

УНИВЕРЗИТЕТ У НОВОМ САДУ
ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА

ЗБОРНИК РАДОВА
ФАКУЛТЕТА ТЕХНИЧКИХ НАУКА

Едиција: Техничке науке – зборници

Година: XL

Број: 12/2025

Нови Сад

I

Едиција: „Техничке науке – Зборници“
Година: XL Свеска: 12

Издавач: Факултет техничких наука Нови Сад

Главни и одговорни уредник Едиције: проф. др Борис Думнић, декан Факултета

техничких наука у Новом Саду

Уређивачки одбор

Проф. др Марко Векић, главни уредник

Сара Копривица, заменик главног уредника

Штампање одобрио: Савет за библиотечку и издавачку делатност ФТН, председник, проф.

др Селена Самарџић Цвијановић

Штампа: ФТН – Графички центар ГРИД, Трг Доситеја Обрадовића 6, Нови Сад

CIP-Каталогизација у публикацији

Библиотека Матице српске, Нови Сад

378.9(497.113)(082)

62

 ЗБОРНИК радова Факултета техничких наука / главни и одговорни уредник

Борис Думнић. – Год. 7, бр. 9 (1974)-1990/1991, бр.21/22 ; Год. 23, бр 1 (2008)-. – Нови Сад : Факултет

техничких наука, 1974-1991; 2008-. – илустр. ; 30 цм. – (Едиција: Техничке науке – зборници)

Месечно

ISSN 0350-428X

COBISS.SR-ID 58627591

II

ПРЕДГОВОР

Поштовани читаоци,

Пред вама је десета овогодишња свеска часописа „Зборник радова Факултета техничких

наука“.

Часопис је покренут давне 1960. године, одмах по оснивању Машинског факултета у

Новом Саду, као „Зборник радова Машинског факултета“, а први број је одштампан

1965. године. Након осам публикованих бројева у шест година, пратећи прерастање

Машинског факултета у Факултет техничких наука, часопис мења назив у „Зборник

радова Факултета техничких наука“ и 1974. године излази као број 9 (VII година). У том

периоду у часопису се објављују научни и стручни радови, резултати истраживања

професора, сарадника и студената ФТН-а, али и аутора ван ФТН-а, тако да часопис

постаје значајно место презентације најновијих научних резултата и достигнућа. Од

броја 17 (1986. год.), часопис почиње да излази искључиво на енглеском језику и добија

поднаслов Publications of the School of Engineering.

Наставно-научно веће ФТН-а је одлучило да од новембра 2008. год. у облику пилот

пројекта, а од фебруара 2009. год. као сталну активност, уведе презентацију најважнијих

резултата свих мастер радова студената ФТН-а у облику кратког рада у „Зборнику

радова Факултета техничких наука“.

Поред студената мастер студија, часопис је отворен и за студенте докторских студија,

као и за прилоге аутора са ФТН или ван ФТН-а.

Зборник излази у два облика – електронском на веб-страници Факултета техничких

наука (www.ftn.uns.ac.rs) и штампаном, који је пред вама. Обе верзијe публикују се сваки

месец, у оквиру промоције дипломираних мастера.

Известан број кандидата објавили су радове на некој од домаћих научних конференција

или у неком од часописа. Њихови радови нису штампани у Зборнику радова ФТН-а.

У свесци са редним бројем 12 објављени су радови из области машинског инжењерства

и електротехничког и рачунарског инжењерства.

Континуираним радом и унапређењем квалитета часописа, план је да часопис постане

препознатљив међу ауторима, чиме ће значајно допринети да се оствари мото Факултета

техничких наука:

„Високо место у друштву најбољих“

 Уредништво

http://www.ftn.ns.ac.yu/

III

Садржај

Машинско инжењерство

Зоран Цветковић

БЕЗБЕДНОСТ И ЗАШТИТА НА РАДУ СА МАШИНАМА ЗА

ВЕРТИКАЛНИ ТРАНСПОРТ ЛИЦА И ТЕРЕТА

1247–1250

Nemanja Radić

ZNAČAJ RAČUNARSKE GRAFIKE U AUTOMATIZOVANOM

PROJEKTOVANJU MAŠINA

1251–1254

Nina Ivanović

RIZICI USLED PARKIRANJA VOZILA SA POGONOM NA

TEČNI NAFTNI GAS U ZATVORENIM PROSTORIMA

1255–1258

Aleksa Milošević

RAZLIKE IZMEĐU DVOCEVNOG I ČETVOROCEVNOG

SISTEMA GREJANJA I HLAĐENJA POMOĆU VENTILATOR-

KONVEKTORA

1259–1262

Miloš Simović

PRAKTIČNA PRIMENA “DUAL DUCT” SISTEMA KLIMA

KOMORE SA REKUPERACIJOM VAZDUHA

1263–1266

Милош Вујковић

УТИЦАЈ СИСТЕМА ЗА КЛИМАТИЗАЦИЈУ НА

ПОТРОШЊУ ГОРИВА У ПУТНИЧКОМ АУТОМОБИЛУ

1267–1270

Марко Задрић Бардак

МЕТОДЕ ИНЖЕЊЕРСКЕ АНАЛИЗЕ И САВЕРЕМЕНИХ

ТЕХНИКА ПРОЈЕКТОВАЊА НА ПРИМЕРУ РАЗВОЈА

ШАСИЈЕ ТРКАЧКОГ БОЛИДА

1271–1274

Исидора Бурлица

КОРИШЋЕЊЕ ХТГР НУКЛЕАРНИХ РЕАКТОРА У ОКВИРУ

КОГЕНЕРАТИВНИХ СИСТЕМА ЗА ПРОИЗВОДЊУ

ЕНЕРГИЈЕ

1275–1278

Електротехничко и рачунарско инжењерство

Nikola Aleksić

SISTEM ZA PRIKUPLJANJE I PRETRAŽIVANJE PODATAKA

O IGRAČIMA EVROLIGE

1279–1282

Katarina Artukov

SISTEM ZA PRETRAGU SLIKA ZASNOVAN NA CLIP

MODELU I VEKTORSKIM BAZAMA

1283–1286

Petar Stamenković

FORMALNA VERIFIKACIJA DVOJEZGARNOG JEDNO-

CIKLUSNOG RISC-V PROCESORA I DELA MEMORIJSKOG

PODSISTEMA

1287–1291

Bosiljka Todić

OBRADA VELIKIH SKUPOVA PODATAKA KORIŠĆENJEM

CLOUD TEHNOLOGIJA

1292–1295

Aleksandra Nedić

PLATFORMA ZA VIZUALIZACIJU DISTRIBUIRANIH

ALGORITAMA NA PRIMERU KLASE ALGORITAMA ZA

IZBOR LIDERA

1296–1299

IV

Aleksa Bajat

MEĐUREPREZENTACIJE IZVORNOG KODA RUSTC

KOMPAJLERA

1300–1303

Lazar Pavlović

FAGL – JEZIK SPECIFIČAN ZA DOMEN IMPLEMENTACIJE

VEB APLIKACIJA

1304–1307

Jelena Ubiparip

PRIMENA LINEARNOG PROGRAMIRANJA U OPTIMIZACIJI

PLANIRANJA I UPRAVLJANJA PROJEKTIMA

1308–1311

Исидора Кнежевић

ПРОШИРЕЊЕ АЛАТА AUTOPSY СА МОДУЛОМ ЗА

ДЕТЕКЦИЈУ ОБЈЕКАТА НА ФОТОГРАФИЈАМА

1312–1315

Nataša Vasić

RAZVOJ SAVREMENIH VEB APLIKACIJA U .NET

EKOSISTEMU PRIMENOM WEBASSEMBLY I BLAZOR

TEHNOLOGIJA

1316–1319

Ratko Ružičić

RAZVOJ INTERPETERA U PROGRAMSKOM JEZIKU GO

1320–1322

Миленко Максић

РЈЕШАВАЊЕ ПРОБЛЕМА АУТОМАТИЗАЦИЈЕ

ПРЕГЛЕДАЊА VHDL ЗАДАТАКА КРОЗ ИНТЕГРАЦИЈУ

SYSTEM VERILOG И PYTHON АЛАТА

1323–1325

Vukašin Pavković

PRIMENA VEŠTAČKIH NEURONSKIH MREŽA U

ESTIMACIJI UNUTRAŠNJE TELESNE TEMPERATURE

1326–1328

Halid Pašanović

ANALIZA ARTEFAKTA KOLABORATIVNOG RAZVOJA

SOFTVERA PUTEM VELIKIH JEZIČKIH MODELA ZA

UNAPREĐENJE TIMSKOG RADA

1329–1332

Ivana Sekereš

RAZVOJ QGIS PLUGINA ZA VIZUALIZACIJU I ANALIZU

KRETANJA OBJEKTA U PROSTORU

1333–1336

Jelena Ninković

ORKES CONDUCTOR – POREĐENJE PERFORMANSI SA

APACHE KAFKA

1337–1340

Aleksa Popov

PLATFORMA ZA TRGOVINU ENERGIJOM SA

MIKROSERVISNOM ARHITEKTUROM I AI ANALIZOM

TRŽIŠTA

1341–1344

Ognjen Kuzmanović

KOMPARATIVNA ANALIZA OSNOVNIH KARAKTERISTIKA

I PERFORMANSI BROKERA PORUKA NATS, RABBITMQ I

APACHE ROCKETMQ

1345–1348

Ivana Kašiković

KOMPARATIVNA ANALIZA AGENTSKIH RAG PRISTUPA U

KONTEKSTU IZGRADNJE KONVERZACIONOG ASISTENTA

1349–1352

Aleksa Stokić

BEZBEDNOST PODATAKA U KONTEKSTU BIG DATA

1353–1357

V

Momčilo Maksimović

PROJEKTOVANJE AUTOMATIKE KLIMA KOMORE

POSLOVNE ZGRADE I INTEGRACIJA SA BMS-OM

(BUILDING MANAGEMENT SYSTEM)

1358–1361

Marija Janković

SAVREMENI CRM SISTEMI: SALESFORCE PLATFORMA U

UNAPREĐENJU POSLOVNIH PROCESA

1362–1365

Jovan Zubović

KORIŠĆENJE TESTIRANJA NA CRNOJ KUTIJI ZA

POKRETANJE AUTOMATSKIH TESTOVA NA TV

PRIJEMNIKU

1366–1368

Dušan Janošević

JEZIK SPECIFIČAN ZA DOMEN MAKROA ZA TASTATURE

1369–1372

Marko Bjelica

IZRADA KOMPAJLERA UPOTREBOM RASTEMO

BIBLIOTEKE

1373–1376

Ana Vulin

JEZIK ZA OPIS PRAVILA ZA IGRE SA KARTAMA

1377–1380

Jelena Petrić

METODE OTKLJUČAVANJA MOBILNIH TELEFONA

1381–1384

Radiša Stojkić

JEZIK SPECIFIČAN ZA DOMEN VIZUALIZACIJE JEZIKA

1385–1388

Nađa Kanjuh

OPTIMIZACIJA ČETBOTA KORIŠĆENJEM TRANSFORMER

MODELA

1389–1392

Dragana Trivunović

SAMOOBNAVLJAJUĆI KOD NA AWS PLATFORMI

1393–1396

Marija Nešić

RAZVOJ SOFTVERA NA RISC-V ARHITEKTURI SA

FOKUSOM NA RPC IMPLEMENTACIJU

1397–1400

Andrea Mišković

UNAPREĐENJE MODBUS SIMULATORA ZA REALISTIČNU

SIMULACIJU UREĐAJA U SISTEMIMA ZA UPRAVLJANJE

ENERGIJOM (EMS)

1401–1405

Teodora Rajnović

MIGRACIJA MIKRO KLIJENTSKIH APLIKACIJA IZ VEB U

DESKTOP OKRUŽENJE

1406–1409

Зборник радова Факултета техничких наука, Нови Сад

UDK: 621

DOI: https://doi.org/10.24867/33AM01Cvetkovic

БЕЗБЕДНОСТ И ЗАШТИТА НА РАДУ СА МАШИНАМА ЗА ВЕРТИКАЛНИ

ТРАНСПОРТ ЛИЦА И ТЕРЕТА

SAFETY AND PROTECTION AT WORK WITH MACHINES FOR THE VERTICAL

TRANSPORT OF PERSONS AND GOODS

Зоран Цветковић, Факултет техничких наука, Нови Сад

Област – МАШИНСКО ИНЖЕЊЕРСТВО

Кратак садржај – У раду је дат историјски преглед

лифтова као машина за вертикални транспорт лица и

терета. Дат је опис лифтова на електрични погон,

њихове предности и недостаци у односу на

хидрауличне. Дат је преглед основних елемената

лифта са сврхом и начином рада, као и безбедносне

компоненте електричних лифтова. Наведене су

најчешће и најзначајније инцидентне ситуације које се

могу појавити код експлоатације лифтова са

поступком за њихову превенцију и отклањање. На

крају, приказан је детаљан поступак прегледа и

провере електричног путничког лифта са издатим

Извештајем.

Кључне речи: Електрични лифт, безбедносне

компоненте, инцидентне ситуације, преглед и провера

лифта

Abstract – This thesis describes a historical overview of

elevators as machines for vertical transport of people and

cargo. There is a description of electrical elevators, their

advantages and disadvantages compared to hydraulic

ones. An overview of the basic elements of the elevator with

its purpose and mode of operation, as well as the safety

components of electrical elevators, is given. The most

common and most significant incident situations that can

occur during the operation of elevators are listed with the

procedure for their prevention and elimination. Finally, a

detailed procedure of inspection and verification of the

electrical passenger elevator with the issued Report is

shown.

Keywords: Electrical elevator, safety components,

incident situations, inspection and verification of the

elevator

1. УВОД

Лифтови су вероватно један од најважнијих

проналазака у историји човечанства, а њихова

вертикална кретања на електрични погон су дуго била

саставни део у стварању грађевинских прича

доступних и практичних за изградњу. Лифт се као изум

показао као један од најкориснијих изума са аспекта

транспорта терета на велике висине, јер скраћује време

__

НАПОМЕНА:

Овај рад је проистекао из матер рада чији ментор је

био др Радомир Ђокић, ванр. проф.

транспорта и нема алтернативу у том домену.

Функција лифтова је транспорт терета и људи.

Уобичајено је да се лифтови или лифтовске платформе

крећу уз помоћ електромотора или помоћу

хидрауличне пумпе.

Лифтови представљају врсту машина за подизање и

спуштање људи и/или терета у кабини, периодичним

дејством, тако што се кабина креће дуж крутих,

праволинијских вођица паралелно уграђених, са углом

нагиба према вертикали до 15⁰. Чињеница је да је лифт

једно од најважнијих и најмасовнијих средстава

путничког транспорта у великим градовима. Његова

примена непрекидно расте, што је несумњиво у

функцији са објективном тенденцијом ка повећању

спратности у грађевини.

Сви лифтови се могу поделити [1]:

1) према намени (функцији),

2) према врсти погонског механизма за дизање,

3) према конструкцији преносног механизма за

кретање кабине,

4) према начину преноса кабине,

5) према брзини кретања кабине,

6) према шеми намотавања вучних ужади,

7) према постојању машинске просторије,

8) према положају машинске просторије,

9) према начину погоњења погонског добоша,

10) према тачности заустављања кабине лифта.

2. ЛИФТОВИ НА ЕЛЕКТРИЧНИ /

ХИДРАУЛИЧНИ ПОГОН

2.1. Хидраулични лифтови

Хидраулични лифтови користе уље под притиском и

хидроцилинре уз чију помоћ долази до кретања лифта.

Постоје хидраулични лифтови који поред

хидрауличког погона користе и додатне ужетњаче и

челична ужад за покретање кабине. Најважнија

специфичност код хидрауличких лифтова је то што се

обично не примењује противтег, већ се погон врши

само у једном правцу (на горе) док се у другом правцу

користи сила земљине теже уз контролу вентила за

кретање којим се регулише брзина кретања лифта. Ако

дође до критичне ситуације, на сцену ступају

сигурносни вентили који ће осигурати безбедно

коришћење лифта.

1247

https://doi.org/10.24867/33AM01Cvetkovic

Лифтови са хидрауличним погоном примењују се за

вертикални транспорт лица и терета до максималне

висине од 30 m, док се у пракси користе дизања од 20-

24 m.

Ови лифтови обезбеђују миран рад, без трзаја и буке

као и велику тачност пристајања од ±2 mm, која се код

лифтова са вучом преко ужади не може обезбедити. Не

захтевају додатни простор на врху конструкције и

једноставније се спуштају кабине током квара, а такође

им је неосетан полазак као и кочење лифта. Мана им је

што се могу користити само за објекте мање

спратности, мала брзина (око 1 m/s), а такође имају

проблеме цурења уља. Носивост лифтова на

хидраулични погон може бити веома велика и до 7 t

(теретни лифтови на хидраулични погон за дизање

моторних возила).

2.2. Eлектрични лифтови

Електрични лифтови су најзаступљенији, а брзина

кретања им је од 0,2 m/s до 17 m/s. Како им је функција

превоз људи, могу да се користе и за превоз терета где

им је носивост изнад 10.000 kg (10 t), наравно, при

мањим брзинама.

Слика 1. Лифт са горњим положајем машинске

просторије

Код електричних лифтова, кабина је обешена носећим

ужетом (челичном сајлом) око ужетњаче која је у

директној вези са погонским делом. Тежина кабине је

балансирана контратегом, чија је маса једнака маси

кабине и 50% од максималне дозвољене масе. Сврха

контратега је да одржава готово константном укупну

потенцијалну енергију система, да обезбеди лакши рад

моторног дела и елиминише трзаје. Обртањем вратила

мотора, покреће се погонска ужетњача, а трењем

ужади о њене жљебове остварује се кретање кабине и

противтега по њиховим вођицама. Смерови кретања

кабине и противтега су супротни. Одговарајућим

управљањем рада погонске машине и осталих делова

лифтовског постројења реализује се кретање кабине

између свих станица које лифт опслужује, отварање и

затварање врата лифта, а тиме и транспорт путника и

терета.

2.3. Конструкција лифта – уређаји, распоред и

деловање елемената лифта

Основну конструкцију лифта представља механизам за

дизање на електрични или хидраулични погон, са

одговарајућим витлом и системом намотавања ужади

за вучу кабине.

Конструктивни делови:

Вођице, возно окно, јама возног окна, машинска

просторија, противтег, хватачки уређај, граничник

брзине, погонски механизам, одбојници кабине и

противтега, врата лифта, кабина лифта [2].

2.4. Предности и недостаци електричних лифтова у

односу на хидрауличне лифтове

Електрични лифтови доносе низ предности у поређењу

са другим лифтовима, али свакако да постоје и

одређени недостаци.

Предности:

• Брзина и носивост: обично пружају бржи и

ефикаснији транспорт у поређењу са хидрауличним

или другим врстама лифтова, што може бити корисно

у зградама са великим бројем спратова или високим

фреквенцијама коришћења. Као што је већ наведено у

тачки 2.2, брзина кретања им је од 0,2 m/s до 17 m/s.

Како им је функција превоз људи, могу се користити и

за превоз терета, где носивост прелази 10.000 kg (10 t),

наравно, при мањим брзинама. Хидраулични лифтови

су такође подесни за превоз терета и транспорт људи у

нижим стамбеним зградама, а брзина кретања им је од

0,25 m/s до максимално 1 m/s. Носивост теретних

хидрауличних лифтова се креће од неколико стотина

килограма до више десетина тона.

• Поузданост: електрични лифтови имају високу

поузданост и мање су подложни кваровима и то их

чини пожељним избором за комерцијалне и стамбене

објекте.

• Ниска потрошња енергије: модерни електрични

лифтови су дизајнирани са ефикасним моторима и

системима управљања енергијом, што доприноси

смањењу потрошње енергије.

• Како је већ наведено у тачки 2.2, код електричних

лифтова кабина је обешена носећим ужетом око

погонске ужетњаче која је у директној вези са

погонском машином. Тежина кабине је балансирана

контратегом, чија је маса једнака маси кабине и 50% од

максималне дозвољене масе. Сврха контратега је да

одржава готово константном укупну потенцијалну

енергију система, да обезбеди лакши рад моторног

дела и елиминише трзаје. Хидраулични лифтови,

такође, имају кабину, возно окно и машинску

просторију. Они немају противтег. Крећу се по

вођицама. Погон се реализује хидрауличним флуидом

под притиском, кога покреће електромотор и пумпа,

потопљена у резервоар са уљем. Поред наведеног, у

опрему хидрауличног лифта спадају и командни

вентили за подизање и спуштање кабине, неповратни

вентил, вентил сигурности, челичне цеви и гумена

црева.

1248

Слика 2. Противтег лифта произвођача „OTIS“, тип

„GeN2 Premier“

Недостаци:

• Потреба за електричном енергијом: ови лифтови

захтевају стално снабдевање електричном енергијом

како би радили, па квар у напајању може довести до

застоја или губитка функционалности.

• Трошкови инсталације: инсталација може бити

скупља у поређењу са хидрауличним или другим

врстама лифтова, а посебно у случају комплексних или

високих инсталација.

• Потребно одржавање: иако су електрични лифтови

обично поуздани, они захтевају редовно одржавање

како би се осигурало да раде исправно и безбедно, што

може додатно повећати трошкове током времена.

• Потенцијал за кварове електронике: електрични

лифтови садрже комплексне електронске компоненте

које су подложне кваровима или оштећењима услед

разних електричних проблема.

3. ИНЦИДЕНТНЕ СИТУАЦИЈЕ КОЈЕ СЕ МОГУ

ПОЈАВИТИ КОД ЛИФТОВА

Лифтови су статистички најбезбедније превозно

средство. Упркос страху од заглављивања или

слободног пада у лифту, вожња лифтом је заправо

безбеднија од вожње аутомобилом. Просечно 26 људи

погине сваке године у несрећама са лифтовима (и то

углавном техничари који раде на лифту, а не путници),

док 26 људи погине сваког сата у саобраћајним

несрећама. Лифтови се користе у хотелима, тржним

центрима, стамбеним зградама, канцеларијама,

болницама, аеродромима и многим другим локацијама.

Власници зграда/објеката су дужни да своје лифтове

одржавају на безбедан начин и постављају знак

упозорења када се не смеју користити. Ови власници

се могу сматрати немарним када не испуне ове обавезе

према станарима, гостима и купцима [3].

Неке од главних ситуација када се крши ова дужност:

• Прикљештења

Једна озбиљна повреда код лифта је заглављивање у

покретним деловима или између њих. Ово може бити

између врата лифта. Ако су врата лифта неисправна,

могу се отворити или затворити изненада или пребрзо

и заробити људе који покушавају да уђу или изађу из

лифта између врата. Врата такође могу да се не отворе

до краја или лифт може да почне да се креће док је неко

ухваћен вратима - и једно и друго може бити изузетно

опасно. Мала деца су у повећаном ризику да им се

руке, ципеле или одећа захвате у лифтовима, али и

одећа одраслих такође може бити заробљена. Ако се

неки одевни предмет ипак ухвати, може се брзо увући

невероватном снагом и сваке године постоје бројни

извештаји о деци која су изгубила прсте на рукама и

ногама због ових незгода.

• Брзина

Ако се лифт креће великом брзином, односно

прекорачење брзине као последица слободног пада, то

је често узроковано противтегом или контролним

системима који не функционишу. Лифт се може трзати

горе-доле и бацити појединце у зидове лифта и на под.

• Пад у окно лифта

Једна од најсмртоноснијих врста незгода у лифту је она

у којој кабина лифта или појединац у њој падне у окно.

Може се појавити у бројним ситуацијама, као што су:

➢ Када се лифт заустави,

➢ Када се врата лифта отворе између спратова и

особа у лифту изађе из њега и падне у окно,

➢ Када неко покуша да незаконито отвори врата

возног окна,

➢ Када необучено особље покуша да спасе особу

заробљену у лифту.

• Општи кварови

Неисправан лифт може бити узрок озбиљних повреда,

па чак и смрти. Кварови се могу манифестовати на

много различитих начина, укључујући изненадне

промене брзине, неправилна ломљења или неисправне

кочионе системе. Непоштовање одредаба правних

аката којима је регулисано питање правилног прегледа,

одржавања и поправке лифта. Жртве могу да претрпе

тешке телесне повреде и повреде са смртним исходом.

3.1. Поступак у случају спашавања путника из

лифта

1. Овлашћено лице треба да комуницира са особом или

особама које су заглављене унутар кабине лифта.

Сазнати колико особа је унутар кабине и упутити их да

остану мирни и да се удаље од врата кабине.

2. Овлашћено лице искључује електрични довод на

главној командној табли у машинској просторији, за

лифт у којем су лица заглављена.

3. Отворити врата возног окна са специјалним кључем,

на спрату испод или изнад места где је лифт заглављен.

4. Ако се кабина лифта налази на нивоу више од

± 600 mm до најближе станице (спрата), онда не вадити

путнике. Спасилачке радове треба да врши техничко

(стручно) лице, јер постоји опасност да поступци

спасавања могу довести у ризик од фаталне несреће

заглављене путнике у виду пада кроз отвор у возном

окну. Ако кабина лифта није у нивоу да би путници

безбедно изашли напоље, онда се понекад саветује да

се врата отворе за око 200 mm да би свеж ваздух могао

да уђе у кабину и да би се путници осећали удобније

док чекају стручно лице. Стручна лице су обучена за

ручно довођење кабине лифта до најближег нивоа

1249

(станице), тако што једна особа лагано отпушта

кочницу лифта, а друга окретањем замајца на

електромотору спушта или подиже кабину, у

зависности шта је потребно. НАПОМЕНА: ОВО ЈЕ

ОПЕРАЦИЈА КОЈУ МОРА ДА УРАДИ САМО

ОБУЧЕНО ТЕХНИЧКО ЛИЦЕ.

4. ПРЕГЛЕД И ПРОВЕРА ЛИФТА

4.1. Редовни преглед лифта

Власник лифта обезбеђује редован преглед лифта.

Редован преглед лифта се обавља најмање једном

годишње, а обавља га Именовано тело за преглед

лифта.

Лице које обавља послове одржавања лифта

присуствује редовном прегледу лифта.

У поступку редовног прегледа лифта проверава се:

• исправан рад опреме за безбедност и заштиту,

• исправност друге опреме која би могла да утиче на

безбедност,

• да ли су настале промене на лифту које могу да утичу

на безбедност,

• да ли су настале промене у окружењу које могу да

утичу на безбедност,

• да ли долази до промена код употребе лифта које могу

да утичу на безбедност,

• да ли се на лифту налазе све ознаке и упутства за

употребу, одржавање и спашавање лица из лифта,

• да ли су у књигу одржавања лифта уписане све

промене настале од последњег редовног прегледа,

• да ли су од последњег редовног прегледа уклоњени

сви недостаци који су утврђени у Извештају о

прегледу.

Након прегледа Именовано тело сачињава Извештај о

прегледу, који садржи све евентуалне недостатке на

лифту, поступке за отклањање и рок отклањања.

Ако лифт не задовољава горе наведене тачке тако да је

нарушена безбедност корисника, Именовано тело

ставља лифт ван употребе и обавештава инспектора,

одржаваоца и власника лифта. Изузетно, ако

безбедност корисника није битно нарушена,

Именовано тело може да дозволи експлоатацију лифта

у одређеном временском периоду, за које је власник

лифта дужан да отклони све документоване недостатке

[4].

Слика 2. Примедбе, недостаци и закључак Извештаја

о прегледу лифта

4.2. Ванредни преглед лифта

Ванредни преглед лифта обавља Именовано тело за

преглед лифта.

Власник лифта доставља Именованом телу за преглед

лифта сву потребну документацију, пре прегледа

лифта.

Ванредни преглед лифта мора да обави исто

Именовано тело за преглед лифта које је издало

негативан Извештај о прегледу.

Ванредни преглед спроводи се у случају:

• насталих основних промена на лифту,

• стављања лифту у употребу после незгода,

• захтев надлежног инспектора.

Именовано тело за преглед лифта сачињава Извештај о

прегледу и уписује у књигу одржавања лифта датум

када је преглед обављен, као и резултате прегледа.

Такође, води евиденцију обављених прегледа са

подацима који су истоветни подацима који су уписани

у књигу одржавања лифта. Подаци се достављају

министарству, односно инспектору на његов захтев [4].

5. ЗАКЉУЧАК

Као и све механичке машине и уређаји, и код лифтова

се повремено јавља прекид рада. Лифт који није у

функцији може бити резултат нестанка струје,

механичког квара или сигурносног система

дизајнираног да заустави лифт.

Дакле, стручни преглед лифта је неопходна и

одговорна пракса која има за циљ очување живота и

здравља корисника, очување функционалности

машина, као и поштовање законских прописа и

техничких норми.

6. ЛИТЕРАТУРА

[1] С.Б. Тошић, “Лифтови”, Универзитет у Београду,

Машински факултет, Центар за механизацију,

Београд, 2004.

[2] Правилник о безбедности лифтова („Сл. гласник

РС“, бр. 15/2017 и 21/2020)

[3] Д.Б. Ђорђевић, “Социолошко казивање о лифту (у,

испред, иза и около њега – Изводи из азбучника”,

Социолошка Луча, Vol 13, Issue 2, pp. 46-69, 2019.

[4] Правилник о прегледима лифтова у употреби („Сл.

гласник РС“, бр. 15/2017)

Кратка биографија:

Зоран Цветковић је рођен у

Новом Саду 1986. године.

Дипломирао је на Факултету

техничких наука на смеровима

Инжењерство заштите животне

средине 2012. године и

Инжењерство заштите на раду

2023. године. Мастер рад из

области Машинског инжењерства

одбранио je 2025. године.

Суоснивач је предузећа НС

Превент д.о.о. Супруг и родитељ

3 детета.

контакт: cvelisans@gmail.com

1250

https://openurl.ebsco.com/results?sid=ebsco:ocu:record&bquery=IS+1800-6167+AND+VI+13+AND+IP+2+AND+DT+2019&link_origin=www.google.com&searchDescription=Sociolo%C5%A1ka%20Lu%C4%8Da%2C%202019%2C%20Vol%2013%2C%20Issue%202

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 621.316.925

DOI: https://doi.org/10.24867/33AM02Radic

ZNAČAJ RAČUNARSKE GRAFIKE U AUTOMATIZOVANOM PROJEKTOVANJU

MAŠINA

THE IMPORTANCE OF COMPUTER GRAPHICS IN AUTOMATED MACHINE DESIGN

Nemanja Radić, Radomir Đokić, Fakultet tehničkih nauka, Novi Sad

Oblast – MAŠINSKO INŽEWERSTVO

Kratak sadržaj – U master radu su obrađene tehnike i

metode koje su najčešće u primjeni u mašinstvu i koje čine

osnovu automatizovanog projektovanja kao što su

zapreminsko modelovanje, parametarsko modelovanje i

dr. Dati su neki od mnogobrojnih primjera njihove

primjene u projektovanju i njihove prednosti i mane.

Takođe, u ovom radu su opisane i nove metode koje su tek

u početnim fazama implementacije kao što su vještačka

inteligencija, virtuelna i proširena realnost i mogućnost

njihovog kombinovanja sa tradicionalnim metodama

automatizovanog projektovanja.

Ključne reči: Računarska grafika, automatizovano

projektovanje mašina

Abstract – In the master's thesis, the techniques and

methods most commonly used in mechanical engineering,

which form the basis of automated design, such as solid

modeling, parametric modeling, and others, were

analyzed. Several examples of their application in design,

along with their advantages and disadvantages, were

presented. Additionally, the thesis described new methods

that are still in the early stages of implementation, such as

artificial intelligence, virtual reality, and augmented

reality, as well as the possibility of combining them with

traditional automated design methods.

Keywords: Computer graphics, Automated machine

design

1. UVOD

Računarska grafika i kompjuterski podržano projektovanje

(CAD) predstavljaju temelj savremenog mašinskog

inženjerstva, mijenjajući način na koji se mehanički

elementi i sistemi zamišljaju, vizualizuju i realizuju. Ovaj

rad bavi se različitim aspektima inženjerske grafike i CAD-

a, pružajući razumijevanje njihovog značaja, tehnika i

primjena u mašinskom projektovanju. Tokom ovog

istraživanja istaknut je razvoj inženjerske grafike od

ručnog crtanja do digitalnog projektovanja, naglašavajući

ulogu vizualizacije u efikasnoj komunikaciji u mašinskom

projektovanju. Analizirani su osnovni koncepti

ortogonalnih projekcija, geometrijskog modeliranja,

parametarskog projektovanja, otkrivajući kako ove tehnike

unapređuju efikasnost i tačnost projektovanja.

__

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je bio

dr Radomir Đokić, vanr. prof.

1.1. Automatizovano projektovanje

Automatizovano projektovanje mašina predstavlja

primjenu računarskih tehnologija i softvera u procesu

kreiranja, analize i optimizacije mašinskih konstrukcija.

Osnova automatizovanog projektovanja nalazi se u

softverskim alatima kao što su CAD (Computer-Aided

Design) i CAE (Computer-Aided Engineering). Iako danas

postoje brojne različite tehnike automatizovanog

projektovanja, osnovu svih tih tehnika čine geometrijski

modeli i operacije koje se vrše nad njima, odnosno Boole-

ove operacije (unija, razlika i presjek). Postoje dva osnovna

tipa geometrijskih modela: dvodimenzionalni model koji

se koristi za tehničko crtanje i trodimenzionalni model koji

se koristi za računarski potpomognuto projektovanje i

proizvodnju. U zavisnosti od reprezentacije objekata,

sistemi geometrijskog modelovanja mogu se klasifikovati

u tri kategorije, a to su zapreminsko modelovanje,

modelovanje površina i modelovanje žičanog modela, slika

1, [1-2].

Slika 1. Žičani model, površinski model i zapreminski

model (slijeva na desno) [1]

2. TEHNIKE AUTOMATIZOVANOG PROJEKTOVANJA

Tehnike projektovanja predstavljaju niz strategija i metoda

koje inženjeri koriste kako bi najučinkovitije razvili nove

proizvode, strukture ili sisteme. Projektovanje uključuje

brojne korake: od početne ideje i istraživanja, preko

modelovanja i simulacija, pa sve do izrade prototipa i

testiranja. Svrha ovih tehnika je da olakšaju kreiranje

rješenja koja su što bliža zahtjevima funkcionalnosti,

estetike, troškova i trajnosti. Automatizovano

projektovanje podrazumijeva interaktivan rad između

inženjera i računara, gdje se spajaju kreativnost čovjeka i

obradna moć softverskih alata. Tehnike projektovanja koje

danas imaju najširu primjenu su:

1. Formiranje žičanog modela, 2. Površinsko modeliranje,

3. Zapreminsko modeliranje, 4. Parametarsko modeliranje,

5. Generativni dizajn, 6. Inverzno (reverzibilno)

inženjerstvo i 7. tzv. „Kinematičko“ modeliranje. Svaka od

ovih tehnika ima posebnu ulogu i pruža specifične

mogućnosti koje unapređuju proces projektovanja.

1251

https://doi.org/10.24867/33AM02Radic

2.1. Formiranje žičanog modela

Žičani model predstavlja jedan od najosnovnijih i

najstarijih oblika grafičkog prikaza 3D objekata, koji se

široko koristi u mašinstvu. Ova tehnika modeliranja

zasniva se na upotrebi linija, tačaka i krivih za definisanje

geometrijskih odnosa i oblika objekata, bez potrebe za

definisanjem detalja kao što su površina ili zapremina.

Tačke predstavljaju koordinate koje definišu ključne

dijelove objekta, dok linije i krive povezuju ove tačke i

formiraju ivice koje određuju oblik objekta, kao što je to

prikazano na slici 2.

Slika 2. Žičani model tetraedra [2]

Iako ne pruža potpunu predstavu o fizičkim svojstvima

objekta, žičani model ima važnu ulogu u ranim fazama

dizajna i analize, posebno kada je potrebno istražiti

osnovne geometrijske odnose i strukturu objekta.

2.2. Modeliranje površina

Modeliranje površina definiše komponentu sa većim

matematičkim integritetom, jer modelira površine kako bi

dalo preciznije prostorne granice dizajnu. Posebno je

korisno za modeliranje objekata koji se mogu modelirati

kao ljuske, kao što su paneli karoserije automobila, trupovi

aviona ili lopatice ventilatora. Najosnovniji tip površina je

ravna površina, prikazana na slici 3(a), koja se može

definisati između dvije paralelne prave linije, kroz tri tačke

ili kroz liniju i tačku. Drugi tipovi površina koje se obično

koriste u CAD-u su: tabelarni cilindar, slika 3(b), loft, slika

3(c), površina dobijena rotacijom, prikazana na slici 3(d),

sweep, slika 3(e), skulpturalna ili površina sa mrežom

krivih, slika 3(f) i tzv. filet površina kao prelaz sa cilindra

na ravan, slika 3(g).

