Zbornik radova Fakulteta tehni¢ckih nauka, Novi Sad

UDK: 4.4
DOI: https://doi.org/10.24867/33BE35Trivunovic

SAMOOBNAVLJAJUCI KOD NA AWS PLATFORMI

SELF HEALING CODE ON AWS PLATFORM

Dragana Trivunovi¢, Fakultet tehnickih nauka, Novi Sad

Oblast - ELEKTROTEHNIKA I RACUNARSTVO

Kratak sadrzaj — Ovaj rad istrazuje mogucnost resenja
samoobnavijajuceg koda koji koristi AWS platformu i
generativnu veStacku inteligenciju. Mogucnosti koje
otvara slozeno resenje koda koji se samoobnavlja se
ogleda u smanjivanju utroSenog vremena razvojnog
inzenjera i brzom detektovanju greske u softveru i njenom
otklanjanju. Glavni servis koji je centar arhitekture ovog
reSenja je servis generativne vestacke inteligencije koji se
koristi za sugestiju, dopunu, ispravku, pojasnjenje,
optimizaciju, transformaciju i poboljsanje softverskog
reSenja.

Kljuéne reci: Cloud, AWS, Generativni Al

Abstract — This paper explores the feasibility of a self-
healing code solution utilizing the AWS platform and
generative artificial intelligence. The potential of a
complex self-healing code solution lies in reducing the
time spent by software engineers, enabling quick error
detection in the software, and facilitating error
correction. The core service at the heart of this
architecture is a generative Al service, used for
suggesting, completing, correcting, clarifying, optimizing,
transforming, and enhancing the sofiware solution.

Keywords: Cloud, AWS, Generative Al

1. UVOD

Era naprednog razvitka vestacke inteligencije dovela je
do, nekad nezamislivih, tehnickih reSenja. Primena
ovakvih resenja je u velikoj meri olakSala niz zadataka u
razvoju softvera. Optimizacija i automatizacija su kljucni
faktori koji izdvajaju reSenja sa primenom vestacke
inteligencije smanjujuéi cenu realizacije, utroseno vreme i
potrebne resurse za razvoj softvera. Pomo¢ koju vestacka
inteligencija pruza prilikom razvoja i odrzavanja
softverskih reSenja omogucdila je smanjenje vremena koje
je potrebno da se pronade i popravi greska (engl. bug). U
trci za napredna reSenja veStacke inteligencije i
masinskog ucenja, sa svojim inovativnim pristupom,
istice se AWS (Amazon Web Services) kompanija. Nacini

koris¢enja veStacke inteligencije unutar njihovih
proizvoda dovode do poboljsanog iskustva korisnika,
povecane produktivnosti zaposlenih, kreativnijeg

marketinga i optimizovanih procesa unutar kompanije.
Ovaj rad istrazuje AWS Self healing kod, analizirajuci
njegovu arhitekturu, funkcionalnosti i prakti¢nu primenu.

NAPOMENA:
Ovaj rad proistekao je iz master rada ¢iji mentor je
bio dr Srdan Vukmirovié, red. prof.

Na AWS platformi se mogu koristiti ve¢ istrenirani
modeli vestacke inteligencije i infrastruktura napravljenih
servisa. Osim fokusa na vestacku inteligenciju koji ¢ini
samo jedan deo ponudenih reSenja, na AWS platformi
postoji Citav niz softverskih reSenja koji Cine
infrastrukturu AWS-ovog ,,oblaka* (engl. Cloud). Usluge
koje se pruzaju su skladiStenje i arhiviranje podataka,
procesuiranje podataka, izgradnja API interfejsa, privatni
VPN, elastiéno balansiranje opterecenja nadolazeéeg
saobracéaja na veb sajtu, razne analitike i metrike podataka
koris¢enjem Big Data tehnologija, implementiranja
politike sigurnosti, identiteta i saglasnosti, itd.

