

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.41

DOI: https://doi.org/10.24867/33BE38Rajnovic

MIGRACIJA MIKRO KLIJENTSKIH APLIKACIJA IZ VEB U DESKTOP OKRUŽENJE

MIGRATION OF MICRO-FRONTEND APPLICATIONS FROM WEB TO DESKTOP

ENVIRONMENT

Teodora Rajnović, Fakultet tehničkih nauka, Novi Sad

Oblast – SOFTVERSKO INŽENJERSTVO I

INFORMACIONE TEHNOLOGIJE

Kratak sadržaj – U radu je predstavljena arhitektura

mikro klijentskih aplikacija (eng. micro-frontend) i

prednosti koje ovaj pristup donosi u razvoju veb aplikacija.

Opisani su savremeni pristupi u razvoju desktop

aplikacija, pri čemu je Electron identifikovan kao

najprikladnije rešenje za migraciju postojeće mikro

klijentske aplikacije u desktop okruženje. Prikazana je

softverska arhitektura konkretne veb aplikacije i proces

njene transformacije u desktop aplikaciju, uz očuvanje

modularnosti, internet konekcije i postojećeg koda.

Ključne reči: Mikro klijentska arhitektura, Desktop

aplikacije, Electron radni okvir

Abstract – The paper presents the architecture of micro-

frontend applications and the advantages that this

approach brings in the development of web applications.

Modern approaches in desktop application development

are described, with Electron identified as the most suitable

solution for migrating an existing micro-frontend

application to a desktop environment. The software

architecture of a specific web application and the process

of its transformation into a desktop application are

presented, while preserving modularity, internet

connection and existing code.

Keywords: Micro-frontend architecture, Desktop

applications, Electron framework

1. UVOD

Micro-frontend arhitektura postaje sve popularniji pristup

u razvoju modernih i savremenih veb aplikacija. Ovaj

pristup omogućava podelu velikih monolitnih klijentskih

aplikacija na manje, nezavisne module, što doprinosi

lakšem održavanju, unapređenju i timskom radu. Micro-

frontend koncept koristi principe mikro-servisne

arhitekture, ali se primenjuje na frontend deo aplikacije [1].

Iako su veb aplikacije danas dominantne zbog svoje

dostupnosti preko veb pregledača, korisnici informacionih

sistema često preferiraju desktop aplikacije zbog boljih

performansi, integracije sa operativnim sistemom i veće

kontrole nad bezbednosti i privatnosti podataka.

U slučajevima kada su veb aplikacije realizovane kroz

upotrebu micro-frontend tehnologije, mogu se uočiti

značajni benefiti u kontekstu velikih sistema koji obrađuju

velike količine informacija i vrše komunikaciju između

različitih komponenti. Ipak, zbog specifičnih zahteva

korisnika, kao što su brzina, rad van mreže i direktan

pristup hardveru, javlja se potreba za migracijom u desktop

okruženje.

Migracija micro-frontend veb aplikacije prikazana je na

primeru DevAdmin aplikacije, čija je namena

konfiguracija, dijagnostika i analiza hardverskih uređaja.

DevAdmin je razvijena kao Angular aplikacija sa

modularnom arhitekturom, koja omogućava efikasno

upravljanje komponentama i funkcionalnostima.

Korisnicima je omogućeno da podešavaju mrežne i

bezbednosne parametre, upravljaju licencama i pristupaju

statusnim izveštajima radi rešavanja tehničkih problema.

Ovaj rad istražuje tehnološke aspekte te migracije, uz

očuvanje modularne arhitekture i postojećeg koda, kao i

prednosti koje se postižu u pogledu performansi,

bezbednosti i korisničkog iskustva.

2. TEHNOLOŠKE OSNOVE

Primer migracije micro-frontend aplikacije u desktop

aplikaciju predstavljen je na primeru Angular [2]

aplikacije, uz primenu micro-frontend arhitekture

zasnovane na Module Federation konceptu. U svrhu

odabira najpogodnijeg rešenja za migraciju iz micro-

frontend u desktop okruženje, dat je sažet prikaz

savremenih pristupa u razvoju desktop aplikacija.

2.1. Angular

Angular [2] je TypeScript [3] radni okvir koji omogućava

izgradnju dinamičkih, single-page aplikacija kroz upotrebu

komponenti, šablona i reaktivnog programiranja.

