

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.9

DOI: https://doi.org/10.24867/33BE21Kasikovic

KOMPARATIVNA ANALIZA AGENTSKIH RAG PRISTUPA U KONTEKSTU

IZGRADNJE KONVERZACIONOG ASISTENTA

COMPARATIVE ANALYSIS OF AGENTIC RAG APPROACHES IN THE CONTEXT OF

BUILDING A CONVERSATIONAL ASSISTANT

Ivana Kašiković, Aleksandar Kovačević, Fakultet tehničkih nauka, Novi Sad

Oblast – SOFTVERSKO INŽENJERSTVO

Kratak sadržaj – U okviru rada je predstavljeno

istraživanje i implementacija dvije verzije konverzacionog

asistenta. Fokus je na konceptu Retrieval Augmented

Generation (RAG) koji pored „ugrađenog“ koristi i

eksterno znanje za generisanje odgovora i interakciju sa

korisnikom. Prva implementacija koristi osnovnu

kombinaciju dobavljanja znanja i generisanja odgovora, a

zatim je razvijen složeniji pristup sa agentima i

specijalizovanim alatima za obradu upita. Cilj je detaljno

opisati proces izrade sistema, uporediti arhitekture po

kompleksnosti, proširivosti, performansama i relevantnosti

odgovora. Evaluacija je prvo rađena ručno, a kasnije

automatizovana pomoću Ragas okvira. Na kraju su

istaknute prednosti i mane oba pristupa, primjeri njihove

primjene te prijedlozi za unapređenje i dalja istraživanja.

Ključne reči: RAG, Vanilla RAG, agentski RAG, agenti,

alati, konverzacioni asistent

Abstract – As part of this paper, we present research and

the implementation of two versions of a conversational

assistant. The focus was on exploring Retrieval-Augmented

Generation (RAG), which uses external knowledge in

addition to built-in knowledge to generate responses and

interact with users. The implementation started with a

simple version that combines retrieval and generation.

Afterwards, a more advanced approach was developed

using agents and specialized tools for query processing.

The goal of the paper is to provide a detailed description

of the system development process, compare the

architectures in terms of complexity, scalability,

performance, and answer relevance. Initially, system

evaluation was performed manually, while later

performance analysis was automated using the Ragas

framework. Finally, the advantages and disadvantages of

both approaches are highlighted, along with scenarios

where each would be appropriate. The paper concludes

with suggestions for improvements and directions for

future research.

Keywords: RAG, Vanilla RAG, agentic RAG, agents,

tools, chatbot

__

NAPOMENA: Ovaj rad proistekao je iz master rada

čiji mentor je bio dr Aleksandar Kovačević, red. prof.

1. UVOD

Arhitektura sistema konverzacionih asistenata,

organizacija komponenti, veliki jezički model i još mnogo

drugih stvari značajno utiču na ponašanje I rezultate

pomenutog sistema. LLM—ovi [1] iako veoma moćni alati

imaju ograničeno znanje, tj. znanje na kome su se

obučavali što je dosta umanjivalo vrijednost

konverzacionih asistenata koji su se bazirali isključivo na

njima. Kao rješenje za taj problem uveden je RAG [2]

koncept, pomoću kog se stvara mogućnost da se prilikom

generisanja odgovora uključi i neko eksterno znanje koje

do tada nije bilo poznato velikom jezičkom modelu.

Brzim razvojem ove oblasti stvorene su različite

implementacije ovih sistema. Stoga, cilj ovog rada je da

izvrši komparativnu analiza izmedju najjednostavnije

verzije i kompleksnijeg pristupa implementiranog uz

pomoć agenta i specializovanih alata, pri čemu smo prvo

dali detaljan opis arhitekture oba rješenja. Kao rezultat

imaćemo realnu sliku o tome koliko je implementacija kog

sistema kompleksna, koliko pouzdane i relevantne

odgovore možemo očekivati za tu količinu utrošenog

vremena i na taj način ćemo moći procijeniti koja vrsta

arhitekture i implementacije bi bila adekvatna za koji slučaj

upotrebe.

U drugom poglavlju biće opisane teorijske osnove RAG

sistema kao koncepta, ali i osnove jednostavnog i

agentskog RAG-a. Naredno poglavlje baviće se detaljnim

opisivanjem procesa implementacije i koraka koji su

sprovedeni kako bismo došli do krajnjih verzija sistema.

