Zbornik radova Fakulteta tehni¢ckih nauka, Novi Sad

UDK: 4.9
DOI: https://doi.org/10.24867/33BE18Ninkovic

ORKES CONDUCTOR - POREDENJE PERFORMANSI SA APACHE KAFKA
ORKES CONDUCTOR - PERFORMANCE COMPARISON WITH APACHE KAFKA
Jelena Ninkovié, Fakultet tehnickih nauka, Novi Sad

Oblast - ELEKTROTEHNIKA I RACUNARSTVO

Kratak sadrzaj — U ovom radu opisani su Orkes
Conductor kao primer orkestracije dogadajima i Apache
Kafka kao primer koreografije. Uradena je analiza i
poredenje performansi ova dva alata. Rad ukljucuje i opis
implementacije oba alata, napisane u programskom
Jjeziku Java, kao i poredenje redova koji predstavijaju
osnovnu strukturu podataka na koju se alati oslanjaju.

Kljucéne rei: Conductor, zadatak, razmena poruka,
Apache Kafka, red

Abstract — This paper describes Orkes Conductor as an
example of event orchestration and Apache Kafka as an
example of choreography. A performance analysis and
comparison of two tools is provided. This paper also
includes description of implementation of both tools,
written in Java programming language, as well as a
comparison of queues, which represent the fundamental
data structure these tools rely on.

Keywords: Conductor, task, messaging, Apache Kafka,
queue

1. UVOD

Mikroservisna arhitektura (MSA) predstavlja
arhitekturalni dizajn Sablon koji je uveden da resi
probleme oko horizontalne skalabilnosti, dostupnosti,
modularnosti 1 agilnosti arhitekture u tradicionalnim
monolitnim sistemima. Aplikacija se razvija kao skup
malih servisa [1], gde je svaki nezavisno razvijan,
testiran, azuriran, skaliran i deploy-ovan i komunicira sa
ostatkom preko jednostavnih mehanizama, najcesce
HTTP poziva. Servisi su tako definisani da svaki ima
sopstvene entitete i bazu podataka, §to ¢ini da promene u
bazi podataka jednog servisa nisi vidljive u bazi drugog
servisa. Ukoliko dode do rollback-a transakcije zbog
greske u jednom od servisa povratak na predasnje stanje
nije mogu¢ jer su u pitanju distribuirane transakcije.

Da bi se resio problem uvodi se SAGA [2] Sablon. U
slucaju greske okida se sekvenca rollback dogadaja, od
jednog servisa ka drugom, u obrnutom redosledu. SAGA
Sablon moze biti implementiran kori§¢enjem koreografije
dogadaja i orkestracionim tehnikama.

U slucaju koreografije dogadajima, svaki mikroservis radi
zasebno i kada zavr$i lokalnu transakciju emituje dogadaj,
koji drugi servisi osluskuju sa ciljem da zapo¢nu svoje
transakcije.

NAPOMENA:
Ovaj rad proistekao je iz master rada Ciji mentor je
bio dr Srdan Popov, red. prof.

Proces se nastavlja sve dok poslednji servis ne emituje
nijedan dogadaj, $to predstavlja kraj transakcije.

Kod orkestracije postoji centralni orkestrator, koji se
ponasa kao ,roditeljski“ servis, slusa sve dogadaje koje
emituju lokalne transakcije mikroservisa i na osnovu
dogadaja okida slede¢u lokalnu transakciju u drugom
mikroservisu ili servisima.

2. ORKES CONDUCTOR

Orkes Conductor [3] je radni okvir koji je razvijen povrh
Netflix Conductor-a. Pored osnovnih funkcionalnosti koje
je nudila platforma dodate su funkcionalnosti i
poboljsanja i cilju lakSeg deploy-ovanja i upravljanja
tokovima u produkcionom okruzenju.

2.1. Osnovni pojmovi

Proces orkestriranja koriS¢enjem Conductor-a obuhvata
koriS¢éenje tri osnovna koncepta: zadatke, radnike i
tokove.

Zadatak predstavlja jedinicu posla ili korak u toku, poput
kreiranja HTTP poziva, slanja mejla, procesiranja
podataka ili izvrSavanja poslovne logike. Predstavlja
osnovnu gradivnu jedinicu toka i dodatno moze biti
podeljen na operatore, sistemske zadatke ili radnike za
sopstveni kod.