Komponente definišu izgled i ponašanje aplikacije, dok

servisi omogućavaju deljenje logike i podataka. Pruža

podršku za reaktivno programiranje putem signala,

odloženo učitavanje komponenti radi poboljšanja

performansi, kao i sistem za rutiranja za navigaciju bez

ponovnog učitavanja stranice. Angular CLI (Command-

line interface) olakšava razvoj aplikacija kroz brzo

generisanje elemenata, a njegova arhitektura obezbeđuje

strukturiran i održiv razvoj modernih aplikacija.

2.2. JavaScript

JavaScript je interpretirani programski jezik visokog nivoa,

uveden 1995. godine, koji omogućava manipulaciju

korisničkog interfejsa u veb pregledačima [4]. JavaScript

podržava više programskih paradigmi, uključujući i

objektno i funkcionalno programiranje, i poseduje

ugrađene API (Application Programing Interface)

interfejse, za rad sa tekstom, datumima i DOM (Document

Object Model) objektima. Iako direktno ne podržava

ulazno/izlazne operacije, okruženja poput Node.js

proširuju njegovu primenu van pregledača. ECMAScript

1406

https://doi.org/10.24867/33BE38Rajnovic

standard je nastao kao posledica potrebe za proširenjem,

unapređenjem konzistentnosti i standardizacijom

JavaScript programskog jezika u različitim okruženjima.

2.3. Micro-frontend aplikacije

Micro-frontend arhitektura predstavlja savremeni pristup

razvoju veb aplikacija, koji omogućava podelu klijentske

aplikacije na manje, nezavisne i lako upravljive module

[5]. Za razliku od tradicionalne arhitekture klijentskih

aplikacija, gde je aplikacija monolitnog karaktera i zahteva

visok njivo koordinacije među članovima tima, micro-

frontend omogućava timovima da samostalno razvijaju,

testiraju i primenjuju funkcionalnosti, što značajno

unapređuje skalabilnost i brzinu isporuke novih

funkcionalnosti. Ovaj pristup je inspirisan mikro-servisima

na serverskoj strani i omogućava veću fleksibilnost,

nezavisnu primenu i lakše održavanje aplikacija. Velike

kompanije poput Spotify, Ikea i Zalando već uspešno

primenjuju micro-frontend arhitekturu za razvoj

kompleksnih sistema [6].

Za implementaciju micro-frontend aplikacija koriste se

alati poput Webpack, Module Federation, Single-SPA i

Angular Elements. Module Federation omogućava

učitavanje nezavisnih modula, kao što bi na primeru veb

aplikacija za kupovinu to bile korisničke korpe za

kupovinu ili sistem za plaćanje. Ovakvom arhitekturom

izbegava se dupliranje koda i omogućava se deljenje UI

(User Interface) komponenti između više aplikacija.

Ukoliko se ispoštuju konvencije imenovanja i izoluje kod

radi izbegavanja konflikata, ova arhitektura podstiče

timsku autonomiju, jer svaki tim može da radi na svom

modulu bez potrebe za koordinacijom sa drugim timovima.

Micro-frontend arhitektura se može organizovati kroz dve

podele: horizontalna i vertikalna. Horizontalna podela

podrazumeva više modula na istoj stranici, gde se timovi

fokusiraju na tehničke aspekte poput UI komponenti ili

API integracije. Ovaj model je pogodan za velike timove i

poslovne poddomene, ali zahteva veću koordinaciju.

Vertikalna podela organizuje aplikaciju oko poslovnih

funkcionalnosti, gde svaki micro-frontend predstavlja

jednu celinu koju razvija jedan tim. Shell aplikacija

upravlja učitavanjem ovih modula i obezbeđuje da se, u

datom trenutku, prikazuje samo jedan micro-frontend, što

je posebno korisno kod SPA aplikacija.

Kompozicija micro-frontend aplikacija omogućava

integraciju nezavisnih modula u jedan korisnički interfejs,

uz podršku radnih okvira kao što su Angular, React i

Vue.js. Web Components omogućavaju kreiranje

inkapsuliranih HTML (Hyper Text Markup Language)

elemenata, čime se postiže modularnost i lakša saradnja

među timovima.

Postoje tri strategije kompozicije micro-frontend

aplikacija:

• kompozicija na strani servera – server sastavlja

micro-frontend module pre nego što pošalje konačni

HTML klijentu, čime se ubrzava učitavanje i smanjuje

opterećenje na pregledaču. Idealna je za visoko

indeksirane ili kritične veb stranice, ali zahteva tesnu

integraciju sa serverom, što ograničava nezavisnost

modula.

• kompozicija na strani ivice (edge) – slična je

serverskoj kompoziciji, ali se izvršava bliže korisniku,

konkretno preko CDN (Content Delivery Network)

infrastrukture. Omogućava brzu isporuku sadržaja, ali

unosi dodatnu složenost zbog različitih CDN

implementacija i ograničenog broja alata za podršku.

