g?ﬁ Zbornik radova Fakulteta tehniékih nauka, Novi Sad

UDK: 4.9
DOI: https://doi.org/10.24867/33BE21Kasikovic

KOMPARATIVNA ANALIZA AGENTSKIH RAG PRISTUPA U KONTEKSTU
IZGRADNJE KONVERZACIONOG ASISTENTA

COMPARATIVE ANALYSIS OF AGENTIC RAG APPROACHES IN THE CONTEXT OF
BUILDING A CONVERSATIONAL ASSISTANT

Ivana Kasikovi¢, Aleksandar Kovacevi¢, Fakultet tehnickih nauka, Novi Sad

Oblast - SOFTVERSKO INZENJERSTVO

Kratak sadrzaj — U okviru rada je predstavijeno
istrazivanje i implementacija dvije verzije konverzacionog
asistenta. Fokus je na konceptu Retrieval Augmented
Generation (RAG) koji pored , ugradenog* koristi i
eksterno znanje za generisanje odgovora i interakciju sa
korisnikom. Prva implementacija koristi osnovnu
kombinaciju dobavljanja znanja i generisanja odgovora, a
zatim je razvijen slozeniji pristup sa agentima i
specijalizovanim alatima za obradu upita. Cilj je detaljno
opisati proces izrade sistema, uporediti arhitekture po
kompleksnosti, prosirivosti, performansama i relevantnosti
odgovora. Evaluacija je prvo radena rucno, a kasnije
automatizovana pomocu Ragas okvira. Na kraju su
istaknute prednosti i mane oba pristupa, primjeri njihove
primjene te prijedlozi za unapredenje i dalja istrazivanja.

Kljuéne reci: RAG, Vanilla RAG, agentski RAG, agenti,
alati, konverzacioni asistent

Abstract — As part of this paper, we present research and
the implementation of two versions of a conversational
assistant. The focus was on exploring Retrieval-Augmented
Generation (RAG), which uses external knowledge in
addition to built-in knowledge to generate responses and
interact with users. The implementation started with a
simple version that combines retrieval and generation.
Afterwards, a more advanced approach was developed
using agents and specialized tools for query processing.
The goal of the paper is to provide a detailed description
of the system development process, compare the
architectures in terms of complexity, scalability,
performance, and answer relevance. Initially, system
evaluation was performed manually, while later
performance analysis was automated using the Ragas
framework. Finally, the advantages and disadvantages of
both approaches are highlighted, along with scenarios
where each would be appropriate. The paper concludes
with suggestions for improvements and directions for
future research.

Keywords: RAG, Vanilla RAG, agentic RAG, agents,
tools, chatbot

NAPOMENA: Ovaj rad proistekao je iz master rada
¢iji mentor je bio dr Aleksandar Kovacevié, red. prof.

1. UVOD

Arhitektura sistema konverzacionih asistenata,
organizacija komponenti, veliki jezi¢ki model i jo§ mnogo
drugih stvari znaCajno uticu na ponaSanje [rezultate
pomenutog sistema. LLM—ovi [1] iako veoma mo¢ni alati
imaju ograniCeno znanje, tj. znanje na kome su se
obucavali Sto je dosta umanjivalo vrijednost
konverzacionih asistenata koji su se bazirali isklju¢ivo na
njima. Kao rjeSenje za taj problem uveden je RAG [2]
koncept, pomocu kog se stvara mogucnost da se prilikom
generisanja odgovora ukljuci i neko eksterno znanje koje
do tada nije bilo poznato velikom jezi¢kom modelu.

Brzim razvojem ove oblasti stvorene su razliCite
implementacije ovih sistema. Stoga, cilj ovog rada je da
izvr$i komparativnhu analiza izmedju najjednostavnije
verzije 1 kompleksnijeg pristupa implementiranog uz
pomoc¢ agenta i specializovanih alata, pri ¢emu smo prvo
dali detaljan opis arhitekture oba rjeSenja. Kao rezultat
imaéemo realnu sliku o tome koliko je implementacija kog
sistema kompleksna, koliko pouzdane i relevantne
odgovore mozemo ocekivati za tu koli¢inu utroSenog
vremena i na taj nac¢in ¢emo mo¢i procijeniti koja vrsta
arhitekture i implementacije bi bila adekvatna za koji slucaj
upotrebe.

