

Зборник радова Факултета техничких наука, Нови Сад

UDK: 621.3

DOI: https://doi.org/10.24867/33BE36Nesic

РАЗВОЈ COФТВЕРА НА RISC-V АРХИТЕКТУРИ СА ФОКУСОМ НА RPC

ИМПЛЕМЕНТАЦИЈУ

RISC-V SOFTWARE DEVELOPMENT WITH FOCUS ON RPC IMPLEMENTATION

Марија Нешић, Факултет техничких наука, Нови Сад

Област – ЕЛЕКТРОТЕХНИКA И РАЧУНАРСТВО

Кратак садржај – Овај рад представља детаљан

опис софтверске архитектуре и имплементације

механизма удаљених позива процедура (Remote

Procedure Call – RPC) у оквиру уграђеног система

заснованог на RISC-V архитектури. Рад документује

комплетан процес подизања софтвера на новом чипу,

од првобитне иницијализације хардвера до

успостављања функционалне комуникације са

спољашњим системима.

Кључне речи: Развој софтверског окружења, RISC-

V, FreeRTOS, RPC

Abstract – This thesis presents a detailed description of

the software architecture and implementation of the

Remote Procedure Call (RPC) mechanism within an

embedded system based on the RISC-V architecture. It

documents the complete process of bringing up software

on a new chip, from the initial hardware initialization to

establishing functional communication with external

systems.

Keywords: Software Bring-Up, RISC-V, FreeRTOS,

RPC

1. УВОД

Идеја удаљеног позива процедуре (RPC), коју су први

пут увели Birrell и Nelson 1984. године, представљала

је велики корак напред у дистрибуираној обради. Она

омогућава да се процедуре у процесима на удаљеним

рачунарима позивају као да су процедуре у локалном

адресном простору. RPC систем управља основним

механизмима — кодирањем и декодирањем података,

слањем порука и обезбеђивањем да се позив понаша

као регуларан позив функције [1].

RPC модел комуникације изабран је као основни

механизам интеракције између host-а и Wi-Fi HaLow

чипа заснованог на SweRV EH1 архитектури.

__

НАПОМЕНА:

Овај рад проистекао је из мастер рада чији ментор

је био др Предраг Теодоровић, ванр. проф.

 Основна мотивација за овај избор лежи у потреби да

се сложене операције са стране host-а иницирају

једноставним функцијским позивима, а да се при томе

изолују детаљи low-level комуникације,

синхронизације и управљања

меморијом.Имплементирани RPC механизам припада

категорији Hardware-Level RPC (Chip-to-Chip, On-

Board), конкретно SPI/I2C RPC типу. Иако чип

интерно користи AXI протокол, класификација се

одређује према спољашњем интерфејсу и

комуникационим карактеристикама. Из перспективе

спољашњег host-та, комуникација се реализује кроз

стандардне SPI трансакције где host (master) шаље

команде које функционишу као удаљени позиви

процедура ка Wi-Fi HaLow чипу (slave). Што се тиче

комуникационог модела нуди комбинацију синхроне

и асинхроне комуникације.

Циљ рада је приказ конкретног решења развијеног у

индустријском контексту за Wi-Fi HaLow чип, које

омогућава комуникацију између чипа и спољашњег

host уређаја.

Главни проблеми решавани у оквиру овог пројекта

обухватају иницијализацију и bring-up софтвера на

SweRV EH1 процесору заснованом на RISC-V

архитектури, портовање оперативног система

FreeRTOS на циљну платформу, развој RPC

механизма за транспарентну комуникацију између

уграђеног чипа и екстерног host-а, имплементацију

SPI комуникационог слоја са синхронизацијом и

управљањем прекидима, развој host стране RPC

комуникације, као и оптимизацију ресурса и

меморијских захтева система.

2. СОФТВЕРСКА И ХАРДВЕРСКА ПЛАТФОРМА

Цео систем се састоји из два процесора, од којих је

један HaLow modem процесор који нуди Wi-Fi

функционалности. Да би та функционалност остала

изолована, остале функционалности су део интерног

host процесора, SweRV EH1. У овом раду је описан

његов развој. Чип представља специјализовану Wi-Fi

HaLow станицу која прима команде од спољашњих

host-ова преко SPI интерфејса.

