e dinamicki sistem tipova

podrska za kondicionale(if...else)

podrska za funkcije

osnovni aritmeticki i logicki operatori

nizovi

petlje

osnovni tipovi podataka: integer, double, boolean,

string

e interaktivni(REPL) mod i ucitavanje programa iz
fajla

Pored funkcionalnih zahteva interpreter bi trebao da
zadovolji i odredene nefunkcionalne zahteve. Najbitniji
medu njima jeste lako distribuiranje interpretera i
omogucavanje krajnjim korisnicima da preuzmu

NAPOMENA:

Ovaj rad proistekao je iz master rada ¢iji mentor je bio
dr Dunja Vrbaski, docent

interpreter i da ga pokrenu bez potrebe za mukotrpnim
podesavanjem radnog okruzenja i instaliranja dodatnih
programa. Kao dodatni zahtev moze se izdvojiti i
pokretanje interpretera uz pomo¢ samo jedne komande.

1.1. Opseg i ogranicenja

Polje kompajlera i interpretera je jako slozeno i vrlo dobro
proucavano, takode postoji vrlo dobra povezanost sa
industrijom pa je mnogo novca i vremena uloZeno u
proucavanje ove oblasti od strane vrlo uspesnih kompanija.
Uzevsi to u obzir moze se zakljuciti da su dana$nji
interpeteri Cesto rezultat viSedecenijskog napora §to od
strane samih kompanija, $to od strane nezavisnih
kontributora §to samo potvrduje Cinjenicu da je
dizajniranje novog programskog jezika i implementiranje
interpretera za njega ogroman poduhvat i da je put od rane
implementacije do prihvatanja od strane industrije i
entuzijasta vrlo dug i jako nepredvidiv [1].

2. TEORIJA
2.1. Leksicka analiza

Leksicka analiza je prvi korak prilikom interpretacije (ili
kompilacije) programskog jezika. Ulaz u leksi¢ku analizu
predstavlja ’sirovi” tekst sacinjen od niza karaktera a izlaz
predstavlja niz tokena. Tako na primer ako postoji ulaz
sadrzine “var a = 3;”. Kao izlaz se moze ocekivati niz
tokena: “VAR, IDENTIFIER, ASSIGN, NUMBER,
SEMICOLON”. Pored toga ocekuje se da leksic¢ka analiza
javi gresku u slu¢aju da za dati ulaz nije moguce generisati
listu tokena ili da pak dostavi token koji bi oznacio da za
dati unos postoji greska. Na primer, za ulaz “var @ = 3;”,
ocekivani izlaz bi bio: “VAR, ERROR”. Dakle lekser
(nekada u literaturi nazvan i skener) je javio da je prvi
token VAR a da njega sledi ERROR token posto @
karakter nije podrzan u gramatici jezika. U ovom primeru
moze se uociti da je lekser efektivno prestao sa radom u
momentu kada je naiSao na karakter koji je uzrokovao
greSku, u praksi ovo Cesto nije slucaj. Skoro sve
implementacije modernih jezika omoguéavaju dalji rad
leksera kako bi pronaSao S$to viSe greSaka i o tome
obavestio krajnjeg korisnika koji bi onda dobio listing
greSaka koje treba da resi.

Danasnji lekseri takode uz sam token generisu i znacajnu
koli¢inu metapodataka o samom tokenu, osnovni
metapodaci mogu biti broj linije i broj karaktera unutar
fajla nad kojim je vrSeno leksiranje, dok neki napredniji
metapodaci mogu biti duzina same lekseme, sadrzaj
lekseme i ime fajla u kom je leksema pronadena.

