

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.9

DOI: https://doi.org/10.24867/33BE18Ninkovic

ORKES CONDUCTOR – POREĐENJE PERFORMANSI SA APACHE KAFKA

ORKES CONDUCTOR – PERFORMANCE COMPARISON WITH APACHE KAFKA

Jelena Ninković, Fakultet tehničkih nauka, Novi Sad

Oblast – ELEKTROTEHNIKA I RAČUNARSTVO

Kratak sadržaj – U ovom radu opisani su Orkes

Conductor kao primer orkestracije događajima i Apache

Kafka kao primer koreografije. Urađena je analiza i

poređenje performansi ova dva alata. Rad uključuje i opis

implementacije oba alata, napisane u programskom

jeziku Java, kao i poređenje redova koji predstavljaju

osnovnu strukturu podataka na koju se alati oslanjaju.

Ključne reči: Conductor, zadatak, razmena poruka,

Apache Kafka, red

Abstract – This paper describes Orkes Conductor as an

example of event orchestration and Apache Kafka as an

example of choreography. A performance analysis and

comparison of two tools is provided. This paper also

includes description of implementation of both tools,

written in Java programming language, as well as a

comparison of queues, which represent the fundamental

data structure these tools rely on.

Keywords: Conductor, task, messaging, Apache Kafka,

queue

1. UVOD

Mikroservisna arhitektura (MSA) predstavlja

arhitekturalni dizajn šablon koji je uveden da reši

probleme oko horizontalne skalabilnosti, dostupnosti,

modularnosti i agilnosti arhitekture u tradicionalnim

monolitnim sistemima. Aplikacija se razvija kao skup

malih servisa [1], gde je svaki nezavisno razvijan,

testiran, ažuriran, skaliran i deploy-ovan i komunicira sa

ostatkom preko jednostavnih mehanizama, najčešće

HTTP poziva. Servisi su tako definisani da svaki ima

sopstvene entitete i bazu podataka, što čini da promene u

bazi podataka jednog servisa nisi vidljive u bazi drugog

servisa. Ukoliko dođe do rollback-a transakcije zbog

greške u jednom od servisa povratak na pređašnje stanje

nije moguć jer su u pitanju distribuirane transakcije.

Da bi se rešio problem uvodi se SAGA [2] šablon. U

slučaju greške okida se sekvenca rollback događaja, od

jednog servisa ka drugom, u obrnutom redosledu. SAGA

šablon može biti implementiran korišćenjem koreografije

događaja i orkestracionim tehnikama.

U slučaju koreografije događajima, svaki mikroservis radi

zasebno i kada završi lokalnu transakciju emituje događaj,

koji drugi servisi osluškuju sa ciljem da započnu svoje

transakcije.

__

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je

bio dr Srđan Popov, red. prof.

Proces se nastavlja sve dok poslednji servis ne emituje

nijedan događaj, što predstavlja kraj transakcije.

Kod orkestracije postoji centralni orkestrator, koji se

ponaša kao „roditeljski“ servis, sluša sve događaje koje

emituju lokalne transakcije mikroservisa i na osnovu

događaja okida sledeću lokalnu transakciju u drugom

mikroservisu ili servisima.

2. ORKES CONDUCTOR

Orkes Conductor [3] je radni okvir koji je razvijen povrh

Netflix Conductor-a. Pored osnovnih funkcionalnosti koje

je nudila platforma dodate su funkcionalnosti i

poboljšanja i cilju lakšeg deploy-ovanja i upravljanja

tokovima u produkcionom okruženju.

2.1. Osnovni pojmovi

Proces orkestriranja korišćenjem Conductor-a obuhvata

korišćenje tri osnovna koncepta: zadatke, radnike i

tokove.

Zadatak predstavlja jedinicu posla ili korak u toku, poput

kreiranja HTTP poziva, slanja mejla, procesiranja

podataka ili izvršavanja poslovne logike. Predstavlja

osnovnu gradivnu jedinicu toka i dodatno može biti

podeljen na operatore, sistemske zadatke ili radnike za

sopstveni kod.

