

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.9

DOI: https://doi.org/10.24867/33BE19Popov

PLATFORMA ZA TRGOVINU ENERGIJOM SA MIKROSERVISNOM

ARHITEKTUROM I AI ANALIZOM TRŽIŠTA

ENERGY TRADING PLATFORM WITH A MICROSERVICES ARCHITECTURE

AND AI MARKET ANALYSIS

Aleksa Popov, Fakultet tehničkih nauka, Novi Sad

Oblast – PRIMENJENO SOFTVERSKO

INŽENJERSTVO

Kratak sadržaj – U radu je prikazana realizacija

aplikacije za automatizovano trgovanje električnom

energijom, koja koristi treniran AI model za predikciju

cena. Rešenje je implementirano upotrebom mikroservisne

arhitekture, a celokupna aplikacija je bazirana na Docker

kontejnerima.

Ključne reči: Mikroservis, AI model, Docker, trgovina

energijom

Abstract – The paper presents the implementation of an

application for automated electricity trading, which uses a

trained AI model for price prediction. The solution is

implemented using a microservices architecture, and the

entire application is based on Docker containers.

Keywords: Microservice, AI model, Docker, energy

trading

1. UVOD

Tržište električne energije se danas menja velikom

brzinom. Ključni pokretač ovih promena je razvoj

pametnih energetskih mreža (Smart Grid) koje

omogućavaju dvosmernu komunikaciju između

proizvođača i potrošača. U skladu sa ovakvim sistemom,

korisnici više nisu samo pasivni potrošači, već mogu i sami

da proizvode i skladište energiju, na primer, pomoću

solarnih panela i kućnih baterija. Ova nova dinamika

dovodi do čestih i naglih promena u cenama energije, čime

dolazi do sve veće potrebe za automatizovanim sistemima

koji će nam olakšati praćenje promena.

Cilj ovog rada je osmišljen da zadovolji potrebe nastale

novom dinamikom trgovine, kreiranjem softverske

platforme koja automatizuje proces trgovine energijom.

Platforma koristi veštačku inteligenciju da predvidi

kretanje cena i na osnovu tih prekdikcija donosi odluke o

kupovini ili prodaji, olakšavajući korisnicima da ostvare

uštedu ili profit. Za osnovu sistema izabrana je

mikroservisna arhitektura, koja omogućava da se

kompleksan problem razloži na manje delove. Na taj način,

stvoren je skalabilan temelj za buduća unapređenja I

dodavanje novih funkcionalnosti.

__

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je bio

dr Aleksandar Bošković, doc.

2. IZBOR ARHITEKTURE SISTEMA

Izbor prave arhitekture je ključan korak u izradi svakog

softvera, koja će uticati na svaku dodatnu promenu na

sistemu u budućnosti. Za ovaj projekat, postojale su dve

glavne opcije pristupa: monolitnog i mikroservisnog.

Monolitna arhitektura podrazumeva da se sve komponente

aplikacije nalaze unutar jedne, jedinstvene celine. Iako je

ovakav pristup jednostavniji za početni razvoj, on sa

sobom nosi veliki broj nedostataka kako sistem raste.

Svaka pa i manja izmena zahteva ponovno testiranje i

implementaciju celokupne aplikacije. Još jedna velika

mana je da je ceo sistem vezan za jednu tehnologiju.

Zbog ovih nedostataka, za ovaj projekat je odabrana

mikroservisna arhitektura [1]. Ona podrazumeva razbijanje

sistema na skup manjih, nezavisnih servisa, gde je svaki

servis odgovoran za jedan specifičan poslovni zadatak.

Ovaj pristup je doneo par ključnih prednosti. Fleksibilnost

tehnologije, koja je bilo od ključnog značaja za AI servis,

nezavisnost i lakše održavanje što omogućava da se svaki

servis razvija, testira i ažurira nezavisno i skalabilnost.

