

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.92

DOI: https://doi.org/10.24867/33BE13Ruzicic

RAZVOJ INTERPETERA U PROGRAMSKOM JEZIKU GO

DEVELOPMENT OF AN INTERPRETER IN THE GO PROGRAMMING LANGUAGE

Ratko Ružičić, Fakultet tehničkih nauka, Novi Sad

Oblast – RAČUNARSTVO I AUTOMATIKA

Kratak sadržaj – Ovaj rad bavi se izradom interpretera

hipotetičkog programskog jezika, on predstavlja nastavak

prethodnog rada autora na temu kompajlera izrađenog u

programskom jeziku C, koji je koristio alate “flex” i

“bison” za faze leksičke analize i parsiranja. Za razliku od

tog rada, interpretator predstavljen u ovoj tezi razvijen je

isključivo korišćenjem standardne biblioteke programskog

jezika Go, bez oslanjanja na dodatne alate ili postojeći

kod.

Ključne reči: Programski jezici, Interpreteri, Dinamički

tipovi

Abstract – This paper explores the implementation of a

hypothetical programming language, it is an extension of

a previous paper by the same author of a compiler

implemented in C programming language using tools

“flex” and “bison” for lexical analysis and parsing. In

contrast to that paper, an interpreter presented here was

developed exclusively using a standard library of Go

programming language without relying on any other tools

or existing code.

Keywords: Programming languages, Interpreters,

Dynamic types

1. UVOD

1.1. Definicija problema

Za početak neophodno je definisati programski jezik koji

bi imao sledeće funkcionalne osobine:

● dinamički sistem tipova

● podrška za kondicionale(if...else)

● podrška za funkcije

● osnovni aritmetički i logički operatori

● nizovi

● petlje

● osnovni tipovi podataka: integer, double, boolean,

string

● interaktivni(REPL) mod i učitavanje programa iz

fajla

Pored funkcionalnih zahteva interpreter bi trebao da

zadovolji i određene nefunkcionalne zahteve. Najbitniji

među njima jeste lako distribuiranje interpretera i

omogućavanje krajnjim korisnicima da preuzmu

__

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je bio

dr Dunja Vrbaški, docent

interpreter i da ga pokrenu bez potrebe za mukotrpnim

podešavanjem radnog okruženja i instaliranja dodatnih

programa. Kao dodatni zahtev može se izdvojiti i

pokretanje interpretera uz pomoć samo jedne komande.

1.1. Opseg i ograničenja

Polje kompajlera i interpretera je jako složeno i vrlo dobro

proučavano, takođe postoji vrlo dobra povezanost sa

industrijom pa je mnogo novca i vremena uloženo u

proučavanje ove oblasti od strane vrlo uspešnih kompanija.

Uzevši to u obzir može se zaključiti da su današnji

interpeteri često rezultat višedecenijskog napora što od

strane samih kompanija, što od strane nezavisnih

kontributora što samo potvrđuje činjenicu da je

dizajniranje novog programskog jezika i implementiranje

interpretera za njega ogroman poduhvat i da je put od rane

implementacije do prihvatanja od strane industrije i

entuzijasta vrlo dug i jako nepredvidiv [1].

2. TEORIJA

2.1. Leksička analiza

Leksička analiza je prvi korak prilikom interpretacije (ili

kompilacije) programskog jezika. Ulaz u leksičku analizu

predstavlja ”sirovi” tekst sačinjen od niza karaktera a izlaz

predstavlja niz tokena. Tako na primer ako postoji ulaz

sadržine “var a = 3;”. Kao izlaz se može očekivati niz

tokena: “VAR, IDENTIFIER, ASSIGN, NUMBER,

SEMICOLON”. Pored toga očekuje se da leksička analiza

javi grešku u slučaju da za dati ulaz nije moguće generisati

listu tokena ili da pak dostavi token koji bi označio da za

dati unos postoji greška. Na primer, za ulaz “var @ = 3;”,

očekivani izlaz bi bio: “VAR, ERROR”. Dakle lekser

(nekada u literaturi nazvan i skener) je javio da je prvi

token VAR a da njega sledi ERROR token pošto @

karakter nije podržan u gramatici jezika. U ovom primeru

može se uočiti da je lekser efektivno prestao sa radom u

momentu kada je naišao na karakter koji je uzrokovao

grešku, u praksi ovo često nije slučaj. Skoro sve

implementacije modernih jezika omogućavaju dalji rad

leksera kako bi pronašao što više grešaka i o tome

obavestio krajnjeg korisnika koji bi onda dobio listing

grešaka koje treba da reši.

