

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.9

DOI: https://doi.org/10.24867/33BE30Vulin

JEZIK ZA OPIS PRAVILA ZA IGRE SA KARTAMA

A LANGUAGE FOR DESCRIBING CARD GAME RULES

Ana Vulin, Fakultet tehničkih nauka, Novi Sad

Oblast – ELEKTROTEHNIKA I RAČUNARSTVO

Kratak sadržaj – U radu je predstavljen dizajn i

implementacija jezika specifičnog za domen (DSL)

namenjenog opisivanju pravila za igre sa kartama. Sistem

obuhvata textX parser, interpreter u Python-u, kao i veb

klijent sa podrškom za interaktivnu vizuelizaciju. Cilj je

omogućiti lako kreiranje igri sa kartama bez potrebe za

programerskim znanjem.

Ključne reči: DSL, textX, Python, WebSocket,

vizualizacija, igre sa kartama

Abstract – The paper presents the design and

implementation of a domain-specific language (DSL)

intended for describing the rules of card games. The system

includes a textX parser, a Python-based interpreter, and a

web client with support for interactive visualization. The

goal is to enable easy creation of card games without the

need for programming knowledge.

Keywords: DSL, textX, Python, WebSocket, visualization

card games

1. UVOD

Kartaške igre predstavljaju jedan od najrasprostranjenijih

oblika društvene zabave, ali i pogodan model za

proučavanje i implementaciju različitih pravila, strategija i

interakcija. Njihova struktura – sa jasno definisanim

fazama, pravilima i uslovima pobede – čini ih idealnim

kandidatom za formalizaciju kroz DSL. Cilj ovog rada je

razvoj i implementacija DSL rešenja koje omogućava

jednostavno, fleksibilno i proširivo definisanje i pokretanje

različitih kartaških igara.

Predloženo rešenje – CardGame DSL – omogućava

korisnicima da tekstualno opišu pravila igre koristeći

specijalizovanu DSL gramatiku, a sistem automatski

generiše i izvršava logiku igre, čime se ubrzava razvoj i

olakšava učešće osobama bez programerskog znanja.

Sistem koristi textX za definisanje i parsiranje DSL

sintakse, dok je izvršna logika realizovana u Python-u kroz

specijalizovan interpreter. Klijentska aplikacija je

razvijena u JavaScript-u sa HTML i CSS podrškom, a

komunikacija klijent–server odvija se u realnom vremenu

putem WebSocket-a, čime je omogućena modularnost i

ponovna upotreba sistema.

__

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je bio

dr Igor Dejanović, red. prof.

2. TEORIJSKE OSNOVE

2.1. Jezici specifični za domen (DSL)

Jezik specifičan za domen [1] je jezik napravljen za

rešavanje problema u određenom domenu. Na primer,

HTML je DSL za opisivanje veb stranica, a SQL DSL za rad

sa bazama podataka. Nasuprot DSL-u se nalazi jezik opšte

namene (GPL – General Purpose Language) koji ima

široku primenu u različitim oblastima razvoja softvera

(Python, Java,..)

2.1.1. Apstraktna i konkretna sintaksa

Apstraktna sintaksa [2] – logička struktura koda bez detalja

koji nisu bitni za razumevanje. Najčešće se koristi u vidu

stable apstraktne sintakse (AST – Abstract Syntax Tree).

Konkretna sintaksa – način na koji korisnik unosi

programski kod ili model. Može biti tekstutualna, grafička,

tabelarna.

 U okviru tekstualne konkretne sintakse definiše se

gramatika. Predstavlja formalizovani skup pravila koji

definiše dopustive nizove karaktera i njihove međusobne

odnose.

2.1.2. Parsiranje

Proces parsiranja uzima tekst u konkretnoj sintaksi i

pretvara ga u strukturu u apstraktnoj sintaksi (AST).

2.1.3. Interpretacija i kompajliranje

Postoje dva glavna načina izvršavanja koda ili naredbi –

interpretacija i kompajliranje/generisanje koda.

Interpretacija – izvorni kod ili neka njegova reprezentacija

(npr. AST) se direktno čita i izvršava od strane interpretera.

Kompajliranje ili generisanje koda – proces stvaranja koda

napisanog u nekom jeziku u niz instrukcija ili mašinski kod

koji procesor može direktno izvršiti.

2.2. Igre sa kartama

Igre sa kartama [3] predstavljaju raznovrstan oblik

društvenih igara i sve više se koriste u obrazovanju. Mogu

se klasifikovati prema svrsi i pravilima, npr. igre na sreću,

strateške, pamćenja i opažanja, socijalne i edukativne igre.

3. SPECIFIKACIJA SISTEMA

3.1. Jezici specifični za domen (DSL)

Glavni cilj sistema jeste da omogući lako i brzo kreiranje

kartaške igre koristeći unapred definisan skup pravila i to

na način koji je intuitivan i pristupačan i osobama bez

programerskog znanja.