U drugom poglavlju bi¢e opisane teorijske osnove RAG
sistema kao koncepta, ali i osnove jednostavnog i
agentskog RAG-a. Naredno poglavlje bavice se detaljnim
opisivanjem procesa implementacije i koraka koji su
sprovedeni kako bismo dosli do krajnjih verzija sistema.
Nakon toga slijedi poglavlje gdje smo opisali proces
evaluacije. U petom poglavlju diskutovali smo o
rezultatima sistema i data su potencijalna objasnjenja za
odredene metrike i neka ponasanja. Posljednje poglavlje
donosi zakljucak sa sazetkom istrazivanja.

2. TEORIJSKE OSNOVE

U ovom poglavlju bi¢e date teorijske osnove RAG
koncepta, kao 1 teorijske osnove oba pristupa za
implementaciju koji ¢e kasnije biti i realizovana.

2.1. Sta je RAG?

Retrieval-Augmented Generation (RAG) je
arhitektonski obrazac koji kombinuje dvije bitne
komponente, a To sy: pretraga (retrieval) relevantnih
informacija iz izvora i generacija (generation) odgovora
pomoc¢u velikog jezickog modela. Uvodenjem ovog
koncepta rijesili smo problem stagniraju¢eg znanja, niske

1349

https://doi.org/10.24867/33BE21Kasikovic

objasnjivosti 1 otvorili smo moguénost generisanja
odgovora i na osnovu domenski specificnog znanja.

2.2 Eksterno znanje i njegova integracija u RAG sistem

Eksterno znanje predstavlja osnovni benefit RAG
koncepta. Moze biti bilo koji struktuirani ili nestruktuirani

tekst, a sama procedura indeksiranja je ista i svodi se na
pretprocesiranje teksta i podjelu na manje segmente, zatim
generisanje embedding reprezentacija od tih elemenata i
cuvanje u odabranu vektorsku bazu. Nakon toga, proces
pretrage zasniva se na konvertovanju korisnickog upita u
embedding reprezentaciju i vrsi se pretraga po sli¢nost gdje
su semanti¢ki sliéni vektori nalaze blizu u prostoru [3].

2.3 Mehanizmi promptovanja

Prompt [4] je jedna od klju¢nih stavki koje uti¢u na kvalitet
generisanog odgovora. To predstavlja niz instrukcija koje
se prosljeduju velikom jezickom modelu tokom
inferencije. Za S$to bolje rezultate dobra je praksa
ispostovati karakteristike efektivnog prompta, a to su da
bude jasan i precizan, da u okviru prompta bude ukljucen
relevantan kontekst, kao i1 da instukcije budu neutralne tj.
da ne sugeriSu neki odgovor i da ne namecu odredeno
misljenje i stav.

Sa druge strane, postoje i razlicite tehnike i strategije za
unapredenje prompta posebno u slucaju RAG-a od kojih
mozemo izdvojiti instruction based promptovanje, few
shot promptovanje itd.

2.4 Vanilla RAG

Vanilla RAG predstavlja osnovni i najjednostavniji vid
RAG koncepta. Ovu implementaciju odlikuje linearan tok
obrade wupita, prvo se pokreée proces dobavljanja
relevantnog konteksta, a zatim se na osnovu toga i generise
odgovor. U nastavku ¢emo ista¢i osnovne osobine ovog
pristupa.

2.4.1 Kljuéne osobine

Karakterisicne osobine znafajne za ovaj pristup su
jednostavnost implementacije i staticka logika. To znaci da
se ovakvi sistemi poprili¢no brzo stavljaju u upotrebu i da
se svi upiti obraduju na isti nacin. Kao posljedica svega
toga mozemo zakljuciti da bi debagovanje ovakvog
sistema bilo veoma lako.

