g?ﬁ Zbornik radova Fakulteta tehniékih nauka, Novi Sad

UDK: 4.9
DOI: https://doi.org/10.24867/33BE30Vulin

JEZIK ZA OPIS PRAVILA ZA IGRE SA KARTAMA
A LANGUAGE FOR DESCRIBING CARD GAME RULES
Ana Vulin, Fakultet tehnickih nauka, Novi Sad

Oblast - ELEKTROTEHNIKA I RACUNARSTVO

Kratak sadriaj — U radu je predstavljen dizajn i
implementacija jezika specificnog za domen (DSL)
namenjenog opisivanju pravila za igre sa kartama. Sistem
obuhvata textX parser, interpreter u Python-u, kao i veb
klijent sa podrskom za interaktivnu vizuelizaciju. Cilj je
omoguciti lako kreiranje igri sa kartama bez potrebe za
programerskim znanjem.

Kljuéne refi: DSL, textX, Python, WebSocket,
vizualizacija, igre sa kartama
Abstract — The paper presents the design and

implementation of a domain-specific language (DSL)
intended for describing the rules of card games. The system
includes a textX parser, a Python-based interpreter, and a
web client with support for interactive visualization. The
goal is to enable easy creation of card games without the
need for programming knowledge.

Keywords: DSL, textX, Python, WebSocket, visualization
card games

1. UVOD

Kartaske igre predstavljaju jedan od najrasprostranjenijih
oblika druStvene zabave, ali i pogodan model za
proucavanje i implementaciju razli¢itih pravila, strategija i
interakcija. Njihova struktura — sa jasno definisanim
fazama, pravilima i uslovima pobede — ¢ini ih idealnim
kandidatom za formalizaciju kroz DSL. Cilj ovog rada je
razvoj i implementacija DSL reSenja koje omogucava
jednostavno, fleksibilno i prosirivo definisanje i pokretanje
razli¢itih kartaskih igara.

Predlozeno resenje — CardGame DSL — omogucava
korisnicima da tekstualno opiSu pravila igre koristeci
specijalizovanu DSL gramatiku, a sistem automatski
generiSe 1 izvrSava logiku igre, ¢ime se ubrzava razvoj i
olakSava ucesc¢e osobama bez programerskog znanja.

Sistem koristi fextX za definisanje i parsiranje DSL
sintakse, dok je izvr$na logika realizovana u Python-u kroz
specijalizovan interpreter. Klijentska aplikacija je
razvijena u JavaScript-u sa HTML i CSS podrskom, a
komunikacija klijent—server odvija se u realnom vremenu
putem WebSocket-a, ¢ime je omogucena modularnost i
ponovna upotreba sistema.

NAPOMENA:
Ovaj rad proistekao je iz master rada ¢iji mentor je bio
dr Igor Dejanovié, red. prof.

2. TEORIJSKE OSNOVE
2.1. Jezici specifi¢ni za domen (DSL)

Jezik specifican za domen [1] je jezik napravljen za
reSavanje problema u odredenom domenu. Na primer,
HTML je DSL za opisivanje veb stranica, a SOL DSL za rad
sa bazama podataka. Nasuprot DSL-u se nalazi jezik opSte
namene (GPL — General Purpose Language) koji ima
Siroku primenu u razliitim oblastima razvoja softvera
(Python, Java,..)

2.1.1. Apstraktna i konkretna sintaksa

Apstraktna sintaksa [2] — logicka struktura koda bez detalja
koji nisu bitni za razumevanje. Najcesce se koristi u vidu
stable apstraktne sintakse (AST — Abstract Syntax Tree).

Konkretna sintaksa — nac¢in na koji korisnik unosi
programski kod ili model. Moze biti tekstutualna, graficka,
tabelarna.

U okviru tekstualne konkretne sintakse definiSe se
gramatika. Predstavlja formalizovani skup pravila koji
definiSe dopustive nizove karaktera i njihove medusobne
odnose.

2.1.2. Parsiranje

Proces parsiranja uzima tekst u konkretnoj sintaksi i
pretvara ga u strukturu u apstraktnoj sintaksi (AST).

2.1.3. Interpretacija i kompajliranje

Postoje dva glavna nacina izvrSavanja koda ili naredbi —
interpretacija 1 kompajliranje/generisanje koda.
Interpretacija — izvorni kod ili neka njegova reprezentacija
(npr. AST) se direktno €ita i izvrSava od strane interpretera.
Kompajliranje ili generisanje koda — proces stvaranja koda
napisanog u nekom jeziku u niz instrukcija ili masinski kod
koji procesor moze direktno izvrsiti.

