g?ﬁ Zbornik radova Fakulteta tehniékih nauka, Novi Sad

UDK: 4.41
DOI: https://doi.org/10.24867/33BE38Rajnovic

MIGRACIJA MIKRO KLIJENTSKIH APLIKACIJA IZ VEB U DESKTOP OKRUZENJE

MIGRATION OF MICRO-FRONTEND APPLICATIONS FROM WEB TO DESKTOP
ENVIRONMENT

Teodora Rajnovi¢, Fakultet tehnickih nauka, Novi Sad

Oblast — SOFTVERSKO INZENJERSTVO I
INFORMACIONE TEHNOLOGIJE

Kratak sadrzaj — U radu je predstavijena arhitektura
mikro klijentskih aplikacija (eng. micro-frontend) i
prednosti koje ovaj pristup donosi u razvoju veb aplikacija.
Opisani su savremeni pristupi u razvoju desktop
aplikacija, pri cemu je Electron identifikovan kao
najprikladnije resenje za migraciju postojece mikro
klijentske aplikacije u desktop okruzenje. Prikazana je
softverska arhitektura konkretne veb aplikacije i proces
njene transformacije u desktop aplikaciju, uz ocuvanje
modularnosti, internet konekcije i postojeceg koda.

Kljuéne refi: Mikro klijentska arhitektura, Desktop
aplikacije, Electron radni okvir

Abstract — The paper presents the architecture of micro-
frontend applications and the advantages that this
approach brings in the development of web applications.
Modern approaches in desktop application development
are described, with Electron identified as the most suitable
solution for migrating an existing micro-frontend
application to a desktop environment. The software
architecture of a specific web application and the process
of its transformation into a desktop application are

presented, while preserving modularity, internet
connection and existing code.
Keywords: Micro-frontend architecture, Desktop

applications, Electron framework

1. UVOD

Micro-frontend arhitektura postaje sve popularniji pristup
u razvoju modernih i savremenih veb aplikacija. Ovaj
pristup omoguc¢ava podelu velikih monolitnih klijentskih
aplikacija na manje, nezavisne module, Sto doprinosi
lak§em odrzavanju, unapredenju i timskom radu. Micro-
frontend koncept koristi principe mikro-servisne
arhitekture, ali se primenjuje na frontend deo aplikacije [1].
Iako su veb aplikacije danas dominantne zbog svoje
dostupnosti preko veb pregledaca, korisnici informacionih
sistema Cesto preferiraju desktop aplikacije zbog boljih
performansi, integracije sa operativnim sistemom i vece
kontrole nad bezbednosti i privatnosti podataka.

U slucajevima kada su veb aplikacije realizovane kroz
upotrebu micro-frontend tehnologije, mogu se uoditi
znacajni benefiti u kontekstu velikih sistema koji obraduju
velike koli¢ine informacija i vrSe komunikaciju izmedu
razli¢itih komponenti. Ipak, zbog specificnih zahteva
korisnika, kao S§to su brzina, rad van mreze i direktan

pristup hardveru, javlja se potreba za migracijom u desktop
okruzenje.

Migracija micro-frontend veb aplikacije prikazana je na
primeru DevAdmin aplikacije, ¢ija je namena
konfiguracija, dijagnostika i analiza hardverskih uredaja.
DevAdmin je razvijena kao Angular aplikacija sa
modularnom arhitekturom, koja omogucava efikasno
upravljanje = komponentama i funkcionalnostima.
Korisnicima je omoguceno da podeSavaju mrezne i
bezbednosne parametre, upravljaju licencama i pristupaju
statusnim izvestajima radi reSavanja tehnickih problema.

Ovaj rad istrazuje tehnoloske aspekte te migracije, uz
ocuvanje modularne arhitekture i postojec¢eg koda, kao i
prednosti koje se postizu u pogledu performansi,
bezbednosti i korisnickog iskustva.

