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Oblast – SOFTVERSKO INŽENJERSTVO  

Kratak sadržaj – U okviru rada je predstavljeno 

istraživanje i implementacija dvije verzije konverzacionog 

asistenta. Fokus je na konceptu Retrieval Augmented 

Generation (RAG) koji pored „ugrađenog“ koristi i 

eksterno znanje za generisanje odgovora i interakciju sa 

korisnikom. Prva implementacija koristi osnovnu 

kombinaciju dobavljanja znanja i generisanja odgovora, a 

zatim je razvijen složeniji pristup sa agentima i 

specijalizovanim alatima za obradu upita. Cilj je detaljno 

opisati proces izrade sistema, uporediti arhitekture po 

kompleksnosti, proširivosti, performansama i relevantnosti 

odgovora. Evaluacija je prvo rađena ručno, a kasnije 

automatizovana pomoću Ragas okvira. Na kraju su 

istaknute prednosti i mane oba pristupa, primjeri njihove 

primjene te prijedlozi za unapređenje i dalja istraživanja. 

Ključne reči: RAG, Vanilla RAG, agentski RAG, agenti, 

alati, konverzacioni asistent 

Abstract – As part of this paper, we present research and 

the implementation of two versions of a conversational 

assistant. The focus was on exploring Retrieval-Augmented 

Generation (RAG), which uses external knowledge in 

addition to built-in knowledge to generate responses and 

interact with users. The implementation started with a 

simple version that combines retrieval and generation. 

Afterwards, a more advanced approach was developed 

using agents and specialized tools for query processing. 

The goal of the paper is to provide a detailed description 

of the system development process, compare the 

architectures in terms of complexity, scalability, 

performance, and answer relevance. Initially, system 

evaluation was performed manually, while later 

performance analysis was automated using the Ragas 

framework. Finally, the advantages and disadvantages of 

both approaches are highlighted, along with scenarios 

where each would be appropriate. The paper concludes 

with suggestions for improvements and directions for 

future research.  

Keywords: RAG, Vanilla RAG, agentic RAG, agents, 

tools, chatbot 
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1. UVOD 

Arhitektura sistema konverzacionih asistenata, 

organizacija komponenti, veliki jezički model i još mnogo 

drugih stvari značajno utiču na ponašanje I rezultate 

pomenutog sistema. LLM—ovi [1] iako veoma moćni alati 

imaju ograničeno znanje, tj. znanje na kome su se 

obučavali što je dosta umanjivalo vrijednost 

konverzacionih asistenata koji su se bazirali isključivo na 

njima. Kao rješenje za taj problem uveden je RAG [2] 

koncept, pomoću kog se stvara mogućnost da se prilikom 

generisanja odgovora uključi i neko eksterno znanje koje 

do tada nije bilo poznato velikom jezičkom modelu.  

Brzim razvojem ove oblasti stvorene su različite 

implementacije ovih sistema. Stoga, cilj ovog rada je da 

izvrši komparativnu analiza izmedju najjednostavnije 

verzije i kompleksnijeg pristupa implementiranog uz 

pomoć agenta i specializovanih alata, pri čemu smo prvo 

dali detaljan opis arhitekture oba rješenja. Kao rezultat 

imaćemo realnu sliku o tome koliko je implementacija kog 

sistema kompleksna, koliko pouzdane i relevantne 

odgovore možemo očekivati za tu količinu utrošenog 

vremena i na taj način ćemo moći procijeniti koja vrsta 

arhitekture i implementacije bi bila adekvatna za koji slučaj 

upotrebe. 

U drugom poglavlju biće opisane teorijske osnove RAG 

sistema kao koncepta, ali i osnove jednostavnog i 

agentskog RAG-a. Naredno poglavlje baviće se detaljnim 

opisivanjem procesa implementacije i koraka koji su 

sprovedeni kako bismo došli do krajnjih verzija sistema. 