Današnji lekseri takođe uz sam token generišu i značajnu

količinu metapodataka o samom tokenu, osnovni

metapodaci mogu biti broj linije i broj karaktera unutar

fajla nad kojim je vršeno leksiranje, dok neki napredniji

metapodaci mogu biti dužina same lekseme, sadržaj

lekseme i ime fajla u kom je leksema pronađena.

1320

https://doi.org/10.24867/33BE13Ruzicic

2.2. AST

Kako bi opisali značenje i značaj AST-a moguće je

osvrnuti se na sam akronim(u obrnutom redosledu): stabla

(eng. Tree) označavaju da se radi o običnoj strukturi

podataka stabla koje su jako česte u kompjuterskoj nauci,

sintaksna (eng. Syntax) označava da se radi o sintaksi

samog jezika tj. da se sintaksa samog jezika može opisati

jednim takvim stablom i apstraktna(eng. Abstract) u ovom

slučaju znači da ova stabla predstavljaju strukturu a ne da

mapiraju svaki karakter na svaki čvor u datom stablu.

2.3. Parsiranje

Sledeća faza u interpretaciji programa jeste parsiranje,

zadatak parsera programskog jezika jeste da definiše

sintaksu jezika tj. da preuzme tokene dobijene iz

prethodnog koraka (leksičke analize) i da utvrdi da li je

redosled tih tokena ispravan i da dodatno vrati neku

strukturu podataka koja bi bila reprezent samog programa.

Parseri se uglavnom mogu ručno implementirati i većina

implementacija programskih jezika ima ručno napisane

parsere ali takođe postoje alati za generisanje koda parsera

poput “ANTLR”, “bison” ili “yacc” alata koji za definisanu

formalnu gramatiku generišu skelet koda parsera a korisnik

može definisati svoju logiku provere semantike jezika, pa

čak i generisanje koda.

Parseri se ugrubo mogu podeliti u 2 različite kategorije,

“top-down” i “bottom-up”. Glavna razlika između ova dva

tipa jeste da “top-down” parseri kreću od korena

abstraktnog stabla i pokušavaju da dođu do listova samog

stabla pri tom proveravajući da li su zadovoljena pravila

gramatike jezika, dok “bottom-up” parseri kreću od samih

tokena (tj. listova stabla) i pokušavaju da "izgrade" stablo.

Generalno govoreći “top-down” parseri su lakši za

implementaciju ako su ručno implementirani, dok su alati

za generisanje parsera najčešće napravljeni da generišu

neki derivat “bottom-up” parsera.

Klasičan primer “top-down” parsera je Pratov parser

(takođe poznat kao "recursive descent parser") koji je

osmislio Von Prat 1970-ih godina. Pratov parser se u

suštini bavi parsiranjem izraza i rešavanjem problema

redosleda aritmetičkih operacija nad izrazima, on nudi

elegantan način da se predstave odnosi između različitih

operacija. Sve što je potrebno jeste da se definišu operatori

i njihov prioritet i Pratov parser će znati kako tačno da

grupiše operatore. Ako se na primer uzme sledeći izraz za

razmatranje “1 + 2 * 3 - 10 / 5”, onda izlaz Pratovog parsera

može biti sama vrednost izraza, u ovom slučaju “5”, ili isti

izraz ali u formatu grupisanom uz pomoć zagrada tj. “(1 +

((2 * 3) - (10 / 5)))” ili na kraju krajeva kao apstraktno

sintaksno stablo koje će prikazati koje podizraze treba

evaluirati prvo.

2.4. Evaluacija

Evaluacija se odnosi na korak u interpretaciji u kom se u

apstraktnom sintaksnom stablu posećuju svi čvorovi i na

osnovu tipa čvora (i njegovih atributa) vrši evaluacija

izraza. Radi o jednostavnoj implementaciji "šetanja" kroz

stablo i implementiranje logike evaluacije.