2.2. Igre sa kartama

Igre sa kartama [3] predstavljaju raznovrstan oblik
drustvenih igara i sve viSe se koriste u obrazovanju. Mogu
se klasifikovati prema svrsi i pravilima, npr. igre na srecu,
strateske, pamcenja i opazanja, socijalne i edukativne igre.

3. SPECIFIKACIJA SISTEMA

3.1. Jezici specifi¢ni za domen (DSL)

Glavni cilj sistema jeste da omoguci lako i brzo kreiranje
kartaske igre koriste¢i unapred definisan skup pravila i to
na nacin koji je intuitivan i pristupacan i osobama bez
programerskog znanja.

1377

https://doi.org/10.24867/33BE30Vulin

3.2. Postojeca reSenja

Postojeca resenja kao $to su biblioteka Cardamom.js [4] i
Construct 3 [5] podrzavaju razvoj kartaskih igara.
Cardamom.js omoguéava rad sa kartama. Spilovima i
rukama kroz funkcije za kreiranje, mesanje i upravljanje.
Construct 3 pruza vizuelni, objektno orijentisan sistem za
razvoj 2D igara bez pisanja koda.

3.3. Arhitektura obrade i interpretacije DSL-a

Jezik CardGame je eksterni DSL. Osnovna komponenta
sistema je Game Parser, koji na osnovu definisane
gramatike parsira specifikaciju koja opisuje igru. Parser
vr§i osnovnu validaciju specifikacije (.gme fajla) i1 kao
rezultat vra¢a model koji se nakon toga prevodi u interni
CardGame Model ¢ija je uloga semanticka validacija.
Interpreter predstavlja glavni deo sistema i vrsi tumacenje
pravila igre na osnovu modela, omogucéavajuéi njihovu
primenu i izvrSavanje. Na slici 1 je dat Sematski prikazan
put od .gme fajla do igre.

8-0--B-=

.gme file CardGame CardGame Interpreter CardGame
Parser Model

Slika 1: Arhitektura obrade i interpretacije DSL-a
3.3.1. Meta-model

Meta-model se sastoji od elemenata: Game, Rules, State,
Transition, Action, CardCount, Card, EnumValue, Rank,
Suit 1 drugih pomo¢nih klasa kao $to su ParamlList, Param.
Svaka klasa ima svoje atribute i medusobne relacije.

3.3.2. Parser

Za obradu specifikacija napisanih u CardGame DSL-u
koristi se biblioteka fextX, koja omoguéava definisanje
gramatike i automatsko generisanje parsera.

3.3.3. Model

Radi postizanja veée stabilnosti, podaci dobijeni iz parsera
se ne koriste direktno nego se transformisu u interni model.
Interni model (slika 2) predstavlja skup specijalizovanih
klasa dizajniranih da reprezentuju elemente igre sa svim
potrebnim svojstvima 1 pravilno implementiranom
logikom.

CardGame

(Rules i

min_players: int
max_players: int
rounds: int
table_cards_visible: bool
next_player_in_round
condition: str

name: str

rules: Rulas

cards: List]CardCount)
states: List(State)

1
I

to_dict()

~To.- game_winner: str
to_dict() J
CardCount : l 1
card: Card |
score: int 1 & Stete ‘
count: int ;) name: str

action: Action

to_dict() . transitions: ListTransition)

== =
to_dict()

Card 1
rank: str Transition
score: int 1
—]_) nextState: str
| condition: bool

count: int
to_dict()

to_dict()

Slika 2: Dijagram klasa internog modela

3.3.4. Interpreter

Interpreter je centralni deo sistema razvijen u Python-u
koji, koristeci biblioteku fextX, tumaci specifikacije igara
definisanih u CardGame DSL-u iupravlja logikom i tokom
igre. Integrisan je u backend Flask aplikaciju organizovanu
po kontroler-servis-repozitorijum arhitekturi, uz kori§cenje
WebSocket protokola za realnovremensku komunikaciju sa
frontend-om. Stanja igre, potezi i rezultati se Cuvaju u
relacionoj bazi podataka, §to omogucéava kontinuitet
partije. Sistem je dizajniran tako da omoguci proS$irivost i
ponovnu upotrebu, bez potrebe za dodatnim kodiranjem pri
definisanju novih igara

4. IMPLEMENTACIJA SISTEMA

4.1. Tehnologije

Ovaj sistem kombinuje textX, Python, Flask, PostgreSOL,
WebSocket, HTTP, JavaScript, HTML i CSS za izradu
interaktivnog DSL-a i veb aplikacije. Backend upravlja
igrom i komunikacijom u realnom vremenu dok frontend
dinamicki generiSe interfejs.