U ovom radu ¢e biti obradeni neki od servisa koji su
iskoriS¢eni u stvaranju reSenja za kod koji ima moguénost
samoobnavljanja, detekcije gresSaka i podizanja ispravaka
koda u izvorni kod.

2. AMAZON WEB SERVICES

U poredenju sa klasi¢nim racunarstvom, AWS kao pionir
ideje racunarstva u oblaku 2000-ih godina, donosi novosti
koje su zauvek izmenile racunarstvo. Najveci benefiti se
ogledaju u skalabilnosti, gde manje firme imaju
mogucnost da plac¢aju samo onoliko koliko im u datom
trenutku treba, te sa povecanjem obima posla poveéaju i
obim AWS-ovih usluga. U proslosti su firme koristile
privatne centre podataka sa privatnim hardverom i
serverima, koji su u poredenju sa servisima na ,,oblaku‘
bile izuzetno skuplje. Skaliranje na AWS-u moZze da bude
i automatizovano i brzo, te je ovakav vid poslovanja
mnogo pogodniji. U danaSnje vreme sve modernizovane
firme i kompanije koriste reSenja raCunarstva u oblaku

[3].

2.1. AWS servisi

AWS takode nudi svojim korisnicima razvijeni sistem za
implementiranje politike sigurnosti, saglasnosti i
identiteta. Postoje servisi za nadzor sistema koji
povecéavaju sigurnost. Stiti svoje korisnike od ispada
sistema stavljaju¢i akcenat na pouzdanost svojih usluga.
AWS garantuje dostupnost korisnickih aplikacija
pruzanjem usluga na 80 zona dostupnosti i vise od 25
globalnih regija, §to ga ¢ini odlicnim izborom za
kompanije koje posluju globalno. Pruza razvojne alate za
softver koji su laki za koriS¢enje i omogucava brzo
podizanje korisnickih aplikacija i veb sajtova. Postoje
nekoliko tipova razvojih modela racunarstva u oblaku [3].

U modelu infrastrukture kao servisa, korisniku je

omogucéeno kori$éenje racunarske

1393

https://doi.org/10.24867/33BE35Trivunovic

infrastrukture u vidu virtuelne platforme kao §to su
virtuelne masine i serveri zaskladiStenje i upravljanje
podacima. Primeri modela infrastrukture kao servisa u
AWS-u su servisi poput Elastic Computing 2, Simple
Storage Service — S3, Relational Database Service — RDS.

Softver kao servis je model koji se fokusira na
dostavljanje aplikacije korisniku preko interneta. AWS ne
pruza gotova Softver kao servis reSenja, ali pruza
moguénost svojim korisnicima da naprave svoje
samostalne aplikacije bazirane na ovom modelu.

Platforma kao servis je model koji pruza platformu, alate i
razvojna okruzenja softverskim inZenjerima za razvoj
softverskih resenja. Primer je Content Delivery Network —
CDN servis koji predstavlja mrezu povezanih servera koji
ubrzavaju ucitavanje veb stranica za aplikacije koje su
orijentisane na podatke. Takav jedan servis je AWS-ov
CloudFront. Platforma kao servis je implementirana kao
model u servisima za balansiranje protoka podataka.
Elastic Load Balancing — ELB je servis koji omogucava
distribuciju opterecenja aplikacije na serverima zarad
poboljSanja skalabilnosti aplikacije. Jo§ jedan primer
ovog modela se nalazi u Amazon CloudWatch servisu
koji sluzi za monitoring podataka i aplikacije, preko
konstrukcije log datoteka i raznih metrika.

Back-end kao servis je model koji pomaze razvojnim
inzenjerima da se fokusiraju na front-end deo aplikacije.
U ovom modelu je serverski deo aplikacije ve¢ napravljen
i umesto korisnika upravlja bazom podataka,
skladiStenjem podataka, autentikacijom korisnika,
notifikacija na aplikaciji, veb-hostinga, itd. Primer ovog
modela na AWS-u je AWS Amplify. Ovaj model
omogucava front-end inzenjerima da konstruiSu full-stack
aplikacije.