Nakon toga slijedi poglavlje gdje smo opisali proces 

evaluacije. U petom poglavlju diskutovali smo o 

rezultatima sistema i data su potencijalna objašnjenja za 

određene metrike i neka ponašanja.  Posljednje poglavlje 

donosi zaključak sa sažetkom istraživanja. 

2. TEORIJSKE OSNOVE 

U ovom poglavlju biće date teorijske osnove RAG 

koncepta, kao i teorijske osnove oba pristupa za 

implementaciju koji će kasnije biti i realizovana.   

2.1. Šta je RAG? 

Retrieval-Augmented Generation (RAG) је 

arhitektonski obrazac koji kombinuje dvije bitne 

komponente, а то sу: pretraga (retrieval) relevantnih 

informacija iz izvora i generacija (generation) odgovora 

pomoću velikog jezičkog modela. Uvođenjem ovog 

koncepta riješili smo problem stagnirajućeg znanja, niske 
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objašnjivosti i otvorili smo mogućnost generisanja 

odgovora i na osnovu domenski specifičnog znanja. 

2.2 Eksterno znanje i njegova integracija u RAG sistem 

Eksterno znanje predstavlja osnovni benefit RAG 

koncepta. Može biti bilo koji struktuirani ili nestruktuirani 

tekst, a sama procedura indeksiranja je ista i svodi se na 

pretprocesiranje teksta i podjelu na manje segmente, zatim 

generisanje embedding reprezentacija od tih elemenata i 

čuvanje u odabranu vektorsku bazu. Nakon toga, proces 

pretrage zasniva se na konvertovanju korisničkog upita u 

embedding reprezentaciju i vrši se pretraga po sličnost gdje 

su semantički slični vektori nalaze blizu u prostoru [3].  

2.3 Mehanizmi promptovanja 

Prompt [4] je jedna od ključnih stavki koje utiču na kvalitet 

generisanog odgovora. To predstavlja niz instrukcija koje 

se prosljeđuju velikom jezičkom modelu tokom 

inferencije. Za što bolje rezultate dobra je praksa 

ispoštovati karakteristike efektivnog prompta, a to su da 

bude jasan i precizan, da u okviru prompta bude uključen 

relevantan kontekst, kao i da instukcije budu neutralne tj. 

da ne sugerišu neki odgovor i da ne nameću određeno 

mišljenje i stav. 

Sa druge strane, postoje i različite tehnike i strategije za 

unapređenje prompta posebno u slučaju RAG-a od kojih 

možemo izdvojiti instruction based promptovanje, few 

shot promptovanje itd. 

2.4 Vanilla RAG 

Vanilla RAG predstavlja osnovni i najjednostavniji vid 

RAG koncepta. Ovu implementaciju odlikuje linearan tok 

obrade upita, prvo se pokreće proces dobavljanja 

relevantnog konteksta, a zatim se na osnovu toga i generiše 

odgovor. U nastavku ćemo istaći osnovne osobine ovog 

pristupa. 

2.4.1 Ključne osobine 

Karakterisične osobine značajne za ovaj pristup su 

jednostavnost implementacije i statička logika. To znači da 

se ovakvi sistemi poprilično brzo stavljaju u upotrebu i da 

se svi upiti obrađuju na isti način. Kao posljedica svega 

toga možemo zaključiti da bi debagovanje ovakvog 

sistema bilo veoma lako. 

2.4.2 Nedostaci 

Iako je Vanilla RAG veoma jednostavan za 

implementaciju, ovo rješenje imamo određenih mana, 

pogotovo kada imamo kompleksnije upite. Glavni problem 

je što nema mogućnost adaptacije logike na osnovu upita, 

tako da ukoliko postavimo neki složeni upit vrlo vjerovatno 

nećemo dobiti adekvatan i složen odgovor. 

2.4.3 Praktična primjena 

Kao posljedica pomenutih osobina možemo reći da bi ova 

implementacija najbolje funkcionisala u manjim 

okruženjima gdje upiti nisu toliko česti i kompleksni, a 

baza znanja je statična i nije podložna čestim promjenama. 