1320

https://doi.org/10.24867/33BE13Ruzicic

2.2. AST

Kako bi opisali znacenje i znacaj AST-a moguce je
osvrnuti se na sam akronim(u obrnutom redosledu): stabla
(eng. Tree) oznaCavaju da se radi o obi¢noj strukturi
podataka stabla koje su jako ¢este u kompjuterskoj nauci,
sintaksna (eng. Syntax) oznacava da se radi o sintaksi
samog jezika tj. da se sintaksa samog jezika moze opisati
jednim takvim stablom i apstraktna(eng. Abstract) u ovom
slucaju znaci da ova stabla predstavljaju strukturu a ne da
mapiraju svaki karakter na svaki ¢vor u datom stablu.

2.3. Parsiranje

Slede¢a faza u interpretaciji programa jeste parsiranje,
zadatak parsera programskog jezika jeste da definiSe
sintaksu jezika tj. da preuzme tokene dobijene iz
prethodnog koraka (leksicke analize) i da utvrdi da li je
redosled tih tokena ispravan i da dodatno vrati neku
strukturu podataka koja bi bila reprezent samog programa.

Parseri se uglavnom mogu ru¢no implementirati i veéina
implementacija programskih jezika ima rucno napisane
parsere ali takode postoje alati za generisanje koda parsera
poput “ANTLR”, “bison” ili “yacc” alata koji za definisanu
formalnu gramatiku generi$u skelet koda parsera a korisnik
moze definisati svoju logiku provere semantike jezika, pa
¢ak 1 generisanje koda.

Parseri se ugrubo mogu podeliti u 2 razli¢ite kategorije,
“top-down” i1 “bottom-up”. Glavna razlika izmedu ova dva
tipa jeste da “top-down” parseri kreéu od korena
abstraktnog stabla i pokusavaju da dodu do listova samog
stabla pri tom proveravajuci da li su zadovoljena pravila
gramatike jezika, dok “bottom-up” parseri kre¢u od samih
tokena (tj. listova stabla) i pokuSavaju da "izgrade" stablo.

Generalno govore¢i “top-down” parseri su lakSi za
implementaciju ako su ru¢no implementirani, dok su alati
za generisanje parsera naj¢e$ée napravljeni da generiSu
neki derivat “bottom-up” parsera.

Klasi¢an primer “top-down” parsera je Pratov parser
(takode poznat kao "recursive descent parser") koji je
osmislio Von Prat 1970-ih godina. Pratov parser se u
sustini bavi parsiranjem izraza i reSavanjem problema
redosleda aritmetickih operacija nad izrazima, on nudi
elegantan nacin da se predstave odnosi izmedu razli¢itih
operacija. Sve §to je potrebno jeste da se definiSu operatori
i njihov prioritet 1 Pratov parser ¢e znati kako tacno da
grupiSe operatore. Ako se na primer uzme sledeéi izraz za
razmatranje “1 +2 * 3 -10/5”, onda izlaz Pratovog parsera
moze biti sama vrednost izraza, u ovom slucaju “5”, ili isti
izraz ali u formatu grupisanom uz pomoc¢ zagrada tj. “(1 +
((2 * 3) - (10 / 5)))” ili na kraju krajeva kao apstraktno
sintaksno stablo koje ¢e prikazati koje podizraze treba
evaluirati prvo.

2.4. Evaluacija

Evaluacija se odnosi na korak u interpretaciji u kom se u
apstraktnom sintaksnom stablu posecuju svi ¢vorovi i na
osnovu tipa ¢vora (i njegovih atributa) vrsi evaluacija
izraza. Radi o jednostavnoj implementaciji "Setanja" kroz
stablo i implementiranje logike evaluacije.

