gﬁyj Zbornik radova Fakulteta tehniékih nauka, Novi Sad

UDK: 4.9
DOI: https://doi.org/10.24867/33BE19Popov

PLATFORMA ZA TRGOVINU ENERGIJOM SA MIKROSERVISNOM
ARHITEKTUROM I AI ANALIZOM TRZISTA

ENERGY TRADING PLATFORM WITH A MICROSERVICES ARCHITECTURE
AND AI MARKET ANALYSIS

Aleksa Popov, Fakultet tehnickih nauka, Novi Sad

Oblast — PRIMENJENO SOFTVERSKO
INZENJERSTVO

Kratak sadriaj — U radu je prikazana realizacija
aplikacije za automatizovano trgovanje elektricnom
energijom, koja koristi treniran Al model za predikciju
cena. ResSenje je implementirano upotrebom mikroservisne
arhitekture, a celokupna aplikacija je bazirana na Docker
kontejnerima.

Kljuéne refi: Mikroservis, AI model, Docker, trgovina
energijom

Abstract — The paper presents the implementation of an
application for automated electricity trading, which uses a
trained Al model for price prediction. The solution is
implemented using a microservices architecture, and the
entire application is based on Docker containers.

Keywords: Microservice, Al model, Docker, energy
trading

1. UVOD

Trziste elektricne energije se danas menja velikom
brzinom. Kljuéni pokreta¢ ovih promena je razvoj
pametnih energetskih mreza (Smart Grid) koje
omogucéavaju dvosmernu komunikaciju izmedu
proizvodaca i potroSaca. U skladu sa ovakvim sistemom,
korisnici vi$e nisu samo pasivni potrosaci, ve¢ mogu i sami
da proizvode i skladiste energiju, na primer, pomocu
solarnih panela i ku¢nih baterija. Ova nova dinamika
dovodi do Cestih i naglih promena u cenama energije, ¢ime
dolazi do sve vece potrebe za automatizovanim sistemima
koji ¢e nam olaksati pracenje promena.

Cilj ovog rada je osmisljen da zadovolji potrebe nastale
novom dinamikom trgovine, kreiranjem softverske
platforme koja automatizuje proces trgovine energijom.
Platforma koristi veStacku inteligenciju da predvidi
kretanje cena i na osnovu tih prekdikcija donosi odluke o
kupovini ili prodaji, olakSavaju¢i korisnicima da ostvare
uStedu ili profit. Za osnovu sistema izabrana je
mikroservisna arhitektura, koja omoguéava da se
kompleksan problem razlozi na manje delove. Na taj nacin,
stvoren je skalabilan temelj za buduca unapredenja I
dodavanje novih funkcionalnosti.

NAPOMENA:
Ovaj rad proistekao je iz master rada ¢iji mentor je bio
dr Aleksandar Boskovié, doc.

2. 1ZBOR ARHITEKTURE SISTEMA

Izbor prave arhitekture je kljuan korak u izradi svakog
softvera, koja ¢e uticati na svaku dodatnu promenu na
sistemu u buduénosti. Za ovaj projekat, postojale su dve
glavne opcije pristupa: monolitnog i mikroservisnog.

Monolitna arhitektura podrazumeva da se sve komponente
aplikacije nalaze unutar jedne, jedinstvene celine. lako je
ovakav pristup jednostavniji za pocetni razvoj, on sa
sobom nosi veliki broj nedostataka kako sistem raste.
Svaka pa i manja izmena zahteva ponovno testiranje i
implementaciju celokupne aplikacije. Jo§ jedna velika
mana je da je ceo sistem vezan za jednu tehnologiju.

Zbog ovih nedostataka, za ovaj projekat je odabrana
mikroservisna arhitektura [1]. Ona podrazumeva razbijanje
sistema na skup manjih, nezavisnih servisa, gde je svaki
servis odgovoran za jedan specifiCan poslovni zadatak.
Ovaj pristup je doneo par kljuénih prednosti. Fleksibilnost
tehnologije, koja je bilo od klju¢nog znacaja za Al servis,
nezavisnost i lakSe odrzavanje §to omogucava da se svaki
servis razvija, testira i azurira nezavisno i skalabilnost.