Radnici su kod zadužen za izvršavanje zadataka. Za

sistemske zadatke i operatore je zadužen Conductor

server, dok zadacima koje je definisao korisnik upravljaju

aplikacije koje ih implementiraju. Nakon što radnik

kontaktira server da primi i izvrši zakazane zadatke

Conductor će proslediti ulazne parametre zadatka radniku

i preuzeti izlazne podatke nakon završetka.

Tok se definiše kao kolekcija zadataka i operatora, koji

specificiraju redosled i izvršenje definisanih zadataka.

Ova orkestracija se dešava u hibridnom ekosistemu koji

objedinjuje serverless funkcije, mikroservise i monolitske

aplikacije. Kako je Conductor jezički agnostičan

orkestracija može biti izvršena u bilo kom programskom

jeziku. Workflow scheduler omogućava tokovima da

budu pokrenuti po određenom rasporedu. Ovo daje

mogućnost da tokovi budu konfigurisani da se pokreću u

željenoj učestalosti i da se prilikom kreiranja rasporeda

bira verzija toka.

2.2. AI zadaci

Orkes Conductor omogućava kreiranje aplikacija koje

koriste generativne AI modele i vektorske baze podataka.

Generativni AI je tip veštačke inteligencije sposoban za

kreiranje novog „čovekolikog“ sadržaja na osnovu pre-

treniranih modela koji su bili izloženi velikim količinama

1337

https://doi.org/10.24867/33BE18Ninkovic

sličnog sadržaja. Ljudska interakcija je i dalje potrebna da

se modeli usmere šta treba da bude generisano -

usmeravaju se slanjem promptova (tekstualnih

instrukcija). Odgovor Gen-AI modela je isto tekstualan, i

ovi modeli se nazivaju LLM. LLM su deep learning

algoritmi obučeni na velikoj količini podataka. Mogu da

obavljaju razne NLP zadatke, poput generisanja,

prevođenja, chatbot-ova, AI asistenata i sl.

2.3. Alert zadaci

Alert zadaci su poseban vid zadataka koji imaju ulogu da

šalju notifikacije ili upozorenja na osnovu određenih

uslova ili događaja u sistemu.

2.4. Rukovalac događajima

Rukovalac događajima procesira dolazeće poruke i

izvršava akcije na osnovu njihovih detalja. Okidač može

biti okinut od strane narednih akcija – complete task,

terminate workflow, update variables, fail task i start

workflow.

2.5. Kontrola pristupa

Orkes Conductor nudi kontrolu pristupa baziranu na

ulogama (RBAC) korisnicima Orkes platformi, kao i

aplikacijama koje koriste Conductor API. RBAC

obezbeđuje pristup metapodacima tokova, zadataka, tajni,

promenljivama okruženja, integracijama, promptovima,

korisničkim formama, rukovaocima događaja,

rasporedima, webhook-ovima i domenima.

Korisnik predstavlja čoveka koji interaguje sa Conductor-

om preko Orkes platforme, i autentifikovan je

korišćenjem SSO provajdera ili mejla/lozinke. Svaki

korisnik može imati jednu ili više dodeljenih uloga.

Grupa predstavlja set korisnika, i predstavlja brz način da

se dodele permisije većem broju korisnika. Svaka grupa

može biti povezana sa jednom ili više uloga. Takođe

može imati dodeljen set permisija, koje obezbeđuju

pristup određenim resursima. Kada je korisnik dodat u

grupu automatski nasleđuje sve uloge i permisije grupe, a

kada je uklonjen iz nje gubi sve uloge i permisije koje je

nasledio iz nje.

Aplikacija predstavlja aplikaciju koja interaguje sa

Conductor serverom putem API-ja ili SDK-ja. Aplikaciji

mogu biti dodeljene permisije, koje će obezbediti pristup

određenim Conductor resursima. Svaka aplikacija može

imati jedan ili više ključ/tajna parova, koji se koriste za

dobijanje pristupa.