4.1.1. textX

TextX [6] je meta-jezik za definisanje gramatika DSL-a u
Python-u. U ovom reSenju koristi se za parsiranje
CardGame skripti i generisanje AST.

4.1.2. Python

Python [7] je dinamicki jezik pogodan za obradu teksta,
integraciju i backend aplikacije. Kori$éen je za parser,
backend server i upravljanje bazom podataka.

4.1.3. Flask
Flask [8] je backend framework za Python, pogodan za veb

aplikacije. U sistemu CardGame omoguéava HTTP
zahteve, upravljanje stanjem igre 1 WebSocket
komunikaciju.

4.1.4. WebSocket

WebSocket [9] je protokol koji omoguéava dvosmernu
komunikaciju u realnom vremenu. Ovde se koristi za
razmenu poruka izmedu igraca, bez potrebe za ucestalim
HTTP pozivima.

4.1.5. HTTP

HTTP [10] je osnovni protokol za komunikaciju izmedu
klijenta i servera. U sistemu se koristi za ucitavanje
stranica, prijavu i registraciju korisnika.

4.1.6. PostgreSQL

PostgreSOL [14] je objektno-relaciona baza podataka
poznata po stabilnosti i skalabilnosti. U CardGame resenju
sluzi za skladistenje korisni¢kih podataka, rezultata i stanja
partija.

4.1.7. HTML, CSS, JavaScript

HTML [11] definise strukturu veb interfejsa i sadrzaja
aplikacije. CSS [12] odreduje izgled veb stranice,
ukljucujuéi boje, fontove 1 razmeStaj elemenata.
JavaScript [13] omogucava interaktivnost i dinamicko
azuriranje veb interfejsa. U ovom reSenju upravlja
WebSocket komunikacijom, generisanjem HTML sadrzaja
i reagovanjem na korisnicke akcije.

1378

4.2. CardGame DSL i gramatika

CardGame DSL je realizovan kao eksterni tekstualni DSL.
CardGame, osnovni element gramatike, prikazan je na
slici 3. Sadrzi ime igre kao i blokove rules, states i cards
koji opisuju pravila, stanja i karte
CardGame:

‘game' name=ID

rules=Rules

states=States

cards=Cards

Slika 3: Element gramatike CardGame

Element Rules prikazan je na slici 4 i predstavlja pravila
koja ukljucuju broj igraca, broj rundi, nacin izbora sledeéeg
igraca i kriterijum za pobedu.

Rules:
‘rules’
*min_players' min_players=INT
'max_players' max_players=INT
‘rounds’ rounds=INT
('table_cards_visible' table_cards_visible=BOOLEAN)?
'next_player_in_round_condition' next_player_in_round_condition=NextPlayerCondition
*game_winner' game_winner=GameWinner

Slika 4: Element gramatike Rules

Element States prikazan na slici 5 predstavlja stanja
odnosno logicke faze igre koje sadrze akcije i tranzicije ka
drugim stanjima.

States:

'states’
states+=5State
i
State:
'state’ name=ID

Ydo

transitions+=Transition#

action=Action

Slika 5: Element gramatike States

Element Action prikazan na slici 6 predstavlja radnju koja
se izvr$ava u okviru odredenog stanja. Svaka akcija ima
svoj jedinstveni naziv (name=ID) kao i opcionalni deo ('(’
params=ParamList ')')? koji predstavlja parametre akcije
koji mogu, a ne moraju biti prisutni.

Action:

name=ID ('(' params=ParamList ')')?

Slika 6: Element gramatike Action

Element Transition prikazan na slici 7 predstavlja

tranziciju koja pokazuje u koje sledece stanje igra prelazi.

Sastoji se od kljucne reci then nakon Cega sledi naziv

slede¢eg stanja, a zatim sledi opcioni deo ('if’

condition=BOOLEAN)?. Ovaj deo je opcion jer se mogu

javiti razli¢iti scenariji:

1. Ako nema definisanih tranzicija to je kraj igre

2. Ako postoji samo jedna tranzicija bez uslova, prelaz u
sledece stanje se odvija automatski

3. Ako postoji viSe tranzicija sa uslovima, prelaz se odvija
u prvo stanje ¢iji je uslov ispunjen

4. Ako postoji viSe tranzicija bez uslova, sledece stanje
zavisi od igraca ili nekog spoljasnjeg faktora

Transition:
'then’ nextState=[State] ('if' condition=BOOLEAN)?