Nakon toga slijedi poglavlje gdje smo opisali proces

evaluacije. U petom poglavlju diskutovali smo o

rezultatima sistema i data su potencijalna objašnjenja za

određene metrike i neka ponašanja. Posljednje poglavlje

donosi zaključak sa sažetkom istraživanja.

2. TEORIJSKE OSNOVE

U ovom poglavlju biće date teorijske osnove RAG

koncepta, kao i teorijske osnove oba pristupa za

implementaciju koji će kasnije biti i realizovana.

2.1. Šta je RAG?

Retrieval-Augmented Generation (RAG) је

arhitektonski obrazac koji kombinuje dvije bitne

komponente, а то sу: pretraga (retrieval) relevantnih

informacija iz izvora i generacija (generation) odgovora

pomoću velikog jezičkog modela. Uvođenjem ovog

koncepta riješili smo problem stagnirajućeg znanja, niske

1349

https://doi.org/10.24867/33BE21Kasikovic

objašnjivosti i otvorili smo mogućnost generisanja

odgovora i na osnovu domenski specifičnog znanja.

2.2 Eksterno znanje i njegova integracija u RAG sistem

Eksterno znanje predstavlja osnovni benefit RAG

koncepta. Može biti bilo koji struktuirani ili nestruktuirani

tekst, a sama procedura indeksiranja je ista i svodi se na

pretprocesiranje teksta i podjelu na manje segmente, zatim

generisanje embedding reprezentacija od tih elemenata i

čuvanje u odabranu vektorsku bazu. Nakon toga, proces

pretrage zasniva se na konvertovanju korisničkog upita u

embedding reprezentaciju i vrši se pretraga po sličnost gdje

su semantički slični vektori nalaze blizu u prostoru [3].

2.3 Mehanizmi promptovanja

Prompt [4] je jedna od ključnih stavki koje utiču na kvalitet

generisanog odgovora. To predstavlja niz instrukcija koje

se prosljeđuju velikom jezičkom modelu tokom

inferencije. Za što bolje rezultate dobra je praksa

ispoštovati karakteristike efektivnog prompta, a to su da

bude jasan i precizan, da u okviru prompta bude uključen

relevantan kontekst, kao i da instukcije budu neutralne tj.

da ne sugerišu neki odgovor i da ne nameću određeno

mišljenje i stav.

Sa druge strane, postoje i različite tehnike i strategije za

unapređenje prompta posebno u slučaju RAG-a od kojih

možemo izdvojiti instruction based promptovanje, few

shot promptovanje itd.

2.4 Vanilla RAG

Vanilla RAG predstavlja osnovni i najjednostavniji vid

RAG koncepta. Ovu implementaciju odlikuje linearan tok

obrade upita, prvo se pokreće proces dobavljanja

relevantnog konteksta, a zatim se na osnovu toga i generiše

odgovor. U nastavku ćemo istaći osnovne osobine ovog

pristupa.

2.4.1 Ključne osobine

Karakterisične osobine značajne za ovaj pristup su

jednostavnost implementacije i statička logika. To znači da

se ovakvi sistemi poprilično brzo stavljaju u upotrebu i da

se svi upiti obrađuju na isti način. Kao posljedica svega

toga možemo zaključiti da bi debagovanje ovakvog

sistema bilo veoma lako.

2.4.2 Nedostaci

Iako je Vanilla RAG veoma jednostavan za

implementaciju, ovo rješenje imamo određenih mana,

pogotovo kada imamo kompleksnije upite. Glavni problem

je što nema mogućnost adaptacije logike na osnovu upita,

tako da ukoliko postavimo neki složeni upit vrlo vjerovatno

nećemo dobiti adekvatan i složen odgovor.

2.4.3 Praktična primjena

Kao posljedica pomenutih osobina možemo reći da bi ova

implementacija najbolje funkcionisala u manjim

okruženjima gdje upiti nisu toliko česti i kompleksni, a

baza znanja je statična i nije podložna čestim promjenama.

2.5 Agentski RAG

Agentski RAG [5] predstavlja napredni oblik RAG

arhitekture u kojoj ključnu ulogu ima inteligentni agent,

odnosno entitet sposoban za donošenje odluka, upravljanje

kontekstom i strategijsko izvršavanje zadataka u više

koraka uz pomoć alata.

2.5.1 Agenti

Agenti [6] predstavljaju samostalne jedinice koje imaju

sposobnost da rezonuju, donose odluke i izaberu adekvatne

alate za izvršavanje određenih akcija. Postoje različite vrste

agenata u zavisnosti od toga koji je njihov cilj. U okviru

ovog rada koristiće se ReAct agent koji može da rezonuje

i na osnovu međurezultata može da mijenja strategiju i

prilagođava je.