2. TEHNOLOSKE OSNOVE

Primer migracije micro-frontend aplikacije u desktop
aplikaciju predstavljen je na primeru Angular [2]
aplikacije, uz primenu micro-frontend arhitekture
zasnovane na Module Federation konceptu. U svrhu
odabira najpogodnijeg reSenja za migraciju iz micro-
frontend u desktop okruzenje, dat je sazet prikaz
savremenih pristupa u razvoju desktop aplikacija.

2.1. Angular

Angular [2] je TypeScript [3] radni okvir koji omoguéava
izgradnju dinamickih, single-page aplikacija kroz upotrebu
komponenti, 8ablona 1 reaktivnog programiranja.
Komponente definisu izgled i ponasanje aplikacije, dok
servisi omogucéavaju deljenje logike i podataka. Pruza
podrsku za reaktivno programiranje putem signala,
odlozeno ucitavanje komponenti radi poboljSanja
performansi, kao i sistem za rutiranja za navigaciju bez
ponovnog ucitavanja stranice. Angular CLI (Command-
line interface) olakSava razvoj aplikacija kroz brzo
generisanje elemenata, a njegova arhitektura obezbeduje
strukturiran i odrziv razvoj modernih aplikacija.

2.2. JavaScript

JavaScript je interpretirani programski jezik visokog nivoa,
uveden 1995. godine, koji omogucava manipulaciju
korisnickog interfejsa u veb pregledacima [4]. JavaScript
podrzava viSe programskih paradigmi, ukljucujuéi i
objektno i funkcionalno programiranje, i poseduje
ugradene APl (Application Programing Interface)
interfejse, za rad sa tekstom, datumima i DOM (Document
Object Model) objektima. Iako direktno ne podrzava
ulazno/izlazne operacije, okruzenja poput Node.js
prosiruju njegovu primenu van pregledaca. ECMAScript

1406

https://doi.org/10.24867/33BE38Rajnovic

standard je nastao kao posledica potrebe za prosirenjem,
unapredenjem konzistentnosti 1 standardizacijom
JavaScript programskog jezika u razli¢itim okruzenjima.

2.3. Micro-frontend aplikacije

Micro-frontend arhitektura predstavlja savremeni pristup
razvoju veb aplikacija, koji omoguéava podelu klijentske
aplikacije na manje, nezavisne i lako upravljive module
[5]. Za razliku od tradicionalne arhitekture klijentskih
aplikacija, gde je aplikacija monolitnog karaktera i zahteva
visok njivo koordinacije medu c¢lanovima tima, micro-
frontend omogucava timovima da samostalno razvijaju,
testiraju 1 primenjuju funkcionalnosti, Sto znacajno
unapreduje skalabilnost 1 brzinu isporuke novih
funkcionalnosti. Ovaj pristup je inspirisan mikro-servisima
na serverskoj strani i omogucava vecu fleksibilnost,
nezavisnu primenu i lakS$e odrzavanje aplikacija. Velike
kompanije poput Spotify, lkea i Zalando ve¢ uspes$no
primenjuju micro-frontend arhitekturu za razvoj
kompleksnih sistema [6].

Za implementaciju micro-frontend aplikacija koriste se
alati poput Webpack, Module Federation, Single-SPA i
Angular Elements. Module Federation omogucava
ucitavanje nezavisnih modula, kao §to bi na primeru veb
aplikacija za kupovinu to bile korisnicke korpe za
kupovinu ili sistem za placanje. Ovakvom arhitekturom
izbegava se dupliranje koda i omogucava se deljenje Ul
(User Interface) komponenti izmedu viSe aplikacija.
Ukoliko se ispostuju konvencije imenovanja i izoluje kod
radi izbegavanja konflikata, ova arhitektura podstice
timsku autonomiju, jer svaki tim moze da radi na svom
modulu bez potrebe za koordinacijom sa drugim timovima.