Slika 3. Tipovi površina u CAD softverima [3]

Jedna od značajnih prednosti površinskog modeliranja je u

tome što omogućava inženjerima da rade u interaktivnom

okruženju. Kada se promijeni neka površina, modifikacije

se odmah odražavaju na cjelokupnom modelu, što olakšava

projektovanje i optimizaciju. Ova sposobnost da se brzo

prilagodi i izmijene modeli čini površinsko modeliranje

izuzetno korisnim alatom u dinamičnom okruženju kao što

je savremena industrija.

2.3. Zapreminsko modeliranje

Zapreminsko modeliranje je jedna od osnovnih tehnika u

inženjerskom projektovanju koja se koristi za stvaranje

trodimenzionalnih zapreminskih modela. Ova metoda

omogućava inženjerima da kreiraju realistične predstave

fizičkih objekata, uključujući njihova stvarna fizička

svojstva kao što su masa, zapremina, centar gravitacije i

moment inercije. Ove informacije su od suštinskog značaja

za analizu i optimizaciju dizajna, posebno u složenim

projektima. Šeme predstavljanja 3D modela mogu se

podijeliti u šest opštih klasa, a to su čista primitivna

instanca, generalizovano izvlačenje, prebrojavanje

prostorne okupacije, ćelijska dekompozicija, sastavljanje

modela iz 3D primitiva (CSG) - model gomerijske

konstrukcije i definisanje granica objekta (B-rep) - model

granične prezentacije. Šeme predstavljanja koje se

najčešće koriste u komercijalnim modelima su CSG i B-

rep. Kada je u pitanju grafička dokumentacija,

zapreminsko modeliranje u specijalizovanim softverima,

kao što su Autodesk Inventor i CATIA V5, olakšava

kreiranje tehničkih crteža i specifikaciju delova. Inženjeri

mogu automatski generisati 2D crteže iz 3D zapreminskih

modela, čime se ubrzava proces kreiranja dokumentacije i

smanjuju mogućnosti grešaka.

2.4. Parametarsko modeliranje

Parametarsko modeliranje predstavlja ključnu tehniku u

automatizovanom projektovanju. Ova tehnika omogućava

inženjerima da na efikasan način definišu i upravljaju

osnovnim dimenzijama i karakteristikama geometrijskih

modela. Parametarsko modeliranje odnosi se na kreiranje

3D CAD modela u kojima je geometrija definisana i

ograničena parametrima. Ovi parametri mogu biti

dimenzije, matematički odnosi, osobine materijala i drugo.

Ključna stvar je da se, kada se promijene vrednosti

parametara, geometrija automatski ažurira prema unapred

definisanim pravilima. Ovaj pristup omogućava neviđenu

fleksibilnost i automatizaciju u procesu dizajniranja.

Zahvaljujući mogućnosti brzih izmena kompletne

geometrije promenom parametara, inženjeri mogu brzo

raditi na varijantama dizajna, optimizovati komponente i

standardizovati sklopove.

2.5. Generativni dizajn

Generativni dizajn je tehnika koja transformiše način na

koji inženjeri i dizajneri pristupaju razvoju proizvoda. Ovaj

proces omogućava inženjerima da, na osnovu definisanih

ulaznih parametara (kao što su materijali, opterećenja,

ograničenja prostora i troškovi), generišu veliki broj

mogućih rešenja za određeni problem. Ova tehnika je

posebno značajna u sektorima gde je smanjenje težine

ključno, kao što su avijacija i raketna industrija, gde svako

smanjenje mase može dovesti do značajnih ušteda u gorivu

i poboljšanja u performansama. U pogledu troškova,

generativni dizajn može dovesti do ušteda od 10% do 30%

u poređenju sa tradicionalnim metodama, [4].

2.6. Reverzibilno inženjerstvo

Reverzibilno inženjerstvo predstavlja metodologiju koja

podrazumeva analizu i dekonstukciju gotovog proizvoda s

ciljem sticanja dubljeg razumevanja njegove strukture,

1252

funkcionalnosti i principa rada. Ova tehnika se često koristi

u inženjerstvu za razvoj novih proizvoda, reinženjering

postojećih rešenja, kao i za usavršavanje procesa

proizvodnje. Proces reverzibilnog inženjeringa započinje

fizičkim proizvodom, gde inženjeri razgrađuju

komponente, analiziraju ih, a zatim koriste te podatke za

stvaranje novog dizajna (varijanti) ili za poboljšanje

postojećih. Iako reverzibilno inženjerstvo donosi brojne

prednosti, kao što su smanjenje troškova, brža proizvodnja

i unapređenje postojećih tehnologija, ono sa sobom nosi i

određene izazove. Jedan od njih su pravna pitanja koja se

odnose na intelektualnu svojinu, jer kopiranje dizajna bez

odobrenja može dovesti do pravnih komplikacija.

2.7. „Kinematičko“ modeliranje

„Kinematičko“ modeliranje je tehnika koja se koristi za

analizu kretanja komponenti u sistemu, što je od suštinskog

značaja u projektovanju mehanizama. Ova metoda

omogućava inženjerima da proučavaju kretanje dijelova u

mehaničkom sistemu, što je ključno za optimizaciju

performansi i funkcionalnosti dizajna. Shvatanje kretanja

komponenti pomaže inženjerima da identifikuju oblasti u

kojima mogu doći do neusaglašenosti ili neželjenih

dejstava tokom rada. Na primjer, u razvoju robota ili

automobila, „kinematičko“ modeliranje može pomoći u

analizi kako različiti dijelovi utiču na rad mehanizma, čime

se osigurava da sve komponente rade sinhronizovano i bez

problema.

3. INOVACIJE I BUDUĆNOST AUTOMATIZOVANOG

PROJEKTOVANJA

Automatizovano projektovanje mašina predstavlja

dinamičnu i inovativnu oblast inženjerstva koja se

neprestano razvija, a nove tehnologije i metode značajno

utiču na način na koji inženjeri pristupaju dizajnu i razvoju

mehaničkih sistema. Napredak u tehnologiji, naročito u

oblasti vještačke inteligencije (AI) i mašinskog učenja,

dovodi do transformacije tradicionalnih metoda

projektovanja, omogućavajući inženjerima da istražuju

nove dizajnerske koncepte i optimizuju postojeća rješenja.

Koristeći algoritme vještačke inteligencije i modelovanje

podataka, inženjeri mogu analizirati velike količine

informacija, identifikovati obrasce i predvidjeti ponašanje

sistema.

Budućnost automatizovanog projektovanja obećava da će

biti obilježena naprednom integracijom tehnologija,

povećanom saradnjom među timovima i većom

sposobnošću inženjera da brzo reaguju na promjene u

zahtjevima tržišta, čime se poboljšavaju kvalitet i

efikasnost proizvoda. Neke od novih metoda koje su

obrađene u ovom radu su vještačka inteligencija i mašinsko

učenje, 3D štampanje i aditivna proizvodnja, oblak i

kolaborativne platforme, virtuelna stvarnost i proširena

stvarnost.

3.1. Vještačka inteligencija i mašinsko učenje

Oblast vještačke inteligencije (AI) dobija veliku pažnju

zbog sposobnosti da efikasno analizira i djeluje na

ogromnu količinu prikupljenih podataka. Nagli porast

interesovanja se uglavnom pripisuje napretku ostvarenim u

podoblasti mašinskog učenja (ML), kao i pratećim

faktorima, kao što su skladištenje podataka i računarske

snage. Sistemi ove tehnologije postaju moćni alati koji se

mogu koristiti i mogu dovesti do bržeg, racionalnijeg

donošenja odluka, kao i efikasnijeg rada. Vještačka

inteligencija (AI) je oblast računarskih nauka koja se može

koristiti za razvoj inteligentnih računara koji mogu

djelovati, razmišljati i donositi odluke slično ljudima.

Vještačka inteligencija je pokazana kada mašina ima

sposobnosti slične ljudskim, kao što su učenje, razmišljanje

i rješavanje problema. S druge strane, mašinsko učenje

(ML) je oblast vještačke inteligencije (AI) i računarskih

nauka koja se fokusira na korišćenje podataka i algoritama

kako bi se imitirao način na koji ljudi uče i postepeno

poboljšala preciznost.

Nauka o podacima je rastuća disciplina, a mašinsko učenje

predstavlja njen ključni segment. U inicijativama za

rudarenje podataka, algoritmi za klasifikaciju i predviđanje

se obučavaju korišćenjem statističkih metoda, pružajući

važne uvide. Ove informacije zatim olakšavaju donošenje

odluka unutar aplikacija i organizacija, sa idealnim

uticajem na ključne mjere rasta. Vještačka inteligencija i

mašinsko učenje predstavljaju ključne elemente u

budućnosti automatizovanog projektovanja. Ove

tehnologije ne samo da poboljšavaju kvalitet i efikasnost

dizajna, već i otvaraju nove mogućnosti za inovacije.

3.2. 3D štampanje i aditivna proizvodnja

3D štampanje i aditivna proizvodnja su postali ključni alati

u oblasti automatizovanog projektovanja, doprinoseći

značajnom unapređenju u načinu na koji inženjeri razvijaju

i proizvode složene komponente i sisteme. Ove tehnologije

ne samo da omogućavaju brzu izradu prototipa, već i

unapređuju mogućnosti dizajna, čime se smanjuju troškovi

i vreme potrebno za razvoj. 3D štampanje je proces koji

podrazumeva stvaranje fizičkog objekta iz digitalnog

modela. Ovaj proces se izvodi sloj po sloj, gde se materijali

dodaju jedan na drugi sve dok se ne postigne željeni oblik.

Aditivna proizvodnja omogućava proizvodnju komponenti

složenih oblika koje bi bilo teško ili nemoguće napraviti

tradicionalnim metodama obrade. Na primer, inženjeri

mogu stvoriti detaljne geometrije, unutrašnje šupljine i

strukturne obrasce koji poboljšavaju funkcionalnost

komponenti. Nove tehnike, kao što su 4D štampanje, koje

podrazumeva proizvodnju objekata koji se mogu

prilagođavati promenljivim uslovima, otvaraju nove

mogućnosti za inovaciju. Takođe, integracija sa

tehnologijama kao što su veštačka inteligencija može

dovesti do još složenijih i pametnijih sistema.

3.3. Oblak (Cloud) i kolaborativne platforme

U današnjem globalizovanom svijetu, gdje fizičke granice

postaju sve manje važne, oblak tehnologije i kolaborativne

platforme igraju ključnu ulogu u automatizovanom

projektovanju. Ove tehnologije omogućavaju inženjerima

da rade na projektima iz različitih geografskih lokacija,

čime se podstiče inovacija i unapređuje efikasnost u

projektovanju mehaničkih sistema. Oblak tehnologije

podrazumijevaju korišćenje interneta za skladištenje,

upravljanje i obradu podataka, umjesto lokalnih servera ili

računarskih sistema. Ova tehnologija omogućava

inženjerima i dizajnerima da pristupe potrebnim resursima

i alatima u bilo kom trenutku, sa bilo kog mjesta.

Kolaborativne platforme, kao što su Autodesk Fusion 360,

SolidWorks 3DExperience i Microsoft Teams, integrišu

funkcionalnosti oblaka s alatima za timsku saradnju, čime

1253

se poboljšava komunikacija i razmjena informacija u timu.

Oblak tehnologije i kolaborativne platforme predstavljaju

značajan napredak u automatizovanom projektovanju. One

omogućavaju inženjerima da sarađuju u realnom vremenu,

dele podatke i optimizuju proces projektovanja.

Uspostavljanjem efikasne komunikacije i smanjenjem

grešaka, ove tehnologije poboljšavaju kvalitet proizvoda i

ubrzavaju razvoj. Kako se tehnologija razvija,

kolaborativne platforme će nastaviti da igraju ključnu

ulogu u budućnosti automatizovanog projektovanja,

otvarajući nove mogućnosti za inovaciju i efikasnost, [5].

3.4. Virtualna stvarnost i proširena stvarnost

Virtuelna stvarnost (VR) i proširena stvarnost (AR) su

inovacije koje značajno mijenjaju način na koji inženjeri i

dizajneri pristupaju projektovanju i razvoju mehaničkih

sistema. Ove tehnologije ne samo da poboljšavaju

vizualizaciju i analizu dizajna, već i unapređuju saradnju i

komunikaciju u timu, što dovodi do efikasnijeg i

inovativnijeg procesa projektovanja. Virtuelna stvarnost

podrazumijeva stvaranje potpuno digitalnog okruženja u

kojem korisnici mogu interaktivno učestvovati.

Korišćenjem VR tehnologije, inženjeri mogu da projektuju

i testiraju složene sisteme u simuliranoj sredini, što im

omogućava da istraže različite dizajnerske opcije bez

potrebe za fizičkim prototipima. Proširena stvarnost

kombinuje digitalne elemente sa stvarnim svijetom,

stvarajući interaktivno iskustvo koje omogućava

inženjerima da na realne objekte projektuju digitalne

informacije. Ova tehnologija predstavlja značajan

napredak u procesima montaže, održavanja i obuke. U

poređenju sa statičkim 3D modelima ili tradicionalnim 2D

crtežima, tehnologija proširene stvarnosti nudi tro-

dimenzionalnu perspektivu koja je značajno intuitivnija i

informativnija, što poboljšava prostorno razmatranje.

4. ZAKLJUČAK

Računarska grafika i kompjuterski podržano projektovanje

(CAD) predstavljaju temelj savremenog mašinskog

inženjeringa, menjajući način na koji se mehanički

elementi i sistemi zamišljaju, vizualizuju i realizuju. Ovaj

rad bavi se različitim aspektima inženjerske grafike i CAD-

a, pružajući razumevanje njihovog značaja, principa,

tehnika i primena u mašinskom projektovanju. Tokom

ovog istraživanja istaknut je razvoj inženjerske grafike od

ručnog crtanja do digitalnog projektovanja, naglašavajući

ključnu ulogu vizualizacije u efikasnoj komunikaciji u

mašinskom projektovanju. Analizirani su osnovni koncepti

ortogonalnih projekcija, geometrijskog modeliranja,

parametarskog projektovanja i crtanja, otkrivajući kako

ove tehnike unapređuju efikasnost, tačnost i svestranost

projektovanja. Istraživanjem spektra CAD softvera i alata,

prikazano je kako inženjeri koriste digitalne platforme za

kreiranje složenih 3D modela, simulaciju mehaničkog

ponašanja i besprekornu saradnju između timova koji se

nalaze na različitim geografskim lokacijama.

Integracija parametarskog projektovanja, 3D modeliranja i

principa sklopova omogućava inženjerima brzu iteraciju,

optimizaciju projekata i virtuelnu validaciju performansi

pre fizičke realizacije. Pored toga, važnost tehničkog

crtanja i dokumentacije ne sme se potceniti, jer tačni

tehnički crteži, liste materijala (BOM) i prateća

dokumentacija predstavljaju osnovu komunikacije u

projektovanju, obezbeđujući uspešan prenos zamisli u

opipljive proizvode.

Kako mašinski inženjeri nastavljaju da prihvataju moć

računarske grafike i CAD-a, stiču sposobnost da inoviraju,

unapređuju procese projektovanja i realizuju nove ideje.

Bilo da je reč o kreiranju složenih 3D modela, simulaciji

kompleksnih mehaničkih sistema ili komunikaciji

tehničkih specifikacija, ovladavanje ovim principima i

tehnikama vodi mašinski inženjering u eru neviđene

kreativnosti i efikasnosti.

5. LITERATURA

[1] A. Dag, A. Özdemir, “A Comparative Study for 3D

Surface Modeling of Coal Deposit by Spatial

Interpolation Approaches”, Resource Geology, 63 (4),

pp. 394-403, 2013.

[2] Z. Jelić, B. Popkonstantinović, M. Stojičević, “Usage

of 3D Computer Modelling in Learning Engineering

Graphics”, 2016.

[3] Anonim., “Surface modeling”, İTÜ - Transport

Tekniği Grubu, Istanbul, 2009.

[4] M. Fenooh, O. Alquabeh, M.M. Nisar, S. Zia,

“Generative Design of a Mechanical Pedal”,

International Journal of Engineering and

Management Sciences, (6), pp. 48-56, 2021.

[5] V. Gharibvand, M.K. Kolamroudi, Q. Zeeshan et al.,

“Cloud based manufacturing: A review of recent

developments in architectures, technologies,

infrastructures, platforms and associated challenges”,

The International Journal of Advanced Manufacturing

Technology, (131), pp. 93-123, 2024.

Kratka biografija:

Nemanja Radić rođen je u Bijeljini 1997.

god. Master rad na Fakultetu tehničkih

nauka iz oblasti Mašinskog inženjerstva –

Mehanizacija i konstrukciono mašinstvo

odbranio je 2025. god.

kontakt: nemanja.radic997@gmail.com

Radomir Đokić,vanredni profesor na

Fakultetu tehničkih nauka u Novom Sadu.

Doktorirao je na Fakultetu tehničkih nauka

2016. god. Oblast interesovanja su

projektovanje mobilnih mašina i

konstrukcija.

1254

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 621.7/.9

DOI: https://doi.org/10.24867/33AM03Ivanovic

RIZICI USLED PARKIRANJA VOZILA SA POGONOM NA TEČNI NAFTNI GAS U

ZATVORENIM PROSTORIMA

RISKS POSED BY PARKING LIQUEFIED PETROLEUM GAS POWERED VEHICLES

IN ENCLOSED SPACES

Nina Ivanović, Fakultet tehničkih nauka, Novi Sad

Oblast – MAŠINSTVO

Kratak sadržaj – Ovaj rad analizira fizičko-hemijske

karakteristike tečnog naftnog gasa i njegovu primenu kao

pogonskog goriva, sa posebnim fokusom na rizike usled

parkiranja vozila na TNG u zatvorenim garažama.

Istraženi su fenomeni VCE i BLEVE, mehanizmi

akumulacije gasa, rizici od eksplozije, kao i uticaj

ventilacije i detekcije na bezbednost. Obrađeni su efekti

kontakta TNG-a sa ljudskim tkivom i predložene mere

zaštite, uz osvrt na važeće propise i neophodnost

integracije tehničkih i organizacionih rešenja u

upravljanju rizicima povezanim sa primenom TNG-a u

zatvorenim prostorima.

Ključne reči: Tečni naftni gas, zatvorene garaže,

ventilacija i detekcija, BLEVE, bezbednost i zdravlje

Abstract – This paper analyzes the physicochemical

characteristics of liquefied petroleum gas and its use as a

fuel, with emphasis on the risks associated with parking

LPG-powered vehicles in enclosed garages. The study

explores the phenomena of VCE and BLEVE, mechanisms

of gas accumulation, explosion hazards, and the impact of

ventilation and detection systems on safety. It also

addresses the effects of LPG contact with human tissue and

proposes protective measures, with reference to relevant

regulations and the necessity of integrating technical and

organizational solutions in risk management related to

LPG use in confined spaces.

Keywords: Liquefied petroleum gas, enclosed garages,

ventilation and detection, BLEVE, safety and health

1. UVOD

Vozila na tečni naftni gas (TNG) poznata su po ekološkoj

prihvatljivosti, ali njihovo prisustvo u zatvorenim

garažama nosi rizike stvaranja eksplozivnih koncentracija

gasa. Oslobađanje TNG-a može izazvati ozbiljne incidente

poput fenomena BLEVE i VCE, sa potencijalno teškim

posledicama po ljude i imovinu. Čak i male količine u

neprovetravanom prostoru mogu izazvati eksploziju u

prisustvu izvora paljenja. Zato su mere zaštite, kao što su

ventilacija i sistemi detekcije gasa, kao i sigurnosni uređaji

na vozilima, neophodni za sigurnost u urbanim garažama.

2. TEČNI NAFTNI GAS

TNG je mešavina propana i butana, poznata i kao propan-

butan gas. Oko 60% se dobija iz prirodnog gasa, a ostatak

iz nafte. Sastav varira zavisno od klimatskih uslova:

__

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je bio

dr Nebojša Nikolić, van. prof.

u hladnijim krajevima je veći udeo propana zbog bolje

isparljivosti, dok se u toplijim više koristi butan. U Srbiji

je odnos približno jednak [1].

2.1. Fizičke i hemijske karakteristike

Tečni naftni gas je bezbojan, visoko zapaljiv i eksplozivan,

ali bez mirisa. Za lakšu detekciju, komercijalnom TNG-u

dodaje se etil-merkaptan, organsko jedinjenje sa

sumporom, što omogućava otkrivanje čak i pri niskim

koncentracijama. TNG ima gotovo dvostruko veću gustinu

od vazduha, zbog čega se smatra zagušljivcem koji

istiskuje kiseonik. Slabo je rastvorljiv u vodi, što olakšava

skladištenje i transport jer se ne meša s vodom. Iako nije

toksičan, pri visokim koncentracijama može delovati kao

anestetik i izazvati gušenje zbog nedostatka kiseonika.

Kontakt s kožom može izazvati promrzline zbog

intenzivnog isparavanja, dok je TNG agresivan prema

materijalima kao što su guma i plastika [1].

Granica zapaljivosti određuje koncentraciju zapaljive

materije u mešavini koja može izazvati eksploziju. Za

smešu propan-butana u odnosu 35:65, donja granica

zapaljivosti je 2%, a gornja 9% zapreminskog udela u

vazduhu. Sagorevanjem TNG oslobađa toplotu i proizvodi

ugljen-dioksid i vodenu paru, s temperaturom plamena do

1900°C. TNG karakteriše i visoki napon zasićenih para.

Kod butana, pritisak pare iznosi 0,005 bara na 0°C i 0,8

bara na 15°C, a kod propana – 4 bara na 0°C i 5–6 bara na

15°C. Temperatura ključanja propana je -43°C, dok je za

butan -0,5°C [1].

2.2. Upotreba u vozilima

TNG predstavlja izuzetno pogodno gorivo za motore sa

unutrašnjim sagorevanjem zbog brojnih prednosti koje

pruža. Jedna od ključnih karakteristika TNG-a je njegova

sposobnost da se brzo i ravnomerno meša sa vazduhom,

čime formira homogenu smešu za sagorevanje. Tokom

procesa sagorevanja, TNG ne proizvodi dim niti taloge, čak

ni u uslovima promenljivog rada motora, što doprinosi

njegovoj pouzdanosti i efikasnosti. Pored toga, TNG se

izdvaja i po svojoj ekološkoj prihvatljivosti. Udeo

vodonika u molekulima jedinjenja koja čine TNG je visok,

te u produktima sagorevanja dominira vodena para, dok je

emisija ugljen-dioksida smanjena. Emisija oksida azota je

takođe snižena, a gasovi iz sagorevanja ne sadrže olovna i

sumporna jedinjenja. Kao gas, TNG ne stvara kondenzat,

čime se smanjuje rizik od razređivanja ulja i dodatno

produžava vek trajanja motora. Za razliku od benzinskih

rezervoara koji mogu eksplodirati na visokim

temperaturama, rezervoari za TNG izrađeni su od čelika

debljine 3 do 4 mm, anatomski su oblikovani i otporni na

1255

https://doi.org/10.24867/33AM03Ivanovic

deformacije pri sudarima. Uz to, ekonomska isplativost

TNG-a omogućava brz povraćaj ulaganja u gasni sistem,

što ga čini atraktivnim izborom za korisnike, ali postoje

nedostaci kao što su manja snaga motora, dodatna masa

vozila i potreba za posebnim uslovima skladištenja i

rukovanja [1].

3. INSTALACIJA TNG SISTEMA U VOZILIMA

Instalacije za napajanje TNG-om obično predstavljaju

alternativne sisteme goriva za motore koji rade na benzin

ili dizel gorivo, koji blisko sarađuju sa originalnim

sistemom napajanja gorivom [2]. Različiti tipovi gasnih

instalacija obično koriste isti osnovni skup komponenti,

koji je prikazan na Slici 1.

Slika 1 Osnovne komponente instalacije za TNG [3]

TNG se pod pritiskom u tečnom stanju od rezervoara

transportuje do isparivača, koji funkcioniše i kao reduktor.

Isparivač je povezan sa sistemom za hlađenje motora,

omogućavajući toploj tečnosti iz motora da zagreje tečni

gas koji u tom procesu isparava. Na taj način, isparivač

omogućava prelazak TNG-a u gasovito stanje, njegovo

zagrevanje na odgovarajuću temperaturu, i smanjuje

pritisak gasa na oko 0,8 bara, što je potrebno za napajanje

motora [1].

Gasni sistemi novije generacije koriste se kod vozila sa

ubrizgavanjem goriva u više tačaka (multi-point injection).

Kod ovakvih sistema, gas se brizgava u usisne kanale, što

bliže usisnim ventilima, a zatim se, zajedno sa vazduhom,

odvodi u radne cilindre. Na taj način, kod ove vrste

instalacije nema potrebe za mešačem. Jedna od ključnih

karakteristika ovog sistema je njegova visoka brzina rada

[4].

Radni pritisak u rezervoaru za TNG iznosi između 6 i 10

bara. Rezervoari koji se ugrađuju u vozila moraju biti u

skladu sa trenutno važećim standardom, SRPS EN

12805:2011, čime se osigurava bezbednost sistema na

TNG [1].

Svi priključci rezervoara smešteni su u gasno nepropusnom

kućištu povezanom sa ventilacionim kanalima. Kada dođe

do curenja, gas izlazi u spoljašnu sredinu kroz ventilacioni

sistem, čime se minimizira rizik od ulaska gasa u putnički

prostor vozila [2].

Ventil za ograničavanje punjenja na 80% odgovoran je za

prekidanje dovoda gasa kada nivo goriva dostigne 80%

geometrijske zapremine rezervoara. Ova funkcija

omogućava zadržavanje slobodnog prostora unutar

rezervoara, čime se omogućava prilagođavanje zapremine

TNG-a u zavisnosti od temperature okoline. Prepunjavanje

rezervoara iznad 80% zapremine, usled visoke temperature

okoline, može dovesti do porasta pritiska u rezervoaru i

aktivacije sigurnosnog ventila [2].

Sigurnosni ventil za oslobađanje pritiska je sigurnosni

uređaj namenjen ograničavanju maksimalnog pritiska

unutar rezervoara na 27 ± 1 bar, i u slučaju prekomernog

pritiska, omogućava ispuštanje TNG-a iz rezervoara u

gasovitoj fazi. Gas iz ovog ventila ne sme biti usmeren ka

izduvnoj cevi, u putnički prostor, u prostor za smeštaj

motora, kao i u pravcu potencijalnog električnog

varničenja. Pri brzom porastu temperature, delovanje

sigurnosnog ventila možda neće biti dovoljno da pritisak

svede na bezbedan nivo [2].

Protivpožarni ventil je sigurnosni uređaj opremljen termo-

osiguračem koji se topi na unapred određenoj temperaturi

od 120 °C ± 10 °C, čime se smanjuje pritisak kako bi se

izbegla nekontrolisana deformacija ili curenje iz

rezervoara. U slučaju požara, osigurač se topi i otvara otvor

za brzo ispuštanje TNG-a iz rezervoara, čime se sprečava

rizik od eksplozije [2].

4. RIZICI PRI SKLADIŠTENJU VOZILA SA

POGONOM NA TNG

Rizik od isticanja TNG-a ograničava širu primenu vozila

na ovaj pogon. Jedan od ciljeva istraživanja je prikaz

metode kvantitativne analize rizika (QRA – Quantitative

Risk Analysis) za upotrebu vozila na TNG u zatvorenim

garažama. Metoda omogućava procenu rizika i dizajn

ventilacionih i detekcionih sistema. Treba naglasiti važnost

integracije CFD simulacija u QRA, čime se precizno

procenjuje rizik od povreda ili smrtnog ishoda u

incidentima s TNG-om [5].

4.1 Tehnika QRA

Suština kvantitativne procene rizika leži u odgovoru na tri

ključna pitanja: Šta može poći po zlu? Kolika je

verovatnoća za to? Koje su posledice? QRA je metod

procene rizika koji se sprovodi odozgo ka dole i uključuje:

definisanje neželjenih krajnjih stanja, identifikaciju

početnih događaja koji mogu do njih dovesti, korišćenje

dijagrama događaja i grešaka za razvoj scenarija nesreća,

procenu verovatnoće svakog scenarija na osnovu

dostupnih podataka i iskustava, kao i njihovo rangiranje

prema učestalosti radi dobijanja pregleda rizika. Ovaj

pristup omogućava strukturalno i detaljno razmatranje

mogućih rizika i njihovih posledica [6].

4.2 CFD simulacije

CFD (Computational Fluid Dynamics) podrazumeva

softversku simulaciju koja se može primeniti pri različitim

uslovima, ali zahteva značajan nivo znanja i iskustva. CFD

simulacije su posebno korisne u istraživanjima akcidenata,

a verifikacija simulacionih rezultata se obično sprovodi

eksperimentalnim putem kako bi se osigurala tačnost i

pouzdanost predviđanja [7].

Primena CFD simulacija na problematiku isticanja TNG-a

u neki prostor može se podeliti u tri kategorije [5]:

1. Analiza nenamernog curenja TNG-a i formiranja

oblaka pare, uključujući njegovu veličinu i vreme

detekcije.

2. Istraživanje razblaživanja oblaka pare putem

ventilacije do koncentracije ispod donje granice

zapaljivosti.

1256

3. Procena posledica eksplozije zapaljivog oblaka,

uključujući obim bljeska i nastali natpritisak.

4. REZULTATI I DISKUSIJA

Isparenja tečnog naftnog gasa mogu preći značajne

udaljenosti od mesta ispuštanja do izvora zapaljenja, gde

mogu izazvati požar, povratni plamen ili eksploziju. Pored

toga, rezervoari u vozilima mogu oslabiti i pući ukoliko su

izloženi visokim temperaturama [8].

Najveća opasnost po život dolazi od letećih fragmenata

koji se mogu odbijati od zidova prostorije, krećući se

nepredvidivim putanjama i stvarajući rizik od povreda.

Takođe, udarni talas može izazvati ozbiljna oštećenja sluha

i destabilizovati strukturu zgrade, što dodatno povećava

rizik od kolapsa ili drugih strukturalnih oštećenja [9].

U istraživanju [5], 7 od 26 analiziranih scenarija

identifikovani su kao visokorizični usled akcidenta koji

uključuje isticanje gasa ili eksploziju rezervoara za TNG.

Najverovatniji među njima je požar vozila praćen mlaznim

požarom usled otvaranja sigurnosnog ventila. Ako dođe do

prepunjavanja rezervoara za TNG i porasta temperature,

može doći do otvaranja sigurnosnog ventila i formiranja

mlaza goriva koji, ukoliko se zapali, izaziva mlazni požar.

U slučaju da sigurnosni ventil zakaže, pritisak u rezervoaru

može dovesti do njegovog pucanja i BLEVE eksplozije,

često praćene vatrenim bljeskom, vatrenom loptom ili

eksplozijom oblaka pare. Spontano otvaranje ventila

takođe može dovesti do mlaznog požara ili, ako se mlaz ne

zapali odmah, do stvaranja oblaka pare koji predstavlja

rizik od vatrenog bljeska. Ovi scenariji predstavljaju

potencijalne opasnosti u slučaju neispravnog

funkcionisanja sigurnosnih uređaja ili uslova koji mogu

dovesti do eksplozivnih događaja ili požara.

Očigledno je da su požar ili eksplozija najgori mogući

scenariji, i mogu se očekivati u dva slučaja – kada postoji

izvor paljenja, ali samo u situacijama kada nema sistema

za detekciju i ventilaciju. Ako oba sistema rade kako treba,

može se očekivati samo ograničen požar ili rasprostiranje

gasa [8]. Ovo ukazuje na važnost primene odgovarajućih

sigurnosnih sistema, kao i adekvatno održavanje vozila

kako bi se smanjila verovatnoća prepunjavanja i spontanog

otvaranja sigurnosnih ventila [5].

U dosadašnjim istraživanjima istaknuta su dva osnovna

tipa ventilacionih sistema koji se koriste u ovakvim

prostorima: tradicionalni sistemi sa ventilacionim

kanalima i sistemi mlaznih ventilatora. Prema [8],

tradicionalni ventilacioni sistemi sa kanalima raspoređuju

odvod vazduha tako da se 50 % ukupne izduvne zapremine

odvodi blizu poda, dok se preostalih 50 % odvodi ispod

plafona garaže. Nasuprot tome, sistem mlaznih ventilatora

koristi aktivne uređaje za usmeravanje vazduha, sa ciljem

razbijanja i razblaživanja oblaka gasa. Eksperimentalni

rezultati pokazuju značajne razlike u performansama ova

dva sistema.

Tokom kontinuiranog rada tradicionalnog kanalskog

sistema, oblak gasovitog TNG-a se zadržava pri podu, a

uticaj ventilacije na njegovo uklanjanje je minimalan. S

druge strane, uključivanjem sistema mlaznih ventilatora,

primećuje se brzo razbijanje oblaka i njegovo ravnomerno

rasprostiranje kroz prostor garaže. Nakon nekoliko minuta

kontinuiranog rada, gas se razblažuje i stvara se ujednačena

gustina u celom prostoru (Slika 2), što značajno smanjuje

opasnost od lokalizovanih visokih koncentracija gasa [8].

Slika 2 Koncentracija TNG-a u slučaju sa i bez aktivne

ventilacije (4*10⁻³ kg/m³ na skali odgovara 10 % donje

granice eksplozivnosti) [8]

Istraživanje naglašava da je u slučaju nenamernog

ispuštanja TNG-a najverovatnija kratkotrajna pojava

eksplozivne atmosfere, u trajanju od 10 do 30 sekundi.

Takođe, koncentracija TNG-a je znatno veća na visini od

10 cm u odnosu na 30 cm, što ukazuje na važnost

postavljanja gasnih detektora što bliže podu i blizu izvora

emisije za pravovremenu detekciju. Utvrđeno je da je

detekcija TNG-a na visini od 10 cm u proseku 40 %

verovatnija nego na visini od 30 cm [8].

Zaključeno je da detektori TNG-a moraju biti postavljeni

što bliže podu, a ventilacioni sistemi treba da efikasno

ventiliraju donje delove garaža. Rezultati testova pokazuju

da sistemi mlaznih ventilatora koji se pale po potrebi i

sistemi sa vazdušnim kanalima često nisu dovoljni za ovaj

zadatak, već je potreban kontinuiran rad ventilacije kako bi

se obezbedila pravovremena reakcija [8].

Sprovedena je kvantitativna analiza rizika u garaži

dimenzija 30×30 metara sa kapacitetom od 40 parking

mesta, koristeći CFD simulacije [5]. Simulacija je

omogućila proračun formiranja zapaljivog oblaka pare i

njegovog razblaživanja, kao i procenu natpritisaka

izazvanih eksplozijom. Pretpostavlja se da zapaljiv oblak

pare, ukoliko se formira, ostaje prisutan u garaži dva

minuta. To znači da, u slučaju da ventilacioni sistem ne radi

neprekidno, oblak zapaljivih para mora biti detektovan

putem sistema za detekciju gasa i zatim razblažen

ventilacijom u roku od dva minuta. Stoga, trajanje

prisustva zapaljivog oblaka para predstavlja jedan od

ključnih parametara u dizajnu sistema za detekciju gasa i

ventilaciju.

Vertikalno oslobađanje TNG-a brzinom od 0,55 kg/s može

dovesti do stvaranja stehiometrijskih oblaka pare preko

100 m³ u roku od 50 sekundi, što približno odgovara

vremenu potrebnom za pražnjenje rezervoara goriva

zapremine 70 l. Oblak pare ove veličine može imati

značajne posledice. Dok za isti vremenski period,

ispuštanje gasa brzinom od 0,21 kg/s dovodi do stvaranja

oblaka od oko samo 5 m³, koji neće imati značajne

posledice čak i ako dođe do zapaljenja jer će natpritisak biti

manji od 0,02 bara. Prilikom ovakvih akcidenata,

natpritisak od 0,02 bara može izazvati povrede ljudi, dok

natpritisak od 0,1 bar može prouzrokovati i smrtne

povrede. Takođe je primećeno da vertikalno oslobađanje,

koje se suočava sa preprekama poput plafona, vozila i

zidova, rezultira znatno većim oblacima pare u odnosu na

horizontalno

1257

Pored toga, simulacije su ukazale da eksploziivne sile

izazvane velikim oblakom gasa mogu biti veoma opasne.

Eksplozija oblaka od 200 m³ može generisati natpritiske

veće od 0,3 bara u garaži površine oko 900 m², što može

ozbiljno ugroziti stabilnost građevine i sigurnost prisutnih

osoba [5].

Tokom simulacije, veliki oblak je razblažen na

koncentraciju ispod donje granice zapaljivosti unutar 60

sekundi. Detektori gasa postavljeni na visini od 15 cm

iznad poda mogli su da otkriju prisustvo zapaljivog oblaka

pare za manje od minut nakon oslobađanja, što opravdava

pretpostavku da zapaljivi oblak može biti prisutan u garaži

maksimalno 2 minuta [5].