Slika 7: Element gramatike Transition

Element gramatike Cards prikazan na slici 8 predstavlja
karte. Svaka karta (Card) je definisana preko ranga i boje,
a navodi se i broj njenog pojavljivanja, kao i koliko poena
vredi (CardCount).

Cards:
‘cards’
cards+=CardCount

CardCount:
‘card' card=Card 'appears’ count=INT 'times, worth' score=INT ‘points’

Card:
rank=Rank 'of" suit=Suit

Slika 8: Element gramatike Cards
4.3. Parsiranje i model

Parsiranje .gme datoteka realizovano je uz pomo¢ fextX
parsera. Parsirani podaci se transformisu u interni model
koji vrsi dodatnu semanticku validaciju. Interni model
predstavlja skup Python klasa koje definiSu strukturu igre.
Ovaj model je osnova za interpretiranje logike igre.

4.4. Interpreter i povezivanje komponenti

Interpreter napisan u Python-u tumaci pravila i upravlja
tokom igre. On je integrisan u Flask backend, koji kroz
WebSocket komunicira sa frontend-om. Ovo omogucéava
dinamic¢ki tok igre bez ulitavanja stranice. Stanja igre i
rezultati Cuvaju se u PostgreSQOL bazi podataka.

4.5. Frontend i korisnicki interfejs

Frontend je razvijen u HTML/CSS/JavaScript
tehnologijama. Koristi WebSocket za interaktivnu
komunikaciju i prikazuje tok igre u realnom vremenu.
Sistem omogucava registraciju, prijavu, pregled postojeéih
igara i igranje igre sa protivnikom.

4.6. Pomoc¢ne funkcionalnosti

Sistem sadrzi niz funkcionalnosti za podrsku korisnicima
kao Sto su syntax highlighting, podrska za snippet-e i
automatska vizualizacija grafa prelaza stanja.

4.7. Konfiguracija i primer upotrebe sistema

Za pokretanje sistema instalirati Python 3.6+, Flask,
PostgreSQL, PyCharm ili VSC. Klonirati repozitorijum
https.//github.com/vulinana/card _game_dsl.git. U
PyCharm-u, dodati interpreter iz foldera card game dsl.
Dodati .gme fajl u gme/games. Nakon prijave, u glavnom
interfejsu bi¢e dostupna novododata igra.

5. PRIMER SKRIPTE U CARDGAME DSL-u

Igra memorijskih karata namenjena je za dva do Cetiri
igraca, a cilj je pronaci Sto vise parova istog ranga. Sastoji
se od pet rundi u kojima se igraci smenjuju, dok se karte
postavljaju licem nadole. Pobednik je onaj sa najvise
poena. Osnovna pravila definisana CardGame DSL-om
prikazana su na slici 9.

game memo_caras
rules

min_players 2

max_players 4

rounds 5

table_cards_visible false
next_player_in_round_condition circle_order
game_winner highest_score

Slika 9: Osnovna pravila igre memorijskih karata

1379

https://github.com/vulinana/card_game_dsl.git

Na pocetku igre, na sto se nasumicno postavlja osam karata
(deal _table cards). Igra¢ koji je na potezu (next_player)
bira dve karte (action_phase). Ova logika implementirana
je kroz stanja prikazana na slici 10.

states

state deal_table cards
do deal_table cards(8)
then any matching_table_cards

state next_player
do next_player
then action_phase

state action_phase
do select_table_cards(2)
then reveal

Slika 10: deal_table_cards, next_player i action_phase

Karte se okrecu (reveal) i proverava da li su istog ranga
(matching cards). Ako nisu, vracaju se licem nadole
(flip_back), a ako jesu, igraCc dobija poene
(calculate _points) i karte se uklanjaju
(remove_selected cards). Prikaz stanja dat je na slici 11.

state reveal
do reveal_selected_cards
then matching cards

state matching cards

do selected cards_match{rank)

then flip_back if false

then mark matching cards for scoring if true
state flip_back

do reset_table cards visibility

then next player ’

state mark matching cards_for_scoring
do mark_matching cards for scoring
then calculate points

state calculate_points
do calculate_points
then remove_se

r

Slika 11: reveal, matching cards, flip_back,
mark_matching cards_for scoring, calculate points i
remove_selected cards