2.5 Agentski RAG 

Agentski RAG [5] predstavlja napredni oblik RAG 

arhitekture u kojoj ključnu ulogu ima inteligentni agent, 

odnosno entitet sposoban za donošenje odluka, upravljanje 

kontekstom i strategijsko izvršavanje zadataka u više 

koraka uz pomoć alata. 

2.5.1 Agenti 

Agenti [6] predstavljaju samostalne jedinice koje imaju 

sposobnost da rezonuju, donose odluke i izaberu adekvatne 

alate za izvršavanje određenih akcija. Postoje različite vrste 

agenata u zavisnosti od toga koji je njihov cilj. U okviru 

ovog rada koristiće se ReAct agent koji može da rezonuje 

i na osnovu međurezultata može da mijenja strategiju i 

prilagođava je. 

2.5.2 Alati 

Alati [7] su pomoćne strukture koje agent koristi tokom 

procesa odlučivanja. U suštini, to je interfejs za funkcije 

koje mogu da dobavljaju određeno znanje ili izvršavaju 

neku akciju adekvatnu za obradu upita. Bitna stavka 

prilikom specificiranja nekog alata je opis, na osnovu koga 

inteligenti koordinator, agent zna šta je uloga tog alata i u 

zavisnosti od toga ga pozove ili ne. 

2.5.3 Ključne osobine 

Ključne osobine karakteristične za agentski RAG su 

modularnost i fleksibilnost. U nastavku će biti prikazano 

da se cijela arhitektura ove implementacije sastoji od 

komponenti, tako da je veoma praktično proširiti neku 

funkcionalnost, zamijeniti neku komponentu.  Pored toga, 

ima mogućnost orkestracije složenih zadataka i generisanje 

adekvatnog odgovora i za kompleksnije zadatke. 

2.5.4 Nedostaci 

S obzirom da raste kompleksnost sistema, to sa sobom 

povlači neke mane kao što je složenost implementacije. Za 

kreiranje ovakvog sistema potrebno je više vremena i javlja 

se povećana latencija pošto se izvršava veći broj koraka. 

Povezano sa tim, javlja se i problem većih troškova 

izvršavanja. 

2.5.5 Praktična primjena 

Upotreba agentskog RAG-a je opravdana u sistemima koji 

zahtjevaju složenije radnje i laku proširivost sistema 

dodatnim alatima. Npr. To bi bio slučaj u velikim 

kompanijama koje zahtjevaju pretragu dokumentacije, 

generisanje izvještaja slanje mejlova itd. 

3. METODOLOGIJA 

U ovom poglavlju opisane su metode i koraci koji su 

primijenjeni tokom rada na projektu, čiji je cilj bio 

istraživanje i implementacija RAG sistema. Projekat je 

obuhvatio specifikaciju dizajna i implementaciju obje vrste 

RAG sistema. U nastavku slijedi detaljniji opis. 

3.1 Specifikacija zahtjeva 

Projekat je realizovan korištenjem programskog jezika 

Typescript i Nodej.js radnog okvira, pri čemu je serverski 

dio organizovan upotrebom modularne monolitne 

arhitekture. Korisnički interfejs je razvijen u React-u sa 

ciljem da omogući jednostavnu interakciju sa sistemom.  

Aplikacija je odrađena za imaginarnu kompaniju koja bi 

imala mogućnost da pretražuje kompanijsku 

dokumentaciju u jednostavnijoj verziji sistema, a u 

agentskoj verziji ta implementacija je proširena i pristupom 

internetu i mogućnošću riješavanja matematičkih izraza 
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preko aplikacije. Prvo je dat opis pripreme podataka za 

testiranje aplikacije, a onda ćemo opisati i konkretno 

implementaciju. 