2.4.2 Nedostaci

Iako je Vanilla RAG veoma jednostavan za
implementaciju, ovo rjeSenje imamo odredenih mana,
pogotovo kada imamo kompleksnije upite. Glavni problem
je Sto nema mogucnost adaptacije logike na osnovu upita,
tako da ukoliko postavimo neki slozeni upit vrlo vjerovatno
ne¢emo dobiti adekvatan i slozen odgovor.

2.4.3 Prakti¢na primjena

Kao posljedica pomenutih osobina mozemo reci da bi ova
implementacija najbolje funkcionisala u manjim
okruzenjima gdje upiti nisu toliko Cesti i kompleksni, a
baza znanja je stati¢na i nije podlozna Cestim promjenama.

2.5 Agentski RAG

Agentski RAG [5] predstavlja napredni oblik RAG
arhitekture u kojoj klju¢nu ulogu ima inteligentni agent,
odnosno entitet sposoban za donosSenje odluka, upravljanje

kontekstom i strategijsko izvrSavanje zadataka u vise
koraka uz pomoc¢ alata.

2.5.1 Agenti

Agenti [6] predstavljaju samostalne jedinice koje imaju
sposobnost da rezonuju, donose odluke i izaberu adekvatne
alate za izvrSavanje odredenih akcija. Postoje razli¢ite vrste
agenata u zavisnosti od toga koji je njihov cilj. U okviru
ovog rada koristi¢e se ReAct agent koji moze da rezonuje
i na osnovu medurezultata moze da mijenja strategiju i
prilagodava je.

2.5.2 Alati

Alati [7] su pomoc¢ne strukture koje agent koristi tokom
procesa odlucivanja. U sustini, to je interfejs za funkcije
koje mogu da dobavljaju odredeno znanje ili izvrSavaju
neku akciju adekvatnu za obradu upita. Bitna stavka
prilikom specificiranja nekog alata je opis, na osnovu koga
inteligenti koordinator, agent zna §ta je uloga tog alata i u
zavisnosti od toga ga pozove ili ne.

2.5.3 Klju¢ne osobine

Kljuéne osobine karakteristicne za agentski RAG su
modularnost i fleksibilnost. U nastavku ¢e biti prikazano
da se cijela arhitektura ove implementacije sastoji od
komponenti, tako da je veoma prakticno proSiriti neku
funkcionalnost, zamijeniti neku komponentu. Pored toga,
ima mogucénost orkestracije slozenih zadataka i generisanje
adekvatnog odgovora i za kompleksnije zadatke.

2.5.4 Nedostaci

S obzirom da raste kompleksnost sistema, to sa sobom
povlaci neke mane kao $to je slozenost implementacije. Za
kreiranje ovakvog sistema potrebno je viSe vremena i javlja
se povecana latencija posto se izvrSava veci broj koraka.
Povezano sa tim, javlja se i problem vecih troskova
izvr§avanja.

2.5.5 Prakti¢na primjena

Upotreba agentskog RAG-a je opravdana u sistemima koji
zahtjevaju slozenije radnje i laku proSirivost sistema
dodatnim alatima. Npr. To bi bio slucaj u velikim
kompanijama koje zahtjevaju pretragu dokumentacije,
generisanje izvjestaja slanje mejlova itd.

3. METODOLOGIJA

U ovom poglavlju opisane su metode i koraci koji su
primijenjeni tokom rada na projektu, Ciji je cilj bio
istrazivanje i implementacija RAG sistema. Projekat je
obuhvatio specifikaciju dizajna i implementaciju obje vrste
RAG sistema. U nastavku slijedi detaljniji opis.

3.1 Specifikacija zahtjeva

Projekat je realizovan koriStenjem programskog jezika
Typescript i Nodej.js radnog okvira, pri ¢emu je serverski
dio organizovan upotrebom modularne monolitne
arhitekture. Korisni¢ki interfejs je razvijen u React-u sa
ciljem da omoguc¢i jednostavnu interakciju sa sistemom.

