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Кратак садржај – Овај рад представља детаљан 

опис софтверске архитектуре и имплементације 

механизма удаљених позива процедура (Remote 

Procedure Call – RPC) у оквиру уграђеног система 

заснованог на RISC-V архитектури. Рад документује 

комплетан процес подизања софтвера на новом чипу, 

од првобитне иницијализације хардвера до 

успостављања функционалне комуникације са 

спољашњим системима. 
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Abstract – This thesis presents a detailed description of 

the software architecture and implementation of the 

Remote Procedure Call (RPC) mechanism within an 

embedded system based on the RISC-V architecture. It 

documents the complete process of bringing up software 

on a new chip, from the initial hardware initialization to 

establishing functional communication with external 

systems. 
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1. УВОД 

Идеја удаљеног позива процедуре (RPC), коју су први 

пут увели Birrell и Nelson 1984. године, представљала 

је велики корак напред у дистрибуираној обради. Она 

омогућава да се процедуре у процесима на удаљеним 

рачунарима позивају као да су процедуре у локалном 

адресном простору. RPC систем управља основним 

механизмима — кодирањем и декодирањем података, 

слањем порука и обезбеђивањем да се позив понаша 

као регуларан позив функције [1].  

RPC модел комуникације изабран је као основни 

механизам интеракције између host-а и Wi-Fi HaLow 

чипа заснованог на SweRV EH1 архитектури. 

______________________________________________ 

НАПОМЕНА:  

Овај рад проистекао је из мастер рада чији  ментор 

је био др Предраг Теодоровић, ванр. проф. 

 

 

 

 Основна мотивација за овај избор лежи у потреби да 

се сложене операције са стране host-а иницирају 

једноставним функцијским позивима, а да се при томе 

изолују детаљи low-level комуникације, 

синхронизације и управљања 

меморијом.Имплементирани RPC механизам припада 

категорији Hardware-Level RPC (Chip-to-Chip, On-

Board), конкретно SPI/I2C RPC типу. Иако чип 

интерно користи AXI протокол, класификација се 

одређује према спољашњем интерфејсу и 

комуникационим карактеристикама. Из перспективе 

спољашњег host-та, комуникација се реализује кроз 

стандардне SPI трансакције где host (master) шаље 

команде које функционишу као удаљени позиви 

процедура ка Wi-Fi HaLow чипу (slave). Што се тиче 

комуникационог модела нуди комбинацију синхроне 

и асинхроне комуникације. 

Циљ рада је приказ конкретног решења развијеног у 

индустријском контексту за Wi-Fi HaLow чип, које 

омогућава комуникацију између чипа и спољашњег 

host уређаја.  

Главни проблеми решавани у оквиру овог пројекта 

обухватају иницијализацију и bring-up софтвера на 

SweRV EH1 процесору заснованом на RISC-V 

архитектури, портовање оперативног система 

FreeRTOS на циљну платформу, развој RPC 

механизма за транспарентну комуникацију између 

уграђеног чипа и екстерног host-а, имплементацију 

SPI комуникационог слоја са синхронизацијом и 

управљањем прекидима, развој host стране RPC 

комуникације, као и оптимизацију ресурса и 

меморијских захтева система. 

2. СОФТВЕРСКА И ХАРДВЕРСКА ПЛАТФОРМА 

Цео систем се састоји из два процесора, од којих је 

један HaLow modem процесор који нуди Wi-Fi 

функционалности. Да би та функционалност остала 

изолована, остале функционалности су део интерног 

host процесора, SweRV EH1. У овом раду је описан 

његов развој. Чип представља специјализовану Wi-Fi 

HaLow станицу која прима команде од спољашњих 

host-ова преко SPI интерфејса. 
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Слика 1. Дијаграм система 

На слици 1 је приказан цео систем заједно са 

процесором. 

 

 

Слика 2. Архитектура SweRV EH1 Core Complex-а 

 

Као што је приказано на слици Слика 2, SweRV EH1 

Core Complex садржи RV32IMC језгро са пратећим 

компонентама као што су DCCM, ICCM, I-Cache, PIC 

и Debug интерфејс, као и више AXI4/AHB-Lite 

интерфејса за спољашње конекције. 

Систем осим интерног host и HaLow modem процесора 

садржи још и SPI-to-AXI, UART и QSPI модуле. 

Комуникација од екстерног host-a до чипа се одвија 

преко SPI-to-AXI модула који омогућава 

комуникацију тако што SPI сигнали од спољашњег 

контролера (нпр. STM32) бивају конвертовани у AXI 

протокол, прослеђени на AXI магистралу, а затим 

преко DMA порта приступају DCCM меморији за 

размену података. Комуникација од чипа ка 

екстерном host-у функционише у супротном смеру - 

сигнал који процесор емитује преко LSU BUS-a се 

рутира кроз AXI магистралу и појављује се на GPIO 

портовима за даље прослеђивање екстерном host-у. 