Micro-frontend arhitektura se moze organizovati kroz dve
podele: horizontalna i1 vertikalna. Horizontalna podela
podrazumeva vise modula na istoj stranici, gde se timovi
fokusiraju na tehnicke aspekte poput Ul komponenti ili
API integracije. Ovaj model je pogodan za velike timove i
poslovne poddomene, ali zahteva vecu koordinaciju.
Vertikalna podela organizuje aplikaciju oko poslovnih
funkcionalnosti, gde svaki micro-frontend predstavlja
jednu celinu koju razvija jedan tim. Shell aplikacija
upravlja ucitavanjem ovih modula i obezbeduje da se, u
datom trenutku, prikazuje samo jedan micro-frontend, Sto
je posebno korisno kod SPA aplikacija.

Kompozicija micro-frontend aplikacija omoguéava
integraciju nezavisnih modula u jedan korisnicki interfejs,
uz podrsku radnih okvira kao $to su Angular, React i
Vuejs. Web Components omogucavaju kreiranje
inkapsuliranih HTML (Hyper Text Markup Language)
elemenata, ¢ime se postize modularnost i lakSa saradnja
medu timovima.

Postoje tri micro-frontend

aplikacija:

strategije kompozicije

» kompozicija na strani servera — server sastavlja
micro-frontend module pre nego §to posSalje konacni
HTML Kklijentu, ¢ime se ubrzava ucitavanje i smanjuje
opterecenje na pregledacu. Idealna je za visoko
indeksirane ili kritiCne veb stranice, ali zahteva tesnu
integraciju sa serverom, S§to ograniCava nezavisnost
modula.

* kompozicija na strani ivice (edge) — sli¢na je
serverskoj kompoziciji, ali se izvrSava blize korisniku,

konkretno preko CDN (Content Delivery Network)
infrastrukture. Omogucava brzu isporuku sadrzaja, ali
unosi dodatnu slozenost zbog razli¢ittih CDN
implementacija i ograni¢enog broja alata za podrsku.

* kompozicija na strani klijenta — moduli se
ucitavaju i sklapaju direktno pomocu shell aplikacije. Ovaj
pristup omogucava dinamicko upravljanje, vecu
autonomiju timova i bolje korisnicko iskustvo, bez potrebe
za ponovnim ucitavanjem cele stranice.

Strategije = kompozicije micro-frontend arhitekture
prikazane su na slici 1.
B ‘
¥ T
coN < SN
\'
3 y ‘ 4
Cuent-sice Edge-side Server-side
composition. ‘composition composition

Slika 1. Metode kombinacije micro-frontend arhitektura
(6]

Module Federation je tehnologija koja je uvedena u
Webpack verziji 5 i koja omogucéava deljenje koda i
zavisnosti izmedu vise aplikacija [7]. Aplikacije se dele na
nezavisno razvijene, testirane i primenjene micro-frontend
module (remotes), koji mogu biti ili “proizvodaci”
(remotes) 1 “potrosaci” (hosts) ili imati obije uloge.
Proizvodaci izlazu svoje module, a potrosaci su aplikacije
koje koriste te module. Ovaj pristup smanjuje dupliranje
koda, poboljsava performanse i omogucava skalabilan
razvoj nezavisnih micro-frontend modula.

2.4. Savremeni pristup u razvoju desktop aplikacija

Desktop aplikacije se izvrSavaju lokalno na korisnikovom
uredaju, bez potrebe za internet konekcijom, §to im
omogucéava bolje performanse, vecu kontrolu nad
resursima i veéu bezbednost. Tako imaju prednosti u
stabilnosti 1 brzini, zahtevaju instalaciju, redovno
azuriranje i Cesto su vezane za odredeni operativni sistem
[8].

Razvoj desktop aplikacija ukljucuje razlicite tehnologije,
zavisno od potreba samog projekta. Pri odabiru tehnologije
za realizaciju migracije micro-frontend aplikacije u
desktop aplikaciju razmatrani su aspekti poput stepena
izmene koda, podrSke za slozenim funkcionalnostima i
multiplatformske podrske. U svrhu migracije i prema
datim kriterijumima razmatrane su sledece tehnologije:

* WPF (.NET) — nudi bogat skup UI elemenata,
ali je vezan za Windows. Zahteva potpun prelaz na C# i
visok stepen refaktorizacije.

o JavaFX - omogucava razvoj u Java
programskom jeziku; slaba integracija sa modernim veb
stekom. Zahteva potpunu refaktorizaciju.