2.5.2 Alati

Alati [7] su pomoćne strukture koje agent koristi tokom

procesa odlučivanja. U suštini, to je interfejs za funkcije

koje mogu da dobavljaju određeno znanje ili izvršavaju

neku akciju adekvatnu za obradu upita. Bitna stavka

prilikom specificiranja nekog alata je opis, na osnovu koga

inteligenti koordinator, agent zna šta je uloga tog alata i u

zavisnosti od toga ga pozove ili ne.

2.5.3 Ključne osobine

Ključne osobine karakteristične za agentski RAG su

modularnost i fleksibilnost. U nastavku će biti prikazano

da se cijela arhitektura ove implementacije sastoji od

komponenti, tako da je veoma praktično proširiti neku

funkcionalnost, zamijeniti neku komponentu. Pored toga,

ima mogućnost orkestracije složenih zadataka i generisanje

adekvatnog odgovora i za kompleksnije zadatke.

2.5.4 Nedostaci

S obzirom da raste kompleksnost sistema, to sa sobom

povlači neke mane kao što je složenost implementacije. Za

kreiranje ovakvog sistema potrebno je više vremena i javlja

se povećana latencija pošto se izvršava veći broj koraka.

Povezano sa tim, javlja se i problem većih troškova

izvršavanja.

2.5.5 Praktična primjena

Upotreba agentskog RAG-a je opravdana u sistemima koji

zahtjevaju složenije radnje i laku proširivost sistema

dodatnim alatima. Npr. To bi bio slučaj u velikim

kompanijama koje zahtjevaju pretragu dokumentacije,

generisanje izvještaja slanje mejlova itd.

3. METODOLOGIJA

U ovom poglavlju opisane su metode i koraci koji su

primijenjeni tokom rada na projektu, čiji je cilj bio

istraživanje i implementacija RAG sistema. Projekat je

obuhvatio specifikaciju dizajna i implementaciju obje vrste

RAG sistema. U nastavku slijedi detaljniji opis.

3.1 Specifikacija zahtjeva

Projekat je realizovan korištenjem programskog jezika

Typescript i Nodej.js radnog okvira, pri čemu je serverski

dio organizovan upotrebom modularne monolitne

arhitekture. Korisnički interfejs je razvijen u React-u sa

ciljem da omogući jednostavnu interakciju sa sistemom.

Aplikacija je odrađena za imaginarnu kompaniju koja bi

imala mogućnost da pretražuje kompanijsku

dokumentaciju u jednostavnijoj verziji sistema, a u

agentskoj verziji ta implementacija je proširena i pristupom

internetu i mogućnošću riješavanja matematičkih izraza

1350

preko aplikacije. Prvo je dat opis pripreme podataka za

testiranje aplikacije, a onda ćemo opisati i konkretno

implementaciju.

3.2 Indeksiranje dokumenata

Prvi koraci u razvoju sistema su indeksiranje dokumenata

i priprema eksternog znanja koje će se koristiti za testiranje

ovih sistema. Za čuvanje generalnog znanja odlučili smo

se za vektorsku bazu Zilliz [8]. Ovaj proces započinje

raščlanjivanjem dokumenata na manje segmente, u našem

slučaju vršena je semantička podjela teksta po pasusima.

Sljedeći korak je kreiranje vektorskih reprezentacija od tih

pasusa upotrebom modela za embedovanje. U ovom

slučaju koristili smo OpenAIEmbeddings, koji u pozadini

podrazumjevano koristi napredni model text-embedding-

3-small.

Posljednji korak pri indeksiranju dokumenata je čuvanje u

vektorsku bazu. Odabrana vektorska baza nudi više načina

ažuriranja baze, a u ovom radu iskorišten je inkrementalni

način ažuriranja baze, pri čemu se tokom ažuriranja unose

samo novi ili izmijenjeni segmenti, dok se zastarjeli

automatski uklanjaju.

3.3 Implementacija Vanilla RAG-a

Vanilla RAG arhitektura implementirana je kao prva

verzija konverzacionog asistenta i kombinuje proces za

dobavljanje relevantnih dokumenata i proces generisanja

odgovora. Proces dobavljanja relevantnih dokumenata

oslanja se isključivo na veliki jezički model i nema

mogućnost rezonovanja. Za implementaciju korišten je

Langchain [9] radni okvir i ChatGPT Turbo 3.5. Slika

čitave arhitekture prikazana je na slici 1.