Važan zaključak iz simulacija odnosi se na efikasnost

ventilacionih sistema u razblaživanju opasnih oblaka.

ventilacioni protok od 200.000 m³/h značajno smanjuje

koncentraciju gasa i brzo razblažuje oblak pare unutar

prvih 20 sekundi rada. Nasuprot tome, manji protok od

50.000 m³/h nije bio dovoljan da spreči širenje oblaka po

celoj podnoj površini garaže, što povećava rizik od

eksplozije. Prema tome, preporučuje se minimalni protok

ventilacije od približno 0,06 m³/s po kvadratnom metru

površine garaže kako bi se efikasno razblažili veliki oblaci

nastali usled brzog ispuštanja TNG-a [5]. Smanjenje ovog

protoka produžava prisustvo opasnih oblaka i rizik od

nesreća.

U zaključku, istraživanja [5, 8] potvrđuju da su efikasni

ventilacioni sistemi i pravilno postavljeni detektori ključni

za minimizaciju rizika od eksplozije u garažama sa TNG

vozilima. Kontinuirani rad ventilacije i pravovremena

detekcija mogu značajno smanjiti opasnost od požara i

povreda, čime se obezbeđuje veća bezbednost kako ljudi

tako i objekata.

6. UTICAJ NA LJUDE

Kontakt TNG-a sa kožom ili očima može izazvati

promrzline i iritacije, posebno pri curenju gasa tokom

dopune goriva ili zbog neispravne konverzije vozila. Zbog

visokog pritiska i niske temperature skladištenja,

neophodno je koristiti zaštitne mere pri radu sa vozilima sa

TNG sistemima. Edukacija korisnika o opasnostima i

pravilnoj upotrebi ključna je za prevenciju povreda.

Pravilna dijagnostika i pravovremena prva pomoć mogu

značajno poboljšati ishod povreda izazvanih kontaktom sa

TNG-om.

Klinička slika povreda uzrokovanih direktnim kontaktom

sa tečnim naftnim gasom može se kretati od površinskih

oštećenja do nekroze i amputacija. Vreme izloženosti

TNG-u je ključni faktor koji određuje raznolikost kliničkih

manifestacija [10].

Početna procena hladne opekotine na osnovu izgleda

gornjih slojeva kože nije uvek pouzdana, jer se dublje,

degenerativne nekroze tkiva mogu pojaviti kasnije, zato

pacijente sa ovim povredama treba pažljivo nadzirati od

prvog dana. Najveći problem kod ovakvih trauma je

ograničeno kliničko iskustvo medicinskog osoblja u vezi

sa dijagnostikom i tretmanom. Da bi se smanjila stopa

morbiditeta kod promrzlina izazvanih TNG-om ili sličnim

uzrocima, važno je da pacijenti blagovremeno potraže

medicinsku pomoć, a da zdravstveni radnici budu svesni

različitih stepena ovih povreda. [10].

U slučaju promrzline preporučuju se osnovne mere prve

pomoći, koje uključuju pranje zahvaćenog mesta sapunom

i vodom i ispiranje kože u vodi blizu telesne temperature,

do 40°C, u trajanju od 15 do 30 minuta. Ova metoda

pomaže u minimalizaciji gubitka tkiva i bilo kakve

hemijske iritacije. Umotavanje povređenog mesta toplim

oblogom može doprineti postepenom zagrevanju

povređene oblasti i smanjenju rizika od dodatnog

oštećenja. [11].

7. LITERATURA

[1] S. Rakić, "Analiza primene tečnog naftnog gasa kao

pogonskog energenta motora SUS," Vojnotehnički

glasnik, vol. 56, br. 1, str. 90–107, 2008.

[2] J. Chojnowski, "Safety in the use of car gas fuel

installations," Combustion Engines, vol. 61, 2022.

[3] https://www.cartoq.com/understanding-and-installing-

lpg-kits-for/. (pristupljeno u decembru 2024.)

[4] K. Lejda i E. Zielinska, "Gas installations requirements

for cars and automobile repair shops offering LPG

services," Teka Komisji Motoryzacji i Energetyki

Rolnictwa, vol. 15, br. 1, str. 37–42, 2015.

[5] F. Van den Schoor, P. Middha i E. Van den Bulck,

"Risk analysis of LPG (liquefied petroleum gas)

vehicles in enclosed car parks," Fire Safety Journal,

vol. 57, str. 58–68, 2013.

[6] G. E. Apostolakis, "How useful is quantitative risk

assessment?," Risk Analysis: An International Journal,

vol. 24, br. 3, str. 515–520, 2004.

[7] G. Tepić, Razvoj metodološkog koncepta za

upravljanje rizikom u sistemu opasnih materija, Novi Sad:

Fakultet tehničkih nauka, 2019.

[8] D. Brzezińska, M. Dziubiński i A. S. Markowski,

"Analyses of LPG dispersion during its accidental

release in enclosed car parks," Ecological Chemistry

and Engineering S, vol. 24, br. 2, str. 249–261, 2017.

[9] J. Stawczyk, "Experimental evaluation of LPG tank

explosion hazards," Journal of Hazardous Materials,

vol. 96, br. 2–3, str. 189–200, 2003.

[10] E. Kapı i dr., "An unusual etiology in cold injury:

liquefied petroleum gas," Ulusal Travma ve Acil Cerrahi

Dergisi, vol. 23, br. 3, 2017.

[11] B. Scarr i dr., "Liquefied petroleum gas cold burn

sustained while refueling a car," Emergency Medicine

Australasia, vol. 22, br. 1, str. 82–84, 2010.

Kratka biografija:

Nina Ivanović rođena je u Subotici

2000. god. Osnovne studije

Inženjerstva zaštite na radu završila je

na Fakultetu tehničkih nauka u Novom

Sadu 2023. godine, a iste godine

upisuje i master studije, smer

Bezbednost i zaštita na radu sa

transportnim i građevinskim mašinama

i motornim vozilima.

kontakt: nina.ivanovic.ace@gmail.com

1258

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 662.7:662.61

DOI: https://doi.org/10.24867/33AM04Milosevic

RAZLIKE IZMEĐU DVOCEVNOG I ČETVOROCEVNOG SISTEMA GREJАNJA I

HLAĐENJA POMOĆU VENTILATOR-KONVEKTORA

 DIFFERENCE BETWEEN A TWO-PIPE AND A FOUR-PIPE HEATING AND COOLING

SYSTEMS USING A FAN-COIL UNIT

Aleksa Milošević, Fakultet tehničkih nauka, Novi Sad

Mašinstvo – ENERGETIKA I PROCESNA

TEHNIKA

Kratak sadržaj – U okviru ovog rada dat je kratak opis i

razlika između dvocevnih i četvorocevnih sistema grejanja

i hlađenja. Poseban akcenat stavljen je na ventilator-

konvektore pomoću kojih se greju/hlade sistemi, izvršena

je njihova podela i objašnjen princip rada.

Ključne reči: ventilator-konvektori, grejanje, hlađenje

Abstract – In this paper, a brief description and a

difference between two-pipe and four-pipe heating and

cooling systems is given. The main topic was placed on fan-

coils, which are used to heat/cool systems, their division

was made and the basic principles of their operation was

explained.

Keywords: fan-coil units, heating, cooling

1. UVOD

Upotreba sistema za klimatizaciju je postala stalan i

neizostavan deo naše svakodnevnice, polazeći od

domaćinstava, zagrevanja zimi, hlađenja leti, kao i

obezbeđivanje željenog kvaliteta vazduha, pa do

obezbeđivanja raznih industrijskih potreba, kao što su, na

primer, prostorije sa odgovarajućom niskom ili visokom

temperaturom, vlažnosti vazduha i slično. Svaki objekat

zahteva sistem za klimatizaciju. Složenost sistema za

klimatizaciju zavisi od složenosti samog objekta. Sistem za

klimatizaciju je ozbiljan energetski potrošač, i iziskuje

troškove koji nisu zanemarljivi. Iz ovih razloga potrebno je

konstatno raditi na unapređivanju efikasnosti sistema za

klimatizaciju i izvlačiti maksimalnu ekonomičnost i

efikasnost iz njega [1]. U ovom radu opisani su dvocevni i

četvorocevni sistemi grejanja i hlađenja pomoću ventilator

konvektora, kao i razlika između ova dva sistema.

2. DVOCEVNI SISTEMI

Karakteristika dvocevnih sistema (slika 1.) jeste da tokom

cele godine kroz cevnu mrežu struji hladna ili topla voda,

dok se temperatura primarnog vazduha podešava prema

uslovima spoljne temperature.

__

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je bila

dr Maša Bukurov Nikolić, red. prof.

 U toplijim krajevima u kojima više variraju letnja toplotna

opterećenja (toplota od sunca, ljudi, uređaja...), nego

zimski toplotni gubici, kao što je slučaj kod npr. savremene

kancelarije sa puno opreme, uvek se koristi hladna voda u

“sekundarnoj mreži”. Pri najnižim spoljnim

temperaturama, npr. ako zimi ipak treba zagrevanje, to se

postiže grejanjem vazduha u centralnoj klima-komori (a ne

vodom). U letnjem režimu i vazduh i voda oduzimaju

toplotu prostoriji, jer su oba fluida na nižim temperaturama

od temperature prostorije. Hladan primarni vazduh

neutrališe stalne i vremenski malo promenljive dobitke

toplote (transmisioni oblici), dok je kapacitet razmenjivača

toplote (ispunjenog vodom) podešen prema trenutnim

dobicima (sunčevo zračenje, osvetljenje, ljudi). Primarni

fluid dvocevnog sistema se priprema kao u klasičnim

vazdušnim sistemima, pri čemu se vodi računa da se

vazduh leti hladi u hladnjaku komore sa nižom

temperaturom vode, kako bi se još tu dovoljno osušio. U

tom slučaju se za hlađenje sekundarnog vazduha može

koristiti viša temperatura vode i tako postići hlađenje bez

izdvajanja vlage. U zimskom režimu, kada je spoljna

temperatura ispod temperature površine hladnjaka,

hladnjak se može koristiti i za pripremu vode razmenjivača

toplote indukcionog aparata. Indukcioni uređaji

funkcionišu tako što se vazduh iz prostorije indukuje kroz

rešetku na indukcionom uređaju, prolazi kroz izmenjivač

toplote, gde se prema potrebi greje ili hladi, a potom u

plenumskoj kutiji meša sa pripremljenim svežim

vazduhom i zatim kroz linijske otvore koji se nalaze na dve

ili na sve četiri strane uređaja ubacuje u prostoriju [2].

Takav režim rada je ekonomičan, jer je priprema vode bez

potrošnje energije, a spoljni vazduh se u izvesnom stepenu

zagreva, što smanjuje potrebno odavanje toplote grejača u

klima komori [3].

3. ČETVOROCEVNI SISTEMI

Četvorocevni sistemi (slika 1.) spadaju u tzv. višecevne

vazdušno vodene sisteme. Odlikuju se sa dve razvodne

cevne mreže za sekundarnu vodu, pa u svakom trenutku

postoji mogućnost propuštanja kroz indukcioni aparat, bilo

hladne ili tople vode. Prema tome, iako nemaju formalno

prebacivanje sa jednog režima na drugi, po temperaturama

vazduha i vode potpuno odgovaraju dvocevnim sistemima.

Indukcioni aparat četvorocevnog sistema u svakom

trenutku može da greje/hladi, ili hladi i greje istovremeno.

Indukcioni aparat četvorocevnog sistema ima dva

priključka za dovod i odvod tople vode, i dva za odvod i

dovod hladne vode. Pri tome indukcioni aparat može da

poseduje jedan zajednički razmenjivač za grejanje odnosno

1259

https://doi.org/10.24867/33AM04Milosevic

hlađenje, ili, što je najčešći slučaj, dva razmenjivača –

grejač i hladnjak. Ovakav sistem je svakako najpovoljniji

klimatizacioni sistem sa mogućnošću trenutnog prelaska sa

hlađenja na zagrevanje vazduha i obrnuto, što utiče na

potrebna visoka ulaganja. Četvorocevni sistem je posebno

pogodan za zgradu sa prostorijama čiji se toplotni zahtevi

nesrazmerno menjaju i ne mogu da se grupišu u zone [4].

Slika 1. Dvocevni i četvorocevni sistem grejanja i

hlađenja [5]

4. VENTILATOR-KONVEKTORI

Ventilator-konvektor (,,FCU”) je jednostavan izmenjivač

toplote koji koristi ventilator i zavojnicu za hlađenje ili

zagrevanje vazduha u prostoriji bez upotrebe kanala.

,,FCU” je jedan od komponenta ,,HVAC” sistema koji se

koriste u stambenim, komercijalnim i industrijskim

zgradama. Ventilator-konvektor obezbeđuje brojne

prednosti u odnosu na konvencionalni sistem grejanja i

hlađenja uključujući: poboljšanje kvaliteta vazduha,

bešuman rad, manje troškove instalacije kao i bolju

energetsku efikasnost. Osigurava preciznu kontrolu

temperature u prostoriji i može se koristiti za grejanje kao

i za hlađenje [6].

Konstrukcija ventilator-konvektora

Struktura ventilator-konvektora (slika 2.) je u obliku kutije

poput peći, a njegova unutrašnjost podseća na saće.

Ventilator-konvektor ima niz unutrašnjih komponenti kao

što su redovi spiralnih cevi, ventilator za dovod vazduha,

motor, filter, kondenzat posuda za odvod, kontrolni ventil

itd. Za poboljšanje kvaliteta vazduha u zatvorenom

prostoru, kao i za smanjenje troškova održavanja većina

ventilator-konvektora je opremljena filterom za vazduh.

Rashladno sredstvo, ohlađena voda ili vruća voda cirkulišu

kroz zavojnicu da ohlade ili zagreju vazduh. Neke jedinice

su opremljene električnim trakama za grejanje. Ventilator

izduvava klimatizovani vazduh iz sistema i nazad u

unutrašnji prostor. Ventilator-konvektori dolaze u tri

osnovne konfiguracije: horizontalni, vertikalni (vođeni

više u zidu) i grejači jedinica nisko uzduž zida. Ventilator-

konvektor nudi kompaktan opseg od prve do četvrte brzine

izduvavanja ventilatora. Tipična veličina ventilator-

konvektora je 500 mm do 800 mm dužine, 500 mm do 2000

mm širine i 160 mm do 400 mm dubine [7].

Slika 2. Ventilator-konvektor [8]

Princip rada ventilator-konvektora

Ventilator duva preko redova spiralnih cevi kroz koje

prolazi rashladno sredstvo, rashlađena voda ili topla voda.

U toj kombinaciji ventilator i spiralne cevi zajedno deluju

kao izmenjivač toplote. Postoji prenos toplote između

vazduha kome je vrela tečnost odala svoju toplotu na

rashladno sredstvo ili hladnu vodu koja deluje kao hladna

tečnost. Tokom hlađenja vazduha toplota se prenosi sa

vazduha u rashladno sredstvo ili ohlađenu vodu. Tokom

zagrevanja vazduha u prostoru topla voda koja teče unutar

spiralnih cevi će delovati kao topla tečnost i prenositi

toplotu na vazduh koji je u tom slučaju hladan fluid, kada

recirkulacija zagreva prostor ili prostoriju. Hlađenje ili

grejanje vazduha zavisi od željene temperature u sobi.

Vazduh u prostoru iznova cirkuliše za postizanje željenog

temperaturnog stanja prostorije. Motor instaliran u

ventilator-konvektor pokreće lopatice ventilatora da se

rotiraju, stvara dovoljnu zapreminu vazduha i prelazi preko

zavojnice gde teče ohlađena voda, po istom principu u

zimskoj sezoni topla voda teče unutar spiralnih cevi

ventilator-konvektora i omogućava prenos toplote iz

spiralnih cevi sa toplom vodom u vazduh koji struji preko

njih pa onda u samu prostoriju, i samim tim se prostorija

zagreva. U zavisnosti od zahtevane temperature prostora,

da li je potrebno hlađenje ili grejanje, ohlađena ili topla

voda automatski teče kroz spiralne cevi ventilator-

konvektora. Termostat kontroliše temperaturu prostorije ili

prostora i pokreće ventilator-konvektor za rad u režimu

grejanja ili hlađenja kontrolisanjem brzine ventilatora i

protoka tečnosti kroz spiralne cevi [9].

Tipovi ventilator-konvektora

Ventilator-konvektor je podeljen na osnovu instalacije i

rasporeda cevovoda.

Postoje različite vrste ,,FCU” zasnovane na instalaciji:

1. horizontalni ventilator-konvektor;

2. Vertikalni ventilator-konvektor;

3. Podni ventilator-konvektori;

4. Ventilator-konvektori montirani na zid.

Sva četiri tipa ventilator-konvektora pružaju isti nivo

performansi i isporučuju samo grejanje/hlađenje ili

grejanje i hlađenje.

Na osnovu rasporeda cevovoda ventilator-konvektor može

biti podeljen na dva tipa:

1. Dvocevni ventilator-konvektor;

1260

2. Četvorocevni ventilator-konvektor. [7]

Dvocevni ventilator-konvektor

Dvocevni ventilator-konvektor (slika 3.) je jedna zatvorena

petlja za napajanje i povrat sistema za distribuciju vode

koji opslužuje svaku prostoriju u kojoj zgrada ima samo

jednu vodenu petlju. Time je grejanje ili hlađenje dostupno

u zavisnosti od sezone. Dvocevni ventilator-konvektor

ima jedan kalem povezan sa dve cevi. Jedna cev je za potis

vode, a druga za povrat vode. Rashlađena ili topla voda

protiče kroz kalem, u zavisnosti od toga da li je potrebno

hlađenje ili grejanje u zgradi. Protok kroz zavojnicu

kontroliše ventil na jednoj od cevi. Ventil se otvara i

zatvara u zavisnosti od potrebe za grejanjem ili hlađenjem

u prostoru.

Glavna prednost upotrebe dvocevnih ventilator-

konvektora u ,,HVAC” sistemu je što su jeftinije za

instalaciju, potrebno je manje truda i materijala (cevi,

fitinzi, ventili, itd.) za ugradnju dvocevnog ventilator-

konvektora u poređenju sa četvorocevnim ventilator-

konvektorom. [10]

Slika 3. Dvocevni ventilator-konvektor [10]

Četvorocevni ventilator-konvektor

Četvorocevni ventilator-konvektor, (slika 4.) sastoji se od

dva odvojena kalema za grejanje za hlađenje. Svaki kalem

ima svoje namenske setove cevi uključujući potisne i

povratne cevi i ventile. Ova vrsta ventilator-konvektora

može istovremeno hladiti i grejati u zavisnosti od zahteva

stanova i lokala zgrade. Ventilator-konvektor sa četiri cevi

ima dva namotaja - zavojnicu za hlađenje i zavojnicu za

grejanje. Svaki kalem je povezan sa dve cevi: jednom za

potis vode i drugom za povrat vode. I rashladni i grejni

kalemovi imaju svoje pojedinačne ventile, tako da postoje

odvojeni ventili za hlađenje i grejanje. Ventil za hlađenje

se otvara ako je potrebno hlađenje u prostoru. Ventil za

grejanje se otvara ako je potrebno grejanje u prostoru.

Glavna prednost korišćenja četvorocevnih ventilator-

konvektora u ,,HVAC” sistemu je to što su kalemovi za

hlađenje i grejanje odvojeni jedan od drugog, što

omogućava istovremeno grejanje i hlađenje različitih

prostorija i lokala u celoj zgradi. [10]

Slika 4. Četvorocevni ventilator-konvektor [10]

5. ZAKLJUČAK

Tema ovog rada je bila sumiranje prednosti, mana i

osnovnih razlika izmedju dvocevnog i četvorocevnog

sistema grejanja i hladjenja pomoću ventilator konvketora.

Glavna mana četvorocevnog sistema su znatno skuplji

troškovi u odnosu na dvocevni, ne zbog same cene

ventilator-konvektora jer ta razlika nije velika, nego zbog

same količine cevi kroz koje struji medijum od toplotne

pumpe pa do ventilator-konvektora. Glavna prednost

četvorocevnog sistema je komfor, jer je moguće

istovremeno grejanje i hlađenje različitih prostorija u

objektu, dok kod dvocevnog sistema postoji samo režim

hlađenja ili režim grejanja. Iz ovoga vidimo da su ova dva

sistema gledano iz tehničkog apsekta potpuno ista, a da je

osnovna razlika u komforu koji nudi četvorocevni sistem,

i u manjoj ceni dvocevnog sistema.

6. LITERATURA

[1] Vasić, Aleksandar, Seminarski rad GREJANJE I

VENTILACIJA na temu SISTEMI ZA

KLIMATIZACIJU I VENTILACIJU, Kosovska

Mitrovica, 2017

[2]https://www.gradjevinarstvo.rs/tekstovi/9875/820/indu

kcioni-uredjaji-stede-energiju-i-obezbedjuju-komfor

[3] Тодоровић, Бранислав, Климатизација, Савез

машинских и електротехничких инжењера Србије,

Београд, 1998. [5] Catherine Rivet, Hyewong Lee,

Alison Hirsch, Sharon Hamilton, Hang Lu,

Microfluidics for medical diagnostics and biosensors,

Elsiver Ltd., 2010.

[4] Kreider, J. A. Rabl – Hill, Heating and Cooling of

Buildings, McGraw ,New York, 1994.

[5] Maccarini, A. (2017). A two-pipe system for

simultaneous heating and cooling of office buildings:

Transferringheat among building rooms through a

room-temperature water loop. Aalborg

Universitetsforlag. Ph.d.-serien forDet Ingeniør- og

Naturvidenskabelige Fakultet, Aalborg Universitet [8]

Gaozhe Cai, Li Xue, Huilin Zhang, Jianhan Lin, A

Review on Micromixers, Micromachines, 8, 2021.

[6] Saravanan D, A Study on Fan – Coil Unit, its types and

maintenance in HVAC System, Valivalam Desikar

Polytechnic Collage Nagapattinam, International

Research Journal of Engineering and Technology

(IRJET), 2019.

[7] Price, Mike, Fan – Coil Units, Charted Institution of

Building Services Engineers, 2008. [11] Clement

Kleinstreuer, Microfluidics and Nanofluidics: Theory

and Selected Applications, Wiley, 2013.

[8] https://www.cranefs.com/systems/fan-coil-units/

1261

https://www.gradjevinarstvo.rs/tekstovi/9875/820/indukcioni-uredjaji-stede-energiju-i-obezbedjuju-komfor
https://www.gradjevinarstvo.rs/tekstovi/9875/820/indukcioni-uredjaji-stede-energiju-i-obezbedjuju-komfor
https://www.cranefs.com/systems/fan-coil-units/

[9] Yunus, A. Cengel, Heat and mass transfer, 3rd edition

Tata Mcgraw – hill publishing company limited, New

Delhi.

[10] https://hvactrainingshop.com/how-a-fan-coil-unit-

works/

Kratka biografija:

Aleksa Milošević rođen je u Novom Sadu

2000. god. Diplomski rad na Fakultetu

tehničkih nauka iz oblasti Energetike i

procesne tehnike – Primer rekonstrukcije

vrelovoda odbranio je 2023.god.

kontakt: acimilosevic@gmail.com

1262

https://hvactrainingshop.com/how-a-fan-coil-unit-works/
https://hvactrainingshop.com/how-a-fan-coil-unit-works/

UDK: 697.1

DOI: https://doi.org/10.24867/33AM05Simovic

PRAKTIČNA PRIMENA “DUAL DUCT” SISTEMA KLIMA KOMORE SA

REKUPERACIJOM VAZDUHA

 PRACTICAL APPLICATION OF THE „DUAL DUCT“ AIR HANDLING UNIT

SYSTEM WITH AIR HEAT RECOVERY

Miloš Simović, Fakultet tehničkih nauka, Novi Sad

Oblast – MAŠINSTVO

Kratak sadržaj – U radu je prikazana analiza sistema

klimatizacije, grejanja i hlađenja administrativnog

prostora u sklopu poslovnog objekta. Sistem je baziran na

primeni toplotne pumpe i klima komore sa dvokanalnom

(Dual Duct) distribucijom vazduha. Urađeni su proračuni

toplotnih gubitaka i dobitaka i određene potrebne količine

svežeg i recirkulisanog vazduha. Analizirani su uticaji

različitih parametara (odnos svežeg i recirkulisanog

vazduha, odnos vazduha iz toplog i hladnog vazdušnog

kanala) na rad sistema, kao i energetska efikasnost i

komfor korisnika.

Ključne reči: grejanje, klimatizacija, administrativni

prostor, proračun.

Abstract – The paper presents an analysis of the air –

conditioning, heating and cooling system of an

administrative space within a comercial building. The

system is based on the application of a heat pump and an

air – handling unit with dual – duct air distribution. Design

calculations of heat losses and gains were carried out, and

the required amounts of fresh and recirculated air were

determined. The impacts of various parameters (the ratio

of fresh to recirculated air and the ratio of warm to cold

air streams) on system operation, as well as energy

efficiency and user comfort, were analyzed.

Key words: heating, air conditioning, administrative

space, design calculation..

1. UVOD

Savremeni sistemi klimatizacije, grejanja i hlađenja moraju

istovremeno da obezbede funkionalnost, energetsku

efikasnost i visok nivo komfora. Jedno od rešenja koja

omogućavaju takvu ravnotežu je primena toplotne pumpe

u kombinaciji sa klima komorom i Dual Duct distribucijom

vazduha. Dual Duct koncept obezbeđuje veću fleksibilnost

u regulisanju parametara unutrašnjeg vazduha, što je

posebno značajno u prostorijama različitih namena. Cilj

ovog rada je da se prikaže praktična primena takvog

sistema u konkretnom objektu. Rad obuhvata analizu

proračunskih parametara, kao i ocenu energetske

efikasnosti i nivoa komfora koji ovaj sistem obezbeđuje.

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je bio

dr Aleksandar Anđelković, vanred. prof.

Slika 1. Šema “Dual Duct” sistema [1]

2. TEHNIČKI OPIS SISTEMA

Sistem klimatizacije, grejanja i hlađenja administrativnog

prostora zasnovan je na primeni 4-cevne toplotne pumpe

kao primarnog izvora energije i klima komore sa

dvokanalnim (Dual Duct) razvođenjem vazduha. Na strani

rashladnog i grejnog medijuma, za transport toplotne

energije koriste se cirkulacione pumpe, dok se distribucija

u prostoru realizuje preko vrtložnih difuzora. Klima

komora je projektovana kao centralni element sistema, sa

modulom za mešanje svežeg i recirkulisanog vazduha, kao

i sa toplim i hladnim kanalom. U letnjem režimu, komora

obezbeđuje hlađenje i odvlaživanje vazduha, dok je u

zimskom režimu zadužena za grejanje i ovlaživanje. Da bi

se obezbedilo fino podešavanje temperature, svaka

prostorija ima lokalnu kontrolu i merenja unutrašnje

temperature. VAV kutija dalje otvara ili zatvara klapne na

toplom ili hladnom vazduhu i tako reguliše temperaturu

smeše.

Tabela 1. Bilans instalisanih toplotnih kapaciteta

Izvor Grejanje(-

5oC) (kW)

Hlađenje

(kW)

4-cevna toplotna

pumpa

vazduh/voda

73,6 102,8

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

1263

https://doi.org/10.24867/33AM05Simovic

3. NUMERIČKA DOKUMENTACIJA

Proračunom toplotnih gubitaka dobijena je vrednost od

oko 30kW, dok su toplotni dobici u letnjem periodu iznosili

oko 50kW. Ove vrednosti su bile osnova za

dimenzionisanje opreme, posebno toplotne pumpe i klima

komore. Na osnovu toplotnih opterećenja određene su i

potrebne količine svežeg i recirkulisanog vazduha.

Usvojeni parametri omogućavaju stabilan rad sistema i u

uslovima promenljivog opterećenja.

Tabela 2. Količine vazduha po prostorijama

Proračunima cevne i kanalske mreže dobili smo potrebne

dimenzije cevovoda koje prenose toplotnu energije od

toplotne pumpe i toplotne podstanice do klima komore i

dimenzije kanala kojim se distribuira vazduh iz klima

komore do prostorija.

Tabela 3. Proračun cevne mreže od toplotne pumpe do

klima komore u režimu grejanja

Tabela 4. Proračun vazdušnog kanala do najudaljenijeg

difuzora

Proračunom cevne mreže smo takođe dobili i padove

pritisaka u režimima grejanja i hlađenja u cevovodima

između toplotne pumpe i klima komore, koji za režim

grejanja sa uzetom rezervom iznose 50kPa, dok za režim

hlađenja iznose 60kPa.

Tabela 5. Proračun cirkulacione pumpe u režimu grejanja

Instalisana snaga: Qv1= 83.000,0 [W]

Temperatura u

polaznom vodu:
tf= 55,0 [oC]

Temperatura u

povratnom vodu:
tr= 49,0 [oC]

Srednja temperatura: tsr= 52,0 [oC]

Specifična toplota

vode:
cp3= 4,177 [kJ/kgK]

Gustina vode: r3= 999,9 [kg/m3]

 11,92 𝑚/ℎ3 (1)

Za režim grejanja odredili smo protok vode od 𝐺𝑣1 =
11,92 𝑚/ℎ3

Na osnovu protoka vode i izračunatog pada pritiska

dimenzionišemo cirkulacionu pumpu za režim grejanja i

usvajamo pumpu MAGNA3 40 – 120 F sa sledećim

karakteristikama:

− Protok: 11,92 m³/h

− Napor: 50 kPa

− Frekvencija: 50 Hz

− Napon: 230 V

t1= 55.0 [oC]

t1= 49.0 [oC]

cp1= 4.181 [kJ/kgK]

r1= 968.2 [kg/m3]

n= 3.65E-07 [m2/s]

e= 0.0450 [mm]

D
e

o
n

ic
a Količina

toplote

Q

Maseni

protok

G

P
ro

ra
č

u
n

sk
i

p
re

č
n

ik
 c

e
v
i

Dužina

deonice

l

Prečnik

deonice

D

Unut.

Prečnik

deonice

du

Stvarna

brzina

strujanja

v

P
re

p
o

ru
č

e
n

a
 b

rz
in

a

st
ru

ja
n

ja Rejnolds

ov broj

Re

Jedinični pad

pritiska

R

l × R

Koef.

lok.

otpora

Σξ

Lokalni

otpori

Z

Pad

pritiska

W kg/h mm m mm m m/s Pa/m Pa Pa Pa

1 83000 12301.14 53.8692 13 DN65 0.0703 0.88 1.50 169639 109.219 1419.8 20 7510.87 8930.7

8930.71

1 Pad pritiska U VENTILIMA 6000.0

2 Pad pritiska na izmenjivaču KK 30000.0

36000.00

Пад притиска: (Pa) 44930.71

Iz plana mreže

Strujni krug najudaljenijeg grejnog tela

Cirkulacioni krug najudaljenijeg grejnog tela

PRORAČUN CEVNE MREŽE - TOPLOTNA PUMPA - KLIMA KOMORA GREJANJE S-12
Temperatura u polaznom vodu:

Temperatura u povratnom vodu:

Specifična gustina vode

Gustina vode:

Kinematska viskoznost:

Hrapavost cevi:

L V V a b D Dh F v R RxL Z

m m3/h m3/s mm mm mm mm m2 m/s Pa/m Pa opis broj Pa Pa

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 14.00 9980 2.77 1250 600 - 811 0.750 3.70 0.16 2.21 - 0.0 2.21

2 3.10 9640 2.68 1250 600 - 811 0.750 3.57 0.15 0.46 - 0.0 0.46

3 0.64 9120 2.53 1250 600 - 811 0.750 3.38 0.13 0.09 - 0.0 0.09

4 1.80 8120 2.26 1250 600 - 811 0.750 3.01 0.11 0.20 - 0.0 0.20

5 13.90 1460 0.41 350 300 - 323 0.105 3.86 0.51 7.2 račva ubod 0.60 5.5 12.6

6 6.00 920 0.26 250 250 250 0.063 4.09 0.78 4.7 koleno+redukcija 0.90 9.2 13.8

7 1.00 460 0.13 - - 250 - 0.049 2.60 0.35 0.3 račva 1.20 5.0 5.3

34.7

38.2

5.0

10.0

53.2

KANALI ZA UBACIVANJE VAZDUHA

Δp=1.1xΣRxL+Z=

PV ventil+rešetka

 2 PP klapne

ΣΔp=

PRORAČUN VAZDUŠNOG KANALA DO NAJUDALJENIJEG DIFUZORA

Deonica Kol ičina vazduha Kanal
Gubitak pri tiska

us led trenja
Gubitak pri tiska us led mesnih otpora

RxL+Z

Σξ

=
−


=

)(1000

3600

33

1
1

rfp

v
v

ttc

Q
G



1264

Dijagram usvojene cirkulacione pumpe [2] je dat na slici

ispod.

Istim postupkom smo dimenzionisali i cirkulacionu pumpu

za režim hlađenja i usvojili pumpu MAGNA3 50 – 120 F.

4. GRAFIČKA DOKUMENTACIJA

Slika 2. Administrativni deo sa projektovanim KGH

sistemom – 1. deo

Slika 3. Administrativni deo sa projektovanim KGH

sistemom – 2. deo

Slika 4. Administrativni deo sa projektovanim KGH

sistemom – 3. deo

5. ANALIZA ODNOSA SVEŽEG I

RECIRKULISANOG VAZDUHA

Analizirani su sledeći scenariji:

• Scenario A: 30% ОА (spoljašnji vazduh) / 70%

РА (recirkulisani vazduh)

• Scenario B: 40% ОА / 60% РА (projekat)

• Scenario C: 60% ОА / 40% РА.

1265

Temperatura mešavine:

𝑇𝑚𝑖𝑥 =
𝑚𝑂𝐴 • 𝑇𝑂𝐴 + 𝑚𝑅𝐴 • 𝑇𝑅𝐴

𝑚𝑂𝐴 + 𝑚𝑅𝐴
 (2)

• Scenario A:

 𝑇𝑚𝑖𝑥 =
0,3 • 34 + 0,7 • 26

0,3 + 0,7
 = 28,4°𝐶

• Scenario B:

𝑇𝑚𝑖𝑥 =
0,4 • 34 + 0,6 • 26

0,4 + 0,6
 = 29,2°𝐶

• Scenario C:

 𝑇𝑚𝑖𝑥 =
0,6 • 34 + 0,4 • 26

0,6 + 0,4
 = 30,8°𝐶

Opterećenje hladnjaka:

Rashladno opterećenje proporcionalno raste sa

povećanjem 𝑇𝑚𝑖𝑥. U odnosu na scenario B (projektni),

scenario A smanjuje opterećenje za oko 7.5%, dok scenario

C povećava opterećenje za oko 15%.

Koncentracija CO₂:

𝐶𝑧𝑜𝑛𝑒 = 𝐶𝑜𝑢𝑡 +
𝐺

𝑄𝑂𝐴
 (3)

Pretpostavljeno: spoljašnji CO₂ = 420 ppm, broj ljudi = 50,

emisija G = 18 l/h po osobi → ukupno G = 900 l/h.

• Scenario A:

𝐶𝑧𝑜𝑛𝑒 = 420 +
900

2.994.000
 • 106 ≈ 720 𝑝𝑝𝑚

• Scenario B:

𝐶𝑧𝑜𝑛𝑒 = 420 +
900

3.992.000
 • 106 ≈ 645 𝑝𝑝𝑚

• Scenario C:

 𝐶𝑧𝑜𝑛𝑒 = 420 +
900

5.988.000
 • 106 ≈ 570 𝑝𝑝𝑚

Rezultati pokazuju tipičan kompromis između energetske

efikasnosti i kvaliteta unutrašnjeg vazduha. Kod odnosa

30% OA energetsko opterećenje je značajno smanjeno, ali

kvalitet vazduha nije na zavidnom nivou. Kod 60% OA

kvalitet vazduha je odličan (ispod 600 ppm), ali

opterećenje rashladnog sistema raste za oko 15%.

Optimalan odnos za posmatrani objekat je oko 40% OA,

čime se postiže balans između energetske efikasnosti i

kvaliteta unutrašnjeg vazduha.

Dijagram relativne promene rashladnog opterećenja u

zavisnosti od udela svežeg vazduha

Dijagram koncentracije 𝐶𝑂2 u zavisnosti od udela svežeg

vazduha

6. ZAKLJUČAK

Na osnovu izvršene analize može se zaključiti da

predloženo rešenje predstavlja pouzdan, energetski

efikasan i komforan sistem klimatizacije, koji odgovara

savremenim standardima i propisima. Rad pokazuje da je

integracija toplotne pumpe sa dvokanalnom klima

komorom dobro rešenje za objekte sa promenljivim

opterećenjima, a dobijeni rezultati mogu poslužiti kao

osnova za dalje unapređenje i primenu sličnih sistema u

praksi.

7. LITERATURA

[1] MEPAcademy – dostupno na:
https://mepacademy.com/dual-duct-system/

[2] Grundfos.com – dostupno na:
https://www.grundfos.com/rs

Kratka biografija:

Miloš Simović, rođen je u Subotici

2001. godine. Završio je gimnaziju u

Bačkoj Topoli, nakon čega 2019.

god. upisuje Fakultet tehničkih nauka

u oblasti Mašinstvo – Energetika i

procesna tehnika. Bachelor rad

odbranio je 2023. god.