Aplikacija je odradena za imaginarnu kompaniju koja bi
imala moguénost da pretrazuje = kompanijsku
dokumentaciju u jednostavnijoj verziji sistema, a u
agentskoj verziji ta implementacija je pro$irena i pristupom
internetu 1 moguc¢noséu rijeSavanja matematickih izraza

1350

preko aplikacije. Prvo je dat opis pripreme podataka za
testiranje aplikacije, a onda ¢emo opisati i konkretno
implementaciju.

3.2 Indeksiranje dokumenata

Prvi koraci u razvoju sistema su indeksiranje dokumenata
i priprema eksternog znanja koje ¢e se koristiti za testiranje
ovih sistema. Za Cuvanje generalnog znanja odlucili smo
se za vektorsku bazu Zilliz [8]. Ovaj proces zapocCinje
ras¢lanjivanjem dokumenata na manje segmente, u nasem
slu¢aju vrSena je semanticka podjela teksta po pasusima.

Sljedeci korak je kreiranje vektorskih reprezentacija od tih
pasusa upotrebom modela za embedovanje. U ovom
slucaju koristili smo OpenAIEmbeddings, koji u pozadini
podrazumjevano koristi napredni model text-embedding-
3-small.

Posljednji korak pri indeksiranju dokumenata je ¢uvanje u
vektorsku bazu. Odabrana vektorska baza nudi vise nacina
azuriranja baze, a u ovom radu iskoristen je inkrementalni
nacin aZuriranja baze, pri cemu se tokom azuriranja unose
samo novi ili izmijenjeni segmenti, dok se zastarjeli
automatski uklanjaju.

3.3 Implementacija Vanilla RAG-a

Vanilla RAG arhitektura implementirana je kao prva
verzija konverzacionog asistenta i kombinuje proces za
dobavljanje relevantnih dokumenata i proces generisanja
odgovora. Proces dobavljanja relevantnih dokumenata
oslanja se iskljuéivo na veliki jezicki model i nema
mogucnost rezonovanja. Za implementaciju koristen je
Langchain [9] radni okvir i ChatGPT Turbo 3.5. Slika
¢itave arhitekture prikazana je na slici 1.

Ziliz

—

Relevant docs

Find relevant

User query documents

Embed user query

Prompt LM

1

Final answer

Slika 1. Arhitektura Vanilla RAG-a

3.4 Implementacija agentskog RAG-a

Agentski RAG predstavlja napredniju verziju RAG
koncepta, u kom se umjesto velikog jezickog modela kod
jednostavne verzije koristi Citav agentski sistem sa
razli¢itim alatima, Uz pomo¢ agenta ovaj pristup dobija
mogucnost rezonovanja I adaptacije logike za rjeSavanje
kompleksnih korisni¢kih zahtjeva.

Za realizaciju ovog sistema koristen je LangGraph [10]
gdje je svaki Cvor predstavljao neki korak u obradi
zahtjeva. Dok smo za definisanje alata koristili Langchain
interfejs. Detaljniji prikaz arhitekture prikazan je na slici 2.

Tools

Retrieve relevant

context with tools Grada conext

User query

no yes
Is context Generate final

valid? answer

Rewrite question

Slika 2 Arhitektura agentskog RAG-A

Na osnovu priloZzenog mozemo zakljuciti da prvi korak je
dobavljanje relevantnog znanja pomocu agenta i alata. U
ovom slucaju koristen je reaktivni agent koji planira dalji
korak u skladu sa trenutnim stanjem.

Sto se tice alata za demonstraciju rada kreirali smo tri alata,
ato su:

. Alat za dobavljanje znanja o kompaniji
. Alat za internet pretragu
. Alat za rjeSavanje matematickih izraza

Zatim slijedi korak provjere da li je kontekst relevantan,
ukoliko jeste ide se na kraj i generiSe se odgovor, a u
suprotnom pitanje se reformulise i proces se ponavlja.