* PyQT — dobar GUI alat u Python programskom
jeziku, ali zahteva napustanje postojeceg koda i ima
ogranicenja u sistemskoj integraciji.

* Flutter — namenjen prvenstveno za mobilne
aplikacije, koristi programski jezik Dart. Veliki stepen

1407

refaktorizacije i nije pogodan za kompleksne desktop
sisteme.

* Tauri — moderan i lagan okvir sa dobrim
performansama, ali manje zreo za slozene aplikacije i
zahteva prelaz na Rust programski jezik.

* PWA (Progressive Web Apps) — nizak stepen
refaktorizacije, ali ne zadovoljava uslove za offline rad sa
hardverom.

* Electron — srednji stepen refaktorizacije,

omogucava ponovnu upotrebu Angular koda. Podrzava
multiplatformski razvoj, bogate sistemske funkcionalnosti,
ali ima ve¢e memorijsko opterecenje.
Za migraciju postojece veb aplikacije u desktop okruZenje,
izabran je Electron radni okvir. Electron omogucava
ponovnu upotrebu postoje¢eg Angular koda, podrzava vise
operativnih sistema i nudi stabilnost i funkcionalnost
potrebnu za kompleksne aplikacije. Uprkos vecem
memorijskom optere¢enju, njegova zrelost i Siroka
primena ¢ine ga pouzdanim izborom.

2.5. Electron

Electron je multiplatformski radni okvir koji omogucava
razvoj desktop aplikacija koristeci veb tehnologije kao Sto
su HTML, CSS i JavaScript [9]. Izgraden je na Chromium
i Node.js projektima, S$to mu omogucava pristup
sistemskim resursima i funkcionalnostima kao S$to su
dijalozi, obavestenja i automatska azuriranja. Podrzava
Windows, macOS i Linux, ¢ime obezbeduje konzistentno
korisni¢ko iskustvo na vise platformi.
Electron aplikacije su sacinjene od dva procesa:

 glavni proces - upravlja logikom aplikacije,
prozorima, sistemskim funkcijama i zivotnim ciklusom
aplikacije.

* proces prikazivanja — upravlja veb sadrzajem
svakog prozora.
Komunikacija izmedu ovih proces se vrsi preko IPC (Inter-
Process Communication) mehanizma, S$to omoguéava
stabilnost i izolaciju procesa. Glavni proces koristi module
kao §to su BrowserWindow modul za kreiranje prozora i
app modul za upravljanje zivotnim ciklusom aplikacije.
Procesi prikazivanja koriste HTML, CSS i JavaScript za
prikaz sadrzaja, ali, iz bezbednosnih razloga, nemaju
direktan pristupa Node.js API interfejsima. Slika 2
prikazuje arhitekturu Electron aplikacije, kao i odnos
izmedu glavnog i procesa prikazivanja.

<P Electron

Main / browser process

Slika 2. Arhitektura Electron aplikacije [10]

Da bi se omogucila bezbedna interakcija izmedu proces,
Electron koristi preload skripte koje se izvrSavaju pre
ucitavanja veb sadrzaja. Preload skripte imaju pristup
Node.js API interfejsima i preko contextBridge modula
mogu bezbedno izloziti funkcionalnosti procesu
prikazivanja. Pored toga, Electron podrzava kreiranje
usluznih procesa preko UtilityProcess API interfejsa, koji
se koriste za izvrSavanje zahtevnih ili nepouzdanih
zadataka. Procesi prikazivanja komuniciraju sa usluznim
procesima preko MessagePort kanala.