Radnici su kod zaduZen za izvrSavanje zadataka. Za
sistemske zadatke i1 operatore je zaduzen Conductor
server, dok zadacima koje je definisao korisnik upravljaju
aplikacije koje ih implementiraju. Nakon $to radnik
kontaktira server da primi i izvr§i zakazane zadatke
Conductor ¢e proslediti ulazne parametre zadatka radniku
i preuzeti izlazne podatke nakon zavrsetka.

Tok se definiSe kao kolekcija zadataka i operatora, koji
specificiraju redosled i izvrSenje definisanih zadataka.
Ova orkestracija se deSava u hibridnom ekosistemu koji
objedinjuje serverless funkcije, mikroservise i monolitske
aplikacije. Kako je Conductor jezicki agnostiCan
orkestracija moze biti izvrSena u bilo kom programskom
jeziku. Workflow scheduler omoguéava tokovima da
budu pokrenuti po odredenom rasporedu. Ovo daje
mogucénost da tokovi budu konfigurisani da se pokreé¢u u
zeljenoj ucestalosti i da se prilikom kreiranja rasporeda
bira verzija toka.

2.2. Al zadaci

Orkes Conductor omoguéava kreiranje aplikacija koje
koriste generativne Al modele i vektorske baze podataka.
Generativni Al je tip veStacke inteligencije sposoban za
kreiranje novog ,,Covekolikog® sadrzaja na osnovu pre-
treniranih modela koji su bili izloZeni velikim koli¢inama

1337

https://doi.org/10.24867/33BE18Ninkovic

sli¢énog sadrzaja. Ljudska interakcija je i dalje potrebna da
se modeli usmere Sta treba da bude generisano -
usmeravaju se slanjem promptova (tekstualnih
instrukcija). Odgovor Gen-Al modela je isto tekstualan, i
ovi modeli se nazivaju LLM. LLM su deep learning
algoritmi obuceni na velikoj koli¢ini podataka. Mogu da

obavljaju razne NLP =zadatke, poput generisanja,
prevodenja, chatbot-ova, Al asistenata i sl.
2.3. Alert zadaci

Alert zadaci su poseban vid zadataka koji imaju ulogu da
Salju notifikacije ili upozorenja na osnovu odredenih
uslova ili dogadaja u sistemu.

2.4. Rukovalac dogadajima

Rukovalac dogadajima procesira dolazece poruke i
izvrSava akcije na osnovu njihovih detalja. Okida¢ moze
biti okinut od strane narednih akcija — complete task,
terminate workflow, update variables, fail task i start
workflow.

2.5. Kontrola pristupa

Orkes Conductor nudi kontrolu pristupa baziranu na
ulogama (RBAC) korisnicima Orkes platformi, kao i
aplikacijama koje koriste Conductor API. RBAC
obezbeduje pristup metapodacima tokova, zadataka, tajni,
promenljivama okruZenja, integracijama, promptovima,
korisni¢kim formama, rukovaocima dogadaja,
rasporedima, webhook-ovima i domenima.

Korisnik predstavlja ¢oveka koji interaguje sa Conductor-
om preko Orkes platforme, 1 autentifikovan je
koris¢enjem SSO provajdera ili mejla/lozinke. Svaki
korisnik moze imati jednu ili viSe dodeljenih uloga.

Grupa predstavlja set korisnika, i predstavlja brz na¢in da
se dodele permisije ve¢em broju korisnika. Svaka grupa
moze biti povezana sa jednom ili vise uloga. Takode
moze imati dodeljen set permisija, koje obezbeduju
pristup odredenim resursima. Kada je korisnik dodat u
grupu automatski nasleduje sve uloge i permisije grupe, a
kada je uklonjen iz nje gubi sve uloge 1 permisije koje je
nasledio iz nje.

Aplikacija predstavlja aplikaciju koja interaguje sa
Conductor serverom putem API-ja ili SDK-ja. Aplikaciji
mogu biti dodeljene permisije, koje ¢e obezbediti pristup
odredenim Conductor resursima. Svaka aplikacija moze
imati jedan ili vise klju¢/tajna parova, koji se koriste za
dobijanje pristupa.