Sve do koraka evaluacije razlike izmedu interpretera i
kompajlera nije bilo ali u procesu evaluacije je doslo do
bitnog razdvajanja. U ovom koraku su zaista bile

evaluirane vrednosti izraza ali ako bi cilj bio da se
implementira kompajler onda to ne bi bilo moguce uciniti.
Kod implementacije kompajlera isti bi generisao nekakav
kod, bilo da je u pitanju masinski kod, asemblerski kod ili
nekakav bajtkod za neku hipoteticku (ili pravu) virtuelnu
masinu. Razlika deluje suptilno, i u primeru jednog "hobi"
programskog jezika ona sustinski to i jeste ali ako se
sagleda S§ira slika primetno je da interpreter zapravo
izvr§ava sve §to mu je dato $to znaci da ako bi interpreter
zeleo da pristupi fajlovima ili da otvori nekakvu datoteku
on bi morao da to uradi preko jezika u kome je
implementiran, dok bi kompajler za taj korak samo
generisao masinski kod koji bi uputio par sistemskih
poziva i otvorio fajl a taj masSinski kod bi kasnije bio i
izvrSen. Svaki moderan programski jezik danaSnjice
podrzava pristup fajlovima sa fajl sistema tako da to nije
realan problem ali i dalje treba biti svestan Cinjenice da
izbor jezika u kome se implementira interpreter moze
mnogo da doprinese performansama i funkcionalnostima
rezultujuceg interpretera.

3.DIZAJN

Prilikom faze dizajniranja jezika pristupilo se istrazivanju
koje su popularne osobine jezika danasnjice, u tome je
najvise pomogao “StackOverflow Developer Survey” tj.
anketa koju na kraju svake godine popunjavaju programeri.
Izmedu svih programskih jezika najvise su se izdvajali
“Python” i “JavaScript” kako medu profesionalcima tako i
medu pocetnicima pa je prilikom dizajniranja sintakse i
odabira osobina jezika bilo logi¢no pokusati imitirati
odredene osobine tih jezika [2].

3.1. Interpretacija

Prva i glavna osobina ovog programskog jezika jeste to da
je isti interpretiran a ne kompajliran. Postoji viSe razloga
zasto je interpretirani jezik ponekad dobar izbor: veca
fleksibilnost, prenosivost, manja kriva u¢enja za pocetnike
itd. No, za krajnjeg korisnika najbitniji razlog jeste
prenosivost samog jezika, prilikom konstruisanja
kompajlera bitna je odluka koju ¢e arhitekturu pogadati
kompajler: ARM, x86 ili PowerPC itd., mada je u danasnje
vreme donoSenje takve odluke olakSano postojanjem
radnih okvira za kompajlere poput LLVM. Bilo kako bilo,
definitivno je lakSe napisati interpreter u nekom dobro
podrzanom jeziku koji se moze izvr$avati na skoro svakoj
arhitekturi (a takvih jezika danas ne manjka pogotovu zbog
prethodno pomenutog LLVM) i time obezbediti da se i
ovaj interpreter moze pokrenuti na istim tim arhitekturama.

3.2. Dinamicki tipovi

Inicijalna zamisao bila je da interpreter podrzava staticke
tipove, i prva implementacija interpretera zaista jeste imala
staticke tipove, ali tokom kori§¢enja interpretera doslo se
do zakljucka da je ipak bolje slediti primere Ccisto
interpretiranih jezika koji podrzavaju dinamicke tipove.
Vecina interpretera zaista jeste dinamicki tipizirana i iako
koji je interpreteran, npr. “TypeScript” (doduse pitanje je
koliko je ovo dobar primer posto se “TypeScript” zapravo
transpajlira u “JavaScript” koji je interpretiran i dinamicki
tipiziran), glavni razlog jeste lakoca upotrebe jezika i to je
definitivno ta¢no kada se radi o malim programima i

1321

kratkim skriptama, a buduc¢i da ¢ée veéina programa
pisanim u jeziku koji je implementirao interpreter biti mali
programi ili kratke skripte onda je logicno da se sa
korisnika skine "teret" tipiziranja promenljivih.