3. MIGRACIJA ANGULAR VEB APLIKACIJE U
STANDALONE ELECTRON APLIKACIJU

Migracija Angular veb aplikacije u standalone Electron
okruzenje prikazana je kroz primer DevAdmin aplikacije.
DevAdmin je alat za korisnicku podrsku i analizu
hardverskih uredaja. Aplikacija omoguéava pregled
sistemskih informacija, upravljanje podeSavanjima,
generisanje izvestaja o statusu i greSkama, kao i direktnu
interakciju sa uredajima preko lokalne mreze. Zahvaljujuéi
micro-frontend arhitekturi i intuitivnom interfejsu (slika
3.), DevAdmin pruza fleksibilno i efikasno resenje za
tehnicki podrsku, a njena migracija u Electron aplikaciju
omogucava stabilniji i nezavisniji rad u desktop okruzenju.

VAR I R SR S

TivMy diDie»

Slika 3. Pregled interfejsa DevAdmin aplikacije

DevAdmin aplikacija predstavlja konkretan primer
primene micro-frontend arhitekture uz koris¢enje Module
Federation koncepta u okviru Angualr radnog okvira.
Aplikacija je organizovana kao modularna klijentska veb
aplikacije, sa dve shell aplikacije koje dinamicki ucitavaju
viSe nezavisnih remote modula. Ovaj pristup omogucava
timovima da razvijaju funkcionalnosti izolovano, uz bolju
skalabilnost 1 odrzivost koda. Migracija DevAdmin
aplikacije koriste¢i Electron omogudila bi koris¢enje
postojeceg veb koda za multiplatformsku distribuciju.
Kompozicija micro-frontend modula u DevAdmin
aplikaciji realizovana je na strani klijenta, gde shell
aplikacija dinamicki integriSe remote module tokom
izvrSavanja. Module Federation omogucava da se ovi
moduli uditaju na zahtev, ¢ime se postize fleksibilna i
prilagodljiva arhitektura. Da bi se konfigurisao Module
Federation potrebno je definisati webpack.config.js,
module-federation.config.json i default-module-
federation-config.js fajlovi, u kojima se definiSu remote
aplikacije 1 deljeni Angular moduli. Ovaj sistem
omogucava optimizaciju ucitavanja i izbegavanje konflikta
u zavisnostima, ¢ime se unapreduju performanse i
stabilnost aplikacije.

1408

Migrirana DevAdmin Electron aplikacija saéinjena je od
prozora za prijavu korisnika (slika 4) i glavnog prozora
(slika 5). Shell i remote aplikacije se mogu ucitati bilo
putem udaljene veb adrese ili direktno sa lokalnog diska.
Koris¢enjem Module Federation koncepta, omogucena je
dinamicka integracija nezavisnih modula, dok Electron
omogucava njihovo prikazivanje u odvojenim karticama ili
prozorima.

LI - o =

Slika 4. Stranica za prijavu korisnika

Slika 5. Glavni ekran sa ucitanom remote aplikacijom

Ucitavanje aplikacija realizovano je kroz dve metode:
preko loadURL metode za ucitavanje sa lokalnog servera
ili preko loadFile metode za ucitavanje kompajliranih
HTML fajlova. U drugom slucaju, micro-frontend
aplikacije se ucitavaju unutar jednog dashboard.html fajla
putem <iframe> elementa, ¢ime se simulira ponasanje shell
aplikacije. Ovaj pristup omogucava bolju izolovanost
komponenti, poboljsava performanse i bezbednost, ali
zahteva rucnu izgradnju aplikacije nakon svake izmene.

Da bi se izbegli problemi sa apsolutnim putanjama unutar
<iframe> aplikacija, implementirano je preusmeravanje
HTTP 1 WebSocket zahteva na nivou Electron sesije,
koriste¢i webRequests.onBeforeRequest metode. Ovo
omogucava da aplikacije zadrze originalnu logiku
komunikacije sa serverom, bez izmene koda. Pored toga,
upravljanje Zzivotnim ciklusom prozora i korisnickom
sesijom realizovano je kroz IPC mehanizam i localStorage,
¢ime se obezbeduje nezavisnost i izolovanost svake remote
aplikacije.