Tag predstavlja par klju¢/vrednost koji moze biti
pridruzen metapodacima resursa. Sluzi kao precica za
deljenje permisija brojnih resursa ili korisnika.

Uloga predstavlja set opstih podrazumevanih permisija
resursima. Moze biti dodeljena korisniku, grupi ili
aplikaciji. Ako je dodeljeno vise uloga bi¢e dodeljene
permisije za svaku od njih.

Pored permisija baziranih na ulogama moguce je dodeliti i
granularne permisije grupama ili aplikacijama.
Granularne permisije pruzaju dodatni pristup povrh
korisnikovih ili aplikacijskih permisija baziranih na ulozi.

Domen se koristi da se dodeli pristup svim zadacima u
odredenom domenu. Koristan je za masovno dodeljivanje
prava radnik aplikaciji da izvrSi sve zadatke, bez da se
mora dodati svaki pojedinacni zadatak i da se definiSe
njegov domen.

2.6. Rutiranje zadataka

Za svaki konfigurisani tip zadatka Conductor server ¢e
odrzavati red 1 distribuirae zadatke svim radnicima
konektovanim na server. Postoji i opcija gde isti zadatak
moze biti rutiran razli¢itom setu radnika na osnovu
koncepta zvanog Task to Domain. Ova vrednost se
prosleduje toku kada je pokrenut, i ako je prisutna znaci
da se zadaci rutiraju drugacije od podrazumevanog
nacina.

2.7. Nadgledanje redova zadataka

Red zadataka sadrzi zadatke koji ¢ekaju da se izvrse.

Nadgledanje ovih redova obezbeduje optimalni
performans i efikasnost u procesiranju zadataka,
identifikovanje potencijalnih problema i odrzavanje

pouzdanosti sistema.
2.8. Metrika i skaliranje radnika

Skaliranje i podeSavanje performansi radnika zavisi od
slede¢ih metrika: broja zadataka na ¢ekanju, propusnosti
pojedinac¢nog radnika i ukupnog broja pokrenutih radnika.

2.9. Rukovanje greskama

Conductor je napravljen da nudi najmanje jednu garanciju
isporuke — sve poruke mogu da se ¢uvaju, trajne su i bice
isporucene radnicima najmanje jednom. Ovakav model
osigurava dve stvari: kada tok zapoc¢ne bi¢e kompletiran
ako su svi zadaci kompletirani i ako izvrSavanje toka bude
neuspesno zbog ponovnih pokuSaja i sl., poruke ¢e biti
isporucene slede¢em cvoru koji je ziv i responsivan.

Timeout se moze dogoditi ako nema radnika za zadati tip
zadatka, radnik primi poruku ali prekine svoj rad pre nego
S§to zavrsi zadatak i zadatak nikada ne prede u complete
status ili je radnik zavrSio procesiranje, ali ne moze da
komunicira sa Conductor serverom usled greske u mrezi,
ili srusenog Conductor servera.

3. APACHE KAFKA

Apache Kafka [4] je distribuirana platforma za striming
podataka koja moze da objavljuje, prima, ¢uva i procesira
strimove u realnom vremenu. Dizajnirana je da rukuje
velikim brojem real-time informacija 1 rutira ih
mnogostrukim consumer-ima.

Osnovna jedinica unutar Kafke je poruka — niz bajtova.
Poruke mogu imati opcione metapodatke — kljuc. Kljuc je
takode niz bajtova i koristi se kada se poruke upisuju u
particije. Zbog bolje efikasnosti poruke se u Kafku
upisuju kao batch — kolekcija poruka, gde se poruke
kategoriSu u teme, koje su dodatno razbijene na particije.
Poruke se upisuju na kraj teme i Citaju sa pocetka.
Ukoliko tema ima viSe particija ne moze biti garantovano
da ¢e u celoj temi biti ispoStovan redosled kako su poruke
stizale, samo u pojedinacnoj particiji. Particije su nacin na
koji Katka obezbeduje skalabilnost, jer svaka particija

1338

moze biti na drugom serveru, $to znaci da jedna tema
moze biti horizontalno skalirana na viSe servera.