3.2 Indeksiranje dokumenata 

Prvi koraci u razvoju sistema su indeksiranje dokumenata 

i priprema eksternog znanja koje će se koristiti za testiranje 

ovih sistema. Za čuvanje generalnog znanja odlučili smo 

se za vektorsku bazu Zilliz [8]. Ovaj proces započinje 

raščlanjivanjem dokumenata na manje segmente, u našem 

slučaju vršena je semantička podjela teksta po pasusima. 

Sljedeći korak je kreiranje vektorskih reprezentacija od tih 

pasusa upotrebom modela za embedovanje. U ovom 

slučaju koristili smo OpenAIEmbeddings, koji u pozadini 

podrazumjevano koristi napredni model text-embedding-

3-small.  

Posljednji korak pri indeksiranju dokumenata je čuvanje u 

vektorsku bazu. Odabrana vektorska baza nudi više načina 

ažuriranja baze, a u ovom radu iskorišten je inkrementalni 

način ažuriranja baze, pri čemu se tokom ažuriranja unose 

samo novi ili izmijenjeni segmenti, dok se zastarjeli 

automatski uklanjaju. 

3.3 Implementacija Vanilla RAG-a 

Vanilla RAG arhitektura implementirana je kao prva 

verzija konverzacionog asistenta i kombinuje proces za 

dobavljanje relevantnih dokumenata i proces generisanja 

odgovora. Proces dobavljanja relevantnih dokumenata 

oslanja se isključivo na veliki jezički model i nema 

mogućnost rezonovanja. Za implementaciju korišten je 

Langchain [9] radni okvir i ChatGPT Turbo 3.5. Slika 

čitave arhitekture prikazana je na slici 1. 

 

Slika 1. Arhitektura Vanilla RAG-a 

3.4 Implementacija agentskog RAG-a 

Аgentski RAG predstavlja napredniju verziju RAG 

koncepta, u kom se umjesto velikog jezičkog modela kod 

jednostavne verzije koristi čitav agentski sistem sa 

različitim alatima, Uz pomoć agenta ovaj pristup dobija 

mogućnost rezonovanja I adaptacije logike za rješavanje 

kompleksnih korisničkih zahtjeva.  

Za realizaciju ovog sistema korišten je LangGraph  [10] 

gdje je svaki čvor predstavljao neki korak u obradi 

zahtjeva. Dok smo za definisanje alata koristili Langchain 

interfejs. Detaljniji prikaz arhitekture prikazan je na slici 2. 

 

Slika 2 Arhitektura agentskog RAG-A 

Na osnovu priloženog možemo zaključiti da prvi korak je 

dobavljanje relevantnog znanja pomoću agenta i alata. U 

ovom slučaju korišten je reaktivni agent koji planira dalji 

korak u skladu sa trenutnim stanjem. 

Što se tiče alata za demonstraciju rada kreirali smo tri alata, 

a to su: 

• Alat za dobavljanje znanja o kompaniji 

• Alat za internet pretragu 

• Alat za rješavanje matematičkih izraza 

Zatim slijedi korak provjere da li je kontekst relevantan, 

ukoliko jeste ide se na kraj i generiše se odgovor, a u 

suprotnom pitanje se reformuliše i proces se ponavlja. 

4. EVALUACIJA 

Pod procesom evaluacije podrazumjeva se da se „izmjeri“ 

koliko tačne i relevantne odgovore sistem daje. Pošto se 

generalno proces sastoji od dvije faze dobavljanja znanja i 

generisanja odgovora, dobra praksa je evaluirati te dvije 

faze odvojeno. 

U početku evaluacija je rađena ručno i empirijski na 

osnovu testnog skupa pitanja, a naknadno je taj proces 

automatizovan upotrebom Ragas radnog okvira. 

5. REZULTATI 

U ovom poglavlju biće dato finalno poređenje ove dvije 

implementacije na osnovu tehničkih metrika koje definišu 

tačnost odgovora, ali i poređenje po sekundarnim 

osobinama bitnim za razvoj ovih rješenja. 