FreeRTOS је изабран као оперативни систем за Wi-Fi 

HaLow чип, што представља логичан избор за ову 

врсту уграђених апликација. У питању је оперативни 

систем у реалном времену отвореног кода, дизајниран 

посебно за микроконтролере и уграђене процесоре са 

ограниченим хардверским ресурсима. 

Избор шеме heap_4 заснован је на њеном идеалном 

односу између детерминисаног понашања, 

отпорности на фрагментацију и компатибилности са 

RISC-V (SweRV EH1) окружењем.  

Подешавање окружења укључује инсталацију RISC-V 

GNU Toolchain-а. RISC-V GNU Toolchain представља 

комплетно окружење за развој, које обухвата GCC 

компајлер, Binutils, GDB debugger и Newlib C 

стандардну библиотеку [2]. За подршку SweRV EH1 

језгру, алат је конфигурисан са rv32imc архитектуром 

и ilp32 ABI-јем.  

Приликом успешног компајлирања генеришу се 

следећи изворни фајлови firmware.elf, firmware.disasm 

и firmware.map. За дебаговање кода коришћен је J-

Link адаптер преко JTAG интерфејса. 

3. ПОРТОВАЊЕ FREERTOS-A НА SWERV EH1 

Портовање оперативног система FreeRTOS на 

процесор SweRV EH1 архитектуре RISC-V обухвата 

адаптацију његових основних механизама, као што су 

замена контекста, руковање прекидима и 

конфигурација системског тајмера, у складу са 

специфичностима циљне хардверске платформе.  

Портовање FreeRTOS-а на SweRV EH1 почиње 

укључивањем изворних фајлова који садрже основне 

RTOS функционалности  и  специфичног RISC-V 

адаптационог слоја. Затим се  конфигурише trap 

handler, иницијализује се систем прекида и ради се 

интеграција екстерних прекида.  

FreeRTOS кернел се ослања на периодичне прекиде 

тајмера (RTOS tick) за пребацивање контекста између 

task-ова, праћење временских интервала и управљање 

timeout механизмима.  

У функцији vPortSetupTimerInterrupt() се врши 

конфигурација тајмера. У портовању FreeRTOS-а за 

SweRV EH1 језгро, vPortSetupTimerInterrupt() користи 

Low Power Controller (LPC) као извор системског 

тајмера. LPC има сопствени интерни тајмер који је у 

овом случају конфигурисан да активира прекид на 

сваких 1000 микросекунди.  

Такође се у linker скрипти дефинише IRQ stack који се 

користи за управљање прекидима. 

Након успешно извршене иницијализације система, 

конфигурације прекидне логике и покретања 

scheduler-а, извршена је провера рада FreeRTOS 

окружења кроз креирање и извршавање више task-ова 

са различитим приоритетима и функционалностима. 

Главна функција апликације иницијализује основни 

апликативни task и покреће task за комуникацију, 

након чега се позива vTaskStartScheduler(), чиме се 

управљање системом предаје RTOS-у. 

4. RPC ДИЗАЈН 

Дијаграм система који видимо на слици 1 je Wi-Fi 

HaLow са слике 3. Он преставља Wi-Fi HaLow 

станицу. Затим је направљена подршка да се станица 

преко SPI протокола може користити преко STM 

микроконтролера или преко RPi Compute модула. 

Слика 3 приказује чип повезан са STM 

микроконтролером. Wi-Fi HaLow приступна тачка је 

постављена поред њих. Слика 4 приказује чип повезан 

са RPi Compute Module 4 IO плочом. 

Систем користи посвећен меморијски регион који 

служи као дељена меморија између host процесора и 

локалног микроконтролера. Кључни аспект система је 

хардверска транслација адреса. Екстерни host увек 

пише на адресе почевши од 0x00000000 из своје 

перспективе, али SPI slave контролер аутоматски 

транслира те адресе у стварне физичке адресе локалне 

меморије. Ово омогућава host процесору да види 
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дељену меморију као континуиран блок почевши од 

нуле, док се заправо приступа било ком меморијском 

региону микроконтролера. 

 

 

Слика 3. Kонфигурација са STM микроконтролером 

 

 

Слика 4. Конфигурација са Raspberry Pi Compute 

Module 

 

На слици 5 приказан је поједностављен RPC 

механизам система. 

 

 

Слика 5. Поједностављен дијаграм RPC механизма 

 

Комуникациони протокол користи флексибилан 

механизам паковања података. На слици 6 се види 

формат пакета. 

 

 

Слика 6. Формат пакета 

При упису података од стране host процесора 

аутоматски се генерише прекид који обавештава 

локални систем о пристиглим подацима. 

По пријему прекида, систем врши анализу садржаја 

RX buffer-а, идентификује врсту захтева и позива 

одговарајући механизам обраде. Након обраде, 

резултати се уписују у TX buffer или async TX buffer. 

Затим се у interrupt_status структури бележи да је 

резултат доступан за читање и сетује  се бит GPIO 

регистра да сигнализира да је  податак спреман за 

читање. 