Kontakt:

milossimovic2001@gmail.com

1266

https://mepacademy.com/dual-duct-system/
https://www.grundfos.com/rs

Зборник радова Факултета техничких наука, Нови Сад

УДК: 629

DOI: https://doi.org/10.24867/33AM06Vujkovic

УТИЦАЈ СИСТЕМА ЗА КЛИМАТИЗАЦИЈУ НА ПОТРОШЊУ ГОРИВА У

ПУТНИЧКОМ АУТОМОБИЛУ

THE IMPACT OF THE AIR CONDITIONING SYSTEM ON FUEL CONSUMPTION IN A

PASSENGER CAR

Милош Вујковић, Драган Ружић, Факултет техничких наука, Нови Сад

Област – МАШИНСТВО

Кратак садржај: Потрошња енергије/горива је област

која се унапређује од како су се појавила возила, било

да је реч о возилима са мотором СУС, хибридним или

електричним возилима. У овом раду биће приказан

утицај рада система за климатизацију на потрошњу

горива и поређење потрошње горива у два радна

режима на возилу које је у експлоатацији дужи низ

година.

Кључне речи: клима-уређај, потрошња горива,

микроклима

Abstract: Energy/fuel consumption is an area that has

been continuously improved since the advent of vehicles,

whether they are powered by internal combustion engines,

hybrids, or electric drivetrains. This paper will present the

impact of air conditioning system operation on fuel

consumption, as well as a comparison of fuel consumption

in two operating modes on a vehicle that has been in use

for an extended period of time.

Key words: Air-conditioning system, fuel consumption,

microclimate

1. УВОД

Клима-уређај је део система ВГХ (вентилација,

грејање, хлађење), који првенствено служи да

нормализује микроклиматске услове у летњим данима,

тј. да расхлади кабину возила. Од како је почео да се

уграђује у возила, клима-уређај и генерално систем за

вентилацију, грејање и хлађење (ВГХ) се стално

унапређује у циљу побољшања микроклиматских

услова у кабини возила и смањењу потрошње енергије

на рад система. Познато је да је клима-уређај један од

највећих екстерних потрошача енергије (горива) у

аутомобилу. Процењује се да је потрошња горива у

случају када је клима-уређај укључен, већа за око 20%

него у случају када је искључен.

У наставку ће бити приказана стварна разлика и који

радни режим је повољнији са аспекта потрошње

горива.

НАПОМЕНА: Овај рад је проистекао из мастер

рада чији ментор је био др Драган Ружић, редовни

професор.

2. ТЕОРИЈСКЕ ОСНОВЕ

Отпори кретања играју кључну улогу у уздужној

динамици возила, јер возило може да се креће само ако

је сила на точковима већа од укупног отпора. Постоје

различити типови отпора (котрљања, успона, ваздуха,

инерције, отпор прикључног возила), а који ће се

узимати у обзир зависи од услова вожње. У примеру из

овог рада, анализира се кретање возила по равном

асфалту, константном брзином и без прикључног

возила, па се не разматрају отпори успона, инерције и

прикључног возила [1].

Потрошња горива зависи од снаге потребне да возило

савлада отпоре кретања при одређеној брзини. Та снага

се добија из енергије горива, која се у мотору претвара

у механичку енергију. Потрошња зависи од укупне

енергије потребне за кретање, али и од бројних

конструктивних, експлоатационих фактора и додатних

потрошача (попут клима-уређаја). Због свих тих

утицаја, потрошњу је тешко прецизно одредити и

добити исте вредности при поновљеним мерењима. [1,

5].

Микроклима у унутрашњости возила значајно утиче

на удобност, радну способност и здравље путника,

посебно возача. Неповољни услови могу смањити

концентрацију и изазвати ефекте сличне умору или

употреби алкохола. Системи за вентилацију, грејање и

хлађење (ВГХ) троше значајну количину енергије, што

посебно утиче на домет електричних возила, јер се

енергија црпи директно из батерије. Због тога је важно

стално унапређивати ове системе. [2, 3, 4].

Електронско праћање рада система на возилу:

Аутодијагностички систем који се користи у ове сврхе

је OBD – On Board Diagnostics. Од 90-их година

прошлог века то је OBD-II, друга, напреднија верзија

система за праћење рада, проверу статуса грешки и

њихово отклањање. За комуникацију са електронским

системом возила користе се спољне јединице (скенери,

дијагностички системи). Функционалност

дијагностичког уређаја зависи од прилагођености

марки и типу возила, расположивости одговарајућих

протокола као и од ажурираности софтвера и базе

1267

https://doi.org/10.24867/33AM06Vujkovic

податакa. Пораст броја електричних управљачких

јединица створио је потребу за мрежним системом у

моторним возилима који ће имати довољно велики

капацитет и брзину, способност рада у реалном

времену, као и високу поузданост. CAN – Controler

Area Network је серијски комуникациони протокол који

је пројектован за примену у аутомобилској индустрији,

и данас је доминантан протокол у аутомобилским

мрежним системима [2, 6, 7, 8].

3. ПОСТУПАК ОДРЕЂИВАЊА И РЕЗУЛТАТИ

ПОТРОШЊЕ ГОРИВА

Експеримент је вршен у околини Новог Сада, тачније

на Ирмовачком путу (Футог-Руменка), на две деонице,

дана 03.07.2025., са почетком у 10:21 h. Прва деоница

је са неравним асфалтом, док је друга раван асфалт.

Мерење је вршено у оба смера како би се минимизирао

утицај ветра и нагиба пута уколико постоји. Возило

Peugeot 307 1.6HDi 80kW се креће константном

брзином од 70 km/h у 4. и 5. степену преноса мењача,

са укљученим и искљученим клима-уређајем.

Опрема која се користила за мерење и бележење

параметара од интереса је Bosch KTS 590

аутодијагностички уређај који је био повезан преко

USB кабла на лаптоп рачунар. Параметри од интереса

су: број обртаја мотора, брзина кретања возила,

количина убризганог горива, притисак флуида у

клима-уређају, док су за одређивање потрошње горива

коришћене следеће формуле:

- Часовна потрошња горива (1):

 𝑔 [
𝑘𝑔

ℎ
] =

𝑛[
𝑜𝑏𝑟𝑡

𝑚𝑖𝑛
]∙𝑚𝑔[𝑚𝑔]∙3600

30∙106 (1)

где је

𝑛 [
𝑜𝑏𝑟𝑡

𝑚𝑖𝑛
] – број обртаја мотора,

𝑚𝑔[𝑚𝑔] = 𝑉𝑔[𝑚𝑚3] ∙ 10−9 ∙ 𝜌 [
𝑘𝑔

𝑚3] ∙ 106 – маса

убризгaног горива.

- Тренутна потрошња горива (2):

 𝑔 [
𝐿

100𝑘𝑚
] = 100 ∙

𝑔[
𝐿

ℎ
]

𝑣[𝑘𝑚/ℎ]
 (2)

𝑔 [
𝐿

ℎ
] =

𝑔[
𝑘𝑔

ℎ
]

𝜌[
𝑘𝑔

𝑚3]
∙ 1000

гдe je

𝜌 = 820 [
𝑘𝑔

𝑚3] – густина дизел горива

Резултати мерења у 4. степену преноса су приказани у

табели 1 и на слици 1:

Табела 1. Потрошња горива у 4. степену преноса

g_AC_ON

[L/100kom]

g_AC_OFF

[L/100kom]

Δg

[L/100kom]

MIN 2,941 2,565 0,039

MAX 3,717 3,508 0,922

AVG 3,329 3,036 0,368

Слика 1. Дијаграм тренутне потрошње горива у 4.

степену преноса

Потрошња горива у 5. степену преноса, са укљученим

и искљученим клима-уређајем приказана је у табели 2

и на слици 2.

Табела 2. Потрошња горива у 5. степену преноса

 g_AC_ON

[L/100km]

g_AC_OFF

[L/100km]

Δg

[L/100km]

MIN 2,699 2,233 0,059

MAX 3,425 3,051 0,927

AVG 3,062 2,642 0,493

Слика 2. Дијаграм тренутне потрошње горива у 5.

степену преноса

Следећа табела (табела 3) и слика 3 показују разлику

потрошње горива између 4. и 5. степена преноса при

истој брзини кретања са укљученим клима-уређајем.

Табела 3. Потрошња горива у 4. и 5. степену преноса

 g_4_AC_ON

[L/100km]

g_5_AC_ON

[L/100km]

Δg_AC_ON

[L/100km]

MIN 2,941 2,699 0,063

MAX 3,717 3,425 0,890

AVG 3,329 3,062 0,476

2.50

3.00

3.50

4.00

0 10 20 30 40 50 60 70 80

g
 [

L
/1

0
0

k
m

]

Broj uzorka

g_AC_ON g_AC_OFF

2.2

2.4

2.6

2.8

3.0

3.2

3.4

0 10 20 30 40 50 60 70 80

g
 [

L
/1

0
0

k
m

]

Broj uzorka

g_AC_ON g_AC_OFF

1268

Слика 3. Дијаграм тренутне потрошње горива у 4. и

5. степену преноса

Обзиром да се преносни однос каишног преносника

између коленастог вратила мотора СУС и вратила

компресора клима-уређаја може одредити простим

мерењем каишника, може се, на основи броја обртаја

коленастог вратила и преносног односа, одредити број

обртаја компресора, а самим тим и спољашња

карактеристика компресора на датом режиму, слика 4

и 5.

Пречник каишника коленастог вратила је 158 mm, док

је пречник каишника компресора 120 mm. На основу

ових пречника, долази се до преносног односа каишног

преносника (3):

 𝑖 =
𝑖𝑘𝑜𝑚

𝑖𝑘𝑜𝑙
=

120

158
= 0,759 (3)

Табела 4. Радни режим компресора

n_4

[min-1]

n_AC_4

[min-1]

n_5

[min-1]

n_AC_5

[min-1]

p_IV_AC

[bar]

p_V_AC

[bar]

1767 2327 1413 1860 12,58 11,64

Слика 4. Номинална радна тачка у 4. степену

преноса

Слика 5. Номинална радна тачка у 5. степену

преноса

3. ЗАКЉУЧАК

У случају коришћења клима-уређаја, потрошња горива

се повећава у просеку око 0,5 L на пређених 100 km, без

обзира на то у којем степену преноса се налази мењач.

За исти степен преноса разлика, у процентима износи

8 – 18% када се гледа мерење са и без клима-уређаја.

То је са аспекта економичности и домета возила је

негативно, али са аспекта ергономије, тј. топлотног

комфора у кабини возила је неопходно.

Стање асфалта, односно пута по којем се креће возило,

значајно утиче на потрошњу горива, без обзира да ли

је клима-уређај укључен или не. На неравној (грбавој)

подлози, има случајева да су потрошња горива са

укљученим и искљученим клима-уређајем веома

блиске, чак у неколико наврата потрошња горива са

искљученим клима-уређајем је већа од потрошње са

укљученим клима-уређајем.

При брзини од 70 km/h, економичнија вожња се

постиже при кретању у 5. степену преноса, тј. када

мотор СУС ради на нижим бројевима обртаја (у 4.

степену преноса троши се око 21% више горива у

односу на 5. степен). На основу карактеристике

компресора закључује се да мање енергије троши при

нижим обртајима (1413 obrt/min у односу на 1767

obrt/min коленастог вратила).

4. ЛИТЕРАТУРА

[1] Стојић Б.: „Теорија кретања друмских

возила“, Факултет техничких наука, Нови Сад, 2014.

[2] Дудаш А.: „Теоријске основе снимања

брзинске карактеристике мотора помоћу

дијагностичког уређаја“, дипломски рад, Факултет

техничких наука, Нови Сад, 2014.

[3] Ружић Д.: „Ергономија моторних возила“,

Факултет техничких наука, Нови Сад, 2020.

[4] Ружић Д.: „Опрема моторних возила -

скрипта“, Факултет техничких наука, Нови Сад, 2023.

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

0 10 20 30 40 50 60 70 80

g
 [

L
/1

0
0

k
m

]

Broj uzorka

g_AC_ON_4 g_AC_ON_5

1269

 [5] https://x-engineer.org/real-world-fuel-

consumption/ (приступљено август 2025.)

[6] https://x-engineer.org/obd-system/

(приступљено август 2025.)

[7] https://x-engineer.org/on-board-diagnostics-

obd-modes-operation-diagnostic-services/

(приступљено август 2025.)

[8] https://x-engineer.org/automotive-diagnostic-

standards/ (приступљено август 2025.)

Кратка биографија:

Милош Вујковић рођен у

Шапцу, 2000. године.

Основне академске

студије, завршио 2023.

године, на Факултету

техничких наука, где је

2025. године одбранио

мастер рад из области

Моторна возила, смер

Аутомобилско

инжењерство.

Драган Ружић (1973)

докторирао је на

Факултету техничких

наука из области

топлотне ергономије у

моторним возилима 2013.

год. Запослен је на

Факултету техничких

наука од 2000. год., а од

2024. год. је у звању

редовног професора на

Катедри за моторе и

возила.

1270

https://x-engineer.org/real-world-fuel-consumption/
https://x-engineer.org/real-world-fuel-consumption/
https://x-engineer.org/obd-system/
https://x-engineer.org/on-board-diagnostics-obd-modes-operation-diagnostic-services/
https://x-engineer.org/on-board-diagnostics-obd-modes-operation-diagnostic-services/
https://x-engineer.org/automotive-diagnostic-standards/
https://x-engineer.org/automotive-diagnostic-standards/

Зборник радова Факултета техничких наука, Нови Сад

UDK: 621.7

DOI: https://doi.org/10.24867/33AM07Zadric

МЕТОДЕ ИНЖЕЊЕРСКЕ АНАЛИЗЕ И САВЕРЕМЕНИХ ТЕХНИКА

ПРОЈЕКТОВАЊА НА ПРИМЕРУ РАЗВОЈА ШАСИЈЕ ТРКАЧКОГ БОЛИДА

METHODS OF ENGINEERING ANALYSIS AND MODERN DESIGNING TECHNIQUES

IN DEVELOPMENT OF A RACE CAR CHASSIS

Марко Задрић Бардак, Драган Живанић, Факултет техничких наука, Нови Сад

Област - МАШИНСТВО

Кратак садржај – Инжењерска анaлиза и савремене

технике пројектовања представљају елементарне

алате којима се инжењери модерне индустрије

служе у свакодневном пројектовању. У овом раду

биће описана теоријска основа поменутих метода,

такође ће бити приказана практична примена

метода на примеру развоја, пројектовања и анализе

шасије тркачког болида.

Кључне речи: пројектовање, инжењерска анализа,

развој, МКЕ

Abstract – Engineering analysis and modern designing

techniques represent essential tools that are used

everyday by engineers in the modern industry. This paper

will describe the theorethical basis of the mentioned

methods, it will also present the practical usage of the

methods on the example of development, designing and

analysis of a race car chassis.

Keywords: Design, engineering analysis, development,

FEA

1. УВОД

Инжењерска анализа у машинству представља

фундаментални алат за разумевање, пројектовање и

оптимизацију механичких система. Инжењерска

анализа подразумева систематски приступ

моделовању физичких појава помоћу коришћења

савремених нумеричких метода и софтверских алата.

Анализа омогућава инжењерима да предвиде

понашање компоненти и система услед различитих

услова оптерећења, температуре и режима рада. У

овом раду обрађени су теоријски основи инжењерске

анализе, њене кључне методе као што су метода

коначних елемената (МКЕ), метода коначних

запремина (МКЗ) и остали аналитички приступи [1].

Такође, детаљно су размотрене примене инжењерске

анализе у конструкцијама, преносу топлоте, динамици

система и протоку флуида, уз студије случаја из

праксе.

__

НАПОМЕНА:

Овај рад је проистекао из мастер рада чији ментор

је био др Драган Живанић, редовни професор.

2. ТЕОРИЈСКЕ ОСНОВЕ

Основни концепт методе коначних елемената се

заснива на претпоставци да се сложен контуинуални

систем може апроксимирати дискретним скупом

коначних елемената који су међусобно повезани у

чворове [2]. Сваки елемент се понаша према

дефинисаним законима, на пример према Хуковом

закону за линеарно еластичне материјале. Основа

математичке формулације полази од диференцијалне

једначине равнотеже и примењује се принцип

виртуелног рада или варијациони приступ.

Дискретизацијом се добија систем линеарних или

нелинеарних алгебарских једначина:

[𝐾] ∙ {𝑢} = {𝐹} (1)

Где су:

[K] – матрица крутости;

{u} – вектор померања;

{F} – вектор спољашњих сила.

Циљ статичке анализе је израчунавање напона

идеформација унутар конструкционог елемента.

Унутрашњи напони се развијају у телу на начин који

обезбеђује равнотежу унутар сваког дела запремине,

тако да се може применити принцип равнотеже, како

би се израчунале ове величине, односно да је сума

свих сила које делују на ограничену запремину тела

једнака нули. Овакав принцип рада омогућује брзо

решење на примеру једноставне греде – уз помоћ

равнотеже сила могуће је израчунати момент

савијања и силу смицања, а из тога даље израчунати

нормалне и тангенцијалне напоне. Применом

равнотеже на 2D облике рачун постаје тежи, а за 3D

тела још сложенији.

Метода коначних елемената приступа решавању

оваквом сложеном проблему тако што тело дели на

већи број малих елемената који су међусобно

повезани чворовима. Овакав процес се назива

дискретизација, а скуп елемената и чворова се назива

мрежа (mesh). Дискретизација је корисна јер у том

случају процес рачуна из закона равнотеже мора бити

задовољен само над коначним бројем дискретних

елемената, уместо над целим телом. Резултат

дискретизације је просторна мрежа коначних

елемената у облику геометрије задатог модела.

Кориснику је омогућено да произвољно изабере

1271

https://doi.org/10.24867/33AM07Zadric

густину мреже коначних елемената која директно

зависи од величине коначног елемента. Број коначних

елемената знатно утиче на захтеве перформанси

рачунара па тако и на потребан временски период

који рачунар изискује како би дошао до решења

анализе. Такође, што су коначни елементи мањи и

њихова количина већа, то ће вредности резултата

анализе бити прецизнији.

3. ПОСТУПАК МОДЕЛИРАЊА И ПРИПРЕМЕ

МОДЕЛА ЗА АНАЛИЗУ

Рачунарски подржано пројектовање (CAD)

представља инжењерски процес у коме се проблеми

са којима се инжењери сусрећу у реалном свету,

представљају помоћу графичких и запреминских

тродимензионалних модела који су добијени путем

рачунара. Поменутим поступком се креира дигитални

близанац производа у рачунарском окружењу на

којем је могуће вршити брзе измене, анализе и

прорачуне, као и креирање техничке документације.

Процес геометријског моделовања шасије започет је

дефинисањем координатног почетка, чија X оса

представља подужну осу, док Y оса представља осу

предње осовине тркачког болида. Затим се

дефинисала раван која пролази кроз поменуту осу,

али и кроз вертикалну Z осу чиме се добила раван

која је коришћена као нулта раван модела. Нове равни

су креиране помоћу команде којом се дефинише

одстојање од нулте равни, где се за поменуту мерну

величину увео параметар ради лакше касније

промене.

Следећи корак у параметарском моделовању је било

дефинисање и повезивање дефинисаних параметара

са мерним величинама као што су дужине и углови.

Нови уведени параметри, су затим математичком

формулом изједначени, а потом су им дефинисани

називи параметара. На основу креиране референтне

просторне геометрије, уведени су цевни профили

стандардних величина помоћу алата Frame generator

[4] чиме се добија изглед коначног тродимензионог

модела анализираног производа.

Генерисање мреже односно дискретизација

тродимензионог модела шасије на коначни број

елемената извршена је путем модула NASTRAN,

помоћу којег је омогућено кориснику да произвољно

изабере величину коначног елемента, која директно

утиче на прецизност резултата симулације и

временско трајање рачунарске анализе. Затим су

дефинисани гранични услови у складу са сценаријем

оптерећења. Потом су на основу анализе већ

постојеће научне литературе [5, 8-13] уведена

оптерећења. Вредности оптерећења добијена су путем

прорачуна који користи елементарне механичке

принципе једначина равнотеже.

Прорачун је обухватио случајеве оптерећења који се

помињу у техничком правилнику студентског

такмичења Formula student [6]. Анализирани су

случајеви попут оптерећења шасије торзионим

моментом у тренутку наиласка тркачког болида на

избочину или рупу у подлози; случај оптерећења

моментом савијања услед сопствене силе тежине и

тежине комопонената и система на возилу, случај

ударног оптерећења предњег краја болида; случај

ударног оптерећења бочне стране болида.

Поменути сценарији су изабрани за критичне

случајеве анализе на основу смерница дефинисаним

техничким правилником такмичења. У техничком

правилнику најстрожије су дефинисани безбедносни

услови тркачког болида. Сигурност конструкције

доказује се анализом вредности максималних напона

шасије у случајевима ударног оптерећења предњег

краја болида и ударног оптерећења бочне стране

болида. Дати случајеви оптерећења најтачније

предвиђају могућност појаве отказа конструкције

приликом судара, што угрожава безбедност возача

болида. Случајеви оптерећења шасије торзионим

моментом и моментом савијања услед сопствене

тежине и тежине компонената возила, изабрани су

како би се предвиделе тркачке перформансе возила.

Анализом два поменута случаја омогућава се

израчунавање вредности угаоне крутости шасије.

Израчуната величина директно утиче на вертикалну

компоненту силе која се појављује на појединачном

точку. Множењем вертикалне компоненте силе са

коефицијентом трења, могуће је израчунати вредност

приањања пнеуматика. Потом се израчунате величине

користе у прорачуну брзинске карактеристике возила

која предвиђа перформансе возила у случају скретања

и кочења, без потребе да се болид тестира на стази.

4. РЕЗУЛТАТИ АНАЛИЗЕ МЕТОДОМ

КОНАЧНИХ ЕЛЕМЕНАТА

За потребе прорачуна овог рада усвојен је материјал

25CrMo4/1.728, прохромовани челик који поседује

следеће механичке карактеристике:

ρ=7860 kg/m3 - густина,

σu=560 MPa - затезна чврстоћа;

σy=450 MPa - напон течења (максимални дозвољени

напон односно вредност напона при којој материјал

подлеже пластичној деформацији).

Након извршеног рачунарског прорачуна за поменуте

случајеве оптерећења, могуће је анализом резултата у

виду приказивања вредности максималних напона и

деформација, доћи до прелиминарних сазнања у вези

локације концентрације напона у конструкцији. Да би

се потврдила тачност резултата, потребно је постићи

конвергенцију максималних напона. Конвергенција

представља случај у коме се резултати вредности

напона две узастопне итерације симулације не

разликују за више од 5%. Због наведених разлога,

рачунарске симулације поменутих оптерећења су

поновљене са коначним елементима мање величине.

Приказани су примери случаја оптерећења моментом

торзије и случаја ударног оптерећења предњег краја

шасије тркачког болида. Добијена вредност напона у

првој итерацији симулације је 320.8 MPa, док

израчуната вредност исте у другој итерацији

симулације износи 331.5 MPa. Израчунате вредности

конвергирају 1.65%, чиме се доказује тачност

симулације, те нема потребе за даљим умањивањем

величине коначних елемената.

1272

Табела 1: Вредности резултата симулације

оптерећења шасије торзионим моментом

Физичка величина Напон Деформација

Прва итерација 320.8 MPa 27.369 mm

Друга итерација 331.5 MPa 27.369 mm

Конвергенција 3.35% 0%

Слика 1. Вредности деформације друге итерације

оптерећења шасије торзионим моментом

Такође се може закључити, на основу поређења

вредности максималног напона који се јавља као

резултат у другој итерацији симулације торзионог

оптерећења, да је степен сигурности задовољен.

Степен сигурности за случај торзионог оптерећења

износи:

Степен сигурности =
460 𝑀𝑃𝑎

331.5 𝑀𝑃𝑎
= 1.38 (2)

Добијена вредност напона у првој итерацији

симулације ударног оптерећења предњег краја болида

је 121.8 MPa, док је израчуната вредност исте у другој

итерацији симулације 120.3 MPa. Израчунате

вредности конвергирају 1.23%, чиме се доказује

тачност симулације, те нема потребе за даљим

умањивањем величине коначних елемената.

Слика 2. Вредности напона друге итерације ударног

оптерећења предњег краја

Табела 2: Вредности резултата симулације ударног

оптерећења предњег краја шасије

Физичка величина Напон Деформација

Прва итерација 121.8 MPa 4.192 mm

Друга итерација 120.3 MPa 4.192 mm

Конвергенција 1.23% 0%

Након друге итерације и потврђене конвергенције,

вредност напона је убачена у формулу за

израчунавање степена сигурности при ударном

оптерећењу предњег краја:

Степен сигурности =
460 𝑀𝑃𝑎

120.3 𝑀𝑃𝑎
= 3.8 (3)

Након анализе наведених случајева закључено је да су

најмање вредности степена сигурности, који износе

1.22 и 1.38. То је уочено код ударног оптерећења

бочне стране болида и оптерећења торзионим

моментом. Потом је извршена оптимизација дизајна

шасије у смеру ојачавања конструкције за наведене

случајеве. Додати су потпорни цевни профили мањих

димензија попречног пресека, у виду дијагоналних

укрућења [7] између постојећих профила у

конструкцији.

Потом је рачунарска симулација поновљена са

оптимизованим дизајном шасије за случај ударног

оптерећења бочне стране шасије тркачког болида.

Добијена вредност напона у првој итерацији

симулације је 298.8 MPa, док је израчуната вредност

исте у другој итерацији симулације 316.6 MPa.

Израчунате вредности конвергирају 5.95%, чиме није

доказана тачност симулације, те постоји потреба за

даљим умањивањем величине коначних елемената.

Слика 3. Вредности напона треће итерације ударног

оптерећења бочне стране шасије

Добијена вредност напона у другој итерацији

симулације је 316.6 МPa, док је израчуната вредност

исте у трећој итерацији симулације 321.6 МPa.

Израчунате вредности конвергирају 1.57%, доказујући

тачност симулације, те нема потребе за даљим

умањивањем величине коначних елемената. Након

треће итерације и потврђене конвергенције, вредност

напона се може убацити у формулу за израчунавање

1273

степена сигурности при ударном оптерећењу предњег

краја тркачког болида:

Степен сигурности =
460 𝑀𝑃𝑎

321.6 𝑀𝑃𝑎
= 1.43 (4)

Табела 3: Вредности резултата симулације ударног

оптерећења бочне стране шасије

Физичка величина Напон Деформација

Прва итерација 298.8 MPa 3.452 mm

Друга итерација 316.6 MPa 3.452 mm

Конвергенција 5.95% 0%

Трећа итерација 321.6 MPa 3.452 mm

Конвергенција 1.57% 0%

5. ЗАКЉУЧАК

Закључено је да добијени степен сигурности за случај

ударног оптерећења бочне стране оптимизоване

шасије износи 1.43, чиме је степен сигурности

повећан до нивоа задовољавајуће вредности. На

основу добијених резултата, може се закључити да је

шасија тркачког болида оптимизована на исправан

начин. Вредност максималног напона који се јавља

као резултат симулације се смањила за 55.2 МPа, док

се вредност степена сигурности повећала за 14.5%.

Верификацију тачности резултата могуће је

потврдити путем извођења експерименталне анализе.

Након пројектовања, производње, следи постављање

мерних инструмената у виду мерних трака. Мерне

траке представљају елементе који на основу

пиезоелектричног ефекта детектују промену

вредности отпорности проводника. Потом би се

шасија оптеретила израчунатим силама које су

добијене кроз прорачун. Вредности максималних

напона који се појављују у конструкцији, могуће је

израчунати на основу вредности измерених померања

и познавања модула еластичности материјала.

Додатан вид верификације тачности добијених

резултата огледа се у понављању инжењерске анализе

коришћењем различитих софтвера. Коначна провера

исправности правца развоја архитектуре возила

извршила би се понављањем компјутерске анализе и

поступка мерења конструкције, која је произведена од

другог материјала. Таквим истраживањем долази се

до поређења вредности максималних напона и

механичких карактеристика различитих материјала у

зависности од укупне масе конструкције.

Пример развоја и оптимизације шасије тркачког

болида показује примену савремених техника

пројектовања. То су параметризација и инжењерска

анализа. Поменуте две технике у многоме користе и

доприносе у процесу развоја производа, у виду

умањења потребног времена за развој и

имплементацију промена у дизајну. Омогућено је

предвиђање понашања конструкције приликом

реалних случајева у експлоатацији, чиме се долази до

вредних информација и сазнања.

6. ЛИТЕРАТУРА

[1] Joseph Edward Shigley, “Mechanical Engineering

Design“, 2020, ISBN 978-0-07-339821-1.

[2] Радомир Ђокић, “Инжењерска анализа“, 2021,

скрипта, Факултет Техничких Наука, Нови Сад

[3] Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z., “The

Finite Element Method: Its Basis and Fundamentals ,

2013, Butterworth-Heinemann, ISBN 0-7506-6320-0.

[4] Никола Иланковић, “Савремене технике

пројектовања транспортних система“, 2023,

скрипта, Факултет Техничких Наука, Нови Сад

[5] William B. Riley and Albert R. George, Cornell

University, “Design, Analysis and Testing of a

Formula SAE Car Chassis“, 2002, ISSN 0148-7191.

[6] Formula Society of Automotive Engineers, FSAE,

“Formula Student Rulebook“, 2025, Institution of

Mechanical Engineers.

[7] Carroll Smith, SAE/PT-90, Society of Automotive

Engineers, “Racing Chassis and Suspension Design“,

2004, ISBN 0-7680-1120-5.

[8] Krunal Kania, Aditya Verma, Rushang Babariya,

Jayendra Vasani, IRJET, “Design & Development of

Formula Student Chassis“, 2023, Vol. 10, ISSN:

2395-0056.

[9] Mohammed Tazeem Khan, IRJET, “Design &

Manufacturing of FSAE Chassis“, 2021, Vol. 3, e-

ISSN: 2582-5208.

[10] Felix Dionisius, Imam Nur Arif, Tito Endramawan,

Agus Sifa Badruzzama, “Material Selection and

Analysis of Torsional Rigidity in Formula Student

SAE regulation“, 2022, Vol 22., ISSN: 2549 – 9815.

[11] Sayed Zameer, Sayyed Affan Ali, Tambe Salman,

Kharbe Mohammad, IRJET, “Static Structural

Analysis of Chassis in Compliance with International

Rules of a Prototype Formula Styled Vehicle“, 2022,

Vol 9, e-ISSN: 2395-0056.

DOI: https://doi.org/10.24867/33AM07Zadric

DOI: https://doi.org/10.24867/33AM07Zadric

Кратка биографија:

Марко Задрић Бардак, рођен у Суботици,

2000. године. Основне академске студије

завршио 2023. године, на Факултету

техничких наука, где је 2025. године

одбранио мастер рад на катедри за

Конструкционо машинство, транспортне

системе и логистику.

Драган Живанић рођен у Сремској

Митровици, 1972. Године. Докторирао је

на Факултету техничких наука 2012.

Године. Запослен на факултету од 1997.

Године, изабран у звање ванредног

професора 2019, а у звање редовног

професора изабран је 2024. Године.

1274

https://doi.org/10.24867/33AM07Zadric
https://doi.org/10.24867/33AM07Zadric

Зборник радова факултета техничких наука, Нови Сад

UDK: 621

DOI: https://doi.org/10.24867/33AM08Burlica

КОРИШЋЕЊЕ ХТГР НУКЛЕАРНИХ РЕАКТОРА У ОКВИРУ КОГЕНЕРАТИВНИХ

СИСТЕМА ЗА ПРОИЗВОДЊУ ЕНЕРГИЈЕ

 UTILIZATION OF HTGR NUCLEAR REACTORS WITHIN COGENERATION

ENERGY SYSTEMS

Исидора Бурлица, Факултет техничких наука, Нови Сад

Област – МАШИНСТВО

Кратак садржај – Мастер рад се састоји из три

велике целине: општег увода у нуклеарну енергију и

нуклеарне реакторе, упознавања са ХТГР реакторима

и њиховим принципом рада и примени ове технологије

у когенеративним постројењима. У првој целини

објашњене су нуклеарне реакције, делови реактора, а

затим и његов принцип рада и подела нуклеарних

електрана. Други део обухвата опис ТРИСО горива и

принцип рада ХТГР реактора, са посебним нагласком

на безбедност, како је то једна од његових

најбитнијих карактеристика. Последња целина рада

тиче се интеграције ХТГР-а у когенеративне

енергетске системе, уз кратак осврт на економске

аспекте ове технологије.

Кључне речи: нуклеарна енергија, ХТГР реактор,

когенеративна постројења, ТРИСО гориво.

Abstract – The Master’s thesis is structured into three

main sections: a general introduction to nuclear energy

and nuclear reactors, an overview of HTGR reactors and

their operating principles, and the application of this

technology in cogeneration plants. The first section

explains nuclear reactions, the components of a reactor, as

well as its operating principle and the classification of

nuclear power plants. The second section covers the

description of TRISO fuel and the operating principle of

HTGR reactors, with particular emphasis on safety, as it

represents one of their most important characteristics. The

final section of the thesis concerns the integration of

HTGRs into cogeneration energy systems, including a brief

consideration of the economic aspects of this technology.

Keywords: nuclear energy, HTGR reactor, cogenerative

plants, TRISO fuel

1. УВОД

Гасови стаклене баште све више угрожавају нашу

планету и здравље. У циљу ограничења пораста

глобалне температуре на 1,5°С до краја века, одржан је

Париски споразум, међународни уговор о климатским

променама. Верује се да нуклеарна енергија може

играти велику улогу у постизању овог циља, обзиром

на њену поузданост и распрострањеност горива.

Посебну пажњу је задобио ХТГР реактор, који

захваљујући високим температурама радног медијума

на крају процеса, може когенеративно да се искористи

за још неки индустријски процес, поред примарне

производње електричне енергије.

2. НУКЛЕАРНА ФИЗИКА

Основне нуклеарне реакције у природи су фузија и

фисија. Фузијом се лакша атомска језгра спајају у једно

теже при чему ослобађају енергију, док је фисија

процес цепања нестабилног језгра на два, чиме се

ослобађа енергија која се користи у данашњим

комерцијалним реакторима.

2.1. Нуклеарни реактор

Нуклеарни реактор је посуда под притиском у којој се

одвија контролисана ланчана реакција фисије [3].

Његови делови су гориво, модератор, управљачке

шипке, систем за хлађење, рефлектор и заштитни

систем, а приказани су на слици 1:

Слика 1. Делови нуклеарног реактора [1]

Гориво може да се нађе у облику горивих шипки и као

шљунковито гориво. Контролне шипке омогућавају

регулисање ланчане реакције у виду повећања или

смањења стопе фисије. Модераторе користимо како би

успорили брзе неутроне. Рефлектор служи да врати

неутроне назад у средиште реактора и тако да

искористимо што већи број неутрона. Rashladno

средство, тј. радни флуид је медијум који преноси

НАПОМЕНА: Овај рад проистекао је из мастер

рада чији је ментор био др Ђорђије Додер, ванр.

проф.

1275

https://doi.org/10.24867/33AM08Burlica

топлоту из језгра реактора до турбине, а такође самим

тим и хлади реактор. Све ове компоненте су смештене

у реакторској посуди под притиском.

Принцип рада нуклеарне електране је следећи: у језгру

се одвија процес фисије. Кроз реактор циркулише

медијум који преноси топлоту насталу цепањем језгра

атома. Расхладно средство у измењивачу топлоте

индиректно загрева воду и претвара је у пару, због чега

се оно хлади и наставља да циркулише кроз систем.

Настала водена пара се доводи до турбине коју окреће,

чиме се покреће генератор који производи електричну

енергију.

Постоје четири генерације нуклеарних реактора, од

којих је свака напреднија од своје претходне, а ХТГР

спада у четврту. Реактори се такође могу

класификовати према енергији неутрона који изазивају

фисију, rashladnom средству, употреби и фази горива.

Призматични дизајн и дизајн са шљунковитим

лежиштем, се виде на слици 2:

Слика 2. Призматични дизајн и дизајн са

шљунковитим лежиштем [5]

3. ХТГР РЕАКТОРИ

Високо температурни гасом

хлађени реактор (ХТГР) је

технологија нуклеарног

фисионог реактора који

користи хелијум за хлађење и

графит за модерацију [2].

Гориво ових реактора је

смештено у ТРИСО честице

које се састоје од језгра

уранијума, угљеника и

кисеоника, а облога од три

слоја материјала на бази

керамике спречава

ослобађање радиоактивних

производа фисије ван ових

граница [2]. Опис ХТГР

технологије ће се усвојити од

постојећег ХТР-10 кинеског

реактора (слика 3).

Језгро се састоји од 27.000

горивих елемената и

окружено је графитним

рефлекторима (горе, доле и бочно) [2].

Канали за хладан хелијум су пројектовани унутар

бочног рефлектора и кроз њих гас путује нагоре након

што уђе у посуду под притиском, а затим му се ток

обрће на врху језгра реактора како би скренуо ка

лежишту од куглица (гориву). Након што се загреје и

дође до доњег дела реактора, ту улази у цев за врућ гас

и њом путује до измењивача топлоте [2].