1397

https://doi.org/10.24867/33BE36Nesic

Слика 1. Дијаграм система

На слици 1 је приказан цео систем заједно са

процесором.

Слика 2. Архитектура SweRV EH1 Core Complex-а

Као што је приказано на слици Слика 2, SweRV EH1

Core Complex садржи RV32IMC језгро са пратећим

компонентама као што су DCCM, ICCM, I-Cache, PIC

и Debug интерфејс, као и више AXI4/AHB-Lite

интерфејса за спољашње конекције.

Систем осим интерног host и HaLow modem процесора

садржи још и SPI-to-AXI, UART и QSPI модуле.

Комуникација од екстерног host-a до чипа се одвија

преко SPI-to-AXI модула који омогућава

комуникацију тако што SPI сигнали од спољашњег

контролера (нпр. STM32) бивају конвертовани у AXI

протокол, прослеђени на AXI магистралу, а затим

преко DMA порта приступају DCCM меморији за

размену података. Комуникација од чипа ка

екстерном host-у функционише у супротном смеру -

сигнал који процесор емитује преко LSU BUS-a се

рутира кроз AXI магистралу и појављује се на GPIO

портовима за даље прослеђивање екстерном host-у.

FreeRTOS је изабран као оперативни систем за Wi-Fi

HaLow чип, што представља логичан избор за ову

врсту уграђених апликација. У питању је оперативни

систем у реалном времену отвореног кода, дизајниран

посебно за микроконтролере и уграђене процесоре са

ограниченим хардверским ресурсима.

Избор шеме heap_4 заснован је на њеном идеалном

односу између детерминисаног понашања,

отпорности на фрагментацију и компатибилности са

RISC-V (SweRV EH1) окружењем.

Подешавање окружења укључује инсталацију RISC-V

GNU Toolchain-а. RISC-V GNU Toolchain представља

комплетно окружење за развој, које обухвата GCC

компајлер, Binutils, GDB debugger и Newlib C

стандардну библиотеку [2]. За подршку SweRV EH1

језгру, алат је конфигурисан са rv32imc архитектуром

и ilp32 ABI-јем.

Приликом успешног компајлирања генеришу се

следећи изворни фајлови firmware.elf, firmware.disasm

и firmware.map. За дебаговање кода коришћен је J-

Link адаптер преко JTAG интерфејса.

3. ПОРТОВАЊЕ FREERTOS-A НА SWERV EH1

Портовање оперативног система FreeRTOS на

процесор SweRV EH1 архитектуре RISC-V обухвата

адаптацију његових основних механизама, као што су

замена контекста, руковање прекидима и

конфигурација системског тајмера, у складу са

специфичностима циљне хардверске платформе.

Портовање FreeRTOS-а на SweRV EH1 почиње

укључивањем изворних фајлова који садрже основне

RTOS функционалности и специфичног RISC-V

адаптационог слоја. Затим се конфигурише trap

handler, иницијализује се систем прекида и ради се

интеграција екстерних прекида.

FreeRTOS кернел се ослања на периодичне прекиде

тајмера (RTOS tick) за пребацивање контекста између

task-ова, праћење временских интервала и управљање

timeout механизмима.

У функцији vPortSetupTimerInterrupt() се врши

конфигурација тајмера. У портовању FreeRTOS-а за

SweRV EH1 језгро, vPortSetupTimerInterrupt() користи

Low Power Controller (LPC) као извор системског

тајмера. LPC има сопствени интерни тајмер који је у

овом случају конфигурисан да активира прекид на

сваких 1000 микросекунди.

Такође се у linker скрипти дефинише IRQ stack који се

користи за управљање прекидима.

Након успешно извршене иницијализације система,

конфигурације прекидне логике и покретања

scheduler-а, извршена је провера рада FreeRTOS

окружења кроз креирање и извршавање више task-ова

са различитим приоритетима и функционалностима.

Главна функција апликације иницијализује основни

апликативни task и покреће task за комуникацију,

након чега се позива vTaskStartScheduler(), чиме се

управљање системом предаје RTOS-у.