3.1. Producer

Producer-i [5] su aplikacije koje kreiraju poruke i $alju ih
Kafka brokeru za dalje konzumiranje. Producer ne upisuje
poruke u particije, ve¢ kreira zahteve za poruke i Salje ih
vodi brokera. Kafka producer-i mogu biti sinhroni i
asinhroni. Sinhroni producer-i nakon slanja poruke ¢ekaju
potvrdu od brokera, dok asinhroni nastavljaju sa daljim
radom bez cekanja. Prednost sinhronih producer-a je
pouzdanost, medutim ¢ekanje na potvrdu moze dovesti do
zastoja u sistemu i ograni¢avanja broja poruka koje mogu
biti poslate odjednom. Kod asinhronih producer-a ovi
problemi su reSeni, ali su dosta komplikovaniji za
implementiranje, naro€ito rukovanje greskama i ako nisu
pazljivo implementirani moze do¢i do gubitka podataka.

3.2. Consumer

Consumer-i [5] su aplikacije koje konzumiraju poruke.
Consumer se pretplacuje na jednu ili vise tema i Cita
poruke u redosledu kojim su stigle. Consumer vodi racuna
koje poruke je ve¢ procitao tako $to vodi rauna o offset-u
poruka. Offset je metapodatak, integer broja¢ koji se
stalno uvecéava, na koji Kafka daje svaku poruku kako je
objavljena. Cuvanjem offset-a poslednje konzumirane
poruke za svaku particiju, u Zookeeper-u ili u samoj
Kafki, consumer moze biti zaustavljen i ponovo pokrenut
bez gubljenja podataka. Consumer-i se nalaze unutar
consumer grupe — jedan ili viSe consumer-a koji rade
zajedno i konzumiraju temu. Grupa osigurava da je svaka
particija konzumirana od samo jednog ¢lana. Mapiranje
consumer-a i particije se naziva vlasni§tvo particije od
strane consumer-a. Na ovaj nain consumer-i mogu biti
horizontalno skalirani da konzumiraju teme sa velikim
brojem poruka. Ukoliko jedan consumer ima gresku ostali
¢lanovi grupe ¢e rebalansirati particije tako da preuzmu
posao neuspesnog Clana.

3.3. Brokeri i klasteri

Jedan Kafka server se naziva broker. Broker prima poruke
od producer-a, dodeljuje im offset, i commit-uje poruke
na disku. Takode servisira consumer-e, odgovaraju¢i na
fetch zahteve porukama koje je prethodno commit-ovao.
Kafka brokeri funkcioniSsu kao deo klastera. Unutar
klastera, jedan broker sluzi kao kontroler, izabran
automatski iz skupa zivih ¢lanova klastera. Kontroler je
zaduzen za administrativne operacije, ukljucujuci
dodeljivanje particija brokerima i nadgledanje brokera u
slu¢aju neuspeha. Particija je u vlasni§tvu samo jednog
brokera unutar klastera, i taj broker se zove voda particije.
Medutim, particija moZe biti dodeljena vise brokera, Sto
¢e rezultovati repliciranjem particije.

Karakteristika Kafke je period zadrzavanja. Brokeri su
konfigurisani sa podrazumevanim periodom ili dok tema
ne dostigne odredenu veli¢inu. Pojedinacne teme mogu
biti definisane sa sopstvenim periodom zadrzavanja.

3.3. Zookeeper

Zookeeper je komponenta Kafke koja sluzi kao
koordinator i sluzi za biranje kontrolera, ¢uvanje statusa

brokera, <¢uvanje metapodataka tema, odrzavanje
informacija o klijentskim normama i ACL tema.

4. POREDENJE ORKES CONDUCTOR-A 1
APACHE KAFKE

Za poredenje orkestracije i koreografije uzet je primer
onlajn prodavnice. Kreiran je Java projekat u kome su
definisani slede¢i mikroservisi: ordering servis, inventory
servis, payment servis, notification servis i shipping
servis.