Да би комуникација између екстерног host-а и RISC-V 

чипа била поуздана и ефикасна, неопходан је 

механизам синхронизације који обе стране 

информише када су подаци спремни за пријем или 

обраду. Овај систем користи комбинацију 

хардверског SPI прекида, FreeRTOS нотификација, 

GPIO сигнала и семафора на страни host-а.  

 

Слика 7. Дијаграм тока података 

RPC систем на чипу реализован је кроз два FreeRTOS 

task-а: 

• RPC task, који је одговоран за пријем 

података преко SPI интерфејса, парсирање 

улазне поруке и прослеђивање података ка 

апликационом слоју 

• APP task, који је посвећен извршавању логике 

на основу примљене команде 

Овакво раздвајање одговорности осигурава да је RPC 

task увек спреман да реагује на нови прекид. Након 

што прими податке и упакује их у структуру 

data_packet_t, он их прослеђује APP task-у преко 

message queue-а. Обрада команде се врши независно, 

омогућавајући паралелну комуникацију и 

извршавање. 
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На страни екстерног host-а такође постоје 2 task-а. CLI 

интерфејс омогућава корисницима да иницирају RPC 

позиве преко командне линије. Ове функције шаљу 

податке ка чипу и затим чекају резултат. У исто време 

други task чека одговор од стране чипа. Функције се 

након слања блокирају семафором док не стигне 

одговор након чега се исти прочита. Свака функција 

има свој семафор.  

5. РАЗВОЈ НА HOST СТРАНИ  

Први део развоја система обухватао је креирање SPI 

Linux драјвера. Ово је омогућило директну и 

ефикасну контролу над SPI комуникацијом. RPC 

систем је први пут имплементиран на Raspberry Pi 

Compute Module 4 IO Board-у, због подршке за spidev 

интерфејс у Linux окружењу, што је значајно 

поједноставило имплементацију прототипа. 

Због AXI протокола, адресе на које се шаљу или 

читају подаци морају бити умножак 4. А због тога 

како је имплементиран SPI, број података који се 

шаље мора бити дељив са 4, због тога се додаје 

padding. У cmd_parser модулу може се видети да је 

потребно потпуно 32-битно писање за све 

трансакције, као и да се строго захтева поравнање 

адреса на 4 бајта [3,4].  

Као сигнал за завршетак трансцакције имплеметиран 

је interrupt механизам на Raspberry Pi страни, где 

сетовање бита GPIO регистра означава крај обраде 

података.  

6. УНАКРСНА ПЛАТФОРМА И ПРОШИРЕЊА  

Иако обе платформе користе исти SPI протокол, 

имплементације на STM32 и на Linux-у се суштински 

разликују у погледу начина организације и руковања 

SPI трансакцијама. 

У имплементацији Linux SPI драјвера користе се 

кернел сервиси. Синхронизација између позива 

функција и одговора хардвера се  управља кроз 

completion mechanism. Док се за STM32 платформу 

користе RTOS кернел сервиси. Конкретно 

синхронизациони механизми које он нуди. 

У оквиру развоја RPC система, успостављена је Host 

библиотека реализована као Git submodule, која 

омогућава апстраховање заједничких RPC 

функционалности и њихово лако дељење између 

различитих пројеката и платформи. Овај механизам 

омогућава да се у више независних пројеката користи 

исти интерфејс, док се платформи специфичне 

имплементације могу прилагодити или заменити без 

утицаја на остатак система. 

7. ИСКОРИШЋЕЊЕ РЕСУРСА 

За анализу искоришћења меморије примењени су 

алати riscv64-unknown-elf-nm и elf-size-analyze, који 

омогућавају идентификацију највећих потрошача 

меморије и прецизно профилисање ELF фајла. 

Утврђено је да секција rodata заузима значајан део 

DCCM-а, што је узроковало прекорачење 

расположиве меморије током компилације. 

Проблем је решен релокацијом rodata секције у 

ICCM, што је подржано архитектуром SweRV EH1, и 

смањењем величине stack-а у складу са реалним 

потребама.  

Овим оптимизацијама постигнуто је ефикасније 

коришћење ресурса и очувана је стабилност система. 

8. ЗАКЉУЧАК 

У овом раду успешно је реализован RPC систем који 

омогућава стабилну комуникацију између уграђеног 

Wi-Fi HaLow уређаја и спољашњег host-a, уз поуздано 

функционисање у реалном времену. Систем је 

прилагођен ограничењима уграђених окружења и 

подржава проширивост на више хардверских 

платформи. 

Иако безбедност није била приоритет у овој фази, 

потенцијал за даље унапређење постоји увођењем 

механизама за аутентикацију и енкрипцију података. 

Уколико будуће апликације буду захтевале поуздану 

заштиту комуникације, систем се лако може 

проширити тим функционалностима. RPC може бити 

проширен механизмима за аутентикацију и 

шифровање, чиме може испунити критеријуме за 

SESIP Level 3, што се често захтева у индустријским 

апликацијама [5].  
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