• kompozicija na strani klijenta – moduli se

učitavaju i sklapaju direktno pomoću shell aplikacije. Ovaj

pristup omogućava dinamičko upravljanje, veću

autonomiju timova i bolje korisničko iskustvo, bez potrebe

za ponovnim učitavanjem cele stranice.

Strategije kompozicije micro-frontend arhitekture

prikazane su na slici 1.

Slika 1. Metode kombinacije micro-frontend arhitektura

[6]

Module Federation je tehnologija koja je uvedena u

Webpack verziji 5 i koja omogućava deljenje koda i

zavisnosti između više aplikacija [7]. Aplikacije se dele na

nezavisno razvijene, testirane i primenjene micro-frontend

module (remotes), koji mogu biti ili “proizvođači”

(remotes) i “potrošači” (hosts) ili imati obije uloge.

Proizvođači izlažu svoje module, a potrošači su aplikacije

koje koriste te module. Ovaj pristup smanjuje dupliranje

koda, poboljšava performanse i omogućava skalabilan

razvoj nezavisnih micro-frontend modula.

2.4. Savremeni pristup u razvoju desktop aplikacija

Desktop aplikacije se izvršavaju lokalno na korisnikovom

uređaju, bez potrebe za internet konekcijom, što im

omogućava bolje performanse, veću kontrolu nad

resursima i veću bezbednost. Iako imaju prednosti u

stabilnosti i brzini, zahtevaju instalaciju, redovno

ažuriranje i često su vezane za određeni operativni sistem

[8].

Razvoj desktop aplikacija uključuje različite tehnologije,

zavisno od potreba samog projekta. Pri odabiru tehnologije

za realizaciju migracije micro-frontend aplikacije u

desktop aplikaciju razmatrani su aspekti poput stepena

izmene koda, podrške za složenim funkcionalnostima i

multiplatformske podrške. U svrhu migracije i prema

datim kriterijumima razmatrane su sledeće tehnologije:

• WPF (.NET) – nudi bogat skup UI elemenata,

ali je vezan za Windows. Zahteva potpun prelaz na C# i

visok stepen refaktorizacije.

• JavaFX – omogućava razvoj u Java

programskom jeziku; slaba integracija sa modernim veb

stekom. Zahteva potpunu refaktorizaciju.

• PyQT – dobar GUI alat u Python programskom

jeziku, ali zahteva napuštanje postojećeg koda i ima

ograničenja u sistemskoj integraciji.

• Flutter – namenjen prvenstveno za mobilne

aplikacije, koristi programski jezik Dart. Veliki stepen

1407

refaktorizacije i nije pogodan za kompleksne desktop

sisteme.

• Tauri – moderan i lagan okvir sa dobrim

performansama, ali manje zreo za složene aplikacije i

zahteva prelaz na Rust programski jezik.

• PWA (Progressive Web Apps) – nizak stepen

refaktorizacije, ali ne zadovoljava uslove za offline rad sa

hardverom.

• Electron – srednji stepen refaktorizacije,

omogućava ponovnu upotrebu Angular koda. Podržava

multiplatformski razvoj, bogate sistemske funkcionalnosti,

ali ima veće memorijsko opterećenje.

Za migraciju postojeće veb aplikacije u desktop okruženje,

izabran je Electron radni okvir. Electron omogućava

ponovnu upotrebu postojećeg Angular koda, podržava više

operativnih sistema i nudi stabilnost i funkcionalnost

potrebnu za kompleksne aplikacije. Uprkos većem

memorijskom opterećenju, njegova zrelost i široka

primena čine ga pouzdanim izborom.

2.5. Electron

Electron je multiplatformski radni okvir koji omogućava

razvoj desktop aplikacija koristeći veb tehnologije kao što

su HTML, CSS i JavaScript [9]. Izgrađen je na Chromium

i Node.js projektima, što mu omogućava pristup

sistemskim resursima i funkcionalnostima kao što su

dijalozi, obaveštenja i automatska ažuriranja. Podržava

Windows, macOS i Linux, čime obezbeđuje konzistentno

korisničko iskustvo na više platformi.

Electron aplikacije su sačinjene od dva procesa:

• glavni proces - upravlja logikom aplikacije,

prozorima, sistemskim funkcijama i životnim ciklusom

aplikacije.

• proces prikazivanja – upravlja veb sadržajem

svakog prozora.