2.1. Nadin organizacije mikroservisa

2

End User

AllAPI Calls

fapiusers {apifdashbard, fapiirade

Bakent Services

Resdsiuwites irade data Gets precitions

Slika 1. Arhitektura sistema sa prikazom komunikacije

1341

https://doi.org/10.24867/33BE19Popov

Unutar mikroservisne arhitekture, primenjeno je nekoliko
klju¢nih obrazaca kako bi se sistem efikasno sagradio. On
je podeljen na servise po njihovoj poslovnoj funkciji.
Postoje Cetiri servisa koja izvrSavaju glavne funkcije ovog
sistema. Vizualan prikaz ove arhitekture, kao i na¢in na
koji servisi medusobno komuniciraju, dat je na Slici 1.

e User Service: upravlja korisni¢kim nalozima,
procesima registracije i prijave, kao i izdavanjem
sigurnosnih JWT tokena [4]

e Trade Service: sadrzi klju¢nu poslovnu logiku,
upravlja stanjem baterije 1 donosi odluke o
trgovini.

e Al Service: funkcioniSe kao specijalizovana
komponenta koja na zahtev isporucuje predikcije
cena.

e Data Service: centralna tacka za pristup bazi
podataka, obezbedujuci potrebne podatke svim
ostalim servisima.

“Baza podataka kao servis” (DaaS) [5]: Mikroservis-data
simulira ulogu DaaS provajdera. Umesto da svaki servis
direktno pristupa bazi podataka, svi zahtevi za Citanje ili
pisanje podataka idu iskljucivo preko ovog servisa. lako
prestavlja odstupanje od “Cistog” mikroservisnog pravila
gde svaki servis ima svoju bazu, ovaj pristup je odabran
kao savrSeno reSenje za pocetnu fazu projekta. Postoje
mnoge prednosti u koriS¢enju paterna Shared Database [6]
za razvoj nove velike aplikacije koja ukljucuje
mikroservise.

3. KORISCENE TEHNOLOGIJE I ALATI

Za realizaciju ovog projekta koriS¢ena je kombinacija
modernih tehnologija, gde je svaka odabrana tako da na
najbolji nacin odgovari na specifi¢ne zahteve.

Frontend — Korisnic¢ki interfejs je izgraden pomocu React
biblioteke, koja omogucava kreiranje dinamickih I
reaktivnih komponenti. Za upravljanje globalnim stanje
aplikacije, koriS¢en je Redux.

Backend — Osnovu za User, Trade i Data servise ¢ini
Node.js, platforma izabrana zbog svoje efikasnosti u obradi
mreznih zahteva. Na njoj je koris¢en Express.js framework
za lako kreiranje REST API endpointa. Za Al servis
odabran je Python zbog velike dostupnosti biblioteka, dok
je Flask [3] posluzio kao web framework.

Baza podataka — Svi podaci se ¢uvaju unutar MongoDB,
popularnoj noSQL bazi podataka. Za komunikaciju drugih
servisa i baze koris¢en je Mongoose, alat koji olakSava
definisanje modela podataka i rad sa njima.

Vestacka inteligencija — Model za predikciju cena je
implementiran pomocu Scikit-learn biblioteke.

Kontejnerizacija — Ceo sistem je orhanizovan pomocu
Docker [2] platforme, gde je svaki mikroservis zapakovan
u sopstveni izolovani kontejner. Za pokretanje i
medusobno povezivanje svih kontejnera u lokalnom
okruzenju kori$éen je Docker Compose, ¢ime je postignuta
laka prenosivost i konzistentnost sistema.

4. SPECIFIKACIJA SISTEMA

Ovo poglavlje detaljno opisuje funkcionalnosti sistema iz
korisnickog i sistemskog ugla.

4.1. Korisni¢ko iskustvo i funkcionalnost sistema

Korisnik po prvom ulasku na aplikaciju ima pristup
pocetnoj strani, gde se nalazi cena energije kao 1 istorija
cena, i takode moze da pristupi predikcijama i strategijama
trgovine. Pre koriS§¢enja glavne funcionalnosti, potrebno je
prvo kreiranje profila. Nakon uspes$ne registracije, kao i
prilikom svake sledece prijave, korisnik unosi svoje
kredencijale. Ukoliko je autentifikacija uspe$no prosla,
korisniku se generise JWT (JSON Web Token) [4]. Ovaj
token sluzi kao digitalni klju¢ koji korisniku omoguc¢ava
siguran pristup svim delovima platforme.