2.2 Безбедност ХТГР-a

Нуклеарне несреће углавном настају због

заостале/остатне топлоте распадања што доводи до

топљења језгра. У конвенционалним реакторима,

одвођење топлоте се одвија активним системима за

хлађење као што су пумпе, док је расхладни флуид

вода, који не може да врши своју улогу уколико дође

до промене њеног агрегатног стања. У ХТГР реактору,

остатна топлота се одводи путем гаса–најчешће

хелијума, где чак и при отказу компресора, хлађење

реактора ће се наставити захваљујући природној

конвекцији. Хелијум не може да реагује са другим

хемијским елементима, није запаљив и не може

постати радиоактиван.

Топљење језгра није могуће [3].

Највиша температура која може да се постигне у језгру

реактора (1600°C у екстремним условима) је испод

било које температуре при којој би се гориво

оштетило, захваљујући ТРИСО дизајну горива [3].

Чак и ако контролне шипке, апсорбујуће куглице или

хелијум откажу, реактор ће природно зауставити

фисију и охладиће се сам од себе због негативног

температурног коефицијента реактивности [3].

Велики је однос површине суда у односу на запремину,

што значи да је топлота која се изгуби преко површине

језгра већа од оне која се ствара распадом горива у

језгру [3].

Упркос свим контроверзијама у свету, доказано је да је

нуклеарна енергија безбеднија од енергије из

фосилних горива. Истраживања су показала да је угаљ

усмртио 100 пута више људи од нуклеарне енергије,

углавном као последица загађења ваздуха, а откад свет

користи енергију фисије, израчунато је да је сачувано

1,84 милиона живота између година 1971. и 2009. Чак

се процењује да су енергија биомасе, соларна, хидро и

ветро енергија однеле више живота од нуклеарне [3].

4. ИНТЕГРАЦИЈА ХТГР-А У КОГЕНЕРАТИВНЕ

СИСТЕМЕ

Нуклеарна когенерација представља истовремену

производњу електричне енергије и топлоте или

производа добијених из топлоте у току рада нуклеарне

електране. ХТГР технологија је идеална за ову сврху,

обзиром на то да су температуре хелијума на крају

процеса високе и као такве углавном се само пуштају у

атмосферу и губе свој потенцијал да се преусмере као

извор топлоте на још неки процес. Општи процес

когенерације из нуклеарне енергије је приказан на

слици 4:

 Слика 3. ХТР-10 [2]

1276

Слика 3. Шема когенеративног ХТГР постројења [5]

Секундарна топлота из ХТГР-а се може искористити у

процесима за даљинско грејање, дестилацију,

процесну топлоту за индустријске системе,

експлоатацију нафте и катранских пескова, прераду

сирове нафте, утечњавање и гасификацију угља,

производњу амонијака, метанола, тешких метала и

водоника.

4.1 Систем даљинског грејања

Примена система даљинског грејања зависи од климе

и могућности да се у тој жељеној регији обезбеди ниво

комфора у грејању. Главни извори енергије који се

данас користе за производњу топлоте за домаћинства

су угаљ и гас, док је проценат нуклеарне топлоте у ове

сврхе занемарљив.

Општи принцип рада когенерације топлоте за

даљинско грејање из ХТГР-а почиње са делом паре

која излази из измењивача топлоте и која се усмерава

ка посебној турбини ниског притиска. Тако

експандирана пара се затим кондензује у измењивачу

топлоте, предајући топлоту у цевовод за даљинско

грејање. Модификације електране ради увођења овог

система су прилично умерене и могу се реализовати

без ометања уобичајеног рада постројења [4].

4.2 Десалинизација

Како се све већи број места суочава са несташицом

воде, десалинизација ће постати кључна технологија за

решавање овог проблема. Ово иде у прилог нуклеарној

енергији, за коју се очекује да ће постати одржива

опција за велике системе десалинизације широм света

[4].

Десалинизацију воде можемо да вршимо помоћу више

техника: РО (обрнуте осмозе), МСФ (вишестепена

флеш дестилација) или МЕД (вишеефектна

дестилација) техника. Иако се МСФ показала као

најједноставнији и најпоузданији од главних процеса,

њен значајан недостатак је већа потрошња енергије у

односу на MЕД и РO. Међутим, решење може да лежи

управо у ХТГР реакторима, који би ефикасно

понудили своју отпадну топлоту за овај процес.

Примену овог случаја можемо наћи на јапанском ХТГР

реактору ГХРГР3000.

4.3 Процесна топлота за индустријске системе

У зависности од температурног опсега, потребе за

топлотом у оквиру одређеног индустријског процеса

могу се задовољити прилагођавањем конфигурације

когенеративног система одговарајућем типу

нуклеарног реактора [4].

Поред производње електричне енергије, висока

излазна температура флуида може се користити за низ

индустријских процеса који захтевају топлоту у

распону од 650°C до 950°C. Неке од примера су:

• експлоатација нафте и катранских пескова

• прерада сирове нафте

• утечњавање и гасификација угља

• производња амонијака

• производња метанола

• производња тешких метала

4.1 Производња водоника

Неки сектори су компликованији у постизању

декарбонизације, као на пример авијација и камионски

транспорт. Један од начина њиховог декарбонизовања

може бити употреба водоника као горива, али да би цео

систем био CO2 неутралан, тај водоник морамо да

добијемо из неког чистог извора. Тада наступају ХТГР

реактори, као идеално решење, чија је отпадна топлота

довољна да произведе извор енергије потребан за

покретање реакције електролизе.

Електролиза је процес у којем се помоћу електричне

енергије вода разлаже на водоник и кисеоник, док се

све то одвија у уређају званом електролизер.

Водоник се може когенерисати уз помоћ нуклеарне

топлоте електролизом воде или паре, хемијским

реформингом фосилних горива и биомасе и

термохемијским процесима разградње паре.

Принцип рада је следећи: примарни хелијум, загрејан

до високе температуре у реактору, предаје своју

топлоту секундарном хелијуму у интермедијарном

измењивачу топлоте унутар зграде реактора.

Секундарни хелијум, који је потпуно чист и без

радиоактивности, излази из заштитног система и преко

посебног цевовода преноси топлоту до постројења за

производњу водоника (нпр. реформера или

термохемијског циклуса). У том процесу се, уз помоћ

доведене топлоте, одвија конверзија сировине у

водоник. Након што је предао топлоту и охладио се,

секундарни хелијум се помоћу циркулационе пумпе

враћа у интермедијарни измењивач топлоте, чиме се

циклус затвара.

5. ЕКОНОМСКИ АСПЕКТИ

Трошкови изградње нуклеарних електрана драматично

су порасли у последњих неколико година: са 2.500

€/kW двадесетих година на више од 6.000 €/kW, што је

један од већих проблема за њихов развој. Нуклеарне

електране су велики пројекти чија изградња захтева

неколико хиљада радника и читаву деценију

грађевинских радова. Ситуација је још неповољнија за

ХТГР реакторе, како је њихова технологија још

комплекснија и мање комерцијална.

У цену ХТГР-а убрајају се трошкови изградње, горива

и трошкови рада и одржавања.

1277

Када је у питању производња водоника, обновљиви

извори нуде најнижи трошак, посебно ветроелектране,

са ценом од 2,05 $/kg водоника, што је нешто ниже у

односу на соларне електране чија цена износи 2,24 $/kg

[6]. При поређењу напредних реактора са водом под

притиском и ХТГР реактора, свакако да ХТГР

остварује нижи трошак производње водоника [6].

Значајну улогу у смањењу трошка водоника игра

повећање обима постројења (снаге и модула).

Многе студије случаја показују да нуклеарно даљинско

грејање може бити ценовно конкурентно чак и у

односу на природни гас, што је још лакше оствариво уз

примену пореза на угљеник [4].

Производња амонијака уз коришћење нуклеарне

енергије има најниже оперативне трошкове, али

највише капиталне.

Најнижи трошак производње водоника постигнут је

коришћењем електричне енергије из ветра, а одмах

затим и из соларних фотонапонских система. Ове

вредности су за око 1,3 $/kg ниже од оних из ХТГР [6].

Резултати су приказани на слици 6:

Слика 4. Поређење трошкова производње водоника из

различитих извора енергије [6]

Међутим,ове анализе често не узимају у обзир

недоступнст обновљивих извора у зависности од доба

дана иременске прогнозе, што нам не даје загарантоану

производњу када нам је потребна. То би подразумевало

додатни трошак у виду складишта енергије и додатне

емисије при производњи исте. Такође се не узима у

обзир чињеница да нуклеарна електрана заузима

знатно мање простора од соларних електрана и

ветропаркова, што отвара могућност ка искоришћењу

тог земљишта за још нешто што би могло бити

профитабилно. Другим речима, сама цена произведене

сировине нема увек главну улогу у одабиру начина из

којег ће водоник да се произведе.

Уколико би се ова технологија комерцијализовала и

почела да се производи масовније, њена цена би

свакако значајно опала. Нажалост, овде више улогу не

играју само цифре, већ и људска осећања која су често

негативна када је у питању нуклеарна технологија.

6. ЗАКЉУЧАК

ХТГР реактори представљају зрeлу технологију која

може да обезбеди стабилно снабдевање топлотном и

електричном енергијом. Посебно се одликују високим

нивоом безбедности који омогућавају напредни

сигурносни системи.

Топлота произведена уз помоћ ХТГР-а може да се

искористи, поред производње електричне енергије, и

за широк спектар додатних производа који могу да

буду део даљинског грејања и хлађења, процесне

топлоте, десалинизације, производње водоника и

друго.

Обзиром на неповерење које су људи изградили према

нуклеарној енергији, ХТГР реактори су можда

последња шанса да се то поверење врати, ако би се

стручна лица ангажовала да изнесу све чињенице и

појашњења о високој безбедности и ефикасности ове

технологије.

7. ЛИТЕРАТУРА

[1] Nuklearni reaktori. Fizis.rs – Физика–атомског језгра.

https://fizis.rs/гимназија/iv-разред/физика-атомског-

језгра/nuklearni-reaktori/ [Приступ 10.06.2025].

[2] Advanced Nuclear Materials in HTGR. In: High

Temperature Reactor Technology Workshop ICTP; 19 - 30

2008; Trieste, Italy.

[3] PBMR’s Safety Features. U.S. Nuclear Regulatory

Commission.

https://www.nrc.gov/docs/ML0310/ML031000208.pdf

[Приступ 20.06.2025].

[4] Guidance on Nuclear Energy Cogeneration. IAEA

Nuclear Energy Series No. NP-T-1.17. Vienna:

International Atomic Energy Agency; 2019.

[5] Tachibana Y. "Current Status of JAEA’s Research and

Development on HTGR". Presentation at Nuclear

Innovation Workshop; 2022 Mar 1; Tokyo, Japan.

https://nicp.ne.titech.ac.jp/jp/nicc/2022/220301/JAEA_H

TGR.pdf [Приступ 09.07.2025]

[6]Alabbadi AA, Smith RL, Brown P, et al. "A

comparative economic study of hydrogen production using

several nuclear reactors integrated with electrolysis

hydrogen production methods". International Journal of

Hydrogen Energy. 2024; 49(38):12688-12704.

doi:10.1016/j.ijhydene.2023.04.2787.

Исидора Бурлица је

рођена у Сремској

Митровици 1999.

године. Мастер рад на

Факултету техничких

наука из области

Машинства одбранила је

2025. године.

Контакт:

isidoraburlica@gmail.com

1278

https://fizis.rs/гимназија/iv-разред/физика-атомског-језгра/nuklearni-reaktori/
https://fizis.rs/гимназија/iv-разред/физика-атомског-језгра/nuklearni-reaktori/
https://www.nrc.gov/docs/ML0310/ML031000208.pdf
https://nicp.ne.titech.ac.jp/jp/nicc/2022/220301/JAEA_HTGR.pdf
https://nicp.ne.titech.ac.jp/jp/nicc/2022/220301/JAEA_HTGR.pdf

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.9

DOI: https://doi.org/10.24867/33BE01Aleksic

SISTEM ZA PRIKUPLJANJE I PRETRAŽIVANJE PODATAKA O

IGRAČIMA EVROLIGE

SYSTEM FOR COLLECTING AND SEARCHING DATA ABOUT

EUROLEAGUE BASKETBALL PLAYERS

Nikola Aleksić, Fakultet tehničkih nauka, Novi Sad

Oblast – ELEKTROTEHNIKA I RAČUNARSTVO

Kratak sadržaj – U ovom radu predstavljen je sistem u

obliku veb aplikacije koja na jednom mestu objedinuje

statističke podatke o igračima Evrolige, omogućavajući

njihovo poređenje, sortiranje i intuitivnu pretragu. Cilj

aplikacije je rešavanje problema fragmentacije

informacija o košarkašima, nudeći korisnicima

centralizovan pristup statističkim podacima, biografijama,

vestima i zanimljivostima. Sistem je implementiran kroz tri

funkcionalne celine: korisnički interfejs razvijen uz pomoć

TypeScript-a i React-a, serverski deo baziran na Javi i

Spring Boot-u, te webcrawler komponente izrađene u

Python-u koristeći biblioteke Selenium, BeautifulSoup i

newspaper4k. Rad obuhvata proces prikupljanja i

agregacije podataka sa različitih izvora, kao i njihovu

prezentaciju kroz intuitivni grafički korisnički interfejs.

Implementirana aplikacija omogućava efikasnu pretragu i

analizu podataka, značajno unapređujući iskustvo

korisniuka pri pristupu informacijama iz sveta košarke.

Ključne reči: Web, SpringBoot, React, Webcrawler, AWS,

Evroliga

Abstract – This paper presents a system in the form of a

web application that consolidates statistical data on

EuroLeague players, enabling their comparison, sorting,

and intuitive search. The goal of the application is to

address the issue of fragmented basketball information,

providing users with centralized access to statistical data,

biographies, news, and highlights. The system is

implemented through three functional components: a user

interface developed using TypeScript and React, a server-

side application based on Java and Spring Boot, and a web

crawler component built in Python utilizing libraries such

as Selenium, BeautifulSoup, and newspaper4k. The paper

covers the process of data collection and aggregation from

various sources, as well as their presentation through an

intuitive graphical user interface. The implemented

application facilitates efficient data search and analysis,

significantly enhancing the user experience in accessing

basketball-related information.

Keywords: Web, SpringBoot, React, Webcrawler, AWS,

Euroleague

__

NAPOMENA: Ovaj rad proistekao je iz master rada

čiji mentor je bio dr Branko Markoski, red. prof.

1. UVOD

Porast popularnosti košarkaških takmičenja, posebno na

evropskom tlu, praćena značajnim tehnološkim razvojem u

oblasti digitalnih tehnologija, dovela je do naglog

povećanja količine i dostupnosti informacija iz sveta

košarke. Kako za prosečne ljubitelje sporta, tako i za

košarkaške stručnjake, pristup informacijama o igračima,

timovima, statistici, izveštajima sa utakmica i vestima

postao je omogućen kroz širok spektar digitalnih medija,

uključujući i specijalizovane veb sajtove, aplikacije i

društvene mreže.

Međutim, fragmentacija ovih informacija predstavlja

veliki izazov pri njihovom pretraživanju. Korisnici, u

potrazi za detaljnim podacima o košarkašima, često su

primorani da posete veliki broj različitih specijalizovanih

sajtova. Tokom čega nailaze na probleme poput

prenatrpanosti nerelevantnim informacijama, reklamama i

iskačućim prozorima, koji značajno otežavaju i usporavaju

proces prikupljanja potrebnih informacija. Ovakav način

pretrage, iako daje rezultate, često je veoma vremenski

zahtevan i neefikasan.

Cilj ovog rada je da ponudi rešenje navedenog problema

kroz razvoj veb aplikacije koja na jednom mestu objedinuje

statističke podatke o igračima Evrolige, omogućava

njihovo poređenje, sortiranje, kao i intuitivnu pretragu.

Pored statistike, sistem takođe omogućava korisnicima

pristup relevantnim člancima o igračima, njihovim

biografijama, karijerama i zanimljivostima, olakšavajući

korisniku pretragu isticanjem ključnih delova relevantnih

za njihov upit u okviru grafičkog korisničkog interejsa.

Aplikativno rešenje se sastoji iz 3 funkcionalne celine.

Korisničkog interfejsa implementiranog uz pomoć

programskog jezika Javascript [1] odnosno njegove

tipizirane varijacije Typscript i radnog okvira React [2].

Centralnog serverskog dela aplikacije zaduženog za

agregaciju i perzistenciju podataka, kao i za akviziciju

inicijalnog seta statističkih podataka i orkestraciju

celokoupnog sistema, implementiranog u programskom

jeziku Java [3] i radnom okviru Spring Boot [4].

Webcrawler celine implementirane u programskom jeziku

Python [5] uz pomoć biblioteka Selenium, BeautifulSoap i

newspaper4k i radnog okvira Flask [6], koja na osnovu

orkestriranih zahteva prikuplja relevantne informacije sa

svetske internet mreže.

1279

https://doi.org/10.24867/33BE01Aleksic

2. PREGLED SLIČNIH SISTEMA

U ovom poglavlju navedeni su neki od najrelevenatnijih

sličnih sistema aktuelnih u trenutku pisanja rada.

Euroleaguebasketball.net [7] je veb aplikacija posvećena

evropskoj košarkaškoj ligi, koja pruža sveobuhvatne

informacije o timovima, igračima i utakmicama.

Korisnicima omogućava pregled statističkih podataka o

igračima za poslednje 24 sezone, uključujući biografske

podatke, značajna dostignuća i fotografije. Pored toga,

aplikacija nudi istorijski pregled članaka, video sadržaja i

rasporeda timova, kao i mogućnost kupovine karata za

utakmice. Iako funkcionalna i bogata sadržajem, aplikacija

ima složen korisnički interfejs i ograničenu tekstualnu

pretragu, što otežava brzo pronalaženje željenih

informacija.

Eurohoops.net [8] je veb aplikacija specijalizovana za

praćenje aktuelnosti u evropskoj košarci. Fokusirana je na

vesti, analize utakmica, transfera igrača i tabele

takmičenja, ali pruža i istorijski pregled ključnih trenutaka

u evropskoj košarci. Aplikacija sadrži intervjue, video

sadržaje i kolumne košarkaških analitičara. Njena najveća

prednost je intuitivan dizajn koji omogućava jednostavnu

navigaciju i pretragu, dok je najveći nedostatak

nepouzdana tekstualna pretraga, koja često ne daje

relevantne rezultate i otežava lociranje specifičnih

informacija.

Proballers.com [9] je aplikacija koja pokriva statističke

podatke iz brojnih profesionalnih košarkaških liga,

uključujući i manje popularne lige i mlađe kategorije.

Omogućava pregled statistike igrača i timova po

sezonama, sa širokim opsegom liga koje obuhvata,

uključujući čak i manje poznate takmičarske nivoe kao što

su druge lige Portugala, Švajcarske i Norveške. Međutim,

njen glavni nedostatak je izostanak slobodne tekstualne

pretrage – korisnici mogu birati samo unapred definisane

opcije, što graničava fleksibilnost pretrage.

3. KORIŠĆENE SOFTVERSKE TEHNOLOGIJE

U ovom poglavlju navedene su tehnologije korišćene pri

implementaciji ovog rada, a to su:

• Java – objektno orijentisani jezik višeg nivoa

pogodan za implementaciju serverskih delova

• Spring – radni okvir za razvoj u programskom

jeziku Java, nudi bogat opus modula pogodnih za

brz i robustan razvoj. Neki od korišćenih modula

u ovom rešenju: Spring Boot, Spring Data JPA,

Spring Data ElasticSearch...

• Docker – alat koji omogućava automatizaciju

razvoja korišćenjem tehnologije kontejnera

• LocalStack – softverski alat koji omogućava

emulaciju AWS Cloud-a (specifično u ovom

rešenju AWS SQS-a)

• ElasticSearch – distribuirani pretraživač i

analitički sistem optimizovan za brzinu i

relevantnost pri tekstualnoj pretrazi

• PostgreSQL – besplatan sistem otvorenog koda za

upravljanje relacionim bazama podataka

• Flyway – alat otvorenog koda za upravljanje

migracijama baze podataka

• Python – interpretirani, objektno orijentisani jezik

višeg nivoa pogodan za implementaciju

serverskog dela sistema

• Flask – radni okvir za razvoj u programskom

jeziku Python

• Selenium – alat za automatizovanje veb

pretraživača, pogodan pri e2e testiranju i u ovom

rešenju korišćenom webscraping-u

• BeautifulSoap – Python biblioteka za parsiranje

HTML i XML dokumenata

• Newspaper4k – Python biblioteka namenjena

prikupljanju i ekstrakciji sadržaja onlajn članaka

• JavaScript – programski jezik visokog nivoa

pogodan za implementaciju klijentskih i

serverskih delova sistema

• React – biblioteka otvorenog koda za razvoj u

programskom jeziku JavaScript, pogodna za

implementaciju klijentskog dela sistema

• Tanstack Query – alat za rad u React aplikacijama

koji pojednostavljuje komunikaciju sa

serverskom stranom sistema

• MaterialUI – biblioteka gotovih komponenti

otvorenog koda za React

• TailwindCSS – radni okvir otvorenog koda koji

omogućava brzo i efikasno stilizovanje

korisničkih interfejsa

4. SPECIFIKACIJA

4.1. Specifikacija zahteva

Zadatak obuhvata izradu sistema u obliku veb aplikacije

koja na jednom mestu obuhvata statističke podatke o

igračima Evrolige, omogućavajući njihovo poređenje,

sortiranje i sažetu intuitivnu pretragu. Cilj aplikacije je

rešavanje problema fragmentacije informacija o

košarkašima, nudeći korisnicima centralizovan pristup

statističkim podacima, biografijama, vestima i

zanimljivostima. U ovom poglavlju dat je opis

funckionalnih i nefunkcionalnih zahteva koje sistem

podržava.

Na slici 4 prikazan je UML (Unified Modeling Language)

dijagram slučajeva korišćenja koje sistem podržava

Slika 1. Dijagram slučajeva koriščenja

1280

Pregled top liste igrača (evropske košarkaške lige)

korisnička je akcija koja zauzima početni deo korisničkog

interfejsa i predstavlja inicijalnu tačku interakcije sa

korisnikom. Sistem prikazuje top 10 igrača sortiranih po

kriterijumu efikasnosti u okviru Carousel komponente

koja je responzivna i omogućava korisniku klikom na

strelice kretanja kroz listu.

Izbor kriterijuma sortiranja igrača korisnička je akcija koja

zauzima drugi deo početnog ekrana. Sistem prikazuje

dodatnu listu u okviru koje korisnik ima mogućnost biranja

kriterijuma sortiranja. Dostupni kriterijumi su formirani na

osnovu proseka parametara igrača po utakmici i dostupni

parametri su: broj poena, broj minuta, broj asistencija, broj

ukradenih lopti, broj izgubljenih lopti, broj skokova.

Pretraživanje igrača na osnovu imena (punog imena)

korisnička je akcija pri kojoj sistem u okviru zagljavlja

aplikacije prikazuje tekstualno polje za unošenje upita u

formi imena odnosno dela punog imena igrača. Pri unosu

upita sa određenim kašnjenjem od 300ms sistem izlistava

u okviru padajućeg menija igrače koji zadovoljavaju upit i

žutom bojom naznačava deo imena igrača koji se poklapa

sa upitom.

Pregled najnovijih članaka predstavlja korisničku akciju

koja se nalazi u okviru završnog dela inicijalnog ekrana

korisničkog interfejsa. Sistem prikazuje korisniku

poslednjih 10 prikupljenih članaka (najsvežijih). Prikazane

informacije čine uvod u članak (početnih 250 karaktera)

kao i slika igrača o kom je članak napisan. Klikom na

članak korisnik biva preusmeren na stranicu detaljnog

prikaza članka.

Tekstualna pretraga članka po ključnim rečima korisnička

je akcija pri kojoj sistem u završnom delu početnog ekrana

prikazuje tekstualno polje za unošenje upita za pretragu

članka. Pri pritisku dugmeta Enter, sistem prikazuje

korisniku listu članaka koji zadovoljavaju upit, žutom

bojom označavajući preklapajuće delove članka sa upitom

kao i sumarizaciju konteksta oko preklapajućeg dela (250

karaktera).

Pregled detalja igrača korisnička je akcija koju korisnik

inicira klikom na sliku igrača iz liste (pretrage ili top liste)

odnosno klikom na sliku igrača u okviru detaljnog pregleda

članka. U okviru detaljnog pregleda igrača sistem

prikazuje naredne informacije o igraču: ime, fotografiju,

statistiku, listu članaka o njemu.

Pregled detalja članka akcija je koju inicira korisnik klikom

na bilo koji njemu prikazan članak iz liste članaka. Sistem

prikazuje korisniku detaljan prikaz sadržaja članka i

njegovih meta podataka. Prikazane informacije čine:

fotografiju igrača o kom je članak, ime igrača o kom je

članak, celokupan tekstualni sadržaj članka, link ka

originalnoj lokaciji članka.

Pristup originalnom članku je akcija koju inicira korisnik

klikom na link ka originalnom sadržaju u sklopu detaljnog

prikaza članka. Po kliku korisnik biva preusmeren na

lokaciju u okviru veb aplikacije sa koje je preuzet

originalni članak.

Budući da se radi o veb aplikaciji koja manipuliše velikom

količinom podataka, a korisnik očekuje brz odziv bez

dugotrajnog čekanja na poslati zahtev, neophodno je

obezbediti performantan i robustan sistem, Jedno od

rešenja navedenog problema ogleda se u keširanju

odgovora serverskog dela sistema (bekenda) u trajanju od

10 minuta, što omogućava sama priroda domena sistema

odnosno njegove sprorije promene.

Kritična tačka sistema predstavlja webscraper, koji

svakom promenom sadržaja odnosno veb stranica koje

obrađuje, može dovesti do neželjenih rezultata i

potencijalnog usporavanja ili čak rušenja sistema.

Navedeni problem rešen je na arhitekturalnom nivou

izdvajanjem webscraper-a u zaseban servis i

neblokirajućom komunikacijom sa njim putem SQS-a pri

čemu centralni deo serverskog dela aplikacije ne biva

usporavan niti u bilo kakvoj rizičnoj zavisnosti od rušenja

u slučaju problema ili nedostupnosti webscraper-a. Takođe

webscraper servis ne briše SQS poruku tokom čijeg

izvršavanja je došlo do greške nego je ponovo uzima u

obradu nakon isteka visibility-timeout-a, odnosno

prekonfigurisanog vremena nakon kog pročitana poruka

može ponovo biti preuzeta sa SQS-a. Time pružajući

pretraživanoj stranici vreme da se oporavi i da se

potencijalno izvrši željena pretraga iz ponovnih pokušaja.

4.2. Specifikacija sistema

U ovom poglavlju dat je detaljan uvid u specifikaciju

sistema, njegovu arhitekturu i komponente koje ga čine. Na

slici 2. prikazan je C4 UML dijagram arhitekture sistema

visoke apstrakcije u okviru koje je svaki servis modelovan

zasebnom komponentom.

Slika 2. Dijagram arhitekture sistema

Celokupan sistem za prikupljanje i pretraživanje podataka

o igračima evropske košarkaške lige sastoji se iz tri logičke

celine, odnosno iz 3 podsistema. Podsistem klijenteske

aplikacije, podsistem serverske aplikacije i podsistem

webscrapera.

Podsistem webscrapera predstavlja servis zadužen za

prikupljanje podataka sa svetske internet mreže. Putem

drajvera interaguje sa veb pretraživačem i pretražuje i

prikuplja podatke na osnovu upita pristiglih iz poruka sa

SQS-a,a zatim prikupljene podatke zapisuje i šalje ih nazad

takođe putem poruka preko SQS-a.

Podsistem serverske aplikacije čini REST API koji izlaže

podatke spoljnim sistemima putem Http-a, odnosno

omogućuje slanje odgovora i zahteva na relaciji klijent-

server. Takođe navedeni sistem vrši orkestraciju

prikupljanja podataka, izvršavajući jedan deo akvizicije

samostalno komunicirajući sa evroliginim javno

dostpunim API-em. Zatim za svakog pronađenog igrača

šalje asinhron zahtev putem SQS-a webscraper

1281

podsistemu, nakon toga čitajući prikupljene podatke i

objedinjeno sa već prikupljenim podacima sa evroliginog

API-a perzistira ih u PostgreSQL i ElasticSearch bazama

podataka.

Podsistem klijentske aplikacije čini prednji deo sistema

(frontend) namenjen za direktnu kominikaciju sa

korisnikom. Omogućuje korisniku interakciju sa sistemom

putem grafičkog korisničkog interfejsa, odnosno

omogučuje slanje zahteva serveru i vizualizaciju pristiglih

odgovora.

5. ZAKLJUČAK

Rešenje rada predstavlja aplikaciju koja uprošćava proces

onlajn pretrage podataka o igračima Evrolige, njihovih

statistika, biografija i novinskih članaka. Pri čemu korisnik

često biva primoran da posećuje velik broj sajtova

različitog sadržaja ne bi li na svakom od njih našao neke

od željenih informacija o igraču. Navedni proces pretrage

i prelaska sa veb sajta na veb sajt neretko biva ispraćen

mnoštvom iskačućih obaveštenja (kolačića, pretplata,

akcija..) dodatno produžavajući sam proces pretrage i

odvlačeći pažnju korisnika.

Razlika navedenog rešenja u odnosu na prethodno

pomenute slične sisteme obrađene u 2. poglavlju ogleda se

prvenstveno u obimu informacija koje prikazuje. Ne

koncentrišući se na striktno statističke ili striktno

biografske podatke, već objedinjujući ih i grupišući ih na

nivou igrača time značajno ubrzavajući korisnikovu

pretragu i dalje istraživanje. Takođe bitan faktor rešenja,

koji ga izdvaja od ostalih sistema, čini tekstualna pretraga

sa sumarizacijom. Pri čemu osim same brzine i količine

podataka koja je dostupna korisniku, sistem žutom bojom

u okviru korisničkog interfejsa označava delove sadržaja

koji se preklapaju sa upitom i takođe prikazuje sadržaj koji

se nalazi u kontekstu preklapajućeg dela. Čineći sistem

veoma intuitivnim i samu pretragu izuzetno brzom i

olakšanom.

Potencijalna unapređena proizvoda i samog sistema mogu

da se ogledaju u 2 pravca, košarkaško i komercijalno.

Košarkaško unapređenje rešenja moguće je kroz akviziciju

dodatnih statističkih podataka i njihovu vizualizaciju.

Jedno od potencijalnih unapređenja predstavlja prikaz 2D

mape terena u okviru koje bi se videlo sa kojih pozicija

igrač promašuje odnosno pogađa šuteve. Mape šuta igrača

bi se perzistirale u okviru ElasticSearch-ove već podržane

geolokacione pretrage te bi top liste igrača osim po

dosadašnjim kriterijumima omogućili i po izboru dela

terena. Korisnik bi u okviru 2D mape mogao da označi deo

terena a zatim šalje upite sistemu koji bi mu prikazali listu

igrača koja imaju najviše pogođenih šuteva sa tog dela

terena, zatim najviše promašenih šuteva, najbolji odnosno

najgori procenat i slično. Takođe sam domen koji je

trenutno fokusiran na igrače mogao bi da se prebaci i na

timove te bi sistem mogao da omogući pretragu timova,

njihova poređenja, sortiranja kao i prikupljanje biografskih

podataka i relevantnih članaka o njima.

Komercijalno rešenje bi se ogledalo u proširenju

webscraper sistema da podrži akviziciju komercijalnijih

tipova informacija, odnosno nekoj vrsti press-clippinga.

Te bi korisnik osim striktno biografskih i košarkaških

članaka imao mogućnost pretrage i svih ostalih tipova

članaka kao što su članci žute štampe.

Takođe potencijalno unapređenje postojećeg sistema

moglo bi da se ogleda i u refaktorisanju njegove

arhitekture, odnosno korišćenju i ostalih AWS servisa

poput SNS (Simple Notification Service) i S3 (Simple

Storage Service). Pri čemu bi poruka poslata od strane

serverskog dela sistema ka skrejperskom delu sistema

mogla da se centralizuje u vidu SNS teme koja bi odašiljala

ime igrača te bi iz perspektive serverskog dela bio poslat

samo jedan događaj dok bi SNS dalje prosleđivao događaj

na već postojeće SQS servise korišćenjem fan-out

arhitekturalnog obrasca pri čemu bi se zadržale pozitivne

strane SQS-a (robusnost, ponovni pokušaji neuspelih

akcija, DLQ), a smanjila spregnutost sistema sa serverske

strane. Takođe mana trenutnog sistema je korišćenje URL-

ova ka originalnom sajtu koji potencijalno mogu da se

promene ili ukinu pri čemu bi korisnik bio pogrešno

naveden na stranicu bez željenog sadržaja. Rešenje

navedene mane ogledalo bi se u perzistenciji HTML-a

originalne stranice, pri njenoj akviziciji, u okviru S3

baketa. Pri čemu u okviru baze podataka ne bi perzistirali

URL do originalnog sajta već lokaciju originalnog HTML-

a u okviru S3 baketa koji bi prikazivali u okviru grafičkog

korisničkog interfejsa aplikacije bez nepotrebnog

redirektovanja korisnika.

6. LITERATURA

[1] Minnick, C. (2023). JavaScript All-in-One For

Dummies. For Dummies.

[2] Kumar, T. (2024). Fluent React: Build Fast,

Performant, and Intuitive Web Applications. O'Reilly

Media.

[3] Schildt, H. (2024). Java: The Complete Reference,

Thirteenth Edition. McGraw Hill.

[4] Miguel Puig, F. (2024). Spring Boot 3.0 Cookbook:

Proven recipes for building modern and robust Java

web applications with Spring Boot. Packt Publishing.

[5] Matthes, E. (2024). Python Crash Course, 3rd Edition:

A Hands-On, Project-Based Introduction to

Programming. No Starch Press

[6] Sherwin C. Tragura, J. (2024). Mastering Flask Web

and API Development: Build and deploy production-

ready Flask apps seamlessly across web, APIs, and

mobile platforms. Packt Publishing.

[7] https://www.euroleaguebasketball.net/about/

[8] https://www.eurohoops.net/en/

[9] https://www.proballers.com/about

Kratka biografija:

Aleksić Nikola, rođen je

22.02.2000. godine u Novom

Sadu. Školske 2018/19 upisuje se

na Fakultet tehničkih nauka, na

studijski program Računarstvo i

automatika u okviru kojeg

završava osnovne akademske

studije školske 2021/2022 godine.

. Iste godine upisuje master

studije na Fakultetu tehničkih

nauka, na smer Elektronsko

poslovanje.

1282

https://www.euroleaguebasketball.net/about/
https://www.eurohoops.net/en/
https://www.proballers.com/about

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.41

DOI: https://doi.org/10.24867/33BE02Artukov

SISTEM ZA PRETRAGU SLIKA ZASNOVAN NA CLIP MODELU I VEKTORSKIM

BAZAMA

IMAGE SEARCH SYSTEM BASED ON THE CLIP MODEL AND VECTOR DATABASES

Katarina Artukov, Fakultet tehničkih nauka, Novi Sad

Oblast – PRIMENJENE RAČUNARSKE NAUKE I

INFORMATIKA

Kratak sadržaj – Ovim radom predstavljen je sistem za

pretragu slika zasnovan na CLIP modelu i vektorskim

bazama podataka, koji omogućava efikasnu pretragu

vizuelnog sadržaja na osnovu tekstualnih ili slikovnih

upita.

Ključne reči: Pretraga slika, vektorske baze,

multimodalna ugnježđenja, mašinsko učenje, CLIP model.

Abstract – This thesis presents an image search system

based on the CLIP model and vector databases, enabling

efficient search of visual content using textual or image-

based queries.

Keywords: Image search, vector databases, multimodal

embeddings, machine learning, CLIP model.

1. UVOD

U doba kada količina digitalnih slika raste neviđenom

brzinom proizilazi potreba za preciznom i efikasnom

pretragom vizuelnog sadržaja. Uspešan sistem za pretragu

mora biti u stanju da protumači korisnikove upite, zaključi

njihove namere, a zatim primeni strategiju pretrage koja će

verovatno vratiti relevantne rezultate. Tradicionalni

sistemi za pretragu često zavise od tekstualnih oznaka

(tagova) ili metapodataka koji se ručno dodaju, što nije

održivo rešenje za velike baze podataka i često nije

dovoljno tačno u reprezentaciji sadržaja slika.

Razvoj pretraživača slika uz korišćenje savremenih tehnika

mašinskog učenja i obrade podataka omogućava nove

načine pristupa informacijama i sadržaju, olakšavajući

pronalaženje vizuelno sličnih ili konceptualno povezanih

slika.

U ovom radu, razvijen je sistem za pretragu slika koji se

oslanja na CLIP (Contrastive Language–Image

Pretraining) model za generisanje multimodalnih

ugnježđenja [1], koja kombinuju tekstualne i vizuelne

karakteristike u jedinstveni prostor vektora. Ugnježđenja

se zatim indeksiraju u Pinecone vektorsku bazu podataka.