1377

https://doi.org/10.24867/33BE30Vulin

3.2. Postojeća rešenja

Postojeća rešenja kao što su biblioteka Cardamom.js [4] i

Construct 3 [5] podržavaju razvoj kartaških igara.

Cardamom.js omogućava rad sa kartama. Špilovima i

rukama kroz funkcije za kreiranje, mešanje i upravljanje.

Construct 3 pruža vizuelni, objektno orijentisan sistem za

razvoj 2D igara bez pisanja koda.

3.3. Arhitektura obrade i interpretacije DSL-a

Jezik CardGame je eksterni DSL. Osnovna komponenta

sistema je Game Parser, koji na osnovu definisane

gramatike parsira specifikaciju koja opisuje igru. Parser

vrši osnovnu validaciju specifikacije (.gme fajla) i kao

rezultat vraća model koji se nakon toga prevodi u interni

CardGame Model čija je uloga semantička validacija.

Interpreter predstavlja glavni deo sistema i vrši tumačenje

pravila igre na osnovu modela, omogućavajući njihovu

primenu i izvršavanje. Na slici 1 je dat šematski prikazan

put od .gme fajla do igre.

Slika 1: Arhitektura obrade i interpretacije DSL-a

3.3.1. Meta-model

Meta-model se sastoji od elemenata: Game, Rules, State,

Transition, Action, CardCount, Card, EnumValue, Rank,

Suit i drugih pomoćnih klasa kao što su ParamList, Param.

Svaka klasa ima svoje atribute i međusobne relacije.

3.3.2. Parser

Za obradu specifikacija napisanih u CardGame DSL-u

koristi se biblioteka textX, koja omogućava definisanje

gramatike i automatsko generisanje parsera.

3.3.3. Model

Radi postizanja veće stabilnosti, podaci dobijeni iz parsera

se ne koriste direktno nego se transformišu u interni model.

Interni model (slika 2) predstavlja skup specijalizovanih

klasa dizajniranih da reprezentuju elemente igre sa svim

potrebnim svojstvima i pravilno implementiranom

logikom.

Slika 2: Dijagram klasa internog modela

3.3.4. Interpreter

Interpreter je centralni deo sistema razvijen u Python-u

koji, koristeći biblioteku textX, tumači specifikacije igara

definisanih u CardGame DSL-u i upravlja logikom i tokom

igre. Integrisan je u backend Flask aplikaciju organizovanu

po kontroler-servis-repozitorijum arhitekturi, uz korišćenje

WebSocket protokola za realnovremensku komunikaciju sa

frontend-om. Stanja igre, potezi i rezultati se čuvaju u

relacionoj bazi podataka, što omogućava kontinuitet

partije. Sistem je dizajniran tako da omogući proširivost i

ponovnu upotrebu, bez potrebe za dodatnim kodiranjem pri

definisanju novih igara

4. IMPLEMENTACIJA SISTEMA

4.1. Tehnologije

Ovaj sistem kombinuje textX, Python, Flask, PostgreSQL,

WebSocket, HTTP, JavaScript, HTML i CSS za izradu

interaktivnog DSL-a i veb aplikacije. Backend upravlja

igrom i komunikacijom u realnom vremenu dok frontend

dinamički generiše interfejs.

4.1.1. textX

TextX [6] je meta-jezik za definisanje gramatika DSL-a u

Python-u. U ovom rešenju koristi se za parsiranje

CardGame skripti i generisanje AST.

4.1.2. Python

Python [7] je dinamički jezik pogodan za obradu teksta,

integraciju i backend aplikacije. Korišćen je za parser,

backend server i upravljanje bazom podataka.

4.1.3. Flask

Flask [8] je backend framework za Python, pogodan za veb

aplikacije. U sistemu CardGame omogućava HTTP

zahteve, upravljanje stanjem igre i WebSocket

komunikaciju.

4.1.4. WebSocket

WebSocket [9] je protokol koji omogućava dvosmernu

komunikaciju u realnom vremenu. Ovde se koristi za

razmenu poruka između igrača, bez potrebe za učestalim

HTTP pozivima.

4.1.5. HTTP

HTTP [10] je osnovni protokol za komunikaciju između

klijenta i servera. U sistemu se koristi za učitavanje

stranica, prijavu i registraciju korisnika.

4.1.6. PostgreSQL

PostgreSQL [14] je objektno-relaciona baza podataka

poznata po stabilnosti i skalabilnosti. U CardGame rešenju

služi za skladištenje korisničkih podataka, rezultata i stanja

partija.