Tag predstavlja par ključ/vrednost koji može biti

pridružen metapodacima resursa. Služi kao prečica za

deljenje permisija brojnih resursa ili korisnika.

Uloga predstavlja set opštih podrazumevanih permisija

resursima. Može biti dodeljena korisniku, grupi ili

aplikaciji. Ako je dodeljeno više uloga biće dodeljene

permisije za svaku od njih.

Pored permisija baziranih na ulogama moguće je dodeliti i

granularne permisije grupama ili aplikacijama.

Granularne permisije pružaju dodatni pristup povrh

korisnikovih ili aplikacijskih permisija baziranih na ulozi.

Domen se koristi da se dodeli pristup svim zadacima u

određenom domenu. Koristan je za masovno dodeljivanje

prava radnik aplikaciji da izvrši sve zadatke, bez da se

mora dodati svaki pojedinačni zadatak i da se definiše

njegov domen.

2.6. Rutiranje zadataka

Za svaki konfigurisani tip zadatka Conductor server će

održavati red i distribuiraće zadatke svim radnicima

konektovanim na server. Postoji i opcija gde isti zadatak

može biti rutiran različitom setu radnika na osnovu

koncepta zvanog Task to Domain. Ova vrednost se

prosleđuje toku kada je pokrenut, i ako je prisutna znači

da se zadaci rutiraju drugačije od podrazumevanog

načina.

2.7. Nadgledanje redova zadataka

Red zadataka sadrži zadatke koji čekaju da se izvrše.

Nadgledanje ovih redova obezbeđuje optimalni

performans i efikasnost u procesiranju zadataka,

identifikovanje potencijalnih problema i održavanje

pouzdanosti sistema.

2.8. Metrika i skaliranje radnika

Skaliranje i podešavanje performansi radnika zavisi od

sledećih metrika: broja zadataka na čekanju, propusnosti

pojedinačnog radnika i ukupnog broja pokrenutih radnika.

2.9. Rukovanje greškama

Conductor je napravljen da nudi najmanje jednu garanciju

isporuke – sve poruke mogu da se čuvaju, trajne su i biće

isporučene radnicima najmanje jednom. Ovakav model

osigurava dve stvari: kada tok započne biće kompletiran

ako su svi zadaci kompletirani i ako izvršavanje toka bude

neuspešno zbog ponovnih pokušaja i sl., poruke će biti

isporučene sledećem čvoru koji je živ i responsivan.

Timeout se može dogoditi ako nema radnika za zadati tip

zadatka, radnik primi poruku ali prekine svoj rad pre nego

što završi zadatak i zadatak nikada ne pređe u complete

status ili je radnik završio procesiranje, ali ne može da

komunicira sa Conductor serverom usled greške u mreži,

ili srušenog Conductor servera.

3. APACHE KAFKA

Apache Kafka [4] je distribuirana platforma za striming

podataka koja može da objavljuje, prima, čuva i procesira

strimove u realnom vremenu. Dizajnirana je da rukuje

velikim brojem real-time informacija i rutira ih

mnogostrukim consumer-ima.

Osnovna jedinica unutar Kafke je poruka – niz bajtova.

Poruke mogu imati opcione metapodatke – ključ. Ključ je

takođe niz bajtova i koristi se kada se poruke upisuju u

particije. Zbog bolje efikasnosti poruke se u Kafku

upisuju kao batch – kolekcija poruka, gde se poruke

kategorišu u teme, koje su dodatno razbijene na particije.

Poruke se upisuju na kraj teme i čitaju sa početka.

Ukoliko tema ima više particija ne može biti garantovano

da će u celoj temi biti ispoštovan redosled kako su poruke

stizale, samo u pojedinačnoj particiji. Particije su način na

koji Kafka obezbeđuje skalabilnost, jer svaka particija

1338

može biti na drugom serveru, što znači da jedna tema

može biti horizontalno skalirana na više servera.