__

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je bio

dr Dragan Ivanović, red. prof.

Integracija sa Pinecone vektorskom bazom [2] pruža

skalabilno i brzo rešenje za pretragu i indeksiranje velikog

broja slika. S obzirom na mogućnost indeksiranja

multimodalnih ugnježđenja i brzog pretraživanja, ovaj

sistem postaje izuzetno koristan u poljima kao što su

istraživanje i pronalaženje sličnog vizuelnog sadržaja,

marketing, analiza društvenih medija i kreativne industrije.

Osim što unapređuje pristup vizuelnim podacima, ovaj

sistem takođe predstavlja praktičan primer primene

savremenih tehnika mašinskog učenja u realnim

okruženjima, čime doprinosi razvoju naprednih rešenja u

oblasti obrade i pretrage slika.

U zavisnosti od potreba korisnika, sistem podržava dva

modela pretrage. Prvi model omogućava pretragu na

osnovu slike, gde se kao ulazni parametar koristi

fotografija, za koju će se u rezultatu vratiti deset

najsličnijih iz baze. Drugi model omogućava pretragu na

osnovu tekstualnog upita, tako što se kao rezultat vraćaju

fotografije koje vizuelno reprezentuju sadržaj zadanog

teksta.

Sistem je realizovan kao veb aplikacija, pri čemu je

pozadinski deo (backend) implementiran u Python FastApi

radnom okviru, dok je korisnički interfejs implementiran u

React-u. Ovakva arhitektura omogućava upotrebu

savremene platforme za pretragu slika na osnovu opisa ili

sličnih vizuelnih karakteristika, čime se značajno

unapređuje korisničko iskustvo.

Aplikacija je osmišljena da bude intuitivna kako

profesionalcima koji se bave analizom vizuelnog sadržaja,

tako i krajnjim korisnicima koji žele da lakše i brže dođu

do relevantnih vizuelnih informacija.

1.1. Skup podataka

U ovom radu korišćen je Flickr30k Entities [3] skup

podataka, proširena verzija popularnog Flickr30k skupa,

standardnog benchmarka za opisivanje slika. Skup

obuhvata 31.800 fotografija i 158.915 rečeničnih opisa,

organizovanih u fajlu results.csv sa kolonama:

image_name, comment_number i comment. Nakon

eksplorativne analize podataka zaključene su karakteristike

skupa podataka. Glavni nalazi uključuju ravnomernu

distribuciju komentara po slikama, umeren sentiment i

kraće opise u većini komentara. Skup podataka je sam po

sebi dobro pripremljen, tako da faza pretprocesiranja ima

svega nekoliko dodatnih koraka.

1283

https://doi.org/10.24867/33BE02Artukov

1.2. Radni tok vektorske baze podataka i CLIP

modela mašinskog učenja

CLIP model mašinskog učenja predstavlja savremeni

multimodalni pristup zasnovan na Transformer arhitekturi,

sposoban za istovremenu obradu tekstualnih i vizuelnih

podataka. Obuka CLIP modela obuhvata velike skupove

tekstualno-vizuelnih parova, gde model uči zajednički

reprezentativni prostor. Ovaj prostor omogućava da slični

tekstualni i vizuelni sadržaji budu bliski u vektorskom

prostoru, što čini CLIP izuzetno korisnim za zadatke kao

što su pretraga, klasifikacija i semantičko povezivanje.

Kada se CLIP model integriše sa vektorskom bazom

podataka, dobija se optimalan radni tok koji kombinuje

snage oba sistema. Na početku, CLIP model se prethodno

obučava kako bi naučio vektorske reprezentacije koje

mogu da povežu tekst i slike na semantičkom nivou. Ove

vektorske reprezentacije zatim se ugrađuju u vektorsku

bazu podataka, koja omogućava efikasno skladištenje i

brzo pretraživanje.

Kada korisnik unese tekstualni upit ili dostavi sliku, CLIP

generiše vektorsku reprezentaciju upita. Vektorska baza

zatim koristi napredne algoritme za približnu pretragu

najbližih suseda, kao što je HNSW, kako bi pronašla slične

vektore iz skupa podataka. Rezultati pretrage se vraćaju

korisniku, pri čemu CLIP osigurava da ovi rezultati

odgovaraju semantičkom kontekstu korisničkog upita.

Integracija CLIP modela i vektorske baze podataka

omogućava značajno poboljšanje u odnosu na upotrebu

samo jedne od ovih komponenti. Ako se koristi samo

CLIP, rezultati mogu biti manje tačni u radu sa velikim

skupovima podataka. Sa druge strane, ako se koristi samo

vektorska baza podataka, rezultati mogu biti tehnički

precizni, ali ne i u potpunosti semantički relevantni za

korisnika. Kombinacija ove dve tehnologije omogućava

postizanje i preciznosti i prilagođenosti rezultata

korisničkim očekivanjima, čime se postiže optimalan

balans između efikasnosti i korisničkog iskustva u

multimodalnim aplikacijama.

1.3. Kontrastivno pretreniranje

Kontrastivno učenje je metod obuke AI modela koji ga uči

da razlikuje slične od različitih stvari, koristeći kontrastivni

gubitak. Konkretnije, na osnovu skupa od N parova (slika,

tekst), CLIP zajednički trenira enkoder za slike i enkoder

za tekst kako bi predvideo koji od N×N mogućih (slika,

tekst) parova u okviru skupa zapravo postoje [4].

Model prima batch podataka u obliku parova (slika, tekst).

Za svaku sliku u batch-u, vizuelni enkoder generiše vektor

slike. Prva slika odgovara vektoru I1, druga I2, itd. Svaki

vektor je veličine de, gde je de dimenzija latentnog

prostora, koja predstavlja broj komponenti (dimenzija)

vektora koji opisuju sliku ili tekst u zajedničkom embeding

prostoru. Veličina de je ključna jer određuje kapacitet

modela da uči i reprezentuje kompleksne odnose između

tekstualnih i slikovnih podataka. Veće dimenzije

omogućavaju bogatiju reprezentaciju, ali istovremeno

zahtevaju više resursa za obradu i memoriju. Izlaz ovog

koraka je matrica N×de. Slično, tekstualni opisi se

konvertuju u tekstualne embedinge {T1, T2, T3… Tn},

čime se dobija matrica N×de. Nakon toga, ove matrice se

međusobno množe, izračunavajući kosinusne sličnosti

između svake slike i teksta, što rezultira N×N matricom.

CLIP uči multimodalni ugnježdeni prostor tako što

zajednički trenira enkoder za slike i enkoder za tekst kako

bi maksimizirao kosinusnu sličnost ugnježdenja slike i

teksta za N stvarnih parova u skupu, istovremeno

minimizujući kosinusnu sličnost ugnježdenja za N×N−N
pogrešnih parova.

Na slici 1.3.1, to znači da želimo da maksimiziramo

dijagonalu u matrici, dok minimiziramo sve ostale

elemente.

Slika 1. Kontrastivno pretreniranje

Za svako ulazno slikovno ugnježdenje vrši se

klasifikacioni zadatak u pravcu x ose, koji nam govori koji

od tekstualnih ugnježdenja {T1, T2, T3… Tn} najviše

odgovara toj slici. Takođe, za svako tekstualno

ugnježdenje vrši se klasifikacioni zadatak u pravcu y ose

koji govori koje od slikovnih ugnježdenja {I1, I2, I3...In}

ga najbolje reprezentuje. Na primer, slika I1 se opisuje

tekstom T1, a ne tekstovima T2, T3 itd.

Gubitak koji se ovde koristi je cross entropy gubitak,

izračunat između logita i labela u x pravcu i y pravcu, a

zatim se računa njihova prosečna vrednost. To znači da ova

vrsta gubitka minimizuje greške u oba pravca – od slike ka

tekstu i od teksta ka slici. Suštinski, sa kontrastivnom

tehnikom, CLIP je treniran da razume da slična

predstavljanja treba da budu blizu u latentnom prostoru,

dok različita treba da budu udaljena.

1.4. Pinecone

Pinecone [2] je specijalizovana baza podataka za

upravljanje vektorima, dizajnirana da olakša rad sa velikim

skupovima podataka i složenim zadacima pretrage u

domenu veštačke inteligencije i mašinskog učenja.

Zasnovana je na konceptu vektorske pretrage i omogućava

korisnicima da efikasno organizuju, indeksiraju i

pretražuju podatke visoke dimenzionalnosti.

Jedna od ključnih prednosti Pinecone-a je njegova

sposobnost da precizno i brzo vrši pretragu sličnosti u

velikim skupovima podataka. Ovo se postiže korišćenjem

sofisticiranih algoritama za vektorsku pretragu, koji

omogućavaju brzo pronalaženje najrelevantnijih rezultata

na osnovu sličnosti ugrađenih vektora.

1.5. Hijerarhijski navigabilan mali svet (HNSW)

Hijerarhijski navigabilan mali svet [5] je savremena

tehnika za pronalaženje približnih najbližih suseda datog

vektora u velikom skupu vektora. Ona funkcioniše tako što

gradi graf koji povezuje vektore na osnovu njihove

1284

sličnosti ili udaljenosti, a zatim koristi strategiju pretrage

zasnovanu na pohlepnom pristupu za kretanje kroz graf i

pronalaženje najsličnijih vektora.

Algoritam takođe gradi hijerarhijsku strukturu grafa, gde

se svakoj tački dodeljuje različit sloj sa određenom

verovatnoćom. Viši slojevi sadrže manji broj tačaka i duže

ivice, dok niži slojevi sadrže veći broj tačaka i kraće ivice.

Najviši sloj sadrži samo jednu tačku, koja predstavlja

ulaznu tačku za pretragu.

Hijerarhijska struktura omogućava efikasnu i preciznu

pretragu, počevši od najvišeg sloja i postepeno prelazeći na

niže slojeve, pri čemu se u svakom koraku bira najbliži

čvor kao sledeća tačka pretrage.

Hijerarhijska struktura koju koristi HNSW omogućava brzu

i preciznu pretragu, jer se pretraga započinje od najvišeg

sloja i postepeno se spušta ka nižim slojevima, pri čemu se

u svakom koraku bira najbliži čvor kao sledeća tačka

pretrage.

Performanse HNSW algoritma zavise od nekoliko faktora,

kao što su dimenzionalnost vektora, broj slojeva, broj

suseda po čvoru i broj koraka pretrage. Ovi faktori utiču na

balans između tačnosti i efikasnosti, kao i na složenost i

skalabilnost algoritma.

2. SPECIFIKACIJA SISTEMA ZA PRETRAGU

SLIKA

Sistem za pretragu slika koristi arhitekturu koja objedinjuje

više komponenti i tehnologija za omogućavanje efikasnog

indeksiranja i pretrage. Kao što je prikazano na dijagramu

sa slike 2, ova arhitektura je zasnovana na integraciji

klijentske aplikacije, CLIP modela i vektorske baze

podataka sa sistemom za pretragu.

Slika 2. Arhitektura sistema

Klijentska aplikacija: Razvijena u React-u, ova

komponenta pruža korisnički interfejs koji omogućava

interaktivnu pretragu i prikaz rezultata. Korisnik može

pretraživati slike na osnovu teksta ili druge slike, a

aplikacija šalje zahteve sistemu za pretragu.

Sistem za pretragu: Glavni deo sistema, implementiran u

Python-u, vrši osnovne funkcije za pretragu i obradu

podataka. On komunicira sa CLIP modelom i vektorskom

bazom kako bi kreirao i upravljao embedinzima za slike i

tekst.

CLIP model: Ovaj model, razvijen od strane OpenAI-a,

služi za kreiranje multimodalnih embedinga koji

predstavljaju semantički sadržaj slika i tekstova. CLIP

model generiše embedinge koji se kasnije upoređuju sa

embedinzima u vektorskoj bazi kako bi se našle slike koje

su najsličnije zadanom upitu.

Vektorska baza (Pinecone): Pinecone služi kao baza

ugnježđenja, gde se embedinzi slika i tekstova čuvaju u

vektorskom formatu radi efikasnog pretraživanja. Kada

korisnik postavi upit, sistem upoređuje embedinge upita sa

embedinzima u Pinecone bazi kako bi vratio najsličnije

srezultate.

Ovakva arhitektura omogućava fleksibilno pretraživanje

slika, bilo na osnovu tekstualnih upita ili sličnih slika, sa

velikom tačnošću i brzinom.

3. EKSPERIMENT

Ovim poglavljem definisaćemo izabran način za evaluaciju

implementiranog sistema i objasniti razlog za izbor istog.

U sistemima za pretragu informacija, kao što su pretrage

teksta, slika ili multimodalnih podataka, metrike poput top-

N tačnosti igraju ključnu ulogu u proceni kvaliteta sistema.

Top-N tačnost predstavlja procentualni udeo upita gde je

relevantni rezultat (tj. dokument, slika ili drugi objekat)

pronađen među prvih N rezultata rangiranih od strane

sistema.

U informacionim sistemima, korisnici očekuju da

relevantni rezultati budu rangirani među prvima. Visoka

top-1 tačnost pokazuje sposobnost sistema da konzistentno

vraća najrelevantniji rezultat kao prvi, dok visoke

vrednosti top-3, top-5 ili top-10 tačnosti ukazuju na to da

sistem efikasno identifikuje većinu relevantnih rezultata,

iako oni možda nisu uvek rangirani na samom vrhu.

Zbog velikih količina podataka u našem sistemu (oko

31.800 slika), korisnička evaluacija bila je nepraktična, jer

bi ispitanici morali da procenjuju rezultate bez uvida u ceo

skup slika. Zbog toga smo se odlučili za automatsko

testiranje metrikom top-N tačnosti, koja omogućava

objektivnu procenu na reprezentativnom uzorku od 500

nasumično izabranih slika.

4. REZULTATI I TUMAČENJA

Dobijeni rezultati prikazuju procente tačnosti sličnosti

slika i tekstova. Vrednosti po sve četiri metrike date su

narednom tabelom

Tabela 1. Rezultati tačnosti CLIP modela u predviđanju

sličnosti slika i tekstova

Metrika tačnosti Procenat tačnosti

Top-1 tačnost 61%

Top-3 tačnost 75%

Top-5 tačnost 85%

Top-10 tačnost 94%

Ovi rezultati ukazuju da model često greši u identifikaciji

najboljeg podudaranja, ali sa većim N postiže znatno bolju

tačnost. Niska top-1 tačnost od 61% ukazuje na

ograničenja modela u direktnoj tekstualnoj pretrazi. Ipak,

visoka tačnost u top-10 (94%) čini ga veoma pogodnim za

inicijalnu fazu pretrage, gde se potencijalno relevantni

rezultati mogu rangirati za dalju obradu.

CLIP model pokazuje veliki potencijal kao osnova za

sistem pretrage, uz mogućnost poboljšanja kroz dodatno

podešavanje parametara, izborom drugih arhitektura

enkodera ili integracijom sa specifičnim algoritmima za

fino rangiranje.

1285

5. ZAKLJUČAK

U ovom radu predstavljen je sistem za pretragu slika

zasnovan na CLIP modelu i vektorskim bazama podataka,

koji omogućava efikasnu pretragu vizuelnog sadržaja na

osnovu tekstualnih ili slikovnih upita. Razmatrajući

izazove savremenih sistema za pretragu, kao što su

ograničenja tekstualnih oznaka i potreba za skalabilnošću,

implementiran je pristup koji kombinuje multimodalne

embedinge i vektorske baze kako bi se obezbedila tačnost

i brzina u obradi velikog broja podataka.

Sistem je omogućio dve vrste pretraga – na osnovu teksta i

na osnovu slike – pri čemu je postignuta visoka tačnost u

identifikaciji relevantnih rezultata, naročito u top-10

metrici (94%). Iako top-1 tačnost od 61% ukazuje na

potrebu za dodatnim poboljšanjima, rezultati su u skladu sa

očekivanjima za primenu modela u složenim i velikim

skupovima podataka.

Naučni doprinos rada ogleda se u uspešnoj primeni CLIP

modela za rešavanje stvarnih problema pretrage vizuelnog

sadržaja. Evaluacija sistema pruža vredne uvide u

mogućnosti i ograničenja trenutnog pristupa, dok

sposobnost modela da generalizuje preko različitih

zadataka bez dodatnog finog podešavanja potvrđuje

njegovu robusnost i svestranost.

5.1. Dalji razvoj sistema

Buduća istraživanja mogu se usmeriti na unapređenje

tačnosti kroz primenu naprednih tehnika, uključujući

različite arhitekture enkodera i pažljiv odabir parametara

modela u skladu sa specifičnim zahtevima domena

primene. Proširenje sistema detaljnijim pretprocesiranjem

slika takođe bi moglo doprineti poboljšanju performansi.

Trenutno implementirani sistem čuva slike sa

metapodacima u indeks vektorske baze, pri čemu

metapodaci obuhvataju isključivo nazive slika.

Unapređenje sistema dodavanjem opisa slike kao dela

metapodataka značajno bi poboljšalo korisnost i

funkcionalnost. Ovo proširenje bi, pored bolje pretrage,

omogućilo i primenu naprednih tehnika semantičkog i

hibridnog pretraživanja koje podržava Pinecone, čime bi se

dodatno unapredile mogućnosti povezivanja i

identifikacije relevantnih sadržaja.

Dodatno, integracija reranker-a u postojeći sistem mogla

bi značajno poboljšati redosled prikazanih rezultata,

naročito u slučajevima gde je potrebno preciznije

rangiranje u okviru top rezultata. Reranker bi omogućio

finu obradu i prilagođavanje rezultata specifičnim

kontekstima pretrage, što bi ujedno podiglo nivo tačnosti

sistema i korisničko iskustvo.

Zaključno, sistem razvijen u ovom radu predstavlja

značajan korak napred u oblasti pretrage vizuelnog

sadržaja, objedinjujući savremene tehnike mašinskog

učenja i vektorske baze podataka. Njegova primena i

rezultati pokazuju potencijal za široku upotrebu u

različitim domenima, dok istovremeno postavljaju osnovu

za budući razvoj i istraživanje u ovoj oblasti.

6. LITERATURA

[1] openai.com, „https://openai.com/index/clip/ “

 [Na mreži].
[2] pinecone.io, „https://www.pinecone.io/“

 [Na mreži].

[3] J. R, „kaggle.com,“ [Na mreži]. Available:

https://www.kaggle.com/datasets/hsankesara/flickr-

image-dataset/data
[4] Radford, Alec, et al. "Learning transferable visual

models from natural language supervision."

International conference on machine learning. PMLR,

2021.

[5] Y. A. Malkov and D. A. Yashunin, “Efficient and

robust approximate nearest neighbor search using

hierarchical navigable small world graphs,” IEEE

transactions on pattern analysis and machine

intelligence, vol. 42, no. 4, p. 824–836, 2018.

Kratka biografija:

Katarina Artukov rođena je

12.06..2000. godine u Sremskoj

Mitrovici. Školske 2019/20 godine

upisuje se na Fakultet tehničkih nauka

na studijski program Računarstvo i

automatika, a 2022. godine upisuje

usmerenje Primenjene računarske

nauke i informatika. Osnovne

akademske studije završila je u

septembru 2023. godine, nakon čega

je u istoj školskoj godini upisala

master akademske studije.

1286

https://openai.com/index/clip/
https://www.pinecone.io/

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 621.38
DOI: https://doi.org/10.24867/33BE03Stamenkovic

FORMALNA VERIFIKACIJA DVOJEZGARNOG JEDNO-CIKLUSNOG RISC-V

PROCESORA I DELA MEMORIJSKOG PODSISTEMA

FORMAL VERIFICATION OF A DUAL CORE SINGLE-CYCLE RISC-V CORE WITH

PART OF MEMORY SUBSYSTEM

Petar Stamenković, Fakultet tehničkih nauka, Novi Sad

Oblast – ELEKTROTEHNIKA I RAČUNARSTVO

Kratak sadržaj – U ovom radu je prikazan način verifikacije

dvojezgarnog jedno-ciklusnog RISC-V procesora i dela

memorijskog podsistema pomoću formalnih metoda i

JasperGold alata kreiranog od strane kompanije Cadence. Dat

je osnovni opis dizajna koji se verifikuje, osnovni operatori

SystemVerilog jezika koji se koristi kao i verifikacione tehnike

koje su upotrebljene za efikasniju verifikaciju sistema.

Ključne reči: Formalna verifikacija, RISC-V, Memorijski

podsistem, Pokrivenost dizajna, Keš memorija

Abstract – This paper presents the way that dual core single-

cycle RISC-V processor with part of memory subsystem is

verified with formal methods by using a formal tool JasperGold

developed by Cadence. Basic description of design is given,

alongside with basic SystemVerilog operators and verification

tecniques that were used for efficent verification of the system.

Keywords: Formal verification, RISC-V, Memory subsystem,

Design coverage, Cache memory

1. UVOD

Formalna verifikacija podrazumeva upotrebu alata koji

matematički analiziraju dostižna stanja u dizajnu umesto da

proračunavaju vrednosti za konkretno zadate ulazne vektore.

Danas predstavlja veoma efikasan i temeljit način verifikacije

jer teoretski može da potvrdi totalno odsustvo greški, uz

idealno napisane osobine. Alat pruža ogroman broj

mogućnosti i veliki broj aplikacija koje olakšavaju proveru

određenih aspekata sistema kao što su provera pokrivesnoti

(Coverage app), provera validnosti napisanih osobina (FPV),

provera ekvivalentsnoti sistema (SEQ) i tako dalje. Formalna

verifikacija sa sobom nosi neke veoma važne prednosti u

odnosu na verifikaciju baziranu na simulaciji i neke od njih su:

1. Za jednostavne RTL modele nema potrebe za

pisanjem test okruženja.

2. Lako ispitivanje nama nepoznatog sistema.

__
NAPOMENA: Ovaj rad proistekao je iz master rada čiji

mentor je bio dr Vuk Vranjković, vanr. prof.

3. Efikasnije i uglavnom kraće vreme proveravanja.

4. Omogućena je potpuna pokrivenost

5. Dostupnost kontra-primera

6. Dostupnost analize beskonačnih putanja

U radu je najviše korišćena FPV aplikacija koja radi sa

osobinama. Osobina (property) je jezička konstrukcija koja

formalno opisuje neki aspekt digitalnog sistema i predstavlja

uopštenje već poznate assert naredbe. Definišu se pomoću

HDL jezika od kojih je u ovom radu korišćen SystemVerilog.

Na njih se primenjuju verifikacione akcije assert, assume ili

cover.

2. KRATAK OPIS PROJEKTOVANOG DIZAJNA

Kao što je pomenuto, projektovani dizajn je RISC-V sistem

i on se sastoji od sledećih komponenti :

• Dva RISC-V jedno-ciklusna procesora sa

sopstvenim L1 keš memorijama.

• Globalna magistrala sa kontrolerom.

• Deljena L2 keš memorija sa keš kontrolerom.

• Globalna memorija za podatke.

Blok šema sistema je data na slici 1 na sledećoj stranici.

Projektovanje sistema je rađeno u 3 faze, gde je prva faza

podrazumevala procesor koji sadrži i keš memoriju i data

memory komponentu za podatke. U nastavku je ustanovljeno

da to nije optimalno, pa je u fazi 2 data memory komponenta

izbačena van procesora. Konačno faza 3 sadrži ceo sistem i

njegovo povezivanje. Svaku fazu je pratila jednostavna

verifikacija i pisanje kratkih test scenarija za simulaciju u

okviru alata Vivado.

2.1. RISC-V JEDNO-CIKLUSNI PROCESOR

Srce ovog sistema predstavlja upravo pomenuti RISC-V

procesor. Inicijalno, procesor je sadržao osnovne komponente

RISC-V arhitekture a zatim je po fazama dodato ostalo.

Procesor podržava instrukcije tipova R, I ,L, S, U, B i J. Sadrži

sopstvenu L1 memoju koja je direktno mapirana i ima 256

lokacija i uz nju je i keš kontroler za istu.

1287

https://doi.org/10.24867/33BE03Stamenkovic

Slika 1 : Blok šema projektovanog sistema

Protkol koherenntnosti koji je odabran za ovaj rad je MESI

i on je takođe implementiran u okviru L1 keš memorije.

Suštinski, ako se desi pogodak (cache hit) u L1 keš

memoriji procesora koji traži podatak, on se jednostavno

upisuje u registar. Ako se desi promašaj (cache miss), prvo

proveravamo dostupnost podatka u drugom procesoru,

zatim u L2 keš memoriji i na samom kraju u globalnoj

memoriji za podatke koja predstavlja poslednji nivo

memorijske hijerarhije. Procesor se sastoji od sledećih

komponenti: aritmetičko-logička jedinica (ALU),

instrukciona memorija, sabirač (sa 4 i sa poljem imm),

modul za grananje (branch condition), kontroler samog

procesora (kontorlni signali), modul za generisanje

konstante (immediate generator), programski brojač(PC),

multiplekseri, registarski fajl, modul za prosleđivanje

podatka koji se upisuje u registarski fajl (write back) i L1

keš memorija sa svojim kontrolerom.

Bitno je napomenuti da se magistrali pristupa samo u

slučaju L ili S tipa instrukcija i da u slučaju istovremenog

pristupa oba procesora postoji implementriana arbitraža

koja odlučuje koji će imati prednost u tom momentu.

Inicijalno, prednost ima prvi procesor. Upis u sve memorije

kao i registarski fajl se izvršava na opadajuću ivicu taktnog

signala dok je čitanje iz svih asinhrono.

2.2. Ostatak sistema

Procesor je instanciran dva puta i oba su povezana na

zajedničku magistalu koja za cilj ima efikasno rutiranje i

prosleđivanje podataka, bilo to od strane drugog procesora

ili L2 memorije. Magistrala dobija informacije kao što su

adresa, operacija, tag kao i sam podatak i pomoću istih

odlučuje gde se šta šalje. Takođe, poseduje indikatore o

tome gde se podatak može naći, što delom predstavlja

snoop protokol. Ukoliko jezgro 1 nema podatak, magistrala

će proveriti da li ga ima drugo jezgro i tek u slučaju da ga

nema će se osvrnuti na ostatak sistema.

Deljena L2 keš memorija je set-asocijativna sa dva kanala i

ima 1024 lokacije koje su podeljene u 512 setova (4 puta

veći kapacitet od L1). Algoritam zamene podataka unutar

kanala koji se koristi je LRU i implementiran je pomoću

LRU bita koji je sastavni deo svake linije u L2 memoriji.

Od trenutka kada su oba podatka validna unutar jednog seta

u memoriji, LRU biti tih kanala moraju uvek biti suprotni.

Globalna memorija za podatke predstavlja poslednji nivo

memorijske hijerarhije i nakon odluke u fazi 2, izbačena je

van procesora. Njoj pristupamo u slučaju da podatak nije

dostupan niti u jednom od procesora niti u L2 keš memoriji.

Tokom rada, njen kapacitet je bio 1024 kako bi se alatu

olakšala provera osobina, međutim nakon iste, moguće je

povećati njen kapacitet.

3. PROCES VERIFIKACIJE PROJEKTOVANOG

SISTEMA

Slično procesu projektovanja, i proces verifikacije je

rađen u 3 faze. Verifikacija procesora koji je imao i keš

memoriju i data memory komponentu predstavalja

verifikaciju faze 1 dok je verifikacija finalne verzije

procesora bez data memory komponente predstavljena sa

verifikacijom faze 2. Verifikacija celokupno povezanog

sistema je verifikacija faze 3. Kao što je pomenuto, pre

same formalne verifikacije pisani su jednostavni testovi

za test okruženje u okviru alata Vivado gde je proverena

osnovna funkcionalnost sistema za par smišljenih ulaznih

kombinacija instrukcija.

3.1. Verifikacioni plan

Verifikacioni plan predstavlja prvi korak u svakoj

verifikaciji i predstavlja bitan dokument jer se upravo na

njega ceo verifikacioni tim oslanja. Sastavlja se na osnovu

funkcionalne specifikacije sistema i preporuka je pisati ga

„hladne glave“ kako bi rasterećeni obuhvatili sve bitne

tačke za proveru sistema.

Faza 1 i faza 2 su pokrivene istim verifikacionim planom

obzirom da obe obuhvataju proveru procesora uz

modifikaciju pomenute data memory komponente. Radi se

provera svih komponenti unutar procesora kao i proveri

tranzicija mašina stanja i MESI protkola koherentnosti.

Faza 3 je pokrivena drugim verifikacionim planom i on

podrazumeva proveru interakcija između svih komponenti

sistema kao što su dešavanje nakon flush operacije, provera

oba kanala u jednom setu L2 memorije, LRU biti i slično.

Takođe se proverava i upis i čitanje kako iz L2 keš

memorije, tako i iz globalne memorije za podatke.

3.2. Verifikaciono okruženje

Za razvijanje verifikacionog okruženja je korišćena metoda

referentog modela, to jest, napisana je checker komponenta.

Za povezivanje ove komponente i samog dizajna se

koristila bind komanda i napisana skripta. Slično kao i za

verifikacioni plan, i u ovom slučaju su napisana dva

referentna modela, jedan za verifikaciju procesora i jedan

za verifikaciju celokupnog sistema. U ovim fajlovima su

1288

pisane osobine koje za ulogu imaju proveru funkcionalnosti

sistema. Oba referentna modela imaju sličnu strukturu i ona

se sastoji od sledećih delova :

Slika 2 : MESI protkol[2]

• Deklaracija portova dizajna procesora odnosno

sistema

• Sekcija za definisanje pomoćnih signala,

parametara i struktura.

• Sekcija za definisanje restrikcija i ograničenja

(assumes)

• Sekcija za definisanje tzv. grey box signala koji

idu kroz hijerarhiju i uzimaju se direktno iz

dizajna.

• Pomoćni kod (Auxillary code)

• Sekcija za definisanje tvrdnji i pomoćnih tačaka

pokrivenosti (asserts, covers)

Restrikcije su veoma bitan deo referentnog modela jer

ograničavaju vrednosti ulaza koje alat može da kreira.

Osobina koju alat dokaže, uz restrikcije koje nisu dobro

napisane, ne može se smatrati validnom jer smo time možda

maskirali grešku. Na primer, RISC-V arhitektura ne

dozvoljava da u registru x0 bude bilo koja vrednost sem 0.

Ukoliko ne napišemo restrikciju koja osigurava da alat ne

kreira takvu instrukciju koja će da radi upis u taj registar,

naša osobina za upis u registarski fajl neće biti korektna.

Još jedan primer su vrednosti maske za S ili L tip

instrukcije. Maska u ovim slučajevima određuje koji deo

reči od 32 bita će biti upisan ili učitan, byte (8 bita), half

word (16 bita) ili word (32 bita). Po RISC-V standardu,

polje za masku je široko 3 bita pa je alatu dostupno 8

vrednosti za istu, iako za S postoje samo 3 vrednosti koje

se koriste i za L samo 5 vrednosti. Bez ograničenja, alat bi

odmah dao kontra-primer sa jednom od vrednosti koje se

ne koriste, što ne bi bilo korektno. Bitno je napomenuti da,

obzirom da sistem radi i na rastuću i na opadajuću ivicu

takta, svaka restrikcija mora imati svoju kopiju koja se

evaluira i na opadajuću ivicu.

3.3. Tehnike formalne verifikacije

Kako bi se alatu olakšao rad i dokaz napisanih osobina,

korišćene su razne tehnike. One su pomogle i pri tome da

se kod organizuje i time inžinjeru olakša da razume

povratnu informaciju alata.

Metoda crne kutije (black box) – Unutar instrukcione

memorije su učitane instrukcije koje sistem treba da izvrši.

Kako bi verifikacija bila preciznija, na ovu komponentu je

primenjena black box tehnika. Alat sada ne posmatra

unutrašnjost ove komponente i njenu funkcionalnost, već

ima slobodu da na njene ulaze dovodi sve moguće vrednosti

koje poštuju zadate restrikcije. Obzirom da je ova

komponenta jednostavna i ne izvršava neki napredan kod,

nije postojalo nikakvih mera opreza za primenu ove

tehnike. Nakon primene iste, trebalo je samo napisati

propratne restrikcije koje će da osiguraju korektan rad

sistema. Preciznije, donjih 7 bita izlazne instrukcije je

moralo da ima jednu od 7 vrednosti za svaki od podržanih

tipova instrukcije.

Pisanje pomoćnog AUX koda – Kod kompleksnijih

dizajnova kao što je ovaj, osobine mogu biti takođe veoma

kompleksne i dugačke, što nikako ne odgovara alatu.

Pomoćni kod omogućava da se kreiraju neki pomoćni

signali koje kasnije možemo da upotrebimo za poređenje u

okviru nekog dokaza. Na primer, za proveru programskog

brojača bi na prvi pogled imali 7 provera za svaki tip

instrukcije. Međutim ukoliko samo napišemo jednostavni

pomoćni kod i kreiramo signal pc_ref koji prati promenu

vrednosti brojača u referentnom modelu, kao što je urađeno

u ovom projektu, dovoljna je samo jedna osobina koja

dokazuje validan rad programskog brojača. U nekom

drugom slučaju je bolje jednu osobinu rastaviti na više

manjih osobina. Recimo da želimo da proverimo

skladištenje podataka u L1 keš memoriju. Postoje 3

vrednosti maske za S tip instrukcije tj. možemo skladištiti

1, 2 ili 4 bajta. Teoretski je moguće napisati jednu osobinu

koja će proveriti sve maske odjednom, ali obzirom da je

skladištenje podataka kompleksna operacija za alat (jer

radi sa velikim brojem stanja), mnogo je pametnije i

efikasnije to uraditi sa 3 odvojene osobine.

Upotreba nedeterminističke konstante (location based

coupling) – Nedeterministička konstanta ili još poznato kao

i slobodna varijabla je varijabla koju alat zadaje tokom

provere. Ova tehnika podrazumeva proveru jedne

nedeterminističke lokacije i često se koristi upravo za

adrese i tagove kod keš memorija. Na ovaj način se

apstrahuju svi elementi osim lokacije koja se proverava,

čime se drastično smanjuje prostor koji alat mora da ispita.

Ovo se često koristi u slučajevima:

• Kada sistem ima dosta simetričnih elemenata kao

što su tabele, memorije ili nizovi.

• Kada sistem ima veliki adresni prostor, kao što je

DMA kontroler ili memorija.

Uz ovu tehniku je potrebno napisati restrikciju koja drži

1289

ovu varijablu stabilnom, jer ona ne sme da se menja tokom

jedne iteracije rada alata. Takođe, ako je potrebno, moguće

je ograničiti i vrednost ove varijable. Tehnika se uglavnom

primenjuje u osobinama tako što se evaluacija iste radi pri

podudaranju adrese koju je doveo alat i pomenute varijable.

Grafički prikaz ove tehnike je dat na slici 3.

Slika 3 : Location based coupling[3]

Za većinu osobina je korišćeno pisanje pomoćnog AUX

koda i za sve kompleksnije osobine (rad sa memorijama)

je korišćena nedetermisnitčka konstanta. Međutim, postoje

i osobine za koje ovo nije bilo potrebno. Ovo su uglavnom

jednostavne osobine za koje je dovoljno koristiti dostupne

portove i grey-box signale kako bi se dokaz napisao. Primer

jedne takve osobine je dat ispod ovog pasusa.

property checking_transition_from_IDLE_to_DMEM_WRITE;

 top.cache_L2.state == 2'b00 &&

top.cache_L2.cache_hit_out == 2'b01 |=>

 top.cache_L2.state == 2'b01;

endproperty

Napisana osobina jednostavno proverava da li se prelazi u

stanje DMEM_WRITE u slučaju promašaja u memoriji.

Sve osobine koje su napisane su dokazane i sve pronađene

greške u svim fazama su ispravljene i dokumentovane u

samom radu.

4. ANALIZA REZULTATA

Nakon što su sve osobine napisane i dokazane, poslednji

korak je upotreba Coverage aplikacije u okviru alata. Njena

uloga je da nam pruži metriku i povratnu informaciju o

tome koliko smo dizajna pokrili sa našim osobinama, da li

su sva granjanja proverena i slično.

Formalni alat nudi 3 tipa pokrivenosti :

1. Stimuli coverage – Koji kod ili funkcionalnost je

dostižna pomoćnu formalnog alata? Koje osobine

alat može da pokrije?

2. Checker coverage – Ova pokrivenost nam daje

informaciju o tome da li je verifikacija završena i

koliko dizajna je pokriveno pomoću napisanih

tvrdnji.

3. Formal coverage – Kombinacija rezultata

prethodne dve metrike. Tačka u okviru ove

pokrivenosti se smatra „pokrivenom“ ako je ista

„pokrivena“ i u Stimuli i u Checker metrici. Ova

metrika nam daje informaciju o ukupnoj

pokrivenosti sistema.

Aplikacija je pokrenuta nakon pisanja oba referetna

modela, na kraju faze 2 i na kraju faze 3.

Nakon verifikacije procesora, aplikacija je pokazala

maksimalnu pokrivenost (slika 4) nakon određenog

vremena. Ovime smo dobili zeleno svetlo da nastavimo sa

verifikacijom ostatka sistema.