Funkcija kao servis je model raunarstva u oblaku gde je
fokus stavljen na pokretanje funkcija kao odgovor na neki
dogadaj, bez potrebe da se konfiguriSe kompleksna
infrastruktura virtuelnih masina i upravljanje operativnim
sistemima i procesima odrzavanja veb servera. Sa ovim
modelom, veb server se moze podeliti na funkcionalnosti
koje se mogu automatski skalirati. Sa ovim modelom,
placa se samo kada se funkcionalnost iskoristi, a ne po
satu ili koli¢inskom najmu kao kod ostalih modela.
Primer ovog modela je AWS Lambda servis. Ovaj servis
izvrSava kod na visoko dostupnoj infrastrukturi za obradu
podataka i vr$i administraciju svih resursa za obradu,
ukljucujuéi i administraciju operativnog sistema i servera.
Takode, ovaj servis automatski skalira i1 potrazuje
potrebne resurse za obradu podataka.

3. AWS SELF HEALING CODE

Pod pritiskom brzog razvoja, programeri i menadzeri su
cesto suoceni sa izborom troSenja vremena na popravke
greSaka koda koji je ve¢ u produkciji, ili ostavljanjem
greSke i problema u ,back log“-u gde se gomila kao
tehnicki dug. Prvi izbor znaci viSe utroS$enog vremena i
novca, a drugi izbor dovodi do nezadovoljnih klijenata i
loseg korisnickog iskustva.

Resenje do kojeg su dosli inzenjeri iz Amazon AWS
kompanije je kod koji ima mogucnost introspekcije na
osnovu prijavljenih greSaka na aplikaciji, moguénost

ispravke koda i podizanja te ispravke na izvorni kod.
Kljuéni deo ovog resenja je generativni model veStacke
inteligencije koji nadopunjuje i ispravlja kod.

3.1. ARHITEKTURA RESENJA

Ovo reSenje je napravljeno kombinovanjem Amazon
CloudWatch-a, AWS Lambda i Amazon Bedrock servisa
kako bi kreirali sveobuhvatan sistem koji automatski
otkriva i popravlja greske radi poboljSavanja pouzdanosti
aplikacije i celokupnog korisni¢kog iskustva. U ovom
sistemu, ispravlja¢ greSaka se povezuje sa CloudWatch
evidencijom zapisa greSaka aplikacije preko Lambda
pretplate. Svi zapisnici koji sadrze greske aplikacije Salju
se na obradu, gde Lambda funkcija kreira prompt,
ukljuCujuc¢i pracenje steka (engl. ,stack™) i relevantne
datoteke koda, a zatim ga Salje u Amazon Bedrock
(Claude vl model) da generise ispravke koda. Izmenjeni
kod se zatim $alje u kontrolu izvora (Git) i kreira zahtev
za povlacenje za pregled i primenu [6].

Ovakvo reSenje pruza niz funkcionalnosti: Automatsko
otkrivanje pracenja steka (greske): Implementira pretplate
na CloudWatch evidencije za automatsko filtriranje i
otkrivanje tragova steka; Pracenje greSaka: Automatski
prati stanje obrade greSaka u Amazon DynamoDB,;
Deduplikacija: Deduplikuje tragove steka da bi se izbegla
suviSna obrada; Kreiranje zahteva za povlacenje: Integrise
se sa sistemima kontrole izvora za automatsko kreiranje
zahteva za povlacenje, koji ukljucuju ispravke gresaka

Postoji nekoliko servisa koji se koriste u ovom reSenju a
koji su spomenuti u prethodnim poglavljima. Amazon
CloudWatch Core servis pruza podatke evidencije greSaka
za problematic¢an izvorni kod. AWS Lambda Core servis
implementira automatizaciju za brzo generisanje i
interakciju sa BedRock-om. Amazon Bedrock Core servis
pruza Sirok skup mogucénosti za izgradnju generativnih Al
aplikacija koje analiziraju, popravljaju i vrac¢aju izmenjeni
problemati¢an izvorni kod. Amazon Simple Queue
Service (Amazon SQS) servis pruza grupnu obradu i
kontrolu istovremenosti za Lambda funkciju. Amazon
DynamoDB Core servis Cuva trag steka koda sa
evidencijama greSaka i prenosi podatke. Pomocni servis
Amazon Systems Manager cCuva tajne parametre u
skladistu [12].