Glavna kontrolna tabla, koja je centralno mesto za sve
aktivnosti, dizajnirana je da bude pregledna i intuitivna, a
njen izgled je prikazan na slici 2. Na tabeli se istice
grafikon koji vizualizuje istorijke, ali i predvidene cene
elektricne energije dobijene od Al servisa. Pored ovog
grafa korisnik ima i opciju da pogleda predikcije za ceo
sledeci dan na stranici Market.

Battery stranica korisniku omogucava da registruje svoje
baterije i definise parametre za njih. Svaka baterija pored
svojih vrednosti ima i strategiju trgovine kao i stanje u kom
se nalazi. Pored pasivnog pracenja, korisnik ima
moguénost I da aktivno upravlja svojim resursima.
Platforma nudi izbor predefinisanih strategija tgovanja
koje korisnik moze da dodeli svojim baterijama. Svaka
strategija definiSe razlicit pristup trgovini. I van strategija
korisnik moze da upravlja svojim baterijama manuelno.

Ipak, kljuéna prednost platforme lezi u njenom
automatskom radu. Jednom kada korisnik odabere
strategiju, sistem u pozadini preuzima upravljanje. Ovo je
najvazniji sistemski proces, nevidljiv za korisnika, gde
Trade Service neprestano analizira predikcije cena
dobijene od servisa i u skladu sa aktivnom strategijom, on
samostalno donosi odluke o najboljem trenutnom stanju
baterije.

Sve spomenute automatske akcije se beleze kao transakcije
1 azuriraju stanje korisnikovog virualnog novcanika. Svi
ovi podaci su vidljivi na user stranici, i korisnik moze uvek
da doda sredstva na spomenut novcanik. Uplata je ovde
obezbedjena Google reCaptcha-om v3 [8].

4.2. Dizajn model podataka

Osnovu sistema ¢ine Mongoose modeli koji definiSu
kljuéne entitete I njihove medusobne veze. Staticka
struktura ovih modela, koja predstavlja temelj celog
sistema, detaljno je prikazana na klasnom dijagramu na
slici 3.

Kao sto dijagram ilustruje, User model je centralni entitet
koji sadrzi osnovne informacije o korisniku I njegovom
novcéaniku. On je direktno povezan sa Battery modelom,
omoguéavajuci da jedan korisnik poseduje vise baterija,
kao i sa TransactionHisotry modelom, koji cuva zapise o
svim njegovim finansijkim aktivnostima. TradingStrategy
model povezan je sa baterijom.

1342

=» EnergiXchange

-~ - Sales Summary

New Wind Farm Opens

N

Read More

Energy Prices Drop Government
Tec ago

Read More

Slika 2. Izgled glavne kontrolne table aplikacije

User
PriceHistory
+String fullName
+String rram
9 use M +Number price
+String password
+Dale date
+8tring type
+Wallet wallet
g e g
Battery TransactionHistory
Wallet
+Number capacity +String userld
Number balance +Number stateOfCharge +String type
u
+String state +8tring traderld +Number amount
9 +5tring state +Date timestamp
+String tradingStrat +8tring stratName

"uses"

"executed with"

TradingStrategy D/

+Siring name
+String description
+String type

+Map parameters

Slika 3. Klasni dijagram

5. MODEL ZA PREDIKCIJU CENA

Za potrebe ovog projekta izabran je model Linearne
Regresije [7] implementiran pomocu Scikit-learn
biblioteke. Iako postoje kompleksniji modeli za vremenske
serije, ovaj model je odabran iz nekoliko prakti¢nih
razloga. On predstavlja odli¢nu polaznu osnovu I veoma je
brz za treniranje. Takode rezultati su lako razumljivi, §to
zna¢i da se moze jasno rezumeti kako svaka ulazna
karakteristika utice na krajnju predikciju. Za prototip
sistema ¢iji je cilj dokazivanje koncepta, ove prednosti su
bile presudne.