Slika 4 : Pokrivenost nakon verifikacije procesora

Nakon uspešne verifikacije celokupnog sistema, aplikacija

je pokrenuta i nakon faze 3.

Usled manjka memorijskih resursa na virtuelnoj mašini na

kojoj je bilo rađeno, pri kraju rada aplikacije alat je izdao

upozorenje zbog kojeg je provera morala biti obustavljena

pred kraj. Ovime pokrivenost nije teoretski maksimalna,

međutim na slici 5 možemo primetiti sledeće stvari:

• Novo dodate komponente su maksimalno

pokrivene, dok je alat ostavio samo već proverene

procesore za kraj.

• Većina funkcionalnosti kod procesora je

dokazana, zbog čega se pretpostavlja da bi i

ostatak bio dokazan sa više dostupnih resursa.

• Nema oblasti u koje alat ne može uopšte da uđe

(crvene oblasti), već su preostale samo žute oblasti

koje su „još uvek nedokazane“ (undetermined).

Slika 5 : Pokrivenost nakon verifikacije sistema

Uz sve ove tačke kao i osobine koje su dokazane, određeno

je da se na ovom mestu verufikacija završi, a time i ovaj

projekat.

5. ZAKLJUČAK

Nakon analize rezultata je ustanovljeno da sistem sadrži sve

osobine koje su predviđene po specifikaciji. Procesori

mogu da izvrše sve instrukcije koje podržavaju sa

korektnim rezultatima. Za verifikaciju su uspešno

iskorišćene formalne metode i tehnike za smanjenje

kompleknosti. Sve pronađene greške su dokumentovane i

ispravljene i analiza rezultata pomoću Coverage aplikacije

je dala dobar rezultat čime zaključujemo da je verifikacija

uspešno odrađena.

1290

6. LITERATURA

[1] E. Seligman, T. Schubert, M. V. A. K. Kumar, An

essential toolkit for modern VLSI Design

[2] T. Suh, Integration and evaluation of cache coherence

protocols for multiprocessor socs, 2006

[3]”Jasper expert course”, Cadence [Na mreži]. Available:

https://www.cadence.com/en_US/home/training/all-

courses.html

Kratka biografija

Petar Stamenković rođen je u

Novom Sadu 2000. godine.

Diplomirao je na Fakultetu

tehničkih nauka, na smeru

Energetika, elektronika i

telekomunikacije 2023. godine.

Master rad na Fakultetu tehničkih

nauka iz oblasti Elektrotehnike i

računarstva – Energetika,

elektronika i telekomunikacije

odbranio je 2025. godine.

Kontakt:

petarstamenkovic35@gmail.com

1291

https://www.cadence.com/en_US/home/training/all-courses.html
https://www.cadence.com/en_US/home/training/all-courses.html

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.42

DOI: https://doi.org/10.24867/33BE06Todic

OBRADA VELIKIH SKUPOVA PODATAKA KORIŠĆENJEM CLOUD TEHNOLOGIJA

PROCESSING LARGE DATA SETS USING CLOUD TECHNOLOGIES

Bosiljka Todić, Fakultet tehničkih nauka, Novi Sad

Oblast – ELEKTROTEHNIKA I RAČUNARSTVO

Kratak sadržaj – U ovom radu analizirani su dnevni

valutni kursevi korišćenjem Google BigQuery platforme,

koja omogućava obradu velikih skupova podataka i

predikciju budućih trendova. Analiza podataka uključuje

identifikaciju dugoročnih trendova i volatilnosti valuta, uz

korišćenje grafičkih prikaza i prediktivnih modela. Fokus

je na upotrebi BigQuery-a kao efikasnog cloud alata, koji

nudi skalabilnost i brzinu obrade kompleksnih upita. Cilj

rada je pokazati potencijale cloud tehnologija i Big Data

alata u analizi i donošenju strateških odluka.

Ključne reči: Cloud computing, Big Data, Google Cloud

BigQuery, Kaggle, Dnevni valutni kursevi

Abstract – This paper analyzes daily currency exchange

rates using the Google BigQuery platform, which enables

the processing of large datasets and the prediction of

future trends. The data analysis focuses on identifying

long-term trends and currency volatility, complemented by

graphical representations and predictive models. The

emphasis is on BigQuery as a robust cloud tool that offers

scalability and speed for executing complex queries. The

goal is to demonstrate the potential of cloud technologies

and Big Data tools in analysis and strategic decision-

making.

Keywords: Cloud computing, Big Data, Google Cloud

BigQuery, Kaggle, Daily exchange rates

1. UVOD

Razvoj savremenih tehnologija i sve veća količina

dostupnih podataka stvorili su potrebu za efikasnim

alatima i platformama za obradu velikih količina

informacija. Ova potreba dovela je do širenja koncepta Big

Data i cloud računarskih platformi. Danas se mnoge

industrije, poput finansija, maloprodaje, zdravstva,

trgovine valutama, oslanjaju na brze i precizne informacije

kako bi donele strateške odluke. Mogućnost analize velikih

skupova podataka u realnom vremenu postala je ključna za

uspeh u ovim sektorima.

U ovom radu fokus će biti na obradi i analizi velikih

skupova podataka korišćenjem cloud servisa. Konkretno,

obrađivaće se skup podataka sa platforme Kaggle, koja

služi za deljenje i analizu podataka.

__

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je bio

dr Srđan Vukmirović, red. prof.

Skup podataka sadrži dnevne promene valutnih kurseva u

odnosu na baznu valutu, što pruža priliku za analizu

dugoročnih trendova i promenjivosti valuta. Podaci će biti

obrađeni, analizirani i grafički prikazani. Koristiće se

Google-ova platforma BigQuery koja je serverless

skladište podataka sa ugrađenim mogućnostima mašinskog

učenja. Platforma ima mnoštvo funkcija koje pomažu u

analitici različitih veličina i tipova podataka. Takođe,

platforma nudi nekoliko načina za vizualizaciju, kao i

kreiranje predikcija pomoću BigQuery ML ugrađenih

funkcija. Cilj ovog rada je da prikaže kako cloud

tehnologije i Big Data alati mogu biti korisni u analizi

velikih skupova podataka, kroz konkretan primer valutnih

kurseva.

2. OSNOVNI POJMOVI

U ovom poglavlju će biti detaljno objašnjeni ključni

pojmovi koji čine osnovu za dalju razradu teme i analizu

podataka u ovom radu. Fokus će biti na definisanju i

razumevanju osnovnih principa cloud computinga i big

data tehnologija, kao i na njihovoj međusobnoj

povezanosti i značaju u savremenim IT sistemima.

2.1. Cloud computing

Cloud computing predstavlja isporuku IT resursa na zahtev

putem interneta uz plaćanje prema korišćenju. Umesto

kupovine, posedovanja i održavanja fizičkih data centara i

servera, moguće je pristupiti tehnološkim uslugama, kao

što su računarska snaga, skladištenje i baze podataka, po

potrebi, od pružalaca cloud usluga [1].

Tipovi modela implementacije cloud computing-a:

• Javni cloud – u vlasništvu i pod upravom trećih

strana, poput pružalaca cloud usluga kao što je

Google Cloud. Ova vrsta clouda omogućava

kompanijama pristup računarskim, skladišnim i

mrežnim resursima putem interneta. Resursi su

dostupni na zahtev, što firmama pruža

fleksibilnost da ih koriste prema svojim

specifičnim potrebama i poslovnim ciljevima, bez

potrebe za ulaganjima u sopstvenu IT

infrastrukturu.

• Privatni cloud – infrastruktura koju gradi,

poseduje i upravlja jedna organizacija, pri čemu

se resursi hostuju unutar njenih sopstvenih data

centara. Ovaj pristup, poznat i kao „on-premises”

rešenje, pruža kompanijama veću kontrolu,

sigurnost i upravljanje podacima.

1292

https://doi.org/10.24867/33BE06Todic

• Hibridni cloud – kombinuju modele javnog i

privatnog cloud-a, omogućavajući kompanijama

da koriste usluge javnog cloud-a, a istovremeno

zadrže mogućnosti koje su uobičajene u

arhitekturama privatnog cloud-a.

Postoje tri glavna tipa modela cloud computing usluga koje

se mogu izabrati u zavisnosti od nivoa kontrole,

fleksibilnosti i upravljanja koje korisnik zahteva:

• Infrastructure as a service (IaaS) – obezbeđuje

osnovne resurse, kao što su serveri, skladištenje i

mogućnosti umrežavanja, upotrebom virtuelnih

mašina, kao što su Amazon EC2, Google

Compute Engine i Microsoft Azure.

• Platform as a service (PaaS) – obezbeđuje

platformu za razvoj, testiranje i implementaciju

softverskih aplikacija, kao što su AWS Elastic

Beanstalk, Google App Engine i Heroku.

• Software as a service (SaaS) – model usluge u

cloud-u koji omogućava korisnicima pristup

softverskim aplikacijama putem interneta, bez

potrebe za instalacijom i održavanjem tih

aplikacija na svojim lokalnim uređajima ili

serverima, kao što su Amazon WorkSpaces,

Gmail, Salesforce, Dropbox, Google Apps for

Work i Microsoft Office 365.

2.2. Big Data

Ogromne količine podataka prikupljenih tokom vremena

koje je teško analizirati i obrađivati korišćenjem

uobičajenih alata za upravljanje bazama podataka. Ovi

podaci se analiziraju radi identifikacije tržišnih trendova u

poslovanju, kao i u oblastima proizvodnje, medicine i

nauke. Tipovi podataka uključuju poslovne transakcije, e-

poruke, fotografije, snimke nadzornih kamera, evidenciju

aktivnosti i nestrukturirani tekstovi sa blogova i društvenih

mreža, kao i ogromne količine podataka koje mogu

prikupljati senzori različitih vrsta [2].

Big Data se definiše kroz pet ključnih karakteristika

poznatih kao 5V. Prva karakteristika je obim (Volume),

koja se odnosi na količinu podataka koji se generišu iz

različitih izvora i u različitim formatima, često toliko

velika da tradicionalne metode skladištenja i obrade nisu

dovoljno efikasne. Zatim, tu je vrednost (Value), koja

označava korisne uvide koje se mogu izvući iz podataka, a

koji dodaju vrednost poslovnim procesima. Brzina

(Velocity) se odnosi na brzinu generisanja, prikupljanja i

analize podataka, što omogućava donošenje odluka u

realnom vremenu. Raznovrsnost (Variety) označava

različite tipove podataka, uključujući strukturirane, polu-

strukturirane i nestrukturirane podatke, prikupljene iz

brojnih izvora. Na kraju, tu je validnost/verodostojnost

(Validity/Veracity), koja se odnosi na kvalitet i pouzdanost

podataka, koji su ključni za preciznu analizu i donošenje

tačnih odluka.

2.3. Povezanost Cloud computing i Big Data koncepta

Cloud computing i Big Data su međusobno povezane

tehnologije koje su promenile način na koji organizacije

upravljaju i analiziraju podatke. Big Data, generisana iz

raznovrsnih izvora, često dolazi u različitim formatima.

Pružaoci cloud usluga nude alate poput veštačke

inteligencije za standardizaciju i analizu ovih podataka.

Cloud platforme, poput Amazon S3 ili Google Cloud

Storage, omogućavaju centralizovano i skalabilno

skladištenje velikih količina podataka. U kombinaciji sa

alatima poput Hadoop-a i Spark-a, podaci se mogu brzo

obrađivati i transformisati u korisne uvide. Dodatno, alati

za analitiku i vizualizaciju, kao što su Power BI i Tableau,

pomažu organizacijama da identifikuju trendove i donesu

bolje odluke.

Jedna od najvećih prednosti cloud-a je skalabilnost, zbog

toga šro organizacije mogu povećavati ili smanjivati

resurse prema potrebama, plaćajući samo za ono što

koriste. Ova fleksibilnost omogućava preduzećima svih

veličina da analiziraju podatke na efikasan i isplativ način.

Kombinacija cloud tehnologija i Big Data tako otvara vrata

ka inovacijama, smanjenju troškova i optimizaciji

poslovanja.

3. CLOUD SERVISI ZA OBRADU BIG DATA

Serijska obrada (batch processing) i strim obrada (stream

processing) su dva osnovna načina obrade velikih skupova

podataka. Ove metode prilagođene su specifičnim

potrebama i slučajevima upotrebe. Serijska obrada

omogućava analizu podataka iz prošlosti u unapred

definisanim vremenskim intervalima, dok je strim obrada

optimalna za aplikacije kojima su potrebni trenutni

rezultati, kao što su detekcija prevara u realnom vremenu

ili praćenje finansijskih transakcija.

Servisi za obradu velikih skupova podataka u cloud-u

pružaju skalabilnost, pouzdanost i visoke performanse,

omogućavajući kompanijama efikasno upravljanje i

analizu podataka. Ključne cloud platforme i njihovi servisi

uključuju:

• Amazon Web Services (AWS) – alati poput

Amazon S3 za skladištenje, EMR za obradu

(Hadoop/Spark), Redshift za analitiku i Kinesis za

strimovanje podataka u realnom vremenu.

• Google Cloud Platform (GCP) – BigQuery za

analitiku, Dataflow za paralelnu obradu, Dataproc

za Hadoop/Spark i Pub/Sub za razmenu poruka.

• Microsoft Azure – HDInsight za Hadoop/Spark,

Synapse Analytics za skladištenje i obradu, Data

Lake Storage za velike skupove podataka i Stream

Analytics za real-time analitiku.

• IBM Cloud – Watson Studio za AI, Cloud Object

Storage za skladištenje i Streams za analitiku u

realnom vremenu.

• Oracle Cloud – Autonomous Data Warehouse za

AI analitiku i Big Data Service za Hadoop

bazirane procese.

• Alibaba Cloud – MaxCompute za analizu

podataka, DataWorks za ETL i EMR za

Hadoop/Spark klastere.

• Cloudera – Platforma za hibridna rešenja koja

kombinuje upravljanje podacima, analitiku i AI.

• Apache Hadoop: Osnova za mnoge Big Data

servise sa HDFS za skladištenje i MapReduce za

obradu.

1293

4. OBRADA KAGGLE DATASETA POMOĆU GCP

BIGQUERY SERVISA

Google Cloud BigQuery je platforma za podatke koja

pomaže pri upravljanju i analiziranju podataka sa

ugrađenim funkcijama kao što su mašinsko učenje,

pretraga, analiza i poslovna inteligencija. Serverless

arhitektura BigQuery-ja omogućava korišćenje

programskog jezika poput SQL-a i Pythona za odgovaranje

na najveća pitanja, bez potrebe za upravljanjem

infrastrukturom [3]. Podaci su automatski replicirani na

više lokacija radi visoke dostupnosti i otpornosti.

4.1. Opis skupa podataka sa Kaggle platforme

Skup podataka koji je korišćen pri obradi je dostupan na

sledećem linku na Kaggle platformi:

https://www.kaggle.com/datasets/asaniczka/forex-

exchange-rate-since-2004-updated-daily/data

Skup podataka o dnevnim valutnim kursevima pruža

istorijske i aktuelne kurseve za preko 160 valuta. Ovaj skup

podataka se ažurira svakodnevno i sadrži podatke o

dnevnim valutnim kursevima od 2004. godine do danas.

Uključuje pet kolona: valuta (currency) je kod strane

valute, npr. USD za američki dolar, EUR za evro. Tip

podataka je string. Sledeća kolona je osnovna valuta

(base_currency) koja predstvalja kod osnovne valute, u

odnosu na koju se kurs izračunava, u ovom slučaju EUR.

Tip podataka je string. Sledi kolona za puno ime valute

(currency_name), kao što su „Američki dolar” ili „Evro”.

Tip podataka je string. Četvrta kolona je vrednost valutnog

kursa (exchange_rate), tj. odnos između strane valute i

osnovne valute. Ovo je broj koji pokazuje koliko osnovne

valute vredi jedna jedinica strane valute. Tip podataka je

float. Poslednja kolona je datum (date) kada je valutni kurs

zabeležen. Tip podataka je datetime.

Skup podataka sadrži skoro 400000 redova podataka o

dnevnim valutnim kursevima i trenutna verzija zauzima

17.01 MB, što ga čini dovoljno obimnim za detaljne

analize kretanja valutnih kurseva i tržišnih trendova na

globalnom nivou.

4.2. Koraci za uvoz skupa podataka i SQL analiza

Koraci:

1. Priprema podataka – preuzeti dataset u CSV

format i pripremiti za uvoz.

2. Kreiranje projekta – prijava na Google Cloud

Console i kreiranje novog projekta.

3. Uvoz podataka – kliknuti na Create Table i

izaberite CSV fajl sa lokalnog diska ili Google

Cloud Storage-a. Definisati šemu kolona.

4. Opcije uvoza – Append to table ili Replace table

5. Analiza pomoću SQL upita za filtriranje i analizu

podataka, kao npr. u listingu 1.

SELECT *

FROM `masterrad-

438309.dailyForexRates.DailyForexRates`

WHERE date >= '2023-01-01' AND currency =

'USD'

ORDER BY exchange_rate ASC;

Listing 1. SQL upit za dobavljanje liste svih kurseva za

USD od početka 2023. godine

5. ANALIZA SQL UPITA, KREIRANJE MODELA I

PREDIKCIJA POMOĆU BIGQUERY ML

5.1. Analiza SQL upita i prikaz rezultata

Prvi SQL upit kroz koji su podaci analizirani se odnosi na

broj jedinstvenih valuta. SQL upit je korišćen za

prebrojavanje različitih valuta u tabeli. Identifikovane su

sve jedinstvene vrednosti u koloni valute, što pomaže u

analizi pokrivenosti skupa podataka.

Drugi upit se odnosi na prosečni mesečni kursevi između

RSD i EUR. Grupisanjem po godini i mesecu, dobijeni su

prosečni kursevi, zaokruženi na dve decimale, sa ciljem

praćenja trendova na mesečnom nivou. BigQuery nudi

nekoliko različitih mogućnosti prikaza reultata, među

kojima je i tabelarni prikazan na slici 1.

Trećim upitom izvučeni su podaci o dnevnim kursevima

RSD, hronološki poredani. Rezultati omogućavaju

vremensku analizu promenjivosti kursa i vizualizaciju

trendova.

Slika 1. Tabelarni prikaz rezultata SQL upita

5.2. Kreiranje prediktivnog modela pomoću BigQuery

ML

BigQuery ML je alat koji omogućava kreiranje i treniranje

modela mašinskog učenja direktno u BigQuery-u koristeći

SQL upite. Ovo pojednostavljuje proces primene

mašinskog učenja, jer korisnici mogu raditi sa SQL-om,

koji je već poznat mnogim analitičarima i programerima

[4]. Prednost BigQuery ML-a leži u mogućnosti direktne

primene na postojeće podatke u BigQuery-u, čime se

izbegava potreba za prenosom podataka u drugo okruženje.

Kreiran je model predikcije za kurs američkog dolara

(USD) koristeći vremenske serije ARIMA modela. Model

predviđa kurs USD za narednih 15 dana i evaluira se na

osnovu podataka u BigQuery bazi podataka.

ARIMA model (Autoregressive Integrated Moving

Average) koristi se za analizu i predikciju vremenskih

serija, posebno onih koje nisu stacionarne [5]. Cilj ARIMA

modela je da pronađe što precizniji matematički opis

podataka, što omogućava bolje razumevanje serije i tačnije

predviđanje budućih vrednosti.

U ovom procesu je kreiran ARIMA model za predikciju

kursa američkog dolara na osnovu podataka o dnevnim

kursevima od 1. januara 2016. do 1. septembra 2024. Prvo

je postavljen model u BigQuery koristeći podatke iz tabele

koja sadrži dnevne kurseve. Parametri modela su

automatski podešeni kako bi optimizovali predikciju.

1294

https://www.kaggle.com/datasets/asaniczka/forex-exchange-rate-since-2004-updated-daily/data
https://www.kaggle.com/datasets/asaniczka/forex-exchange-rate-since-2004-updated-daily/data

Zatim je upotrebljena funkcija ML.FORECAST za

generisanje predikcija kursa na sledećih 15 dana sa 80%

nivoa poverenja.

Nakon što su predikcije izvršene, model je evaluiran

koristeći stvarne podatke od 1. do 15. septembra 2024.

kako bi se proverila tačnost predikcija. Rezultati evaluacije

su pokazali različite metrike greške, kao što su MAE, MSE,

RMSE, MAPE i SMAPE, što je omogućilo analizu

preciznosti modela. Iako su vrednosti MAE i RMSE bile

relativno niske, visoki procenti greške (MAPE i SMAPE)

ukazali su na to da model može imati poteškoće sa

sezonskim promenama ili neredovnim podacima.

5.3. Identifikacija vezanih valuta

 U sljedećem delu analize, identifikovane su valute vezane

za evro iz posmatranog skupa podataka. Valutni kursevi

mogu biti fiksni ili promenljivi. Za identifikaciju vezanih

valuta posmatrani su podaci sa istorijom valutnih kurseva

pre 2015. godine i izračunat je koeficijent varijacije (CV),

koji pokazuje stabilnost kursa, pomoću formule (1):

𝐶𝑉 =
𝜎

𝜇
 (1)

Početna analiza se bazira na filtriranju valuta koje su ušle

u skup podataka pre 2015. godine, jer se pretpostavlja da

su ove valute stabilnije, imaju dužu istoriju i mogu biti

pogodnije za dalju analizu. SQL upit je korišćen da bi se

identifikovale valute koje su prvi put prikazane u skupu

podataka pre 1. januara 2015. Na osnovu ovog upita,

dobijeno je 134 valuta koje zadovoljavaju ovaj kriterijum.

Za svaku od identifikovanih valuta, izračunata je prosečna

vrednost valutnog kursa, kao i standardna devijacija koja

pokazuje promenjivost kursa tokom vremena. Ovo je

ključno za razumevanje koliko se kurs jedne valute menja

u odnosu na evro. Prosečna vrednost kursa daje osnovnu

vrednost za analizu, dok standardna devijacija pomaže u

oceni stabilnosti kursa.

Nakon što su izračunati srednji kurs i standardna devijacija,

koristi se koeficijent varijacije (CV) kao kriterijum za

identifikaciju vezanih valuta Valute sa niskim CV (manje

od 0.03) smatraju se stabilnim, što znači da njihovi kursevi

imaju malu varijaciju oko prosečne vrednosti, što može

ukazivati na to da su vezane za evro. Na osnovu ovog

kriterijuma, identifikovane su valute sa malim CV, koje su

potencijalno vezane za evro.

Nakon identifikacije vezanih valuta pomoću SQL upita i

analize CV, rezultati su upoređeni sa informacijama sa

Wikipedije o međunarodnom statusu i upotrebi evra, koje

su dostupne na sljedećem linku:

https://en.wikipedia.org/wiki/International_status_and_us

age_of_the_euro#Pegged_currencies

Valute koje su tačno identifikovane kao vezane za evro su

BAM, BGN, DKK, KMF, MAD, MKD i XAF. Takođe su

identifikovane valute koje nisu bile prisutne u analizi, kao

što su CVE, STN, XOF i XPF, pri čemu su valute poput

STN-a bile izostavljene zbog nedostatka podataka, dok su

ostale dodane u poslednjem ažuriranju podataka krajem

2023. godine. Postoje i dodatne valute koje se nalaze u listi

identifikovanih vezanih valuta, ali nisu prisutne na

Wikipediji: RSD, HRK i XDR.

6. ZAKLJUČAK

Ovaj rad je uspešno pokazao povezanost Cloud computing

i Big Data koncepta, kao i primenu cloud tehnologija za

analizu i predikciju tržišta valuta. Korišćenjem Google

Cloud BigQuery platforme, analizirani su dnevni kursevi

valuta, identifikovani dugoročni trendovi i razvijen model

za predviđanje vrednosti kurseva. SQL upiti su omogućili

analize, dok je ARIMA model delimično uspešno

predvideo vrednosti kurseva u određenim periodima što

ukazuje na potencijal, ali i na prostor za unapređenje ovog

pristupa.

Google BigQuery se ističe u izvođenju kompleksnih

analiza, dok za jednostavnije operacije nije najučinkovitiji.

Rad otvara mogućnosti za dalja istraživanja, kao što su

korišćenje složenijih mašinskih modela i uvođenje

ekonomskih faktora za bolje predikcije. Takođe, širenje

analize na veće vremenske intervale i druge valute može

doprineti boljem razumevanju globalnih finansijskih

tokova. Ovaj rad pruža čvrstu osnovu za buduća

istraživanja u oblasti cloud tehnologija i analize podataka.

7. LITERATURA

[1] https://aws.amazon.com/what-is-cloud-computing/

(pristupljeno u septembru 2024.)

[2] https://www.pcmag.com/encyclopedia/term/big-data

(pristupljeno u septembru 2024.)

[3] https://cloud.google.com/bigquery/docs/introduction

(pristupljeno u septembru 2024.)

[4] https://cloud.google.com/bigquery/docs/create-

machine-learning-model#sql (pristupljeno u oktobru

2024.)

[5] https://en.wikipedia.org/wiki/Autoregressive_

integrated_moving_average (pristupljeno u oktobru

2024.)

Kratka biografija:

Bosiljka Todić je rođena 2000. godine u

Bijeljini, Bosna i Hercegovina. Završila je

gimnaziju „Vaso Pelagić” u Brčkom,

2019. godine. Fakultet Tehničkih Nauka u

Novom Sadu je upisala 2019. godine.

Diplomirala je u septembru 2023. godine

na smeru Primenjeno softversko

inženjerstvo. Uspešno je ispunila sve

akademske obaveze i položila sve ispite

predviđene master studijskim programom

Primenjeno softversko inženjerstvo.

kontakt: bosiljkatodic00@gmail.com

1295

https://en.wikipedia.org/wiki/International_status_and_usage_of_the_euro#Pegged_currencies
https://en.wikipedia.org/wiki/International_status_and_usage_of_the_euro#Pegged_currencies
https://aws.amazon.com/what-is-cloud-computing/
https://www.pcmag.com/encyclopedia/term/big-data
https://cloud.google.com/bigquery/docs/introduction
https://cloud.google.com/bigquery/docs/create-machine-learning-model#sql
https://cloud.google.com/bigquery/docs/create-machine-learning-model#sql
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.41

DOI: https://doi.org/10.24867/33BE07Nedic

PLATFORMA ZA VIZUALIZACIJU DISTRIBUIRANIH ALGORITAMA NA PRIMERU

KLASE ALGORITAMA ZA IZBOR LIDERA

PLATFORM FOR VISUALIZING DISTRIBUTED ALGORITHMS ON THE EXAMPLE

OF A CLASS OF ALGORITHMS FOR LEADER ELECTION

Aleksandra Nedić, Fakultet tehničkih nauka, Novi Sad

Oblast – ELEKTROTEHNIKA I RAČUNARSTVO

Kratak sadržaj – U radu je predstavljena proširiva

platforma za vizualizaciju distribuiranih algoritama za

izbor lidera u sinhronim mrežama. Platforma omogućava

korisniku da dodaje nove algoritme pored predefinisanih,

kao i da manipuliše sistemom kroz dinamičko dodavanje i

uklanjanje čvorova koji učestvuju u izvršavanju

algoritama. Detaljno se razmatraju implementirani

algoritmi za izbor lidera, različite topologije i tehnološke

osnove platforme, uz prikaz njenih ključnih elemenata i

načina funkcionisanja. Rad takođe opisuje specifikaciju i

arhitekturu sistema, kao i implementaciju platforme.

Ključne reči: distribuirani algoritmi, biranje lidera,

topologije, Chang-Roberts, Gallager-Humblet-Spira,

Hirschberg-Sinclair, Bully, Hypercube

Abstract – The paper presents an extensible platform for

visualizing distributed algorithms for leader election in

synchronous networks. The platform allows the user to add

new algorithms in addition to predefined ones, as well as

to manipulate the system through dynamic addition and

removal of nodes participating in the execution of

algorithms. The implemented algorithms for the selection

of leaders, different topologies and technological

foundations of the platform are discussed in detail, with a

presentation of its key elements and ways of functioning.

The paper also describes the system specification and

system architecture, as well as the platform

implementation.

Keywords: distributed algorithms, leader election,

topologies,fklas Chang-Roberts, Gallager-Humblet-Spira,

Hirschberg-Sinclair, Bully, Hypercube

1. UVOD

U kontekstu izgradnje kompleksnih sistema, postoje dva

glavna pristupa: monolitni i distribuirani. Monolitne

arhitekture integrišu sve komponente u jedan proces, dok

distribuirani sistemi funkcionišu kroz više povezanih

čvorova bez centralnog autoriteta. To čini praćenje

komunikacije, stanja čvorova i toka izvršavanja algoritama

složenim. Zbog toga je razvijena edukativna platforma

koja vizuelno prikazuje rad distribuiranih

__

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji je mentor bio

dr Milan Stojkov, docent

algoritama, uključujući topologiju sistema, razmenu

poruka i tabelu rutiranja. Platforma inicijalno podržava

algoritme za izbor lidera (engl. Leader Election) [1] u

sinhronim mrežama. Omogućava korisnicima interaktivno

razumevanje ponašanja distribuiranih sistema i algoritama

nakon izbora lidera. Platforma je proširiva i omogućava

jednostavno dodavanje novih algoritama putem Python

skripti.

2. TOPOLOGIJE

Topologija unutar distribuiranih sistema predstavlja način

na koji čvorovi komuniciraju i sarađuju. Ona definiše

organizaciju čvorova i putanje preko kojih se podaci

prenose. Topologije definisane u okviru platforme jesu

prsten [2], hiperkocka [3], meš [4] i mreža.

2.1. Prsten

Prsten topologija je struktura u distribuiranim sistemima u

kojoj su čvorovi povezani u krug. Svaki čvor je direktno

povezan sa svoja susedna dva čvora formirajući zatvoreni

krug. Podaci se kreću kroz prsten od jednog do drugog

čvora dok ne stignu do željenog odredišta.

2.2. Hiperkocka

Hiperkocka je složena struktura u distribuiranim sistemima

koja povezuje čvorove tako da formira graf koji predstavlja

n-dimenzionalnu kocku. Za n dimenzija, broj čvorova u

hiperkocki mora biti 2n. Svakom čvoru je dodeljen binarni

broj od n bitova, a čvorovi su povezani ako se njihovi

binarni kodovi razlikuju u tačno jednom bitu.

2.3. Meš

Meš topologija predstavlja strukturu u kojoj postoje tri

vrste čvorova u zavisnosti od broja suseda. Čvorovi u

uglovima imaju dva suseda, čvorovi na ivicama imaju tri,

dok unutrašnji čvorovi imaju četiri suseda. Ukupan broj

veza m u meš topologiji veličine izračunava se formulom

𝑚 = 2𝑎𝑏 − 𝑎 − 𝑏, što predstavlja horizontalne i vertikalne

veze između čvorova.

2.4. Mreža

Mreža je univerzalan naziv za topologiju u kojoj su čvorovi

povezani na određeni način. Ukoliko je unutar mreže svaki

čvor povezan sa ostalim čvorovima, u pitanju je kompletna

mreža, dok je parcijalna mreža ona mreža u kojoj nisu svi

čvorovi direktno povezani jedan sa drugim. Kod

kompletnih mreža prenos podataka je veoma brz i ovakva

1296

https://doi.org/10.24867/33BE07Nedic

mreža je korisna u sistemima u kojima je minimalno

kašnjenje ključno.

3. ALGORITMI ZA BIRANJE LIDERA

Algoritmi za biranje lidera igraju veoma važnu ulogu u

distribuiranim sistemima jer omogućavaju izbor jednog

čvora koji će preuzeti ulogu koordinatora. Ovaj proces je

ključan za osiguranje efikasnosti, stabilnosti i organizacije

sistema. Koordinator deluje kao centralna tačka koja

upravlja zadacima poput sinhronizacije čvorova i

upravljanja resursima, što omogućava usklađenu

komunikaciju i sprečava nastanak konflikata.

3.1. Chang-Roberts algoritam

Chang-Roberts algoritam [5] bira lidera u sistemima sa

unidirekcionom prstenastom topologijom gde svaki čvor

ima jedinstveni identifikator (ID). Bilo koji čvor može

pokrenuti algoritam slanjem poruke sa svojim ID-jem

susedu u smeru kazaljke na satu i time postaje učesnik.

Prilikom primanja poruke, čvor:

1. prosleđuje poruku ako je ID u njoj veći od njegovog,

2. šalje svoju poruku ako je ID u njoj manji i nije

učesnik,

3. ignoriše poruku ako je ID manji i već je učesnik,

4. proglašava se liderom ako je ID jednak njegovom.

3.2. Bully algoritam

Bully algoritam [6] je algoritam za biranje lidera u

sistemima u kojima svaki čvor ima svoj ID i u kojima je

mreža potpuno povezana, te svaki čvor može direktno

komunicirati jedan sa drugim. Za lidera se bira onaj čvor

koji ima najveći ID. Proces započinje čvor koji otkrije da

trenutni lider više nije aktivan, ukoliko, na primer, ne

odgovara na poruke. Čvor pokreće proces za izbor tako što

šalje poruku svim čvorovima koji imaju veći ID od njega.

Ukoliko ne dobije odgovor od čvorova sa većim ID-jem,

taj čvor proglašava sebe liderom. Ako čvor sa većim ID-

jem odgovori na poruku inicijatoru, on preuzima proces

izbora lidera i šalje poruku čvorovima koji imaju veći ID

od njega.

3.3. Hypercube algoritam

Hypercube algoritam [7] koristi se u distribuiranim

sistemima sa hiperkockastom topologijom. Za hiperkocku

dimenzije k postoji ukupno 2𝑘 čvorova, pri čemu svaki

čvor ima binarni ID dužine k bita. Algoritam pokreće bilo

koji čvor slanjem poruke sa svojim ID-jem susedima u k

koraka. U svakom koraku poruka se šalje susedu koji se

razlikuje u jednom bitu — počevši od najmanje značajnog

(desnog) ka najznačajnijem (levom) bitu. Po prijemu

poruke, čvor:

1. ukoliko je ID iz poruke veći od njegovog ID-ja, čvor

označava sebe da nije lider

2. ukoliko je ID iz poruke manji od njegovog ID-ja, a

čvor do sada nije bio označen kao ne-lider, čvor

označava sebe kao lidera

Čvor zatim šalje svoj ID ostalim susedima. Po završetku k

koraka, čvor koji je označen kao lider postaje lider, dok

ostali završavaju rad.

3.4. Gallager-Humblet-Spira algoritam

Gallager-Humblet-Spira algoritam [8] je algoritam za

pronalaženje minimalnog razapinjujućeg stabla (engl.

Minimum spanning tree) u povezanim grafovima.

Koristi se u distribuiranim sistemima kod kojih veze

između čvorova imaju određenu težinu. Algoritam se

zasniva na ideji fragmentacije grafa, gde čvorovi i grane

formiraju fragmente koji se iterativno spajaju dok se ne

formira jedno stablo. Na početku algoritma, svaki čvor

predstavlja fragment za sebe i ima sopstveni ID. Jedan čvor

započinje proces za izbor lidera tako što šalje poruku

susedu sa kojim ima vezu najmanje težine. Kada čvor primi

poruku, on upoređuje svoj ID sa ID-jem iz poruke, ukoliko

je njegov ID manji, ova dva čvora se spajaju u jedan

fragment, a za ID fragmenta se uzima manji od ova dva.

Ovaj proces se nastavlja iterativno dok svi čvorovi ne

postanu deo jednog fragmenta, čiji ID ima najmanju

vrednost. Na ovaj način je formirano minimalno

razapinjujuće stablo, a lider postaje čvor čiji ID predstavlja

ID čitavog fragmenta.

3.5. Hirschberg-Sinclair algoritam

Hirschberg-Sinclair algoritam [9] koristi se za izbor lidera

u distribuiranim sistemima sa bidirekcionom prstenastom

topologijom, gde svaki čvor ima jedinstven ID. Izvršava se

u više iteracija, pri čemu poruke putuju na sve većim

udaljenostima, udvostručujući domet u svakoj iteraciji,

tako da važi 𝑘 ⩽ 2𝑖, gde je k udaljenost, a i broj iteracije.

Algoritam počinje slanjem izborne poruke (engl. election

message) u oba smera. Prilikom prijema izborne poruke,

čvor upoređuje svoj ID sa ID-jem iz poruke:

1. prosleđuje poruku ako je veći ID i domet nije

dostignut,

2. šalje povratnu poruku ako je domet dostignut,

3. ignoriše poruku ako je ID manji,

4. proglašava se liderom ako je ID isti.

U slučaju povratne poruke (eng. reply message), ukoliko

ID-jevi čvora i poruke nisu isti, čvor vraća poruku svom

susedu, dok ukoliko su ID-jevi isti, i povratna poruka je

stigla iz oba smera, čvor je lokalni lider, čime je jedna

iteracija završena i čvor započinje sledeću fazu elekcije.