Slika 1. Arhitektura Vanilla RAG-a

3.4 Implementacija agentskog RAG-a

Аgentski RAG predstavlja napredniju verziju RAG

koncepta, u kom se umjesto velikog jezičkog modela kod

jednostavne verzije koristi čitav agentski sistem sa

različitim alatima, Uz pomoć agenta ovaj pristup dobija

mogućnost rezonovanja I adaptacije logike za rješavanje

kompleksnih korisničkih zahtjeva.

Za realizaciju ovog sistema korišten je LangGraph [10]

gdje je svaki čvor predstavljao neki korak u obradi

zahtjeva. Dok smo za definisanje alata koristili Langchain

interfejs. Detaljniji prikaz arhitekture prikazan je na slici 2.

Slika 2 Arhitektura agentskog RAG-A

Na osnovu priloženog možemo zaključiti da prvi korak je

dobavljanje relevantnog znanja pomoću agenta i alata. U

ovom slučaju korišten je reaktivni agent koji planira dalji

korak u skladu sa trenutnim stanjem.

Što se tiče alata za demonstraciju rada kreirali smo tri alata,

a to su:

• Alat za dobavljanje znanja o kompaniji

• Alat za internet pretragu

• Alat za rješavanje matematičkih izraza

Zatim slijedi korak provjere da li je kontekst relevantan,

ukoliko jeste ide se na kraj i generiše se odgovor, a u

suprotnom pitanje se reformuliše i proces se ponavlja.

4. EVALUACIJA

Pod procesom evaluacije podrazumjeva se da se „izmjeri“

koliko tačne i relevantne odgovore sistem daje. Pošto se

generalno proces sastoji od dvije faze dobavljanja znanja i

generisanja odgovora, dobra praksa je evaluirati te dvije

faze odvojeno.

U početku evaluacija je rađena ručno i empirijski na

osnovu testnog skupa pitanja, a naknadno je taj proces

automatizovan upotrebom Ragas radnog okvira.

5. REZULTATI

U ovom poglavlju biće dato finalno poređenje ove dvije

implementacije na osnovu tehničkih metrika koje definišu

tačnost odgovora, ali i poređenje po sekundarnim

osobinama bitnim za razvoj ovih rješenja.

U prilogu je data tabela sa vrijednostima tehničkih metrika

dobijenih preko Ragas [11] radnog okvira.

Tabela 1. Evaluirane vrijednosti

Vanilla RAG Аgentski RAG

Relevantnost

konteksta

0.6987 0.8903

Pridržavanje

konteksta

0.2951 0.2698

1351

Povraćaj

konteksta

0.4773 0.4833

Relevantnost

odgovora

0.7818 0.8196

Tačnost

odgovora

0.6192 0.8684

Semantička

sličnost

0.8434 0.9020

Na osnovu tabele, agentski pristup ima dosta bolje rezultate

u relevantnosti konteksta, razlog za to su složeni upiti gdje

drugi pristup dosta bolje rezonuje i pronalazi adekvatna

dokumenta. Тakođe, agentski pristup se neznatno bolje

pokazao I u metrici povraćaj konteksta, do toga je došlo,

jer agenti malo bolje rade u slučaju kadaa se kontekst vraća

iz više dokumenata. Sa druge strane, posmatrajući

pridržavanje konteksta jednostavniji model neočekivano

daje bolji rezultat. Razlog za to je što agentski pristup daje

dosta informacija da što bolje objasni koncept, ali u ovom

slučaju to smanjuje vrijednost ove metrike.

Sa druge strane, što se tiče metrika vezanih za generisanje

odgovora agentski pristup se dosta bolje pokazao kod

tačnosti odgovora, jer ovo rješenje detaljnije vraća odgovor

I detalje koji naizgled ne djeluju bitni. Kao posljedica

svega toga možemo vidjeti da agentski prisup prednjači I u

metrici semantičkoj sličnosti odgovora koji mjeri

usklađenost generisanog i referentnog odgovora. Isto

objašnjenje važi I za dosta bolju relevantnost odgovora kod

agentskog rješenja.

Poredeći sekundarne osobine ovih sistema, očigledno je da

je agentski pristup dosta kompleksniji, zahtjeva više

vremena za razvoj I troškovi održavanja arhitekture su

dosta veći. Ali glavna prednost ovog pristupa je što je lako

proširiv i daje bolje, relevantnije I pouzdanije odgovore.