4.1. Implementacija Conductor toka

Mikroservis ordering preuzima ulogu orkestratora i
koordinise komunikaciju izmedu preostalih servisa. Tok
je definisan u JSON formatu i dodat u Orkes server. U
okviru ordering servisa definisan je REST endpoint koji
pokrece tok koris¢enjem WorkflowClient-a definisanog u
zavisnosti io.orkes.conductor:orkes-conductor-client.
Prilikom pokretanja toka zadaje se ime toka koji se
pokrece, kao i imena i vrednosti ulaznih promenljivih.

Prilikom definisanja radnika potrebno ga je anotirati sa
@WorkerTask. Anotacija od ulaznih parametara ima ime
zadatka, broj niti koje se koriste za izvrSavanje zadatka,
kao i interval koliko Cesto radnik $alje upite serveru.

4.2. Implementacija Kafke

Koristi se event-driven komunikacija. Kafka server (kafka
i zookeeper) je podignut na portu 9092 u Doker
kontejneru i koris¢enjem Java biblioteke u
mikrosrevisima se kreiraju KafkaTemplate i
ConcurrentKafkalistenerContainerFactory (samo u
servisima gde postoji consumer) na osnovu konfiguracije
definisane u application.yml fajlu. U okviru ordering
servisa definisan je endpoint koji pokrece slanje poruka —
ovaj servis jedini nema consumer-a, bududi da je servis od
kojeg pocinje slanje.

Prilikom definisanja consumer-a potrebno ga je anotirati
sa @XKafkaListener. Anotacija od ulaznih parametara ima
identifikator ~ consumer-a, temu koji osluskuje,
identifikator grupe — u ovom slucaju servis u kojem se
nalazi, kontejner fabrike — definisano Java kodom
prilikom konfiguracije Kafke i rukovalac u slucaju greske.

4.3. Poredenje primena struktura podataka tipa red

Red kao strukturu podataka koriste i Conductor i Kafka.
Kod Conductor-a zadaci koji ¢ekaju da se izvrSe se nalaze
u redu, a kod Kafke se poruke smestaju u redove.

Conductor koristi FIFO (First-in First-out) strukturu,
realizovanu preko Redis liste kao skladista podataka.

Kafka koristi log-baziranu distribuiranu append-only
strukturu, $to znaéi da su poruke redosledno upisane po
particiji, ali redosled medu razliCitim particijama nije
zagarantovan i viSestruki consumer-i mogu Citati poruku
nezavisno (poruka ne nestaje nakon ¢itanja).

1339

Tabela 1. Poredenje Orkes Queues i Kafka redova

Orkes Queues Kafka
. . Commit
Tip reda FIFO lista log/append-only
Redosled | Globalni FIFO Definisan
particijom
Cuvanje poruka Da Da
Vlsestrukq Ne Da
consumer-i
Lokacija U memoriji .
skladista (Redis) Disk
Odli¢no za real- | Odli¢no za bulk
Performanse . .
time zadatke striming
Ponovno Citanje Ne Da
poruka

4.4. Komparativna analiza performansi

Uzevsi u obzir da performanse sistema mogu zavisiti od
razli¢itih parametara — poput konfiguracije, hardverskih
resursa i memorije, tesko ih je kvantifikovati.

Za potrebe ovog rada, projekat ¢ita podatke o
porudzbinama iz pet datoteka, sa razliCitim brojem
porudzbina.

Tabela 2. Rezultati izvrsavanja

Broj

poruka >00

1000 | 2000 | 5000 | 10000

Conductor 10s 15s 26s 49s 95s

Kafka 041s | 0.31s | 0.43s 1.32s 7.24s

Razlika prilikom obrade malog broja podataka nije velika,
ali moze se videti da Kafka ima bolje performanse, i
razlika u performansama se povecava sa brojem podataka.

Kako servisi za shipping i notification ne zavise jedan od
drugog definisani su u paraleli. Ovaj paralelizam kod
Conductora-a zahteva 1 dodatne FORK 1 JOIN zadatke,
gde prilikom izvrSavanja najvise vremena odlazi na JOIN
zadatak. U verziji gde je Conductor tok definisan kao
sekvencijalni (izvrSavaju se shipping pa notification
zadatak) dolazi do ubrzanja - u slucaju sa 10000 podataka
vreme izvr§avanja je palo sa 95s na 76s. Razlozi zasto je
sekvencijalni tok ispao brzi od paralelnog su da je
paralelizam logicki, a ne fizicki i overhead orkestracije —
svaki zadatak mora biti evidentiran u bazi, status zadatka
se upisuje u skladiSte metapodataka, radnik ga mora
preuzeti i vratiti rezultat, Sto znaci da kod jednostavnih
tokova overhead postaje veci nego korist paralelizacije.