2.1. Način organizacije mikroservisa

Slika 1. Arhitektura sistema sa prikazom komunikacije

1341

https://doi.org/10.24867/33BE19Popov

Unutar mikroservisne arhitekture, primenjeno je nekoliko

ključnih obrazaca kako bi se sistem efikasno sagradio. On

je podeljen na servise po njihovoj poslovnoj funkciji.

Postoje četiri servisa koja izvršavaju glavne funkcije ovog

sistema. Vizualan prikaz ove arhitekture, kao i način na

koji servisi međusobno komuniciraju, dat je na Slici 1.

• User Service: upravlja korisničkim nalozima,

procesima registracije i prijave, kao i izdavanjem

sigurnosnih JWT tokena [4]

• Trade Service: sadrži ključnu poslovnu logiku,

upravlja stanjem baterije i donosi odluke o

trgovini.

• AI Service: funkcioniše kao specijalizovana

komponenta koja na zahtev isporučuje predikcije

cena.

• Data Service: centralna tačka za pristup bazi

podataka, obezbeđujući potrebne podatke svim

ostalim servisima.

“Baza podataka kao servis” (DaaS) [5]: Mikroservis-data

simulira ulogu DaaS provajdera. Umesto da svaki servis

direktno pristupa bazi podataka, svi zahtevi za čitanje ili

pisanje podataka idu isključivo preko ovog servisa. Iako

prestavlja odstupanje od “čistog” mikroservisnog pravila

gde svaki servis ima svoju bazu, ovaj pristup je odabran

kao savršeno rešenje za početnu fazu projekta. Postoje

mnoge prednosti u korišćenju paterna Shared Database [6]

za razvoj nove velike aplikacije koja uključuje

mikroservise.

3. KORIŠĆENE TEHNOLOGIJE I ALATI

Za realizaciju ovog projekta korišćena je kombinacija

modernih tehnologija, gde je svaka odabrana tako da na

najbolji način odgovari na specifične zahteve.

Frontend – Korisnički interfejs je izgrađen pomoću React

biblioteke, koja omogućava kreiranje dinamičkih I

reaktivnih komponenti. Za upravljanje globalnim stanje

aplikacije, korišćen je Redux.

Backend – Osnovu za User, Trade i Data servise čini

Node.js, platforma izabrana zbog svoje efikasnosti u obradi

mrežnih zahteva. Na njoj je korišćen Express.js framework

za lako kreiranje REST API endpointa. Za AI servis

odabran je Python zbog velike dostupnosti biblioteka, dok

je Flask [3] poslužio kao web framework.

Baza podataka – Svi podaci se čuvaju unutar MongoDB,

popularnoj noSQL bazi podataka. Za komunikaciju drugih

servisa i baze korišćen je Mongoose, alat koji olakšava

definisanje modela podataka i rad sa njima.

Veštačka inteligencija – Model za predikciju cena je

implementiran pomoću Scikit-learn biblioteke.

Kontejnerizacija – Ceo sistem je orhanizovan pomoću

Docker [2] platforme, gde je svaki mikroservis zapakovan

u sopstveni izolovani kontejner. Za pokretanje i

međusobno povezivanje svih kontejnera u lokalnom

okruženju korišćen je Docker Compose, čime je postignuta

laka prenosivost i konzistentnost sistema.

4. SPECIFIKACIJA SISTEMA

Ovo poglavlje detaljno opisuje funkcionalnosti sistema iz

korisničkog i sistemskog ugla.

4.1. Korisničko iskustvo i funkcionalnost sistema

Korisnik po prvom ulasku na aplikaciju ima pristup

početnoj strani, gde se nalazi cena energije kao i istorija

cena, i takođe može da pristupi predikcijama i strategijama

trgovine. Pre korišćenja glavne funcionalnosti, potrebno je

prvo kreiranje profila. Nakon uspešne registracije, kao i

prilikom svake sledece prijave, korisnik unosi svoje

kredencijale. Ukoliko je autentifikacija uspešno prošla,

korisniku se generiše JWT (JSON Web Token) [4]. Ovaj

token služi kao digitalni ključ koji korisniku omogućava

siguran pristup svim delovima platforme.