4.1.7. HTML, CSS, JavaScript

HTML [11] definiše strukturu veb interfejsa i sadržaja

aplikacije. CSS [12] određuje izgled veb stranice,

uključujući boje, fontove i razmeštaj elemenata.

JavaScript [13] omogućava interaktivnost i dinamičko

ažuriranje veb interfejsa. U ovom rešenju upravlja

WebSocket komunikacijom, generisanjem HTML sadržaja

i reagovanjem na korisničke akcije.

1378

4.2. CardGame DSL i gramatika

CardGame DSL je realizovan kao eksterni tekstualni DSL.

CardGame, osnovni element gramatike, prikazan je na

slici 3. Sadrži ime igre kao i blokove rules, states i cards

koji opisuju pravila, stanja i karte

Slika 3: Element gramatike CardGame

Element Rules prikazan je na slici 4 i predstavlja pravila

koja uključuju broj igrača, broj rundi, način izbora sledećeg

igrača i kriterijum za pobedu.

Slika 4: Element gramatike Rules

Element States prikazan na slici 5 predstavlja stanja

odnosno logičke faze igre koje sadrže akcije i tranzicije ka

drugim stanjima.

Slika 5: Element gramatike States

Element Action prikazan na slici 6 predstavlja radnju koja

se izvršava u okviru određenog stanja. Svaka akcija ima

svoj jedinstveni naziv (name=ID) kao i opcionalni deo ('('

params=ParamList ')')? koji predstavlja parametre akcije

koji mogu, a ne moraju biti prisutni.

Slika 6: Element gramatike Action

Element Transition prikazan na slici 7 predstavlja

tranziciju koja pokazuje u koje sledeće stanje igra prelazi.

Sastoji se od ključne reči then nakon čega sledi naziv

sledećeg stanja, a zatim sledi opcioni deo ('if'

condition=BOOLEAN)?. Ovaj deo je opcion jer se mogu

javiti različiti scenariji:

1. Ako nema definisanih tranzicija to je kraj igre

2. Ako postoji samo jedna tranzicija bez uslova, prelaz u

sledeće stanje se odvija automatski

3. Ako postoji više tranzicija sa uslovima, prelaz se odvija

u prvo stanje čiji je uslov ispunjen

4. Ako postoji više tranzicija bez uslova, sledeće stanje

zavisi od igrača ili nekog spoljašnjeg faktora

Slika 7: Element gramatike Transition

Element gramatike Cards prikazan na slici 8 predstavlja

karte. Svaka karta (Card) je definisana preko ranga i boje,

a navodi se i broj njenog pojavljivanja, kao i koliko poena

vredi (CardCount).

Slika 8: Element gramatike Cards

4.3. Parsiranje i model

Parsiranje .gme datoteka realizovano je uz pomoć textX

parsera. Parsirani podaci se transformišu u interni model

koji vrši dodatnu semantičku validaciju. Interni model

predstavlja skup Python klasa koje definišu strukturu igre.

Ovaj model je osnova za interpretiranje logike igre.

4.4. Interpreter i povezivanje komponenti

Interpreter napisan u Python-u tumači pravila i upravlja

tokom igre. On je integrisan u Flask backend, koji kroz

WebSocket komunicira sa frontend-om. Ovo omogućava

dinamički tok igre bez učitavanja stranice. Stanja igre i

rezultati čuvaju se u PostgreSQL bazi podataka.

4.5. Frontend i korisnički interfejs

Frontend je razvijen u HTML/CSS/JavaScript

tehnologijama. Koristi WebSocket za interaktivnu

komunikaciju i prikazuje tok igre u realnom vremenu.

Sistem omogućava registraciju, prijavu, pregled postojećih

igara i igranje igre sa protivnikom.

4.6. Pomoćne funkcionalnosti

Sistem sadrži niz funkcionalnosti za podršku korisnicima

kao što su syntax highlighting, podrška za snippet-e i

automatska vizualizacija grafa prelaza stanja.

4.7. Konfiguracija i primer upotrebe sistema

Za pokretanje sistema instalirati Python 3.6+, Flask,

PostgreSQL, PyCharm ili VSC. Klonirati repozitorijum

https://github.com/vulinana/card_game_dsl.git.U

PyCharm-u, dodati interpreter iz foldera card_game_dsl.

Dodati .gme fajl u gme/games. Nakon prijave, u glavnom

interfejsu biće dostupna novododata igra.

5. PRIMER SKRIPTE U CARDGAME DSL-u

Igra memorijskih karata namenjena je za dva do četiri

igrača, a cilj je pronaći što više parova istog ranga. Sastoji

se od pet rundi u kojima se igrači smenjuju, dok se karte

postavljaju licem nadole. Pobednik je onaj sa najviše

poena. Osnovna pravila definisana CardGame DSL-om

prikazana su na slici 9.