Na primeru implementacije Kafke, vidi se da Kafka ne
¢eka da poruke i od notification i shipping servisa budu
primljene da bi se smatralo da je proces uspesno zavrsen.
Za dobijanje informacija o tome uvodi se jos jedan servis
— delivery servis, koji ¢eka uspesnu obradu obe poruke i
nakon $to su obradene, razmena poruka ¢e biti uspesna.
Sa dodatnim servisom dolazi do znadajnog usporavanja
obrade poruka koris¢enjem Kafke, gde je za 10000
poruka sada potrebno 29.9s.

5. ZAKLJUCAK

Sam Conductor ne obraduje podatke direktno, ve¢ deluje
kao centralni koordinator koji ih delegira radnicima, koji
zatim vracaju rezultate po zavrSetku. Ova arhitektura
omogucava sistemu da ostane slabo spregnut, uz potpunu
vidljivost i kontrolu nad dugotrajnim i slozenim
procesima. Za razliku od Kafke koja je optimizovana za
brzo i pouzdano prosledivanje poruka izmedu producer-a
i consumer-a, Conductor je usmeren na orkestraciju
tokova 1 upravljanje stanjem kroz kompletan zivotni
ciklus procesa.

U situacijama gde je potrebna jednostavna razmena
poruka ili linearno procesiranje, Kafka je adekvatniji
izbor. Medutim, u slucajevima sa kompleksnijom
logikom, gde je neophodno izvr§avanje u paraleli,
ponovni pokusaji, rukovanje greSkama, uslovno grananje
ili su zadaci vezani za specifi¢ne korisnike Conductor
pruza prednost u pogledu deklarativnog modeliranja,
bolje preglednosti, naprednog upravljanja greskama i
nacina upravljanjem zavisnostima izmedu zadataka —
redosled izvrSavanja zadataka zavisi samo od definicije
toka, a ne od implementacije u mikroservisima, Sto
omogucava dinami¢no azuriranje poslovne logike, bez
modifikacije pojedina¢nih komponenti.

Sami Conductor i Kafka nisu medusobno iskljucivi —
Kafka moze funkcionisati kao centralna infrastruktura za
rukovanje dogadajima, dok Conductor moze da sluzi kao
,,mozak® procesa, koji orkestrira kako ¢e se ti dogadaji
obradivati, transformisati 1 povezivati u smislene
rezultate. Ovakav hibridni pristup omogucava koriS¢enje
prednosti obe platforme — Kafke za stabilno prosledivanje
poruka, a Conductor za strukturiranu orkestraciju tokova
poslovanja, ¢ime se postizu sistemi koji su istovremeno
skalabilni i inteligentni.

6. LITERATURA

[1TN. Alshuqgayran, N. Ali and R. Evans, “A Systematic
Mapping Study in Microservice Architecture”, Proc.
of the 9th International Conference on Service
Oriented Computing and Applications, IEEE, 2016.

[2] R. H. Campbell and P. G. Richards, “SAGA: A
system to automate the management of software
roduction”, Proceedings of the May 4-7 1981.
National Computer Conference on AFIPS, pp. 231-
234, 1981.

[3] https://orkes.io/content (pristupljeno u septembru
2024.)

[4] https://en.wikipedia.org/wiki/Apache Kafka
(pristupljeno u novembru 2024.)

[STN. Gard, “Apache Kafka”, PACKT Publishing, 2013.

Kratka biografija:

Jelena Ninkovi¢ je rodena u Sapcu 1993.
godine. Upisala je fakultet 2013. godine,
smer Elektrotehnika i racunarstvo.
Diplomirala je 2019. godine sa temom
»~lmplementacija korisni¢kog interfejsa
podsistema bankarskog poslovanja
kori§¢enjem AngularJS razvojnog
okvira®.

1340