Sve do koraka evaluacije razlike između interpretera i

kompajlera nije bilo ali u procesu evaluacije je došlo do

bitnog razdvajanja. U ovom koraku su zaista bile

evaluirane vrednosti izraza ali ako bi cilj bio da se

implementira kompajler onda to ne bi bilo moguće učiniti.

Kod implementacije kompajlera isti bi generisao nekakav

kod, bilo da je u pitanju mašinski kod, asemblerski kod ili

nekakav bajtkod za neku hipotetičku (ili pravu) virtuelnu

mašinu. Razlika deluje suptilno, i u primeru jednog "hobi"

programskog jezika ona suštinski to i jeste ali ako se

sagleda šira slika primetno je da interpreter zapravo

izvršava sve što mu je dato što znači da ako bi interpreter

želeo da pristupi fajlovima ili da otvori nekakvu datoteku

on bi morao da to uradi preko jezika u kome je

implementiran, dok bi kompajler za taj korak samo

generisao mašinski kod koji bi uputio par sistemskih

poziva i otvorio fajl a taj mašinski kod bi kasnije bio i

izvršen. Svaki moderan programski jezik današnjice

podržava pristup fajlovima sa fajl sistema tako da to nije

realan problem ali i dalje treba biti svestan činjenice da

izbor jezika u kome se implementira interpreter može

mnogo da doprinese performansama i funkcionalnostima

rezultujućeg interpretera.

3. DIZAJN

Prilikom faze dizajniranja jezika pristupilo se istraživanju

koje su popularne osobine jezika današnjice, u tome je

najviše pomogao “StackOverflow Developer Survey” tj.

anketa koju na kraju svake godine popunjavaju programeri.

Između svih programskih jezika najviše su se izdvajali

“Python” i “JavaScript” kako među profesionalcima tako i

među početnicima pa je prilikom dizajniranja sintakse i

odabira osobina jezika bilo logično pokušati imitirati

određene osobine tih jezika [2].

3.1. Interpretacija

Prva i glavna osobina ovog programskog jezika jeste to da

je isti interpretiran a ne kompajliran. Postoji više razloga

zašto je interpretirani jezik ponekad dobar izbor: veća

fleksibilnost, prenosivost, manja kriva učenja za početnike

itd. No, za krajnjeg korisnika najbitniji razlog jeste

prenosivost samog jezika, prilikom konstruisanja

kompajlera bitna je odluka koju će arhitekturu pogađati

kompajler: ARM, x86 ili PowerPC itd., mada je u današnje

vreme donošenje takve odluke olakšano postojanjem

radnih okvira za kompajlere poput LLVM. Bilo kako bilo,

definitivno je lakše napisati interpreter u nekom dobro

podržanom jeziku koji se može izvršavati na skoro svakoj

arhitekturi (a takvih jezika danas ne manjka pogotovu zbog

prethodno pomenutog LLVM) i time obezbediti da se i

ovaj interpreter može pokrenuti na istim tim arhitekturama.

3.2. Dinamički tipovi

Inicijalna zamisao bila je da interpreter podržava statičke

tipove, i prva implementacija interpretera zaista jeste imala

statičke tipove, ali tokom korišćenja interpretera došlo se

do zaključka da je ipak bolje slediti primere čisto

interpretiranih jezika koji podržavaju dinamičke tipove.

Većina interpretera zaista jeste dinamički tipizirana i iako

možda jeste moguće naći primere statički tipiziranog jezika

koji je interpreteran, npr. “TypeScript” (doduše pitanje je

koliko je ovo dobar primer pošto se “TypeScript” zapravo

transpajlira u “JavaScript” koji je interpretiran i dinamički

tipiziran), glavni razlog jeste lakoća upotrebe jezika i to je

definitivno tačno kada se radi o malim programima i

1321

kratkim skriptama, a budući da će većina programa

pisanim u jeziku koji je implementirao interpreter biti mali

programi ili kratke skripte onda je logično da se sa

korisnika skine "teret" tipiziranja promenljivih.