3.1.1. Amazon CloudWatch

Amazon CloudWatch je servis koji nadgleda aplikacije,
reaguje na promene u performansama, optimizuje
koriS¢enje resursa i pruza uvid u operativno zdravlje.
Prikupljanjem podataka preko AWS resursa, CloudWatch
daje uvid u performanse celog sistema i omogucéava
korisnicima da podese alarme, automatski reaguju na
promene i steknu jedinstven pogled na operativno
zdravlje. CloudWatch je kao servis napravljen po modelu
Platforma kao servis.

CloudWatch funkcioniSe tako S$to akumulira metriku i
evidenciju iz AWS resursa, analizira te podatke i pruza
vizuelne prikaze i upozorenja. Sastoji se od 3 glavne
komponente: deo za pracenje i prikupljanje metrike koji
prikuplja podatke iz resursa, dugoro¢no skladiStenje tih
podataka u CloudWatch-u, kao i vizuelizacije i alarme na
osnovu uskladistenih podataka.

1394

3.1.2. AWS Lambda

Moguce je koristiti AWS Lambda za pokretanje koda bez
obezbedivanja ili upravljanja serverima.

Lambda pokrece kod na racunarskoj infrastrukturi visoke
dostupnosti i obavlja svu administraciju racunarskih
resursa, ukljucujuéi odrzavanje servera i operativhog
sistema, obezbedivanje kapaciteta i automatsko skaliranje
i evidentiranje. Sa Lambda-om, sve $to treba da uradite je
da unesete svoj kod u jednom od jezika izvodenja koje
Lambda podrzava [1].

Kod se organizuje u Lambda funkcije. Lambda usluga
pokrece funkciju samo kada je to potrebno i automatski se
podesava. Pla¢a se samo vreme koje je utroSeno na
pokretanje i izvrSavanje funkcije — nema naknade kada
kod nije pokrenut.

Lambda je idealna raCunarska usluga za scenarije
aplikacija koje treba brzo da se povecéaju i smanje na nulu
kada nisu trazene.

Kada se koristi Lambda, odgovornost je na inzenjeru
samo za njegov kod. Lambda upravlja racunarskom
flotom koja nudi balans memorije, CPU-a, mreze i drugih
resursa za pokretanje vaseg koda. PoSto Lambda upravlja
ovim resursima, nije moguce prijaviti se da bi se
izraunale instance ili prilagodili operativni sistem na
predvidenim vremenima izvodenja. Lambda obavlja
operativne i administrativne aktivnosti u korisni¢ko ime,
ukljucuju¢i upravljanje kapacitetom, pracenje i
evidentiranje korisnickih Lambda funkcija [2].

3.1.3. Amazon DynamoDB

DynamoDB je bez-serverska, NoSQL, potpuno
upravljana baza podataka sa jednocifrenim milisekundnim
performansama na bilo kojoj skali. Kao baza podataka bez
servera, placa se samo ono §to se iskoristi. DynamoDB
skalira na nulu, nema hladnih pokretanja, nema
nadogradnje verzije, nema prozora za odrzavanje, nema
zastoja odrzavanja. Ova baza podataka nudi Sirok skup
bezbednosnih kontrola i standarda uskladenosti. Za
globalno distribuirane aplikacije, DynamoDB globalne
tabele su multi-regionalna, multiaktivna baza podataka sa
SLA dostupnoséu od 99,999% i povecanom otpornoscu.
Pouzdanost DynamoDB-a je podrzana upravljanim
rezervnim kopijama 1 oporavkom u trenutku. Sa
DynamoDB tokovima, moguéa je izgradnja aplikacija
vodenih dogadajima bez servera [4] [9].