Glavna kontrolna tabla, koja je centralno mesto za sve

aktivnosti, dizajnirana je da bude pregledna i intuitivna, a

njen izgled je prikazan na slici 2. Na tabeli se ističe

grafikon koji vizualizuje istorijke, ali i predviđene cene

električne energije dobijene od AI servisa. Pored ovog

grafa korisnik ima i opciju da pogleda predikcije za ceo

sledeci dan na stranici Market.

Battery stranica korisniku omogućava da registruje svoje

baterije i definise parametre za njih. Svaka baterija pored

svojih vrednosti ima i strategiju trgovine kao i stanje u kom

se nalazi. Pored pasivnog praćenja, korisnik ima

mogućnost I da aktivno upravlja svojim resursima.

Platforma nudi izbor predefinisanih strategija tgovanja

koje korisnik može da dodeli svojim baterijama. Svaka

strategija definiše različit pristup trgovini. I van strategija

korisnik može da upravlja svojim baterijama manuelno.

Ipak, ključna prednost platforme leži u njenom

automatskom radu. Jednom kada korisnik odabere

strategiju, sistem u pozadini preuzima upravljanje. Ovo je

najvažniji sistemski proces, nevidljiv za korisnika, gde

Trade Service neprestano analizira predikcije cena

dobijene od servisa i u skladu sa aktivnom strategijom, on

samostalno donosi odluke o najboljem trenutnom stanju

baterije.

Sve spomenute automatske akcije se beleže kao transakcije

i ažuriraju stanje korisnikovog virualnog novčanika. Svi

ovi podaci su vidljivi na user stranici, i korisnik može uvek

da doda sredstva na spomenut novcanik. Uplata je ovde

obezbedjena Google reCaptcha-om v3 [8].

4.2. Dizajn model podataka

Osnovu sistema čine Mongoose modeli koji definišu

ključne entitete I njihove međusobne veze. Statička

struktura ovih modela, koja predstavlja temelj celog

sistema, detaljno je prikazana na klasnom dijagramu na

slici 3.

Kao što dijagram ilustruje, User model je centralni entitet

koji sadrži osnovne informacije o korisniku I njegovom

novčaniku. On je direktno povezan sa Battery modelom,

omogućavajući da jedan korisnik poseduje više baterija,

kao i sa TransactionHisotry modelom, koji čuva zapise o

svim njegovim finansijkim aktivnostima. TradingStrategy

model povezan je sa baterijom.

1342

Slika 2. Izgled glavne kontrolne table aplikacije

Slika 3. Klasni dijagram

5. MODEL ZA PREDIKCIJU CENA

Za potrebe ovog projekta izabran je model Linearne

Regresije [7] implementiran pomoću Scikit-learn

biblioteke. Iako postoje kompleksniji modeli za vremenske

serije, ovaj model je odabran iz nekoliko praktičnih

razloga. On predstavlja odličnu polaznu osnovu I veoma je

brz za treniranje. Takođe rezultati su lako razumljivi, što

znači da se može jasno rezumeti kako svaka ulazna

karakteristika utiče na krajnju predikciju. Za prototip

sistema čiji je cilj dokazivanje koncepta, ove prednosti su

bile presudne.

5.1. Proces treniranja

Proces rada modela se odvija u dve faze:

• Faza treniranja: U ovoj fazi, model se trenira na

istorijskim podacima. Ulazni podaci su

numeričke karakteristike, a ciljna vrednost koju

model uči da predvidi je cena. Pozivom fit

metode, model pronalazi matematičku formulu,

odnosno linearnu vezu izmedju ulaznih

karakteristika i cene. Jednom istreniran model,

odnosno naučeni koeficijenti, čuvaju se u .pkl

fajlu pomoću Joblib biblioteke.