6. ZAKLJUČAK

U radu je predstavljen razvoj i implementacija jednostavne

i agentske implementacije RAG sistema. Motivacija za

razvoj sistema je uočiti prednost agenata u okviru ovog

koncepta s obzirom na brzi razvoj tehnologije. Glavni cilj

ovog rada je uporediti spomenute arhitekture, istaći

prednosti i mane oba pristupa, kao i potencijalne prijedloge

praktične primjene.

Na osnovu rezultata možemo zaključiti da jednostavnija

implementacija RAG sistema se relativno brzo postavlja,

nema složenu arhitekturu i ima linearan tok izvršavanja

akcija. Dok sa druge strane agentski RAG daje detaljnije

odgovore, ima sposobnost rezonovanja i značajno

prednjači pri odgovaranju na složene upite. Takođe,

arhitektura agentskog pristupa je lako proširiva, ali nosi

veće troškove i kompleksnija je za razvoj. Stoga prilikom

izbora načina implementacije RAG sistema bitno je naći

balans između performansi, održavanja i budućeg razvoja.

Za buduća unapređenja, predlaže se optimizacija

promptova uz pomoć predloženih alata. Takođe, korisno bi

bilo da sistem ima mogućnost učenja tokom konverzacija i

pamćenja dobrih praksi. Još jedno ograničenje je ograničen

kontekst koji se šalje velikom jezičkom modelu, ukoliko bi

se ovaj problem riješio model bi imao više informacija za

odgovaranje što bi proizvelo relevantnije odgovore.

7. LITERATURA

[1] What are large language models (LLMs)?

https://www.ibm.com/think/topics/large-language-models

[датум приступа јун 2025]

[2] Newhauser, Mary; (2024). Introduction to Retrieval

Augmented Generation

(RAG) https://weaviate.io/blog/introduction-to-rag

[датум приступа јун 2025]
[3] Vector Databases: Tutorial, Best Practices & Examples

https://nexla.com/ai-infrastructure/vector-databases/

[датум приступа јун 2025]
[4] Prompt Engineering Guide https://www.promptingguide.ai

[датум приступа јун 2025]
[5] What is agentic RAG?

https://www.ibm.com/think/topics/agentic-rag [датум

приступа јун 2025]

[6] Tahir; (2024). What are AI Agents?

https://medium.com/@tahirbalarabe2/what-are-ai-agents-

f06ef775e78f [датум приступа јун 2025]
[7] What are tools? https://huggingface.co/learn/agents-

course/en/unit1/tools [датум приступа јун 2025]
[8] Zilliz званична документација https://docs.zilliz.com/

[датум приступа јул 2025]
[9] Званична документација Langchain-a

https://python.langchain.com/docs/introduction/ [датум

приступа јун 2025]

[10] Званична документација Langgraph-a https://langchain-

ai.github.io/langgraph/concepts/why-langgraph/ [датум

приступа јун 2025]

[11] Званична документација за Ragas радни оквир

https://docs.ragas.io/en/stable/getstarted/ [датум приступа

август 2025]

Kratka biografija:

Ivana Kašiković rođena je 03.

oktobra 2000. godine u Trebinju.

Kao nosilac diplome „Vuk

Karadžić“ 2019. godine završava

gimnaziju „Jovan Dučić“, nakon

čega upisuje Fakultet tehničkih

nauka, smer Softversko

inženjerstvo i informacione

tehnologije. Po završetku studija

u roku, upisuje master akademske

studije i iste završava 2025.

godine.

1352

https://www.ibm.com/think/topics/large-language-models
https://weaviate.io/blog/introduction-to-rag
https://nexla.com/ai-infrastructure/vector-databases/
https://www.promptingguide.ai/techniques
https://www.ibm.com/think/topics/agentic-rag
https://medium.com/@tahirbalarabe2/what-are-ai-agents-f06ef775e78f
https://medium.com/@tahirbalarabe2/what-are-ai-agents-f06ef775e78f
https://huggingface.co/learn/agents-course/en/unit1/tools
https://huggingface.co/learn/agents-course/en/unit1/tools
https://docs.zilliz.com/
https://python.langchain.com/docs/introduction/
https://langchain-ai.github.io/langgraph/concepts/why-langgraph/
https://langchain-ai.github.io/langgraph/concepts/why-langgraph/
https://docs.ragas.io/en/stable/getstarted/