Slika 9: Osnovna pravila igre memorijskih karata

1379

https://github.com/vulinana/card_game_dsl.git

Na početku igre, na sto se nasumično postavlja osam karata

(deal_table_cards). Igrač koji je na potezu (next_player)

bira dve karte (action_phase). Ova logika implementirana

je kroz stanja prikazana na slici 10.

Slika 10: deal_table_cards, next_player i action_phase

Karte se okreću (reveal) i proverava da li su istog ranga

(matching_cards). Ako nisu, vraćaju se licem nadole

(flip_back), a ako jesu, igrač dobija poene

(calculate_points) i karte se uklanjaju

(remove_selected_cards). Prikaz stanja dat je na slici 11.

Slika 11: reveal, matching_cards, flip_back,

mark_matching_cards_for_scoring, calculate points i

remove_selected_cards

Sistem proverava da li na stolu postoje parovi

(any_matching_table_cards). Ako postoje, igra nastavlja

sa sledećim igračem (next_player), a ako ne, počinje nova

runda (new_round). Nakon provere broja rundi

(rounds_remaining), igra se završava određivanjem

pobednika (game_end) ili ponovnim deljenjem karata

(deal_table_cards). Prikaz stanja dat je na slici 12

Slika 12: any_matching_table_cards, new_round,

rounds_remainning i game_end

Na kraju je potrebno još definisati karte koje se mogu

pojaviti u toku igre, kao i broj njihovog ponavljanja i broj

poena koji nose (slika 13).

Slika 13: Karte koje se mogu pojaviti u igri

6. ZAKLJUČAK

Razvijeni sistem pruža efikasno rešenje za dizajn kartaških

igara, zasnovano na dostupnosti i jednostavnosti.

Deklarativni pristup omogućava intuitivno definisanje

pravila, toka igre i ponašanja igrača, čime se uklanja

potreba za poznavanjem programskih jezika i sistem

postaje dostupan širokom spektru korisnika.

Dalji razvoj sistema omogućava dodavanje funkcionalnosti

koje bi unapredile korisničko iskustvo, kao što su:

1. Proširenje skupa interpretiranih akcija

2. Vizuelni editor pravila – grafički interfejs za

kreiranje i uređivanje pravila bez pisanja DSL koda.

3. Automatska dijagnostika grešaka –

prepoznavanje nelogičnih mehanika uz predlog

rešenja.

4. Simulacija testnih partija – automatsko izvođenje

više partija radi analize funkcionalnosti igre.

5. Interaktivni debugger pravila – korak-po-korak

interpretacija pravila i lakše otkrivanje grešaka.

LITERATURA

[1] https://en.wikipedia.org/wiki/Domain-

specific_language (pristupljeno u maju 2025.)

[2] https://en.wikipedia.org/wiki/Abstract_syntax_tr

ee (pristupljeno u maju 2025.)

[3] https://gambiter.com/cards/classified-

index.html?utm_source=chatgpt.com

(pristupljeno u junu 2025.)

[4] https://marianpekar.github.io/Cardamom.js/

(pristupljeno u maju 2025.)

[5] https://www.construct.net/en

(pristupljeno u maju 2025.)

[6] https://textx.github.io/textX/

[pristupljeno u avgustu 2025.)

[7] https://www.python.org/doc/

(pristupljeno u maju 2025.)

[8] https://flask.palletsprojects.com/en/latest/

(pristupljeno u maju 2025.)

[9] https://developer.mozilla.org/en-

US/docs/Web/API/WebSockets_API

(pristupljeno u maju 2025.)

[10] https://developer.mozilla.org/en-

US/docs/Web/HTTP (pristupljeno u maju 2025.)

[11] https://developer.mozilla.org/en-

US/docs/Web/HTML (pristupljeno u maju 2025.)

[12] https://developer.mozilla.org/en-

US/docs/Web/CSS (pristupljeno u maju 2025.)

[13] https://developer.mozilla.org/en-

US/docs/Web/JavaScript

(pristupljeni u maju 2025.)

[14] https://www.postgresql.org/about/

(pristupljeno u junu 2025.)

Kratka biografija:

Ana Vulin rođena je u Sremskoj

Mitrovici 2000. god. Master rad

na Fakultetu tehničkih nauka iz

oblasti Elektrotehnike i

računarstva – Softversko

inženjerstvo, odbranila je

2025.god.

kontakt: sm.vulinana@gmail.com

1380

https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://gambiter.com/cards/classified-index.html?utm_source=chatgpt.com
https://gambiter.com/cards/classified-index.html?utm_source=chatgpt.com
https://marianpekar.github.io/Cardamom.js/
https://www.construct.net/en
https://textx.github.io/textX/
https://www.python.org/doc/
https://flask.palletsprojects.com/en/latest/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://www.postgresql.org/about/
mailto:sm.vulinana@gmail.com