• Faza predikcije: Kada Trade Service zatraži

predikciju, učitava se sačuvani model iz .pkl fajla.

Zatim se kreiraju buduće vremenske oznake I na

njima se primenjuje isti proces inženjeringa

karakteristika. Tako pripremljeni podaci se

prosleđuju modelu, koji pomoću naučene

formule izračunava i vraća predviđene cene za

naredni dan.

6. ZAKLJUČAK

Na osnovu iznetih rezultata, može se zaključiti da primena

mikroservisne arhitekture predstavlja efikasno rešenje za

razvoj kompleknse platforme za trgovinu energijom.

Pokazalo se da je ovakav pristup značajno fleksibilniji od

monolitnog, naročito u domenu kombinovanja tehnologija.

Korišćenje pragmatičnog obrazca kao što je Daas se

pokazalo kao dobar kompromis koji je ubrzao početni

razvoj kao i testiranje aplikacije. Potrebno je u buducnosti

istražiti da li je ovakav model pouzdan i za globalnu

upotrebu ili je “tradicionalni” pristup ipak bolji.

U daljem radu, primarni fokus bi se mogao staviti na

unapređenje prediktivnog modela. Istraživanje upotrebe

primene napredinijih modela, poput LSTM (Long Short-

Term Memory) neuronskih mreža, koje su specijalizovane

za analizu vremenskih serija. Ovo bi bilo od velikog

značaja za preciznost same platforme, a samim tim i

profitabilnosti iz automatske trgovine i pouzdanosti celog

sistema.

Još jedan ocigledan korak jeste hostovanje platforme na

1343

nekom od cloud servisa i detaljno testiranje performansi u

realnom okruženju, što bi potvrdilo spremnost sistema za

praktičnu upotrebu.

4. LITERATURA

[1] Sam Newma – Building Microservices: Designing

Fine-Grained Systems

[2] Docker -

https://www.techtarget.com/searchitoperations/definiti

on/Docker

[3] Flask - https://flask.palletsprojects.com/en/stable/

[4] JWT Token - https://www.geeksforgeeks.org/web-

tech/json-web-token-jwt/

[5] DaaS - https://www.mongodb.com/solutions/use-

cases/data-as-a-service

[6] Pattern: Shared database -

https://microservices.io/patterns/data/shared-

database.html

[7] Linear Regression -

https://www.geeksforgeeks.org/machine-learning/ml-

linear-regression/

[8] reCAPTCHA -

https://developers.google.com/recaptcha/docs/v3

Kratka biografija:

Aleksa Popov rođen je u Zrenjaninu

1998. god. Završio je osnovne

akademske studije na Fakultetu

tehničkih nauka 2021. godine, smer

Primenjeno softversko inženjerstvo.

Nakon toga upisao je iste godine

master studije, smer Primenjeno

softversko inženjerstvo.

Kontakt:popovaleksa123@gmail.com

1344

https://www.techtarget.com/searchitoperations/definition/Docker
https://www.techtarget.com/searchitoperations/definition/Docker
https://flask.palletsprojects.com/en/stable/
https://www.geeksforgeeks.org/web-tech/json-web-token-jwt/
https://www.geeksforgeeks.org/web-tech/json-web-token-jwt/
https://www.mongodb.com/solutions/use-cases/data-as-a-service
https://www.mongodb.com/solutions/use-cases/data-as-a-service
https://microservices.io/patterns/data/shared-database.html
https://microservices.io/patterns/data/shared-database.html
https://www.geeksforgeeks.org/machine-learning/ml-linear-regression/
https://www.geeksforgeeks.org/machine-learning/ml-linear-regression/
https://developers.google.com/recaptcha/docs/v3
mailto:popovaleksa123@gmail.com