3.1.4. Amazon SQS

Amazon Simple Queue servis (Amazon SQS) nudi
siguran, izdrZljiv 1 dostupan red podataka koji omogucava
integraciju i odvojanje distribuiranih softverskih sistema i
komponenti. Amazon SQS nudi uobiéajene konstrukcije
kao $to su redovi za ,,mrtve” poruke i oznake za alokaciju
troskova. Pruza genericki API za veb usluge kojima se
moze pristupiti koriste¢i bilo koji programski jezik koji
podrzava AWS SDK [10].

Amazon SQS razdvaja i skalira distribuirane softverske
sisteme i komponente kao uslugu cekanja. Obicno
obraduje poruke preko jednog pretplatnika, §to je idealno
za tokove posla gde su prevencija narudzbine i gubitka
kriti¢ni. Za §iru distribuciju, integracija Amazon SQS-a sa

Amazon SNS-om omogucava razgranati obrazac za
razmenu poruka, efektivno prosledujuéi poruke vecem
broju pretplatnika odjednom [8].

3.1.5. Amazon Bedrock

Amazon Bedrock je servis koji omogucava da dostupnost
osnovnih modela veStacke inteligencije visokih
performansi (engl. Foundation Model) iz vode¢ih startapa
vesStacke inteligencije i Amazon za korisni¢ku upotrebu
putem objedinjenog API-ja. Moguée je birati izmedu
Sirokog spektra osnovnih modela vesStacke inteligencije
kako bi se pronasao model koji je najprikladniji za
korisnikov slucaj upotrebe. Amazon Bedrock takode nudi
Sirok skup moguénosti za izgradnju generativnih Al
aplikacija sa bezbednosScu, privatnos¢u i odgovornom
vestackom inteligencijom. Koriste¢i Amazon Bedrock,
moguce je da se lako eksperimentiSe nad i procenjuju
osnovni modeli za korisnicke slucajeve upotrebe, privatno
da se prilagodavaju korisnickim podacima koristec¢i
tehnike kao $to su fino podeSavanje i proSirena generacija
preuzimanja (RAG) i prave agenti koji izvrSavaju zadatke
koriste¢i sisteme korisnikovog preduzeca i izvore
podataka.

Amazon Bedrock je reSenje bez servera, gde je moguce
privatno prilagoditi osnovne modele sopstvenim
podacima i lako i bezbedno ih integrisati i primeniti u
aplikacije koriste¢i AWS alate bez potrebe za
upravljanjem infrastrukturom i njenom izmenom [11].

4. PRINCIPI ARHITEKTURE
SAMOOBNAVLJAJUCEG KODA

AWS-ovi inzenjeri su pioniri sistema za kod koji se sam
obnavlja, pronalazi greske (engl. bag) i sam podize
zahteve za ispravku originalnog koda.

Arhitektura ovog reSenja pomaze softverskim
kompanijama da postave sistem za otkrivanje i
evidentiranje greSaka, generisanje ispravki greSaka i
kreiranje zahteva za promenom koda. Svaka kompanija
koja kreira softver neizbezno mora da uravnoteZzi
reSavanje greSaka, a istovremeno se takmici sa pritiskom
razvoja proizvoda 1 funkcionalnosti. Greske mogu
odvratiti paznju programera, pogorsati korisnicko
iskustvo 1 uzrokovati pogresne pokazatelje. Ovo idejno
reSenje pomaze softverskim kompanijama da
implementiraju automatizovani sistem koji otkriva i
ispravlja greske kako bi poboljsao pouzdanost aplikacija i
poboljsao celokupno korisni¢ko iskustvo.