5.1. Proces treniranja

Proces rada modela se odvija u dve faze:

e Faza treniranja: U ovoj fazi, model se trenira na
istorijskim podacima. Ulazni podaci su
numericke karakteristike, a ciljna vrednost koju
model uci da predvidi je cena. Pozivom fit
metode, model pronalazi matemati¢ku formulu,
odnosno linearnu vezu izmedju ulaznih
karakteristika i cene. Jednom istreniran model,
odnosno nauceni koeficijenti, ¢uvaju se u .pkl
fajlu pomocu Joblib biblioteke.

e Faza predikcije: Kada Trade Service zatrazi
predikciju, ucitava se sacuvani model iz .pkl fajla.
Zatim se kreiraju buduce vremenske oznake I na
njima se primenjuje isti proces inZenjeringa
karakteristika. Tako pripremljeni podaci se
prosleduju modelu, koji pomocu naucene
formule izracunava i vraca predvidene cene za
naredni dan.

6. ZAKLJUCAK

Na osnovu iznetih rezultata, moze se zakljuciti da primena
mikroservisne arhitekture predstavlja efikasno resenje za
razvoj kompleknse platforme za trgovinu energijom.
Pokazalo se da je ovakav pristup znacajno fleksibilniji od
monolitnog, naro¢ito u domenu kombinovanja tehnologija.
Kori$¢enje pragmati¢nog obrazca kao $to je Daas se
pokazalo kao dobar kompromis koji je ubrzao pocetni
razvoj kao i testiranje aplikacije. Potrebno je u buducnosti
istraziti da li je ovakav model pouzdan i za globalnu
upotrebu ili je “tradicionalni” pristup ipak bolji.

U daljem radu, primarni fokus bi se mogao staviti na
unapredenje prediktivnog modela. Istrazivanje upotrebe
primene napredinijih modela, poput LSTM (Long Short-
Term Memory) neuronskih mreza, koje su specijalizovane
za analizu vremenskih serija. Ovo bi bilo od velikog
znacaja za preciznost same platforme, a samim tim i
profitabilnosti iz automatske trgovine i pouzdanosti celog
sistema.

Jo§ jedan ocigledan korak jeste hostovanje platforme na

1343

nekom od cloud servisa i detaljno testiranje performansi u
realnom okruZenju, $to bi potvrdilo spremnost sistema za
prakti¢nu upotrebu.

4. LITERATURA

[1] Sam Newma — Building Microservices: Designing
Fine-Grained Systems

[2] Docker -
https://www.techtarget.com/searchitoperations/definiti
on/Docker

[3] Flask - https://flask.palletsprojects.com/en/stable/

[4] JIWT Token - https://www.geeksforgeeks.org/web-
tech/json-web-token-jwt/

[5] DaaS - https://www.mongodb.com/solutions/use-
cases/data-as-a-service

[6] Pattern: Shared database -
https://microservices.io/patterns/data/shared-
database.html

[7] Linear Regression -
https://www.geeksforgeeks.org/machine-learning/ml-
linear-regression/

[8] reCAPTCHA -
https://developers.google.com/recaptcha/docs/v3

Kratka biografija:
B Aleksa Popov roden je u Zrenjaninu
1998. god. Zavrsio je osnovne
akademske studije na Fakultetu
tehnickih nauka 2021. godine, smer
Primenjeno softversko inzenjerstvo.
Nakon toga upisao je iste godine
master studije, smer Primenjeno
softversko inZenjerstvo.

—...

Kontakt:popovaleksal 23(@gmail.com

1344

https://www.techtarget.com/searchitoperations/definition/Docker
https://www.techtarget.com/searchitoperations/definition/Docker
https://flask.palletsprojects.com/en/stable/
https://www.geeksforgeeks.org/web-tech/json-web-token-jwt/
https://www.geeksforgeeks.org/web-tech/json-web-token-jwt/
https://www.mongodb.com/solutions/use-cases/data-as-a-service
https://www.mongodb.com/solutions/use-cases/data-as-a-service
https://microservices.io/patterns/data/shared-database.html
https://microservices.io/patterns/data/shared-database.html
https://www.geeksforgeeks.org/machine-learning/ml-linear-regression/
https://www.geeksforgeeks.org/machine-learning/ml-linear-regression/
https://developers.google.com/recaptcha/docs/v3
mailto:popovaleksa123@gmail.com