4. RPC ДИЗАЈН

Дијаграм система који видимо на слици 1 je Wi-Fi

HaLow са слике 3. Он преставља Wi-Fi HaLow

станицу. Затим је направљена подршка да се станица

преко SPI протокола може користити преко STM

микроконтролера или преко RPi Compute модула.

Слика 3 приказује чип повезан са STM

микроконтролером. Wi-Fi HaLow приступна тачка је

постављена поред њих. Слика 4 приказује чип повезан

са RPi Compute Module 4 IO плочом.

Систем користи посвећен меморијски регион који

служи као дељена меморија између host процесора и

локалног микроконтролера. Кључни аспект система је

хардверска транслација адреса. Екстерни host увек

пише на адресе почевши од 0x00000000 из своје

перспективе, али SPI slave контролер аутоматски

транслира те адресе у стварне физичке адресе локалне

меморије. Ово омогућава host процесору да види

1398

дељену меморију као континуиран блок почевши од

нуле, док се заправо приступа било ком меморијском

региону микроконтролера.

Слика 3. Kонфигурација са STM микроконтролером

Слика 4. Конфигурација са Raspberry Pi Compute

Module

На слици 5 приказан је поједностављен RPC

механизам система.

Слика 5. Поједностављен дијаграм RPC механизма

Комуникациони протокол користи флексибилан

механизам паковања података. На слици 6 се види

формат пакета.

Слика 6. Формат пакета

При упису података од стране host процесора

аутоматски се генерише прекид који обавештава

локални систем о пристиглим подацима.

По пријему прекида, систем врши анализу садржаја

RX buffer-а, идентификује врсту захтева и позива

одговарајући механизам обраде. Након обраде,

резултати се уписују у TX buffer или async TX buffer.

Затим се у interrupt_status структури бележи да је

резултат доступан за читање и сетује се бит GPIO

регистра да сигнализира да је податак спреман за

читање.

Да би комуникација између екстерног host-а и RISC-V

чипа била поуздана и ефикасна, неопходан је

механизам синхронизације који обе стране

информише када су подаци спремни за пријем или

обраду. Овај систем користи комбинацију

хардверског SPI прекида, FreeRTOS нотификација,

GPIO сигнала и семафора на страни host-а.

Слика 7. Дијаграм тока података

RPC систем на чипу реализован је кроз два FreeRTOS

task-а:

• RPC task, који је одговоран за пријем

података преко SPI интерфејса, парсирање

улазне поруке и прослеђивање података ка

апликационом слоју

• APP task, који је посвећен извршавању логике

на основу примљене команде

Овакво раздвајање одговорности осигурава да је RPC

task увек спреман да реагује на нови прекид. Након

што прими податке и упакује их у структуру

data_packet_t, он их прослеђује APP task-у преко

message queue-а. Обрада команде се врши независно,

омогућавајући паралелну комуникацију и

извршавање.

1399

На страни екстерног host-а такође постоје 2 task-а. CLI

интерфејс омогућава корисницима да иницирају RPC

позиве преко командне линије. Ове функције шаљу

податке ка чипу и затим чекају резултат. У исто време

други task чека одговор од стране чипа. Функције се

након слања блокирају семафором док не стигне

одговор након чега се исти прочита. Свака функција

има свој семафор.

5. РАЗВОЈ НА HOST СТРАНИ

Први део развоја система обухватао је креирање SPI

Linux драјвера. Ово је омогућило директну и

ефикасну контролу над SPI комуникацијом. RPC

систем је први пут имплементиран на Raspberry Pi

Compute Module 4 IO Board-у, због подршке за spidev

интерфејс у Linux окружењу, што је значајно

поједноставило имплементацију прототипа.

Због AXI протокола, адресе на које се шаљу или

читају подаци морају бити умножак 4. А због тога

како је имплементиран SPI, број података који се

шаље мора бити дељив са 4, због тога се додаје

padding. У cmd_parser модулу може се видети да је

потребно потпуно 32-битно писање за све

трансакције, као и да се строго захтева поравнање

адреса на 4 бајта [3,4].