Resenje za kod koji se sam popravlja je zasnovano na 6
osnovnih stubova najboljih arhitektonskih praksi za
dizajniranje sistema u oblaku.

AWS Well-Architected Framework opisuje kljuéne
koncepte, principe dizajna i najbolje arhitektonske prakse
za projektovanje i pokretanje radnih opterecenja u oblaku.
Ovi principi i1 koncepti su opisani detaljnije u radu [7].

8. ZAKLJUCAK

Inovativan pristup inzenjera iz kompanije Amazon nam je
donelo resenje koje ¢e, ukoliko se dobro podesi i iskoristi,
dovesti do smanjivanja tehnickog duga i do olakSavanja i
ubrzavanja toka razvoja aplikacije. Nacin na koji je
iskoriséen generativni model veStacke inteligencije je

1395

doveo do automatizacije velikog dela posla programera, a
to je pronalaZenje i ispravak gresaka u kodu.

Ovo reSenje smanjuje troskove razvoja softverskih
reSenja, poboljSava produktivnost timova, obezbeduje
visok nivo sigurnosti i pouzdanosti,

Potrebno je imati u vidu da je ovo reSenje dostupno samo
u odredenim AWS regionima i da se troSkovi mogu
znacajno razlikovati u zavisnosti od obima upotrebe i
konkretnih potreba korisnika. Pazljivo planiranje i
pracenje trosSkova, uz koriS¢enje AWS alata kao S$to je
Cost Explorer, omogucava korisnicima da maksimiziraju
koristi od ovog sistema uz minimalne finansijske rizike

Na kraju, ovakve vrste reSenja predstavljaju buducnost
razvoja softvera, gde automatizacija 1 veStacka
inteligencija igraju klju¢nu ulogu u poboljSanju kvaliteta
softverskih reSenja 1 korisnickog iskustva. Ovakve
tehnologije su ve¢ krenule da transformisu nacin na koji
timovi softverskih inzenjera rade, smanjujuéi tehnicki dug
i omogucavajuéi brze i efikasnije reSavanje problema.

9. LITERATURA

[1] Funkcija kao servis [na mrezi]. Dostupno na:
https://www.ibm.com/topics/faas (Pristupljeno u junu
2024. godine)

[2] Lambda Servis [na mrezi]. Dostupno na:
https://docs.aws.amazon.com/lambda/latest/dg/welcome.h
tml (Pristupljeno u junu 2024. godine)

[3] Proizvodi AWS-a [na mrezi]. Dostupno na:
https://aws.amazon.com/products/ (Pristupljeno u junu
2024. godine)

[4] AWS nacini
Dostupno na:
https://www.educba.com/aws-storage-services/
(Pristupljeno u junu 2024. godine)

[5] O bazama podatala [na mrezi]. Dostupno na:
https://docs.aws.amazon.com/whitepapers/latest/aws-
overview/database.html (Pristupljeno u junu 2024.
godine)

[6] Self healing code uputstvo [na mrezi]. Dostupno na:
https://aws.amazon.com/solutions/guidance/self-healing-
code-on-aws/ (Pristupljeno u junu 2024. godine)

[7] Principi arhitekture na AWS-u [na mrezi]. Dostupno
na:

https://aws.amazon.com/architecture/well-
architected/?wa-lens-whitepapers.sort-
by=item.additionalFiclds.sortDate&wa-lens-
whitepapers.sort-order=desc&wa-guidance-
whitepapers.sort-by=item.additionalFields.sortDate&wa-
guidance-whitepapers.sort-order=desc (Pristupljeno u
junu 2024. godine)

[8] Cloudwatch [na mrezi]. Dostupno na:
https://aws.amazon.com/cloudwatch/ (Pristupljeno u junu
2024. godine)

[9] DynamoDB [na mrezi]. Dostupno na:
https://aws.amazon.com/dynamodb/ (Pristupljeno u junu
2024. godine)