3.3. Automatsko upravljanje memorijom

Tokom uobičajenog rada programa isti zauzima i oslobađa

određenu količinu radne memorije. U računarstvu,

memorija je ograničen a često i veoma vredan resurs o

kome se mora pažljivo voditi računa, pa je jako bitno

minimizovati količinu upotrebljene memorije. Postoje dva

pristupa u rukovođenju radnom memorijom. Prvi pristup

jeste da se rukovođenje memorijom prepusti programeru

koji implementira program. On će određivati trenutke kada

i koliko memorije će biti zauzeto pozivanjem funkcija iz

programskog jezika koje će tokom izvršavanja vršiti

sistemske pozive ka operativnom sistemu na kom se

program izvršava. U onom trenutku kada određeni komad

memorije bude nepotreban, ta memorija se potom može

osloboditi. Postoje dva ključna aspekta na koje programer

u ovom slučaju uvek mora da misli: prvi, da ne zauzme više

memorije nego što mu je neophodno i drugi, da ne zaboravi

da oslobodi memoriju koju je zauzeo. Drugi pristup u

rukovođenju memorije jeste da se programeru oduzme

sloboda zauzimanja i oslobađanja memorije i da se

rukovođenje prepusti kompajleru ili interpreteru. Ovaj deo

posla vrši zasebna komponenta interpretera koja se zove

modul za automatsko upravljanje memorijom, a češće se

koristi pojam na engleskom tj. "garbage collector".

Kada bi se jezik interpretera implementirao u jeziku koji ne

podržava automatsko upravljanje memorijom (npr. C)

onda bi bilo nepohodno da se isti i implementira (zapravo

postoji i druga opcija a to je da prepustimo

zauzimanje/oslobađanje memorije krajnjem korisniku što

nije uobičajeno ili treća opcija da nikad ne oslobađamo

memoriju što je suludo). Budući da je odabran jezik koji

ima ugrađeno automatsko upravljanje memorijom ovaj deo

posla je već odrađen pošto svako zauzimanje memorije za

promenljive u jeziku koji implementira automatski znači

da će se ista operacija prevesti u zauzimanje memorije od

strane jezika koji implementira interpreter.

4. ZAKLJUČAK

Interpreteri možda nisu najefikasnije rešenje za izvršavanje

koda ali oni nude određene karakteristike koje ih čine vrlo

privlačnim u današnjim razvojnim okruženjima poput

brzine razvoja aplikacija i lakšeg otkrivanja grešaka

prilikom razvoja ali to dolazi po cenu nižih performansi u

odnosu na kompajlere.

Današnji intereteri postigli su mnogo u pogledu

performansi, pa je ta razlika je dosta manja u odnosu na

period pre par decenija što ih čini odličnim kandidatima za

započinjanje novih projekata [3].

Svrha ovog rada bila je da se proširi znanje stečeno tokom

master i osnovnih studija kao i upoznavanje sa novim

konceptima prilikom dizajniranja i implementacije jezika,

radi se o kompleksnoj temi koja je predmet istraživanja i

industrije i akademije i spada u red onih tehnologija koji

predstavljaju temelj modernih informacionih tehnologija.

5. LITERATURA

[1] L. A. Meyerovich and A. S. Rabkin, ”Empirical

analysis of programming language adoption”,

Association for Computing Machinery, vol. 48, pp. 1-

18, Oktobar 2013.

[2] StackOverflow, https://survey.stackoverflow.co/2024/,

(pristupljeno u junu 2025.)

[3] T. H. Romer, D. Lee, G. M. Voelker, A. Wolman, W.

A. Wong, J. Baer, B. N. Bershad, H. M. Levy, ”The

structure and performance of interpreters”,

Association for Computing Machinery, vol. 31, pp.

150-159, Septembar 1996.

Kratka biografija:

Ratko Ružičić rođen je 2000. godine u Čačku.

Završio Tehničku školu u istom gradu 2019. godine.

Diplomirao je na Fakultetu Tehničkih Nauka

Univerziteta u Novom Sadu 2023. godine.

kontakt: rruzicic@gmail.com

1322