Sistem proverava da li na stolu postoje parovi
(any_matching table cards). Ako postoje, igra nastavlja
sa slede¢im igracem (next_player), a ako ne, pocinje nova
runda (new_round). Nakon provere broja rundi
(rounds_remaining), igra se zavrSava odredivanjem
pobednika (game end) ili ponovnim deljenjem karata
(deal _table cards). Prikaz stanja dat je na slici 12

state any matching table cards
do any_matching_table cards(rank)
then next_player if true
then new_round if false

state new_round
do new_round
then rounds_remaining

state rounds_remaining
do check_if_rounds_remaining
then deal table cards if true
then game_end if false

state game_end
do determine_game winner

Slika 12: any matching table cards, new round,
rounds_remainning i game_end
Na kraju je potrebno jo§ definisati karte koje se mogu
pojaviti u toku igre, kao i broj njihovog ponavljanja i broj
poena koji nose (slika 13).

cards|

card 5 of hearts appears 4 times, worth @ points
card 14 of hearts appears 4 times, worth 10 points
card 13 of hearts appears 4 times, worth 16 points
card 5 of diamonds appears 4 times, worth © points
card 13 of diamonds appears 4 times, worth 15 point:
card 1@ of clubs appears 6 times, worth 18 points
card 7 of clubs appears 4 times, worth @ points
card 6 of clubs appears 6 times, worth @ points
card 11 of clubs appears 4 times, worth 15 points

Slika 13: Karte koje se mogu pojaviti u igri

6. ZAKLJUCAK

Razvijeni sistem pruza efikasno resenje za dizajn kartaskih
igara, zasnovano na dostupnosti i jednostavnosti.
Deklarativni pristup omogucava intuitivno definisanje
pravila, toka igre i ponasanja igraca, ¢ime se uklanja
potreba za poznavanjem programskih jezika i sistem
postaje dostupan Sirokom spektru korisnika.

Dalji razvoj sistema omogucava dodavanje funkcionalnosti
koje bi unapredile korisnicko iskustvo, kao $to su:

1. ProSirenje skupa interpretiranih akcija

2. Vizuelni editor pravila — graficki interfejs za
kreiranje i uredivanje pravila bez pisanja DSL koda.

3. Automatska dijagnostika greSaka -
prepoznavanje nelogicnih mehanika uz predlog
reSenja.

4. Simulacija testnih partija — automatsko izvodenje
viSe partija radi analize funkcionalnosti igre.

5. Interaktivni debugger pravila — korak-po-korak
interpretacija pravila i lakse otkrivanje gresaka.

LITERATURA

1] https://en.wikipedia.org/wiki/Domain-
specific_language (pristupljeno u maju 2025.)

2] https://en.wikipedia.org/wiki/Abstract syntax tr
ee (pristupljeno u maju 2025.)

[3] https://gambiter.com/cards/classified-
index.html?utm_source=chatgpt.com
(pristupljeno u junu 2025.)

[4] https://marianpekar.github.io/Cardamom.js/
(pristupljeno u maju 2025.)

[5] https://www.construct.net/en
(pristupljeno u maju 2025.)

[6] https://textx.github.io/textX/

[pristupljeno u avgustu 2025.)

[7] https://www.python.org/doc/
(pristupljeno u maju 2025.)

[8] https://flask.palletsprojects.com/en/latest/
(pristupljeno u maju 2025.)

[9] https://developer.mozilla.org/en-
US/docs/Web/APT/WebSockets API
(pristupljeno u maju 2025.)

[10] https://developer.mozilla.org/en-
US/docs/Web/HTTP (pristupljeno u maju 2025.)
[11] https://developer.mozilla.org/en-
US/docs/Web/HTML (pristupljeno u maju 2025.)
[12] https://developer.mozilla.org/en-
US/docs/Web/CSS (pristupljeno u maju 2025.)
[13] https://developer.mozilla.org/en-
US/docs/Web/JavaScript
(pristupljeni u maju 2025.)
[14] https://www.postgresqgl.org/about/
(pristupljeno u junu 2025.)
Kratka biografija:

Ana Vulin rodena je u Sremskoj
Mitrovici 2000. god. Master rad
na Fakultetu tehnic¢kih nauka iz

oblasti Elektrotehnike i
raCunarstva - Softversko
inzenjerstvo, odbranila je
2025.god.

kontakt: sm.vulinana@gmail.com

1380

https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://gambiter.com/cards/classified-index.html?utm_source=chatgpt.com
https://gambiter.com/cards/classified-index.html?utm_source=chatgpt.com
https://marianpekar.github.io/Cardamom.js/
https://www.construct.net/en
https://textx.github.io/textX/
https://www.python.org/doc/
https://flask.palletsprojects.com/en/latest/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://www.postgresql.org/about/
mailto:sm.vulinana@gmail.com