[10] Simple Queue Service [na mrezi]. Dostupno na:
https://docs.aws.amazon.com/AWSSimpleQueueService/
(Pristupljeno u junu 2024. godine)

[11] Bedrock [na mrezi]. Dostupno na:

skladiStenja podataka [na mrezi].

https://docs.aws.amazon.com/bedrock/
junu 2024. godine)

[12] Self healing code [na mrezi]. Dostupno na:
https://aws-solutions-library-samples.github.io/ai-ml/self-
healing-code-on-aws.html (Pristupljeno u junu 2024.
godine)

(Pristupljeno u

Kratka biografija:

Dragana Trivunovi¢
rodena je 21. oktobra
1998. godine u Sremskoj
Mitrovici. Osnovnu skolu
"Caki Lajos" zavrsila je u
Backoj Topoli, a
gimnaziju, opsti smer, je
zavr§ila u srednjoj Skoli
"Dositej Obradovi¢" u
Backoj Topoli. Skolske
2017/2018 godine upisuje
Fakultet tehnickih nauka u Novom Sadu, na studijski
program Primenjeno softversko inZenjerstvo. Osnovne
akademske studije zavr$ila je skolske 2022/2023, posle
kojih upisuje master studije, takode, na studijskom
programu Primenjeno softversko inzenjerstvo.

1396

https://www.ibm.com/topics/faas
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://aws.amazon.com/products/
https://www.educba.com/aws-storage-services/
https://docs.aws.amazon.com/whitepapers/latest/aws-overview/database.html
https://docs.aws.amazon.com/whitepapers/latest/aws-overview/database.html
https://aws.amazon.com/solutions/guidance/self-healing-code-on-aws/
https://aws.amazon.com/solutions/guidance/self-healing-code-on-aws/
https://aws.amazon.com/architecture/well-architected/?wa-lens-whitepapers.sort-by=item.additionalFields.sortDate&wa-lens-whitepapers.sort-order=desc&wa-guidance-whitepapers.sort-by=item.additionalFields.sortDate&wa-guidance-whitepapers.sort-order=desc
https://aws.amazon.com/architecture/well-architected/?wa-lens-whitepapers.sort-by=item.additionalFields.sortDate&wa-lens-whitepapers.sort-order=desc&wa-guidance-whitepapers.sort-by=item.additionalFields.sortDate&wa-guidance-whitepapers.sort-order=desc
https://aws.amazon.com/architecture/well-architected/?wa-lens-whitepapers.sort-by=item.additionalFields.sortDate&wa-lens-whitepapers.sort-order=desc&wa-guidance-whitepapers.sort-by=item.additionalFields.sortDate&wa-guidance-whitepapers.sort-order=desc
https://aws.amazon.com/architecture/well-architected/?wa-lens-whitepapers.sort-by=item.additionalFields.sortDate&wa-lens-whitepapers.sort-order=desc&wa-guidance-whitepapers.sort-by=item.additionalFields.sortDate&wa-guidance-whitepapers.sort-order=desc
https://aws.amazon.com/architecture/well-architected/?wa-lens-whitepapers.sort-by=item.additionalFields.sortDate&wa-lens-whitepapers.sort-order=desc&wa-guidance-whitepapers.sort-by=item.additionalFields.sortDate&wa-guidance-whitepapers.sort-order=desc
https://aws.amazon.com/architecture/well-architected/?wa-lens-whitepapers.sort-by=item.additionalFields.sortDate&wa-lens-whitepapers.sort-order=desc&wa-guidance-whitepapers.sort-by=item.additionalFields.sortDate&wa-guidance-whitepapers.sort-order=desc
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/dynamodb/
https://docs.aws.amazon.com/AWSSimpleQueueService/
https://docs.aws.amazon.com/bedrock/
https://aws-solutions-library-samples.github.io/ai-ml/self-healing-code-on-aws.html
https://aws-solutions-library-samples.github.io/ai-ml/self-healing-code-on-aws.html