3.1. Producer

Producer-i [5] su aplikacije koje kreiraju poruke i šalju ih

Kafka brokeru za dalje konzumiranje. Producer ne upisuje

poruke u particije, već kreira zahteve za poruke i šalje ih

vođi brokera. Kafka producer-i mogu biti sinhroni i

asinhroni. Sinhroni producer-i nakon slanja poruke čekaju

potvrdu od brokera, dok asinhroni nastavljaju sa daljim

radom bez čekanja. Prednost sinhronih producer-a je

pouzdanost, međutim čekanje na potvrdu može dovesti do

zastoja u sistemu i ograničavanja broja poruka koje mogu

biti poslate odjednom. Kod asinhronih producer-a ovi

problemi su rešeni, ali su dosta komplikovaniji za

implementiranje, naročito rukovanje greškama i ako nisu

pažljivo implementirani može doći do gubitka podataka.

3.2. Consumer

Consumer-i [5] su aplikacije koje konzumiraju poruke.

Consumer se pretplaćuje na jednu ili više tema i čita

poruke u redosledu kojim su stigle. Consumer vodi računa

koje poruke je već pročitao tako što vodi računa o offset-u

poruka. Offset je metapodatak, integer brojač koji se

stalno uvećava, na koji Kafka daje svaku poruku kako je

objavljena. Čuvanjem offset-a poslednje konzumirane

poruke za svaku particiju, u Zookeeper-u ili u samoj

Kafki, consumer može biti zaustavljen i ponovo pokrenut

bez gubljenja podataka. Consumer-i se nalaze unutar

consumer grupe – jedan ili više consumer-a koji rade

zajedno i konzumiraju temu. Grupa osigurava da je svaka

particija konzumirana od samo jednog člana. Mapiranje

consumer-a i particije se naziva vlasništvo particije od

strane consumer-a. Na ovaj način consumer-i mogu biti

horizontalno skalirani da konzumiraju teme sa velikim

brojem poruka. Ukoliko jedan consumer ima grešku ostali

članovi grupe će rebalansirati particije tako da preuzmu

posao neuspešnog člana.

3.3. Brokeri i klasteri

Jedan Kafka server se naziva broker. Broker prima poruke

od producer-a, dodeljuje im offset, i commit-uje poruke

na disku. Takođe servisira consumer-e, odgovarajući na

fetch zahteve porukama koje je prethodno commit-ovao.

Kafka brokeri funkcionišu kao deo klastera. Unutar

klastera, jedan broker služi kao kontroler, izabran

automatski iz skupa živih članova klastera. Kontroler je

zadužen za administrativne operacije, uključujući

dodeljivanje particija brokerima i nadgledanje brokera u

slučaju neuspeha. Particija je u vlasništvu samo jednog

brokera unutar klastera, i taj broker se zove vođa particije.

Međutim, particija može biti dodeljena više brokera, što

će rezultovati repliciranjem particije.

Karakteristika Kafke je period zadržavanja. Brokeri su

konfigurisani sa podrazumevanim periodom ili dok tema

ne dostigne određenu veličinu. Pojedinačne teme mogu

biti definisane sa sopstvenim periodom zadržavanja.

3.3. Zookeeper

Zookeeper je komponenta Kafke koja služi kao

koordinator i služi za biranje kontrolera, čuvanje statusa

brokera, čuvanje metapodataka tema, održavanje

informacija o klijentskim normama i ACL tema.

4. POREĐENJE ORKES CONDUCTOR-A I

APACHE KAFKE

Za poređenje orkestracije i koreografije uzet je primer

onlajn prodavnice. Kreiran je Java projekat u kome su

definisani sledeći mikroservisi: ordering servis, inventory

servis, payment servis, notification servis i shipping

servis.

4.1. Implementacija Conductor toka

Mikroservis ordering preuzima ulogu orkestratora i

koordiniše komunikaciju između preostalih servisa. Tok

je definisan u JSON formatu i dodat u Orkes server. U

okviru ordering servisa definisan je REST endpoint koji

pokreće tok korišćenjem WorkflowClient-a definisanog u

zavisnosti io.orkes.conductor:orkes-conductor-client.