Komunikacija između ovih proces se vrši preko IPC (Inter-

Process Communication) mehanizma, što omogućava

stabilnost i izolaciju procesa. Glavni proces koristi module

kao što su BrowserWindow modul za kreiranje prozora i

app modul za upravljanje životnim ciklusom aplikacije.

Procesi prikazivanja koriste HTML, CSS i JavaScript za

prikaz sadržaja, ali, iz bezbednosnih razloga, nemaju

direktan pristupa Node.js API interfejsima. Slika 2

prikazuje arhitekturu Electron aplikacije, kao i odnos

između glavnog i procesa prikazivanja.

Slika 2. Arhitektura Electron aplikacije [10]

Da bi se omogućila bezbedna interakcija između proces,

Electron koristi preload skripte koje se izvršavaju pre

učitavanja veb sadržaja. Preload skripte imaju pristup

Node.js API interfejsima i preko contextBridge modula

mogu bezbedno izložiti funkcionalnosti procesu

prikazivanja. Pored toga, Electron podržava kreiranje

uslužnih procesa preko UtilityProcess API interfejsa, koji

se koriste za izvršavanje zahtevnih ili nepouzdanih

zadataka. Procesi prikazivanja komuniciraju sa uslužnim

procesima preko MessagePort kanala.

3. MIGRACIJA ANGULAR VEB APLIKACIJE U

STANDALONE ELECTRON APLIKACIJU

Migracija Angular veb aplikacije u standalone Electron

okruženje prikazana je kroz primer DevAdmin aplikacije.

DevAdmin je alat za korisničku podršku i analizu

hardverskih uređaja. Aplikacija omogućava pregled

sistemskih informacija, upravljanje podešavanjima,

generisanje izveštaja o statusu i greškama, kao i direktnu

interakciju sa uređajima preko lokalne mreže. Zahvaljujući

micro-frontend arhitekturi i intuitivnom interfejsu (slika

3.), DevAdmin pruža fleksibilno i efikasno rešenje za

tehnički podršku, a njena migracija u Electron aplikaciju

omogućava stabilniji i nezavisniji rad u desktop okruženju.

Slika 3. Pregled interfejsa DevAdmin aplikacije

DevAdmin aplikacija predstavlja konkretan primer

primene micro-frontend arhitekture uz korišćenje Module

Federation koncepta u okviru Angualr radnog okvira.

Aplikacija je organizovana kao modularna klijentska veb

aplikacije, sa dve shell aplikacije koje dinamički učitavaju

više nezavisnih remote modula. Ovaj pristup omogućava

timovima da razvijaju funkcionalnosti izolovano, uz bolju

skalabilnost i održivost koda. Migracija DevAdmin

aplikacije koristeći Electron omogućila bi korišćenje

postojećeg veb koda za multiplatformsku distribuciju.

Kompozicija micro-frontend modula u DevAdmin

aplikaciji realizovana je na strani klijenta, gde shell

aplikacija dinamički integriše remote module tokom

izvršavanja. Module Federation omogućava da se ovi

moduli učitaju na zahtev, čime se postiže fleksibilna i

prilagodljiva arhitektura. Da bi se konfigurisao Module

Federation potrebno je definisati webpack.config.js,

module-federation.config.json i default-module-

federation-config.js fajlovi, u kojima se definišu remote

aplikacije i deljeni Angular moduli. Ovaj sistem

omogućava optimizaciju učitavanja i izbegavanje konflikta

u zavisnostima, čime se unapređuju performanse i

stabilnost aplikacije.

1408

Migrirana DevAdmin Electron aplikacija sačinjena je od

prozora za prijavu korisnika (slika 4) i glavnog prozora

(slika 5). Shell i remote aplikacije se mogu učitati bilo

putem udaljene veb adrese ili direktno sa lokalnog diska.

Korišćenjem Module Federation koncepta, omogućena je

dinamička integracija nezavisnih modula, dok Electron

omogućava njihovo prikazivanje u odvojenim karticama ili

prozorima.

Slika 4. Stranica za prijavu korisnika

Slika 5. Glavni ekran sa učitanom remote aplikacijom

Učitavanje aplikacija realizovano je kroz dve metode:

preko loadURL metode za učitavanje sa lokalnog servera

ili preko loadFile metode za učitavanje kompajliranih

HTML fajlova. U drugom slučaju, micro-frontend

aplikacije se učitavaju unutar jednog dashboard.html fajla

putem <iframe> elementa, čime se simulira ponašanje shell

aplikacije. Ovaj pristup omogućava bolju izolovanost

komponenti, poboljšava performanse i bezbednost, ali

zahteva ručnu izgradnju aplikacije nakon svake izmene.