Као сигнал за завршетак трансцакције имплеметиран

је interrupt механизам на Raspberry Pi страни, где

сетовање бита GPIO регистра означава крај обраде

података.

6. УНАКРСНА ПЛАТФОРМА И ПРОШИРЕЊА

Иако обе платформе користе исти SPI протокол,

имплементације на STM32 и на Linux-у се суштински

разликују у погледу начина организације и руковања

SPI трансакцијама.

У имплементацији Linux SPI драјвера користе се

кернел сервиси. Синхронизација између позива

функција и одговора хардвера се управља кроз

completion mechanism. Док се за STM32 платформу

користе RTOS кернел сервиси. Конкретно

синхронизациони механизми које он нуди.

У оквиру развоја RPC система, успостављена је Host

библиотека реализована као Git submodule, која

омогућава апстраховање заједничких RPC

функционалности и њихово лако дељење између

различитих пројеката и платформи. Овај механизам

омогућава да се у више независних пројеката користи

исти интерфејс, док се платформи специфичне

имплементације могу прилагодити или заменити без

утицаја на остатак система.

7. ИСКОРИШЋЕЊЕ РЕСУРСА

За анализу искоришћења меморије примењени су

алати riscv64-unknown-elf-nm и elf-size-analyze, који

омогућавају идентификацију највећих потрошача

меморије и прецизно профилисање ELF фајла.

Утврђено је да секција rodata заузима значајан део

DCCM-а, што је узроковало прекорачење

расположиве меморије током компилације.

Проблем је решен релокацијом rodata секције у

ICCM, што је подржано архитектуром SweRV EH1, и

смањењем величине stack-а у складу са реалним

потребама.

Овим оптимизацијама постигнуто је ефикасније

коришћење ресурса и очувана је стабилност система.

8. ЗАКЉУЧАК

У овом раду успешно је реализован RPC систем који

омогућава стабилну комуникацију између уграђеног

Wi-Fi HaLow уређаја и спољашњег host-a, уз поуздано

функционисање у реалном времену. Систем је

прилагођен ограничењима уграђених окружења и

подржава проширивост на више хардверских

платформи.

Иако безбедност није била приоритет у овој фази,

потенцијал за даље унапређење постоји увођењем

механизама за аутентикацију и енкрипцију података.

Уколико будуће апликације буду захтевале поуздану

заштиту комуникације, систем се лако може

проширити тим функционалностима. RPC може бити

проширен механизмима за аутентикацију и

шифровање, чиме може испунити критеријуме за

SESIP Level 3, што се често захтева у индустријским

апликацијама [5].

 9. ЛИТЕРАТУРА

[1] “Distributed Systems : Concepts and Design ”, by

George Coulouris, Jean Dollimore, Tim Kindberg,

Gordon Blair.

[2] https://github.com/riscv-collab/riscv-gnu-toolchain

(приступљено у априлу 2025.)

[3] https://github.com/pulp-

platform/axi_spi_slave/blob/master/spi_slave_regs.sv

(приступљено у априлу 2025.)

[4] https://github.com/pulp-

platform/axi_spi_slave/blob/master/spi_slave_cmd_pa

rser.sv(приступљено у априлу 2025.)

[5] https://globalplatform.org/sesip/ (приступљено у јулу

2025.)

Кратка биографија:

Марија Нешић рођена је у Кикинди 1999. год. Дипломски

рад на Факултету техничких наука из области

Електротехнике и рачунарства – Ембедед системи и

алгоритми одбранила је 2022. године.

контакт: nesicmarija123@gmail.com

1400

https://github.com/riscv-collab/riscv-gnu-toolchain
https://github.com/pulp-platform/axi_spi_slave/blob/master/spi_slave_regs.sv
https://github.com/pulp-platform/axi_spi_slave/blob/master/spi_slave_regs.sv
https://github.com/pulp-platform/axi_spi_slave/blob/master/spi_slave_cmd_parser.sv
https://github.com/pulp-platform/axi_spi_slave/blob/master/spi_slave_cmd_parser.sv
https://github.com/pulp-platform/axi_spi_slave/blob/master/spi_slave_cmd_parser.sv
https://globalplatform.org/sesip/