Celokupno reSenje omogucava da se postojeca veb
arhitektura lako migrira u desktop okruzenje, uz minimalne
izmene u kodu i zadrzavanje osnovnih principa micro-
frontend arhitekture. Ovakva kombinacija tehnologija
pruza fleksibilnost, stabilnost i moguc¢nost daljeg
prosirenja aplikacije u razli¢itim razvojnim i produkcionim
scenarijima.

4. ZAKLJUCAK

U ovom radu je uspeSno istrazena i demonstrirana
migracija Angular micro-frontend veb aplikacija u desktop
okruzenje uz koris¢enje Electron radnog okvira. Zbog
svoje zrelosti, podr§ke za naprednim funkcionalnostima i
mogucénosti duboke integracije sa operativnim sistemom,
Electron je odabran kao najprikladnije reSenje za
migraciju, dok su alternative poput Tauri i PWA odbacene

zbog nezrelosti tehnologije, podrske za offline rad i slabe
integracije sa operativnim sistemom. Migracija je
realizovana bez drasti¢nih izmena u postoje¢em kodu, uz
ocuvanje modularnosti i principa koje propisuje micro-
frontend arhitektura.

Tehnicke strategije ukljucuju ucitavanje remote aplikacija,
upravljanje zavisnostima, preusmeravanje HTTP i
WebSocket zahteva i komunikacije preko [IPC mehanizma.
Electron aplikacija preuzima ulogu nove shell aplikacije,
omogucujuci postepenu i kontrolisanu migraciju. lako ovaj
pristup donosi odredene izazove, kao Sto su povecana
potro$nja resursa i1 bezbednosni rizici, uz primenu
preporucenih praksi, moguce je obezbediti stabilno i
bezbedno okruZenje.

Rezultati pokazuju da je predloZeno reSenje efikasno i
odrzivo za prelazak kompleksne veb aplikacije u desktop
okruzenje, uz zadrzavanje fleksibilnosti, skalabilnosti i
agilnog razvoja. Ovakva arhitektura omogucava de se
micro-frontend aplikacije pokreu nezavisno, Cime se
zadrzavaju sve prednosti originalnog veb pristupa u
kontekstu desktop aplikacija.

5. LITERATURA

[1] Prajwal, Y., Parekh, J. V., & Shettar, R. (2021). A brief
review of micro-frontends. United International Journal for
Research and Technology, 2(8), 18.

[2] https://angular.dev (pristupljeno u septembru 2025.)

[3] https://www.typescriptlang.org (pristupljeno u
septembru 2025.)

[4] Haverbeke, M. (2018). Eloquent javascript: A modern
introduction to programming. No Starch Press.

[5] https://martinfowler.com/articles/micro-frontends.html
(pristupljeno u septembru 2025.)

[6] Peltonen, S., Mezzalira, L., & Taibi, D. (2021).
Motivations, benefits, and issues for adopting micro-
frontends: A multivocal literature review. Information and
Software Technology, 136, 106571.

[7] https://module-federation.io (pristupljeno u novembru
2025.)

[8] https://www.geeksforgeeks.org/what-is-standalone-
application (pristupljeno u novembru 2025.)

[9] https://www.electronjs.org (pristupljeno u novembru
2025.)

[10] Alymkulov, D. (2019). Desktop Application
Development Using Electron Framework: Native vs.
Cross-Platform. [Bachelor’s Thesis]. South-Eastern
Finland University of Applied Sciences.

Kratka biografija:

Teodora Rajnovié rodena je 1. avgusta
1999. godine u Zvorniku. Osnovnu
Skolu ,,Stefan Mitrov Ljubisa“ zavrsila
je u Budvi, 2014. godine. U istom gradu
je 1 zavrsila srednju $kolu ,,Danilo Kis*,
smer turisticki tehnicar 2018. godine.
Kasnije te godine, upisuje Fakultet
tehni¢kih nauka u Novom Sadu, smer
Softversko inzenjerstvo i informacione
tehnologije. Studije zavrSava u roku,
2022. godine.

1409

https://angular.dev/