4. EVALUACIJA

Pod procesom evaluacije podrazumjeva se da se ,,izmjeri*
koliko ta¢ne i relevantne odgovore sistem daje. Posto se
generalno proces sastoji od dvije faze dobavljanja znanja i
generisanja odgovora, dobra praksa je evaluirati te dvije
faze odvojeno.

U pocetku evaluacija je radena ru¢no i empirijski na
osnovu testnog skupa pitanja, a naknadno je taj proces
automatizovan upotrebom Ragas radnog okvira.

5. REZULTATI

U ovom poglavlju bi¢e dato finalno poredenje ove dvije
implementacije na osnovu tehnickih metrika koje definisu
tacnost odgovora, ali i poredenje po sekundarnim
osobinama bitnim za razvoj ovih rjesenja.

U prilogu je data tabela sa vrijednostima tehnickih metrika
dobijenih preko Ragas [11] radnog okvira.

Tabela 1. Evaluirane vrijednosti

Vanilla RAG | Agentski RAG
0.6987 0.8903
Relevantnost
konteksta
0.2951 0.2698
Pridrzavanje
konteksta

1351

0.4773 0.4833
Povraéaj
konteksta
0.7818 0.8196
Relevantnost
odgovora
0.6192 0.8684
Tacnost
odgovora
Semanticka 0.8434 0.9020
sli¢nost

Na osnovu tabele, agentski pristup ima dosta bolje rezultate
u relevantnosti konteksta, razlog za to su sloZeni upiti gdje
drugi pristup dosta bolje rezonuje i pronalazi adekvatna
dokumenta. Takode, agentski pristup se neznatno bolje
pokazao I u metrici povracaj konteksta, do toga je doslo,
jer agenti malo bolje rade u slucaju kadaa se kontekst vraca
iz viSe dokumenata. Sa druge strane, posmatrajuci
pridrzavanje konteksta jednostavniji model neocekivano
daje bolji rezultat. Razlog za to je $to agentski pristup daje
dosta informacija da $to bolje objasni koncept, ali u ovom
slu¢aju to smanjuje vrijednost ove metrike.

Sa druge strane, Sto se ti¢e metrika vezanih za generisanje
odgovora agentski pristup se dosta bolje pokazao kod
tacnosti odgovora, jer ovo rjesenje detaljnije vraca odgovor
I detalje koji naizgled ne djeluju bitni. Kao posljedica
svega toga mozemo vidjeti da agentski prisup prednjacil u
metrici semantickoj sli€nosti odgovora koji mjeri
uskladenost generisanog i referentnog odgovora. Isto
objasnjenje vazi I za dosta bolju relevantnost odgovora kod
agentskog rjesenja.

Poredeéi sekundarne osobine ovih sistema, o€igledno je da
je agentski pristup dosta kompleksniji, zahtjeva vise
vremena za razvoj | troskovi odrzavanja arhitekture su
dosta veci. Ali glavna prednost ovog pristupa je Sto je lako
prosiriv i daje bolje, relevantnije I pouzdanije odgovore.

6. ZAKLJUCAK

U radu je predstavljen razvoj i implementacija jednostavne
i agentske implementacije RAG sistema. Motivacija za
razvoj sistema je uociti prednost agenata u okviru ovog
koncepta s obzirom na brzi razvoj tehnologije. Glavni cilj
ovog rada je uporediti spomenute arhitekture, istaéi
prednosti i mane oba pristupa, kao i potencijalne prijedloge
prakti¢ne primjene.