3.3. Automatsko upravljanje memorijom

Tokom uobicajenog rada programa isti zauzima i oslobada
odredenu koli¢inu radne memorije. U racunarstvu,
memorija je ograniCen a Cesto i veoma vredan resurs o
kome se mora pazljivo voditi racuna, pa je jako bitno
minimizovati koli¢inu upotrebljene memorije. Postoje dva
pristupa u rukovodenju radnom memorijom. Prvi pristup
jeste da se rukovodenje memorijom prepusti programeru
koji implementira program. On ¢e odredivati trenutke kada
i koliko memorije ¢e biti zauzeto pozivanjem funkcija iz
programskog jezika koje ¢e tokom izvrSavanja vrsiti
sistemske pozive ka operativnom sistemu na kom se
program izvrsava. U onom trenutku kada odredeni komad
memorije bude nepotreban, ta memorija se potom moze
osloboditi. Postoje dva klju¢na aspekta na koje programer
u ovom slucaju uvek mora da misli: prvi, da ne zauzme vise
memorije nego §to mu je neophodno i drugi, da ne zaboravi
da oslobodi memoriju koju je zauzeo. Drugi pristup u
rukovodenju memorije jeste da se programeru oduzme
sloboda zauzimanja i oslobadanja memorije i da se
rukovodenje prepusti kompajleru ili interpreteru. Ovaj deo
posla vrsi zasebna komponenta interpretera koja se zove
modul za automatsko upravljanje memorijom, a Cesce se
koristi pojam na engleskom tj. "garbage collector".

Kada bi se jezik interpretera implementirao u jeziku koji ne
podrzava automatsko upravljanje memorijom (npr. C)
onda bi bilo nepohodno da se isti i implementira (zapravo
postoji i druga opcija a to je da prepustimo
zauzimanje/oslobadanje memorije krajnjem korisniku §to
nije uobicajeno ili tre¢a opcija da nikad ne oslobadamo
memoriju $to je suludo). Buduéi da je odabran jezik koji
ima ugradeno automatsko upravljanje memorijom ovaj deo
posla je ve¢ odraden posto svako zauzimanje memorije za
promenljive u jeziku koji implementira automatski znaci
da ¢e se ista operacija prevesti u zauzimanje memorije od
strane jezika koji implementira interpreter.

4. ZAKLJUCAK

Interpreteri mozda nisu najefikasnije reSenje za izvrSavanje
koda ali oni nude odredene karakteristike koje ih ¢ine vrlo
privlacnim u dana$njim razvojnim okruZenjima poput
brzine razvoja aplikacija i lakSeg otkrivanja greSaka
prilikom razvoja ali to dolazi po cenu nizih performansi u
odnosu na kompajlere.

Danasnji intereteri postigli su mnogo u pogledu
performansi, pa je ta razlika je dosta manja u odnosu na
period pre par decenija $to ih ¢ini odlicnim kandidatima za
zapocinjanje novih projekata [3].

Svrha ovog rada bila je da se prosiri znanje steCeno tokom
master i osnovnih studija kao i upoznavanje sa novim
konceptima prilikom dizajniranja i implementacije jezika,
radi se o kompleksnoj temi koja je predmet istrazivanja i
industrije i akademije i spada u red onih tehnologija koji
predstavljaju temelj modernih informacionih tehnologija.

5. LITERATURA

[1] L. A. Meyerovich and A. S. Rabkin, "Empirical
analysis of programming language adoption”,
Association for Computing Machinery, vol. 48, pp. 1-
18, Oktobar 2013.

[2] StackOverflow, https://survey.stackoverflow.co/2024/,
(pristupljeno u junu 2025.)

[3] T. H. Romer, D. Lee, G. M. Voelker, A. Wolman, W.
A. Wong, J. Baer, B. N. Bershad, H. M. Levy, "The
structure and performance of interpreters”,
Association for Computing Machinery, vol. 31, pp.
150-159, Septembar 1996.

Kratka biografija:

Ratko RuZi¢i¢ roden je 2000. godine u Cacku.
Zavrsio Tehnic¢ku Skolu u istom gradu 2019. godine.
Diplomirao je na Fakultetu Tehnickih Nauka
Univerziteta u Novom Sadu 2023. godine.

kontakt: rruzicic@gmail.com

1322