U prilogu je data tabela sa vrijednostima tehničkih metrika 

dobijenih preko Ragas [11] radnog okvira. 

Tabela 1. Evaluirane vrijednosti 

 
Vanilla RAG Аgentski RAG 

Relevantnost 

konteksta 

0.6987 0.8903 

Pridržavanje 

konteksta 

0.2951 0.2698 
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Povraćaj 

konteksta 

0.4773 0.4833 

Relevantnost 

odgovora 

0.7818 0.8196 

Tačnost 

odgovora 

0.6192 0.8684 

Semantička 

sličnost 

0.8434 0.9020 

Na osnovu tabele, agentski pristup ima dosta bolje rezultate 

u relevantnosti konteksta, razlog za to su složeni upiti gdje 

drugi pristup dosta bolje rezonuje i pronalazi adekvatna 

dokumenta. Тakođe, agentski pristup se neznatno bolje 

pokazao I u metrici povraćaj konteksta, do toga je došlo, 

jer agenti malo bolje rade u slučaju kadaa se kontekst vraća 

iz više dokumenata. Sa druge strane, posmatrajući 

pridržavanje konteksta jednostavniji model neočekivano 

daje bolji rezultat. Razlog za to je što agentski pristup daje 

dosta informacija da što bolje objasni koncept, ali u ovom 

slučaju to smanjuje vrijednost ove metrike. 

Sa druge strane, što se tiče metrika vezanih za generisanje 

odgovora agentski pristup se dosta bolje pokazao kod 

tačnosti odgovora, jer ovo rješenje detaljnije vraća odgovor 

I detalje koji naizgled ne djeluju bitni. Kao posljedica 

svega toga možemo vidjeti da agentski prisup prednjači I u 

metrici semantičkoj sličnosti odgovora koji mjeri 

usklađenost generisanog i referentnog odgovora. Isto 

objašnjenje važi I za dosta bolju relevantnost odgovora kod 

agentskog rješenja. 

Poredeći sekundarne osobine ovih sistema, očigledno je da 

je agentski pristup dosta kompleksniji, zahtjeva više 

vremena za razvoj I troškovi održavanja arhitekture su 

dosta veći. Ali glavna prednost ovog pristupa je što je lako 

proširiv i daje bolje, relevantnije I pouzdanije odgovore. 

6. ZAKLJUČAK 

U radu je predstavljen razvoj i implementacija jednostavne 

i agentske implementacije RAG sistema. Motivacija za 

razvoj sistema je uočiti prednost agenata u okviru ovog 

koncepta s obzirom na brzi razvoj tehnologije. Glavni cilj 

ovog rada je uporediti spomenute arhitekture, istaći 

prednosti i mane oba pristupa, kao i potencijalne prijedloge 

praktične primjene. 

Na osnovu rezultata možemo zaključiti da jednostavnija 

implementacija RAG sistema se relativno brzo postavlja, 

nema složenu arhitekturu i ima linearan tok izvršavanja 

akcija. Dok sa druge strane agentski RAG daje detaljnije 

odgovore, ima sposobnost rezonovanja i značajno 

prednjači pri odgovaranju na složene upite. Takođe, 

arhitektura agentskog pristupa je lako proširiva, ali nosi 

veće troškove i kompleksnija je za razvoj. Stoga prilikom 

izbora načina implementacije RAG sistema bitno je naći 

balans između performansi, održavanja i budućeg razvoja. 

Za buduća unapređenja, predlaže se optimizacija 

promptova uz pomoć predloženih alata. Takođe, korisno bi 

bilo da sistem ima mogućnost učenja tokom konverzacija i 

pamćenja dobrih praksi. Još jedno ograničenje je ograničen 

kontekst koji se šalje velikom jezičkom modelu, ukoliko bi 

se ovaj problem riješio model bi imao više informacija za 

odgovaranje što bi proizvelo relevantnije odgovore. 
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