Da bi se izbegli problemi sa apsolutnim putanjama unutar

<iframe> aplikacija, implementirano je preusmeravanje

HTTP i WebSocket zahteva na nivou Electron sesije,

koristeći webRequests.onBeforeRequest metode. Ovo

omogućava da aplikacije zadrže originalnu logiku

komunikacije sa serverom, bez izmene koda. Pored toga,

upravljanje životnim ciklusom prozora i korisničkom

sesijom realizovano je kroz IPC mehanizam i localStorage,

čime se obezbeđuje nezavisnost i izolovanost svake remote

aplikacije.

Celokupno rešenje omogućava da se postojeća veb

arhitektura lako migrira u desktop okruženje, uz minimalne

izmene u kodu i zadržavanje osnovnih principa micro-

frontend arhitekture. Ovakva kombinacija tehnologija

pruža fleksibilnost, stabilnost i mogućnost daljeg

proširenja aplikacije u različitim razvojnim i produkcionim

scenarijima.

4. ZAKLJUČAK

U ovom radu je uspešno istražena i demonstrirana

migracija Angular micro-frontend veb aplikacija u desktop

okruženje uz korišćenje Electron radnog okvira. Zbog

svoje zrelosti, podrške za naprednim funkcionalnostima i

mogućnosti duboke integracije sa operativnim sistemom,

Electron je odabran kao najprikladnije rešenje za

migraciju, dok su alternative poput Tauri i PWA odbačene

zbog nezrelosti tehnologije, podrške za offline rad i slabe

integracije sa operativnim sistemom. Migracija je

realizovana bez drastičnih izmena u postojećem kodu, uz

očuvanje modularnosti i principa koje propisuje micro-

frontend arhitektura.

Tehničke strategije uključuju učitavanje remote aplikacija,

upravljanje zavisnostima, preusmeravanje HTTP i

WebSocket zahteva i komunikacije preko IPC mehanizma.

Electron aplikacija preuzima ulogu nove shell aplikacije,

omogućujući postepenu i kontrolisanu migraciju. Iako ovaj

pristup donosi određene izazove, kao što su povećana

potrošnja resursa i bezbednosni rizici, uz primenu

preporučenih praksi, moguće je obezbediti stabilno i

bezbedno okruženje.

Rezultati pokazuju da je predloženo rešenje efikasno i

održivo za prelazak kompleksne veb aplikacije u desktop

okruženje, uz zadržavanje fleksibilnosti, skalabilnosti i

agilnog razvoja. Ovakva arhitektura omogućava de se

micro-frontend aplikacije pokreću nezavisno, čime se

zadržavaju sve prednosti originalnog veb pristupa u

kontekstu desktop aplikacija.

5. LITERATURA

[1] Prajwal, Y., Parekh, J. V., & Shettar, R. (2021). A brief

review of micro-frontends. United International Journal for

Research and Technology, 2(8), 18.

[2] https://angular.dev (pristupljeno u septembru 2025.)

[3] https://www.typescriptlang.org (pristupljeno u

septembru 2025.)

[4] Haverbeke, M. (2018). Eloquent javascript: A modern

introduction to programming. No Starch Press.

[5] https://martinfowler.com/articles/micro-frontends.html

(pristupljeno u septembru 2025.)

[6] Peltonen, S., Mezzalira, L., & Taibi, D. (2021).

Motivations, benefits, and issues for adopting micro-

frontends: A multivocal literature review. Information and

Software Technology, 136, 106571.

[7] https://module-federation.io (pristupljeno u novembru

2025.)

[8] https://www.geeksforgeeks.org/what-is-standalone-

application (pristupljeno u novembru 2025.)

[9] https://www.electronjs.org (pristupljeno u novembru

2025.)

[10] Alymkulov, D. (2019). Desktop Application

Development Using Electron Framework: Native vs.

Cross-Platform. [Bachelor’s Thesis]. South-Eastern

Finland University of Applied Sciences.

Kratka biografija:

Teodora Rajnović rođena je 1. avgusta

1999. godine u Zvorniku. Osnovnu

školu „Stefan Mitrov Ljubiša“ završila

je u Budvi, 2014. godine. U istom gradu

je i završila srednju školu „Danilo Kiš“,

smer turistički tehničar 2018. godine.

Kasnije te godine, upisuje Fakultet

tehničkih nauka u Novom Sadu, smer

Softversko inženjerstvo i informacione

tehnologije. Studije završava u roku,

2022. godine.

1409

https://angular.dev/