Prilikom pokretanja toka zadaje se ime toka koji se

pokreće, kao i imena i vrednosti ulaznih promenljivih.

Prilikom definisanja radnika potrebno ga je anotirati sa

@WorkerTask. Anotacija od ulaznih parametara ima ime

zadatka, broj niti koje se koriste za izvršavanje zadatka,

kao i interval koliko često radnik šalje upite serveru.

4.2. Implementacija Kafke

Koristi se event-driven komunikacija. Kafka server (kafka

i zookeeper) je podignut na portu 9092 u Doker

kontejneru i korišćenjem Java biblioteke u

mikrosrevisima se kreiraju KafkaTemplate i

ConcurrentKafkaListenerContainerFactory (samo u

servisima gde postoji consumer) na osnovu konfiguracije

definisane u application.yml fajlu. U okviru ordering

servisa definisan je endpoint koji pokreće slanje poruka –

ovaj servis jedini nema consumer-a, budući da je servis od

kojeg počinje slanje.

Prilikom definisanja consumer-a potrebno ga je anotirati

sa @KafkaListener. Anotacija od ulaznih parametara ima

identifikator consumer-a, temu koji osluškuje,

identifikator grupe – u ovom slučaju servis u kojem se

nalazi, kontejner fabrike – definisano Java kodom

prilikom konfiguracije Kafke i rukovalac u slučaju greške.

4.3. Poređenje primena struktura podataka tipa red

Red kao strukturu podataka koriste i Conductor i Kafka.

Kod Conductor-a zadaci koji čekaju da se izvrše se nalaze

u redu, a kod Kafke se poruke smeštaju u redove.

Conductor koristi FIFO (First-in First-out) strukturu,

realizovanu preko Redis liste kao skladišta podataka.

Kafka koristi log-baziranu distribuiranu append-only

strukturu, što znači da su poruke redosledno upisane po

particiji, ali redosled među različitim particijama nije

zagarantovan i višestruki consumer-i mogu čitati poruku

nezavisno (poruka ne nestaje nakon čitanja).

1339

Tabela 1. Poređenje Orkes Queues i Kafka redova

 Orkes Queues Kafka

Tip reda FIFO lista
Commit

log/append-only

Redosled Globalni FIFO
Definisan

particijom

Čuvanje poruka Da Da

Višestruku

consumer-i
Ne Da

Lokacija

skladišta

U memoriji

(Redis)
Disk

Performanse
Odlično za real-

time zadatke

Odlično za bulk

striming

Ponovno čitanje

poruka
Ne Da

4.4. Komparativna analiza performansi

Uzevši u obzir da performanse sistema mogu zavisiti od

različitih parametara – poput konfiguracije, hardverskih

resursa i memorije, teško ih je kvantifikovati.

Za potrebe ovog rada, projekat čita podatke o

porudžbinama iz pet datoteka, sa različitim brojem

porudžbina.

Tabela 2. Rezultati izvršavanja

Broj

poruka
500 1000 2000 5000 10000

Conductor 10s 15s 26s 49s 95s

Kafka 0.41s 0.31s 0.43s 1.32s 7.24s

Razlika prilikom obrade malog broja podataka nije velika,

ali može se videti da Kafka ima bolje performanse, i

razlika u performansama se povećava sa brojem podataka.

Kako servisi za shipping i notification ne zavise jedan od

drugog definisani su u paraleli. Ovaj paralelizam kod

Conductora-a zahteva i dodatne FORK i JOIN zadatke,

gde prilikom izvršavanja najviše vremena odlazi na JOIN

zadatak. U verziji gde je Conductor tok definisan kao

sekvencijalni (izvršavaju se shipping pa notification

zadatak) dolazi do ubrzanja - u slučaju sa 10000 podataka

vreme izvršavanja je palo sa 95s na 76s. Razlozi zašto je

sekvencijalni tok ispao brži od paralelnog su da je

paralelizam logički, a ne fizički i overhead orkestracije –

svaki zadatak mora biti evidentiran u bazi, status zadatka

se upisuje u skladište metapodataka, radnik ga mora

preuzeti i vratiti rezultat, što znači da kod jednostavnih

tokova overhead postaje veći nego korist paralelizacije.