Na osnovu rezultata mozemo zakljuéiti da jednostavnija
implementacija RAG sistema se relativno brzo postavlja,
nema slozenu arhitekturu i ima linearan tok izvrSavanja
akcija. Dok sa druge strane agentski RAG daje detaljnije

odgovore, ima sposobnost rezonovanja i znacajno
prednjaci pri odgovaranju na slozene upite. Takode,
arhitektura agentskog pristupa je lako prosiriva, ali nosi
vece troskove i kompleksnija je za razvoj. Stoga prilikom
izbora nacina implementacije RAG sistema bitno je naci
balans izmedu performansi, odrzavanja i buduéeg razvoja.

Za buduéa unapredenja, predlaze se optimizacija
promptova uz pomo¢ predlozenih alata. Takode, korisno bi
bilo da sistem ima mogu¢nost ucenja tokom konverzacija i
pamcenja dobrih praksi. Jo$ jedno ogranicenje je ogranicen
kontekst koji se $alje velikom jezickom modelu, ukoliko bi
se ovaj problem rijeSio model bi imao viSe informacija za
odgovaranje §to bi proizvelo relevantnije odgovore.

7. LITERATURA

[1] What are large language models (LLMs)?
https://www.ibm.com/think/topics/large-language-models
[maTym npucryna jyn 2025]

[2] Newhauser, Mary; (2024). Introduction to Retrieval
Augmented Generation
(RAG) https://weaviate.io/blog/introduction-to-rag
[matym mpucrtyma jyn 2025]

[3] Vector Databases: Tutorial, Best Practices & Examples
https://nexla.com/ai-infrastructure/vector-databases/
[maTym nmpucryna jyn 2025]

[4] Prompt Engineering Guide https://www.promptingguide.ai
[maTym nmpucryna jyn 2025]

[5] Whatis agentic RAG?
https://www.ibm.com/think/topics/agentic-rag [aaTym
npuctyna jyH 2025]

[6] Tahir; (2024). What are Al Agents?
https:/medium.com/@tahirbalarabe2/what-are-ai-agents-
f06ef775e78f [marym npucrtymna jyn 2025]

[7] What are tools? https://huggingface.co/learn/agents-
course/en/unitl/tools [marym npuctyma jya 2025]

[8] Zilliz 3Banmuna moxymenramwuja https://docs.zilliz.com/
[maTym nmpucryna jyn 2025]

[9] 3Banmuna nokymenranuja Langchain-a
https://python.langchain.com/docs/introduction/ [raTym
npuctyna jyn 2025]

[10] 3Banmuna nokymenranuja Langgraph-a https://langchain-
ai.github.io/langgraph/concepts/why-langgraph/ [matym
npuctyna jyH 2025]

[11] 3Banm4Ha TOKyMeHTanuja 3a Ragas pagHn okBHp
https://docs.ragas.io/en/stable/getstarted/ [maTym mpuctymna

asryct 2025]

Ivana Kasikovi¢ rodena je 03.
oktobra 2000. godine u Trebinju.
Kao nosilac diplome ,,Vuk
Karadzi¢* 2019. godine zavrSava
gimnaziju ,,Jovan Duci¢*“, nakon
¢ega upisuje Fakultet tehnickih
nauka, smer Softversko
inzenjerstvo i informacione
tehnologije. Po zavrSetku studija
u roku, upisuje master akademske
studije i iste zavrSava 2025.
godine.

1352

https://www.ibm.com/think/topics/large-language-models
https://weaviate.io/blog/introduction-to-rag
https://nexla.com/ai-infrastructure/vector-databases/
https://www.promptingguide.ai/techniques
https://www.ibm.com/think/topics/agentic-rag
https://medium.com/@tahirbalarabe2/what-are-ai-agents-f06ef775e78f
https://medium.com/@tahirbalarabe2/what-are-ai-agents-f06ef775e78f
https://huggingface.co/learn/agents-course/en/unit1/tools
https://huggingface.co/learn/agents-course/en/unit1/tools
https://docs.zilliz.com/
https://python.langchain.com/docs/introduction/
https://langchain-ai.github.io/langgraph/concepts/why-langgraph/
https://langchain-ai.github.io/langgraph/concepts/why-langgraph/
https://docs.ragas.io/en/stable/getstarted/