Na primeru implementacije Kafke, vidi se da Kafka ne

čeka da poruke i od notification i shipping servisa budu

primljene da bi se smatralo da je proces uspešno završen.

Za dobijanje informacija o tome uvodi se još jedan servis

– delivery servis, koji čeka uspešnu obradu obe poruke i

nakon što su obrađene, razmena poruka će biti uspešna.

Sa dodatnim servisom dolazi do značajnog usporavanja

obrade poruka korišćenjem Kafke, gde je za 10000

poruka sada potrebno 29.9s.

5. ZAKLJUČAK

Sam Conductor ne obrađuje podatke direktno, već deluje

kao centralni koordinator koji ih delegira radnicima, koji

zatim vraćaju rezultate po završetku. Ova arhitektura

omogućava sistemu da ostane slabo spregnut, uz potpunu

vidljivost i kontrolu nad dugotrajnim i složenim

procesima. Za razliku od Kafke koja je optimizovana za

brzo i pouzdano prosleđivanje poruka između producer-a

i consumer-a, Conductor je usmeren na orkestraciju

tokova i upravljanje stanjem kroz kompletan životni

ciklus procesa.

U situacijama gde je potrebna jednostavna razmena

poruka ili linearno procesiranje, Kafka je adekvatniji

izbor. Međutim, u slučajevima sa kompleksnijom

logikom, gde je neophodno izvršavanje u paraleli,

ponovni pokušaji, rukovanje greškama, uslovno grananje

ili su zadaci vezani za specifične korisnike Conductor

pruža prednost u pogledu deklarativnog modeliranja,

bolje preglednosti, naprednog upravljanja greškama i

načina upravljanjem zavisnostima između zadataka –

redosled izvršavanja zadataka zavisi samo od definicije

toka, a ne od implementacije u mikroservisima, što

omogućava dinamično ažuriranje poslovne logike, bez

modifikacije pojedinačnih komponenti.

Sami Conductor i Kafka nisu međusobno isključivi –

Kafka može funkcionisati kao centralna infrastruktura za

rukovanje događajima, dok Conductor može da služi kao

„mozak“ procesa, koji orkestrira kako će se ti događaji

obrađivati, transformisati i povezivati u smislene

rezultate. Ovakav hibridni pristup omogućava korišćenje

prednosti obe platforme – Kafke za stabilno prosleđivanje

poruka, a Conductor za strukturiranu orkestraciju tokova

poslovanja, čime se postižu sistemi koji su istovremeno

skalabilni i inteligentni.

6. LITERATURA

[1] N. Alshuqayran, N. Ali and R. Evans, “A Systematic

Mapping Study in Microservice Architecture”, Proc.

of the 9th International Conference on Service

Oriented Computing and Applications, IEEE, 2016.

[2] R. H. Campbell and P. G. Richards, “SAGA: A

system to automate the management of software

roduction”, Proceedings of the May 4-7 1981.

National Computer Conference on AFIPS, pp. 231-

234, 1981.

[3] https://orkes.io/content (pristupljeno u septembru

2024.)

[4] https://en.wikipedia.org/wiki/Apache_Kafka

(pristupljeno u novembru 2024.)

[5] N. Gard, “Apache Kafka”, PACKT Publishing, 2013.

Kratka biografija:

Jelena Ninković je rođena u Šapcu 1993.

godine. Upisala je fakultet 2013. godine,

smer Elektrotehnika i računarstvo.

Diplomirala je 2019. godine sa temom

„Implementacija korisničkog interfejsa

podsistema bankarskog poslovanja

korišćenjem AngularJS razvojnog

okvira“.

1340