4. MODEL SISTEMA

4.1. Arhitektura sistema

U arhitekturi platforme centralnu ulogu ima task

manager, čvor zadužen za upravljanje i orkestraciju

celokupnog sistema. On poseduje kompletnu konfiguraciju

sistema, uključujući definicije čvorova, algoritama i

njihove komunikacione topologije. Ova konfiguracija se

čuva u JSON formatu na fajl sistemu i povezuje sa Docker

kontejnerom putem bind mount mehanizma, što

omogućava lako ažuriranje bez potrebe za restartovanjem

sistema. Task manager je jedini čvor izložen spoljašnjoj

mreži i služi kao komunikaciona spona između korisničke

aplikacije i ostatka sistema. Koristi HTTP protokol za

prijem korisničkih zahteva, poput dodavanja čvorova ili

pokretanja algoritama, dok se WebSocket koristi za

dvosmernu komunikaciju u realnom vremenu,

omogućavajući korisniku da prati status algoritama i

trenutno stanje čvorova. Osnovna funkcija task manager-a

je koordinacija - inicira i uklanja čvorove, pokreće

1297

algoritme, upravlja njihovim izvršavanjem i prati njihov

status. Informacije o izvršavanju prosleđuje korisniku kako

bi on imao uvid u rad sistema u realnom vremenu. Pored

task manager-a, sistem se sastoji od više čvorova koji

međusobno komuniciraju sinhrono putem HTTP-a kako bi

izvršavali distribuirane algoritme. Svaki čvor, takođe,

asinhrono šalje informacije o svom stanju task manager-u

koristeći RabbitMQ message broker, čime se omogućava

ažuriranje prikaza sistema u realnom vremenu.

Arhitektura sistema prikazana je na slici 1.

4.2 Funkcionalnosti sistema

Platforma je namenjena jednoj vrsti korisnika i ne zahteva

autentifikaciju. Korisnik može pregledati listu dostupnih

algoritama, izabrati neki i pratiti njegovo izvršavanje na

grafičkom prikazu.

Postoji i posebna stranica za pregled celog sistema,

uključujući čvorove sa parametrima i tabele rutiranja koje

prikazuju učesnike i njihove veze. Na toj stranici korisnik

može dodavati nove algoritme, menjati čvorove i njihove

karakteristike, kao i dodavati nove čvorove unosom

podataka. Takođe, može menjati tabele rutiranja postojećih

algoritama i time prilagođavati topologiju sistema.

4.3. Model podataka

Model podataka platforme je jednostavan i odnosi se na

konfiguraciju koja definiše algoritme koji su dostupni u

sistemu, čvorove zajedno sa njihovim karakteristikama i

tabele rutiranja koje definišu topologiju algoritama.

Konfiguracija sistema predstavljena je klasom Config, koja

sadrži atribute nodes, algorithms, routing. Atribut nodes

predstavlja listu čvorova koji su prisutni u sistemu i

prikazani su klasom Node, atribut algorithms označava

algoritme unutar sistema i oni su predstavljeni klasom

Algorithm, dok atribut routing predstavlja tabelu rutiranja

za svaki algoritam i unutar platforme je modelovan klasom

Routing. Klasa Node sadrži atribute id, url, active,

is_participant koji definišu osnovne karakteristike čvora u

sistemu. Klasa Algorithm sadrži dva atributa, name koji

predstavlja ime algoritma, i file_name koji označava naziv

Python skripte u kojoj je algoritam implementiran. Tabela

rutiranja, predstavljena klasom Routing, modeluje

topologiju komunikacije između čvorova za svaki

algoritam. Klasa Routing sadrži dinamičke parametre, gde

svaki ključ predstavlja ime algoritma, a njegova vrednost

je rečnik u kome su ključevi ID-jevi čvorova, dok su

vrednosti liste objekata koji opisuju rute. Svaka ruta je

predstavljena klasom Route koji sadrži atribute id (ID

odredišnog čvora) i url (adresa odredišnog čvora).

Klasni dijagram prikazan je na slici 2.

5. IMPLEMENTACIJA

Serverska strana platforme sastoji se iz više servisa koji

igraju različite uloge. Svaki servis predstavlja čvor i

implementiran je u Python programskom jeziku uz pomoć

FastAPI radnog okvira za lakšu komunikaciju između

servisa i klijentske strane.

Svaki servis je kontejnerizovan radi lakšeg skaliranja

čvorova. Za kontejnerizaciju se koristi Docker alat, a u

Docker Compose datoteci, pored servisa koji predstavljaju

čvorove, definisan je i RabbitMQ za asinhronu

komunikaciju, kao i volumen koji je deljen između task

manager-a i ostalih čvorova, a predstavlja direktorijum u

kojem su smeštene sve Python skripte koje predstavljaju

implementaciju algoritama. Na ovaj način, bez prekidanja

rada platforme korisnici mogu da definišu nove algoritme

koji će biti odmah dostupni čvorovima na izvršavanje.

Kompletna konfiguracija platforme koju čine dostupni

čvorovi i algoritmi, kao i tabela rutiranja za svaki od

algoritama smeštena je u JSON datoteci i njoj može da

pristupi centralni čvor radi orkestracije zadataka.

Konfiguracija se učitava u sistem i zadržava u radnoj

memoriji prilikom pokretanja centralnog čvora.

Konfiguracija se nalazi u globalnom objektu tipa Config i

pri svakom klijentovom zahtevu za pokretanje algoritama

koriste se podaci iz konfiguracije, a u slučaju izmena, nova

konfiguracija se zapisuje u JSON datoteku.

Prilikom pokretanja servisa, pored učitavanja

konfiguracije, na pozadinskoj niti učitava se i statistika

čvorova poput zauzeća memorije i korišćenja procesorske

moći uz pomoć docker.py biliboteke, kako bi korisnik imao

uvid u njihov kapacitet prilikom izvršavanja algoritama.

Na kraju, task manager na pozadinskoj niti otvara

konekciju sa RabbitMQ servisom kako bi bio spreman da

konzumira podatke koji mu pristižu od strane čvorova i

prosleđuje ih klijentu.

Centralni čvor se sastoji iz četiri krajnje tačake koje

pružaju funkcionalnosti platforme. Postoji krajnja tačka za

dobavljanje konfiguracije koja će biti prikazana korisniku

radi uvida i manipulacije sistema, zatim postoji mogućnost

izmene konfiguracije pri čemu se mogu dodavati ili

uklanjati čvorovi koji su specificirani u konfiguraciji i

poslednje dve krajnje tačke odnose se na pokretanje

algoritma i dodavanje novih algoritama.

Task manager započinje izvršavanje algoritama

inicijalizacijom svih čvorova koji se nalaze u tabeli

rutiranja za određeni algoritam. Pod inicijalizacijom se

podrazumeva slanje podataka potrebnih za izvršavanje

SLIKA 1: ARHITEKTURA REŠENJA

SLIKA 2: KLASNI DIJAGRAM

1298

algoritma. Kada su svi čvorovi uspešno inicijalizovani,

task manager na slučajan način bira jedan čvor koji će

započeti izvršavanje algoritma za biranje lidera.

Čvor sadrži pet krajnjih tačaka koje omogućavaju

inicijalizaciju čvora, pokretanje algoritma, deaktivaciju

čvora, prijem poruke od strane drugog čvora prilikom

izvršavanja algoritma i izvršavanje krajnje funkcije nakon

što je lider izabran.

Svaki čvor sadrži globalnu promenljivu koja predstavlja

instancu klase Node i koja se inicijalizuje prilikom

inicijalizacije samog čvora. Unutar klase Node čuvaju se

podaci koje task manager šalje čvoru prilikom

inicijalizacije.

Klasa Node ima nekoliko metoda, a najbitnije su metoda

za započinjanje izvršavanja algoritma, metoda za slanje

poruke narednom čvoru, metoda za obradu odgovora koji

je naredni čvor poslao i metoda za izračunavanje sume

slučajno odabranih brojeva.

Kako bi platforma bila proširiva i kako bi mogla da

izvršava veliki broj različitih algoritama, sve što je

zajedničko svim algoritmima nalazi se u okviru metoda ove

klase, dok je sve specifično za određeni algoritam

smešteno u posebnom modulu. Klasa Node pretpostavlja

da svaki modul sadrži tri funkcije, a to su:

1. run_algorithm(node_data, routing_table),

2. handle_message(node_data, routing_table, data)

3. handle_result(node_data, routing_table, result)

Ove tri funkcije zajedno predstavljaju implementaciju

određenog distribuiranog algoritma.

Nakon što je završen algoritam, odabrani lider šalje poruku

task manager-u čime ga obaveštava da je izvršavanje

završeno. Task manager zatim poziva funkciju za

izračunavanje zbira brojeva za svaki od čvorova. Nakon što

svi čvorovi vrate rezultat, task manager izračunava ukupan

zbir koji je stigao sa svih čvorova. Konačan rezultat,

zajedno sa međurezultatima prosleđuje se korisniku kao

konačan korak algoritama za biranje lidera.

6. ZAKLJUČAK

Razumevanje distribuiranih algoritama je izazovno zbog

paralelnog izvršavanja na velikom broju čvorova, složenih

topologija i načina komunikacije među čvorovima. Ovi

izazovi su motivisali razvoj platforme koja vizuelno i u

realnom vremenu prikazuje izvršavanje klasičnih

algoritama za izbor lidera u sinhronim mrežama,

omogućavajući praćenje topologije i stanja čvorova tokom

izvršavanja. Platforma se sastoji od centralnog servisa,

task managera, koji upravlja konfiguracijom, komunicira

sa klijentom i koordinira čvorove. Čvorovi zajednički

izvršavaju algoritme, a sistem je proširiv dodavanjem

novih algoritama putem Python skripti sa tri definisane

funkcije. Skaliranje je omogućeno dodavanjem ili

uklanjanjem čvorova. Buduća unapređenja uključuju

podršku za algoritme sa kašnjenjem poruka, čime bi se

omogućila šira vizualizacija, kao i debagovanje i korak-po-

korak izvršavanje za bolje razumevanje algoritama.

7. LITERATURA

[1] Shirali, M., Toroghi, A. H., & Vojdani, M. (2008).

Leader election algorithms: History and novel

schemes. In 2008 Third International Conference

on Convergence and Hybrid Information

Technology (pp. 1001-1006). IEEE.

https://doi.org/10.1109/ICCIT.2008.57

[2] Huang, M., & Bode, B. (2005). A performance

comparison of tree and ring topologies in distributed

systems. In 19th IEEE International Parallel and

Distributed Processing Symposium (pp. 8). IEEE.

https://doi.org/10.1109/IPDPS.2005.57

[3] Liu, H. (2009). The structural features of enhanced

hypercube networks. In 2009 Fifth International

Conference on Natural Computation (pp. 345-

348). IEEE.

https://doi.org/10.1109/ICNC.2009.191

[4] Santoro, N. (2006). Design and analysis of

distributed algorithms. Wiley.

[5] Chang, E., & Roberts, R. (1979). An improved

algorithm for decentralized extrema-finding in

circular configurations of processes.

Communications of the ACM , 22(5), 281-283.

https://doi.org/10.1145/359024.359027

[6] Garcia-Molina, H. (1982). Elections in a distributed

computing system. IEEE Transactions on

Computers, C-31(1), 48-59.

https://doi.org/10.1109/TC.1982.1675885

[7] McBryan, O. A., & Van de Velde, E. F. (1987).

Hypercube algorithms and implementations. SIAM

Journal on Scientific and Statistical

Computing, 8(2), s227-s287.

https://doi.org/10.1137/0908040

[8] Gallager, R. G., Humblet, P. A., & Spira, P. M.

(1983). A distributed algorithm for minimum-weight

spanning trees. ACM Transactions on

Programming Languages and Systems , 5(1), 66-

77. https://doi.org/10.1145/357195.357200

[9] Hirschberg, D. S., & Sinclair, J. B. (1980).

Decentralized extrema-finding in circular

configurations of processors. Communications of

the ACM, 23(11), 627-628.

https://doi.org/10.1145/359024.359029

 Kratka biografija:

Aleksandra Nedić rođena je 09.04.2000.

godine u Vranju. U školskoj 2019/20

godini upisuje osnovne studije na Fakultetu

tehničkih nauka, na smeru Softversko

inženjerstvo i informacione tehnologije,

koje završava školske 2022/23 sa

prosečnom ocenom 9.80. Master rad na

Fakultetu tehničkih nauka iz oblasti

Softversko inženjerstvo i informacione tehnologije, usmerenje

Elektronsko poslovanje odbranila je u školskoj 2024/25 godini.
kontakt: aleksandranedic843@gmail.com

1299

https://doi.org/10.1109/ICCIT.2008.57
https://doi.org/10.1109/IPDPS.2005.57
https://doi.org/10.1109/ICNC.2009.191
https://doi.org/10.1145/359024.359027
https://doi.org/10.1109/TC.1982.1675885
https://doi.org/10.1137/0908040
https://doi.org/10.1145/357195.357200
https://doi.org/10.1145/359024.359029
mailto:aleksandranedic843@gmail.com

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.9

DOI: https://doi.org/10.24867/33BE08Bajat

MEĐUREPREZENTACIJE IZVORNOG KODA RUSTC KOMPAJLERA

INTERMEDIATE REPRESENTATIONS OF THE SOURCE CODE IN THE RUSTC

COMPILER

Aleksa Bajat, Fakultet tehničkih nauka, Novi Sad

Oblast – ELEKTROTEHNIČKO I RAČUNARSKO

INŽENJERSTVO

Kratak sadržaj – Ovaj rad istražuje arhitekturu prednjeg

kraja (engl. frontend) Rust kompajlera (rustc), sa fokusom

na ključnu ulogu koju međureprezentacije izvornog koda

igraju u procesu prevođenja. Analizirane su faze od

leksičke analize i parsiranja do generisanja Apstraktnog

Sintaksnog Stabla (ASS), preko Međureprezentacije

Visokog Nivoa (MVN/HIR), Tipizirane MVN

(TMVN/THIR), do Međureprezentacije Srednjeg Nivoa

(MSN/MIR). Rad objašnjava kako svaka od ovih

reprezentacija omogućava ključne funkcionalnosti Rust

jezika, uključujući proveru tipova, dijagnostiku grešaka,

inkrementalno kompajliranje, proveru pozajmljivanja

(borrow checking) i pripremu za dalju optimizaciju i

generaciju koda u LLVM-u. Cilj je da se prikaže kako

generisanje infrastrukture doprinosi garancijama

memorijske bezbednosti i visokim performansama Rust

programskog jezika.

Ključne reči: Rust, rustc, kompajler, frontend,

međureprezentacije, АSS, MVN, TMVN, MSN, LLVM,

analiza koda, optimizacija

Abstract – This paper explores the architecture of the Rust

compiler's (rustc) frontend, focusing on the crucial role of

intermediate representations (IRs) of source code in the

compilation process. Phases from lexical analysis and

parsing to the generation of the Abstract Syntax Tree

(AST), through the High-Level Intermediate

Representation (HIR), Typed HIR (THIR), to the Mid-Level

Intermediate Representation (MIR) are analyzed. The

paper explains how each of these representations enables

key features of the Rust language, including type checking,

error diagnostics, incremental compilation, borrow

checking, and preparation for further optimization and

code generation in LLVM. The aim is to demonstrate how

generation of compiler infrastructure contributes to Rust's

guarantees of memory safety and high performance.

Keywords: Rust, rustc, compiler, frontend, intermediate

representations, AST, HIR, THIR, MIR, LLVM, code

analysis, optimization

__

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je bio

dr Dunja Vrbaški, doc.

1. UVOD

Programski jezik Rust je stekao značajnu popularnost

zahvaljujući svom fokusu na memorijsku bezbednost bez

upotrebe sakupljača smeća (engl. garbage collector) i

visokim performansama koje pariraju jezicima kao što su

C i C++. Ove karakteristike čine ga idealnim za razvoj

sistemskog softvera, operativnih sistema, veb servera i

drugih aplikacija gde su performanse i bezbednost kritične

[1]. Postizanje ovih ciljeva zahteva sofisticiran kompajler,

rustc, čiji prednji kraj (frontend) igra ključnu ulogu u

analizi, validaciji i transformaciji izvornog koda.

Prednji kraj rustc kompajlera koristi niz

međureprezentacija (engl. Intermediate Representations)

kako bi postepeno transformisao izvorni kod u formu

pogodnu za dalje faze kompajliranja, uključujući

optimizaciju i generaciju koda od strane LLVM bekenda

[13]. Svaka međureprezentacija služi specifičnoj svrsi,

omogućavajući različite vrste analiza i transformacija.

Razumevanje ovih reprezentacija je ključno za

razumevanje kako Rust postiže svoje garancije.

2. PUT IZVORNOG KODA U RUSTC

KOMPAJLERU

Proces kompajliranja u rustc frontendu započinje

leksičkom analizom i parsiranjem, nastavlja se kroz

nekoliko nivoa međureprezentacija gde se vrše ključne

analize i transformacije, a završava se generacijom

Međureprezentacije Srednjeg Nivoa (MSN) koja se potom

prosleđuje LLVM-u za dalju optimizaciju i generaciju

mašinskog koda. U tipično struktuiranom kompajleru

svaka od međureprezentacija predstavlja poseban program

i posebno izvršavanje. Ovakvi kompajleri se nazivaju

kompajleri zasnovani na prolascima - arhitektura cevi. Rust

kompajler je u tranziciji između kompajlera zasnovanog na

prolascima i kompajlera zasnovanog na potražnji.

Kompajler zasnovan na potražnji koristi upite nad

izvornim kodom i simultono izvršava velike celine

kompajliranja. Izvršavanje upita je memoizovano. Samo

prvi poziv upita izvršava komputacije, dok je svaki naredni

keširan. Sve međureprezentacije nakon ASS se zasnivaju

na sistemu upita, tj. samo lekser i parser rade po principu

arhitekture cevi. Dugoročni cilj je refaktorizacija

kompajlera tako da celokupan proces radi na osnovu

sistema upita.

1300

https://doi.org/10.24867/33BE08Bajat

2.1. OD TOKENA DO APSTRAKTNOG

SINTAKSNOG STABLA (АSS)

Prvi korak je leksička analiza, gde rustc_lexer, kao lekser

niskog nivoa, čita izvorni kod kao niz karaktera, grupiše ih

u lekseme (npr. ključne reči, identifikatori, operatori) i

proizvodi tok tokena. Svaki token obično sadrži tip i,

opciono, vrednost. Rust-ov lekser je ručno implementiran,

što omogućava finu kontrolu nad procesom tokenizacije i

rezultira detaljnijim i korisnijim porukama o greškama.

Nakon toga, rustc_parse::lexer, lekser višeg nivoa,

dodatno obrađuje ove tokene. U ovoj fazi, vrši se

interniranje simbola (engl. symbol interning), gde se

stringovi poput identifikatora smeštaju u posebnu

memorijsku oblast (arenu) tako da svaki jedinstveni string

ima samo jednu kopiju. Ovo optimizuje upotrebu memorije

i ubrzava poređenje simbola. Takođe se koriste strukture

kao što su Span i SpanData za praćenje lokacije svakog

tokena u izvornom kodu, što je ključno za preciznu

dijagnostiku grešaka. Pre samog parsiranja, vrši se i

rezolucija zagrada, gde se tok tokena strukturira u stabla

tokena (TokenTree), olakšavajući kasniju obradu.

Parser zatim koristi ovaj obrađeni tok tokena da generiše

Apstraktno Sintaksno Stablo (ASS ili AST), koje

predstavlja hijerarhijsku strukturu izvornog koda [3]. ASS

verno odražava strukturu korisničkog koda, eksplicitno

prikazujući, na primer, prvenstvo operatora. Koren ASS-a

je obično Crate struktura, dok su osnovni gradivni blokovi

Item-i (npr. funkcije, strukture, moduli), koji sadrže

atribute, jedinstveni identifikator (NodeId) i Span. Iako je

ASS osnova za dalje analize, nije direktno pogodan za sve

operacije zbog svoje bliskosti originalnom izvornom kodu.

U ovoj fazi se vrši i ekspanzija makroa – moćne Rust-ove

karakteristike koja omogućava metaprogramiranje ("kod

koji generiše kod") i smanjuje potrebu za ponavljajućim

kodom. Takođe, započinje inicijalna rezolucija imena, gde

kompajler pokušava da poveže imena korišćena u kodu sa

njihovim definicijama, koristeći koncept "rebara" (engl.

ribs) za upravljanje vidljivošću imena u različitim

opsezima (engl. scopes). Pre prelaska na sledeću

reprezentaciju, ASS se validira, posebno nakon ekspanzije

makroa koji mogu generisati sintaktički nekompletan ili

neispravan kod.

2.2. MEĐUREPREZENTACIJA VISOKOG NIVOA

(MVN ili HIR)

ASS se zatim "snižava" (engl. lowering) u

Međureprezentaciju Visokog Nivoa (MVN) [4]. MVN je

apstraktnija reprezentacija koja pojednostavljuje mnoge

konstrukcije iz ASS-a; na primer, for petlje se prevode u

while let konstrukcije, if let izrazi u match izraze, a impl

Trait u parametrima funkcija u odgovarajuće generičke

argumente. Svrha ovog snižavanja je da se smanji broj

različitih sintaksnih formi (sintaksni šećer) sa kojima

kasnije faze kompajlera moraju da rade, čime se

pojednostavljuje analiza. HIR Crate struktura sadrži

informacije o celokupnom kodu paketa, uključujući i

delove koji možda nisu direktno pozvani, što je važno za

analizu eksternih biblioteka. HIR je ključan za sistem upita

(engl. query system) rustc-a. Sistem upita funkcioniše kao

baza podataka kompajlera gde se rezultati različitih analiza

(upita) keširaju (memoizacija). Svaki upit je funkcija koja

mapira jedinstveni ključ (npr. identifikator stavke) na

rezultat (npr. tip stavke, telo funkcije u MVN-u). Ako se

upit ponovo pozove sa istim ključem, vraća se keširani

rezultat umesto ponovnog izračunavanja. Ovo je temelj

inkrementalnog kompajliranja: prilikom izmene koda,

samo oni upiti čije su zavisnosti promenjene moraju

ponovo da se izvrše. Sistem upita zahteva da provajderi

upita budu determinističke funkcije i održava direkcioni

aciklični graf (DAG) poziva upita kako bi se izbegli

ciklusi. Za stabilnu identifikaciju čvorova grafa između

različitih kompajliranja koriste se DefPath i DefPathHash

strukture, kao i "otisci prsta" (engl. fingerprints) za

efikasno poređenje stanja. Na MVN-u se vrše mnoge

semantičke analize, kao što su rezolucija osobina (engl.

trait resolution) i provere koherentnosti.

2.3. TIPIZIRANA MEĐUREPREZENTACIJA

VISOKOG NIVOA (TMVN ili THIR)

Nakon MVN-a, generiše se Tipizirana Međureprezentacija

Visokog Nivoa (TMVN). TMVN obogaćuje MVN

informacijama o tipovima za svaki izraz i deo koda unutar

tela funkcija; dakle, TMVN se generiše samo za izvršni

kod [5]. TMVN je efemerna reprezentacija, što znači da se

delovi generišu "na zahtev" i ne čuvaju se kompletno u

memoriji tokom celog procesa, čime se smanjuje

memorijski otisak kompajlera. U TMVN-u, mnoge

implicitne operacije iz izvornog koda postaju eksplicitne:

automatska referenciranja i dereferenciranja, pozivi

metoda na osobinama, i preklopljeni operatori se prevode

u eksplicitne pozive funkcija. Takođe, uništenje opsega

(engl. scope destruction) je eksplicitno predstavljeno.

TMVN služi kao osnova za dve važne provere:

1. Provera bezbednosti (engl. check_unsafety):

Algoritam analizira unsafe kontekste, proverava

da li se unsafe operacije (npr. dereferenciranje

sirovog pokazivača) pozivaju van unsafe bloka, i

da li unsafe blokovi zaista sadrže unsafe kod (ako

ne, generiše se upozorenje - lint).

2. Provera iscrpnosti šablona (engl. pattern

matching exhaustiveness): Za konstrukcije kao

što su match, if let, while let, let else, pa čak i za

argumente funkcija koji koriste destrukturiranje,

TMVN omogućava proveru da li su svi mogući

slučajevi pokriveni. Pored iscrpnosti, proverava

se i "korisnost" svake grane, kako bi se

detektovale nedostižne (redundantne) grane koda.

2.4. MEĐUREPREZENTACIJA SREDNJEG

NIVOA (MVN ili HIR)

Konačna reprezentacija u frontendu je Međureprezentacija

Srednjeg Nivoa (MIR). Uvođenje MSN je bilo motivisano

potrebom za preciznijom kontrolom nad tokom

izvršavanja, lakšim sprovođenjem Rust-specifičnih

optimizacija i pojednostavljivanjem procesa dokazivanja

memorijske bezbednosti, što je bilo teško postići direktnim

prevođenjem sa MVN-a ili TMVN-a na LLVM IR. MSN

je eksplicitna reprezentacija kontrolnog toka (control flow

graph - CFG) programa [5]. CFG se sastoji od osnovnih

1301

blokova (engl. basic blocks), gde svaki blok predstavlja niz

naredbi koje se izvršavaju sekvencijalno, a poslednja

naredba u bloku, terminator (engl. terminator), određuje u

koji sledeći blok (ili blokove) će se preći. MSN koristi

LIFO stek za smeštanje argumenata funkcija, lokalnih

promenljivih i privremenih vrednosti. Memorijske lokacije

na steku se identifikuju preko "mesta" (engl. places, npr.

_1 za prvu lokalnu promenljivu, _0 za povratnu vrednost),

a pristupi poljima struktura ili dereferenciranje se

predstavljaju kao "projekcije" (npr. _1.polje, *_1). Izrazi

koji generišu vrednosti nazivaju se "desne vrednosti"

(RValues).

U neoptimizovanom MSN, eksplicitno se koriste iskazi

StorageLive i StorageDead kako bi se označio početak i

kraj životnog veka svake lokalne promenljive, što

kompajleru daje jasnu informaciju o tome kada je

memorija za datu promenljivu validna i kada se može

bezbedno osloboditi.

Na MSN se vrši ključna analiza za Rust: analiza

pozajmljivanja (borrow checking). Ovo uključuje

implementaciju Neleksičkih Životnih Vekova (Non-

Lexical Lifetimes - NLL). Tradicionalni leksički životni

vekovi su vezani za opsege u kodu i mogu biti previše

restriktivni. NLL, s druge strane, analizira stvarnu upotrebu

pozajmica unutar grafa kontrole toka, omogućavajući

preciznije i fleksibilnije određivanje tačnog trajanja svake

pozajmice, što često rezultira prihvatanjem koda koji bi sa

leksičkim životnim vekovima bio odbijen. MSN takođe

služi za Rust-specifične optimizacije; na primer,

kompleksne petlje ili match izrazi mogu biti dodatno

pojednostavljeni (npr. for petlja se preko loop { match ... }

sa goto naredbama može transformisati u efikasnije switch

konstrukcije) pre nego što se kod prosledi LLVM bekendu

za dalje, generalnije optimizacije i konačnu generaciju

mašinskog koda.

3. ZNAČAJ MEĐUREPREZENTACIJA

Svaka od navedenih međureprezentacija u rustc frontendu

ima svoju specifičnu i ključnu ulogu:

● ASS: Predstavlja vernu reprezentaciju izvornog

koda, služi kao osnova za makro ekspanziju i

inicijalnu rezoluciju imena. Njegova bliskost

izvornom kodu omogućava precizne poruke o

sintaksnim greškama.

● MVN: Kao apstrakcija nad ASS-om,

pojednostavljuje strukturu koda i ključna je za rad

sistema upita, omogućavajući semantičke analize

i inkrementalno kompajliranje.

● TMVN: Obogaćujući HIR tipovima, omogućava

detaljnu proveru tipova, proveru bezbednosti

unsafe koda i iscrpnosti i korisnosti šablona, što

su ključne komponente Rust-ove pouzdanosti.

● MSN: Kao eksplicitni graf kontrolnog toka,

fundamentalan je za analizu pozajmljivanja

(borrow checking) i implementaciju Neleksičkih

Životnih Vekova (NLL), što direktno doprinosi

memorijskoj bezbednosti. Takođe, omogućava

Rust-specifične optimizacije.

Ova višefazna arhitektura, gde svaka IR rešava specifičan

skup problema, omogućava rustc-u da efikasno sprovodi

kompleksne analize neophodne za garantovanje

memorijske bezbednosti i generisanje efikasnog koda, što

su dve ključne prednosti Rust jezika. Modularnost pristupa

olakšava razvoj i održavanje kompajlera, dok sistem upita

dodatno doprinosi ukupnoj efikasnosti kroz memoizaciju i

inkrementalno kompajliranje. Precizne dijagnostičke

poruke su takođe rezultat mogućnosti da se greške lociraju

u odgovarajućoj fazi i na odgovarajućem nivou apstrakcije.

4. BEZBEDNO NEBEZBEDAN

Analiza je provedena 2023. godine da se 12% paketa u Rust

ekosistemu direktno oslanja na nestabilne funkcionalnosti,

dok je 44% paketa indirektno zavisilo od nestabilnih

funkcionalnosti da bi se kompajliralo. Procentualna

zavisnost prema nestabilnim funkcionalnostima je visoka

ali analiza nije sprovedena da se izračuna procenat masivno

korišćenih paketa sa direktnim ili tranzitivnim

zavisonstima, kao i procenat nestabilnih funkcionalnosti na

kojima se ovakvi paketi zasnivaju [9].

Kapije funkcionalnosti su mehanizam na osnovu kog se

kontroliše vidljivost funkcionalnosti u određenom skupu

alata (stable, beta, nightly). Funkcionalnost može biti

prihvaćena, nestabilna, nezavršena ili obrisana. Kapije

funkcionalnosti se ne brišu fizički iz koda, već uz

adekvatan opis služe kao perzistentno obrazloženje odluke

da funkcionalnost nije podobna za razvoj.

Оdobravanje funkcionalnosti je rigorozan ali transparentan

proces. Svaka značajna promena koja nije refaktorizacija

ili dokumentovanje mora proći kroz sledeće faze:

1. Zahtev za komentare (RFC): Proces započinje

kreiranjem RFC dokumenta koji detaljno

obrazlaže svrhu nove funkcionalnosti i njen opšti

dizajn. Ovaj dokument je javan i podložan

diskusiji od strane Rust tima i celokupne

zajednice. Odobrenje RFC-a daje zeleno svetlo za

početak razvoja, ali ne garantuje konačno

prihvatanje.

2. Razvoj i testiranje: Nakon odobrenja,

funkcionalnost se implementira i detaljno testira.

3. Proces stabilizacije: Kada je funkcionalnost

razvijena i testirana bez značajnih primedbi,

pokreće se formalni zahtev za stabilizaciju, koji se

sastoji iz četiri ključna dela:

● Ažuriranje dokumentacije:

Dokumentacija se premešta iz interne

"nestabilne knjige" (Unstable Book) u

zvaničnu dokumentaciju za korisnike

(Rust Reference).

● Stabilizacioni izveštaj: Kreira se

izveštaj koji sadrži primere korišćenja,

linkove ka dokumentaciji i testove koji

pokrivaju granične slučajeve.

● Period finalnog komentara (FCP):

Tim ponovo pregleda ceo predlog kako

bi se postigao konačni konsenzus.

● Stabilizacioni Pull Request: Ukoliko je

konsenzus pozitivan, kreira se finalni

1302

zahtev za povlačenjem (pull request).

Njegov cilj je da tehnički omogući

funkcionalnost u stabilnoj verziji jezika,

uklanjajući oznaku nestabilnosti i

grešku koja sprečava njeno korišćenje

van noćne (nightly) verzije kompajlera.

4. Beta i stabilna verzija: Nakon uspešne

stabilizacije, funkcionalnost postaje dostupna

korisnicima u beta verziji za finalno testiranje,

pre nego što konačno postane deo sledeće

stabilne distribucije Rust-a.

4. ZAKLJUČAK

Međureprezentacije izvornog koda u prednjem kraju rustc

kompajlera čine složen, ali visoko efikasan sistem. Kroz

pažljivo dizajnirane faze transformacije i analize – od ASS-

a, preko MVN-a i TMVN-a, do MSN-a – kompajler

postepeno prevodi, proverava i optimizuje korisnički kod.

Ova slojevita arhitektura je temelj na kojem Rust gradi

svoje jedinstvene prednosti: garantovanu memorijsku

bezbednost bez sakupljača smeća, konkurentnost bez rizika

od "data races", i visoke performanse uporedive sa C i C++.

Svaka izmena ili proširenje Rust kompajlera podleže

rigoroznom i transparentnom procesu prihvatanja. Kroz

mehanizam Zahteva za komentare (RFC) i višefaznu

stabilizaciju, zajednica osigurava da se jezik razvija na

kontrolisan način, čuvajući integritet i bezbednosne

garancije koje kompajler pruža.

 Razumevanje ovih internih mehanizama i uloge svake

međureprezentacije je od velikog značaja, ne samo za dalji

razvoj i unapređenje samog kompajlera (npr. poboljšanje

vremena kompajliranja ili uvođenje novih optimizacija),

već i za dublje razumevanje ponašanja Rust programa i

efikasnije korišćenje naprednih mogućnosti jezika.

5. LITERATURA

[1] MSRC, “A proactive approach to more secure code |

MSRC Blog | Microsoft Security Re-

sponse Center,” Microsoft.com, Jul. 16, 2019.

https://msrc.microsoft.com/blog/2019/07/

a-proactive-approach-to-more-secure-code/ (pristupljeno

u septembru 2024.)

[2] “Parsing” Rochester.edu, 2024.

https://www.cs.rochester.edu/u/nelson/courses/csc_

173/grammars/parsing.html#:~:text=Recursive%2Ddesce

nt%20parsing%20is%20one,

non%2Dterminal%20with%20a%20procedure

(pristupljeno u septembru 2024.)

[3] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman,

Compilers: Principles, Techniques, and Tools, 2nd ed.

Boston, MA, USA: Addison-Wesley, 2006.

[4] “Getting Started - Rust Compiler Development

Guide,” Rust-lang.org, 2024. https:

//rustc-dev-guide.rust-lang.org/getting-started.html

(pristupljeno u Septembru 2024.)

[5] “Introduction - The Rust Reference,” Rust-lang.org,

2015. https://doc.rust-lang.org/

reference/introduction.html (pristupljeno u septembru

2024.)

[6] “Meet Safe and Unsafe - The Rustonomicon,” Rust-

lang.org, 2024. https://doc.rust-lang.

org/nomicon/meet-safe-and-unsafe.html (pristupljeno u

septembru 2024)

[7] “What are editions? - The Rust Edition Guide,” Rust-

lang.org, 2024. https://doc.rust-lang.

org/edition-guide/editions/ (pristupljeno u oktobru 2024.)

[8] “The Unstable Book - The Rust Unstable Book,”

Rust-lang.org, 2024. https://doc.rust-lang.

org/unstable-book/index.html (pristupljeno u oktobru

2024.)

[9] Li, Chenghao, et al. “Demystifying Compiler Unstable

Feature Usage and Impacts in the Rust Ecosys-

tem.” 26 Oct. 2023. arXiv, (pristupljeno u oktobru 2024.)

[10] Bugden W, Alahmar A. Rust: The programming

language for safety and performance. arXiv preprint

arXiv:2206.05503. 2022 Jun 11.

[11] P. Mainardi, “The Rising Threat of Software Supply

Chain Attacks: Managing Dependencies of Open Source

projects,” Linuxfoundation.eu, Aug. 15, 2023.

https://linuxfoundation.eu/newsroom/

the-rising-threat-of-software-supply-chain-attacks-

managing-dependencies-of-open-source-p

(pristupljeno u oktobru 2024.)

[12] “The Architecture of Open Source Applications

(Volume 1)LLVM,” Aosabook.org, 2024. https:

//aosabook.org/en/v1/llvm.html (pristupljeno u novembru

2024.)

[13] “The LLVM Compiler Infrastructure Project,”

Llvm.org, 2024. https://llvm.org/ (pristupljeno u

novembru 2024.)

Kratka biografija:

Aleksa Bajat rođen je 2001. godine u Novom

Sadu. Završio je prirodno-matematički smer

na engleskom jeziku u gimnaziji ”Jovan

Jovanović Zmaj” 2019. godine. Tokom sve

četiri godine gimnazije uspešno je pohađao

”Centar za mlade talente” kompanije

Schneider Electric. Godine 2019. upisao je

Fakultet Tehničkih Nauka u Novom Sadu, gde

je ispunio sve obaveze i položio sve ispite

predviđene studijskim programom sa

prosečnom ocenom 9.03.

kontakt: aleksabajat15@gmail.com

1303

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 004.42:004.738.12

DOI: https://doi.org/10.24867/33BE09Pavlovic

FAGL – JEZIK SPECIFIČAN ZA DOMEN IMPLEMENTACIJE VEB APLIKACIJA

FAGL – A DOMAIN-SPECIFIC LANGUAGE FOR WEB APPLICATION

IMPLEMENTATION

Lazar Pavlović, Fakultet tehničkih nauka, Novi Sad

Oblast – ELEKTROTEHNIČKO I RAČUNARSKO

INŽENJERSTVO

Kratak sadržaj – U ovom radu opisan je razvoj FAGL

jezika specifičnog za domen za opis i generisanje veb

aplikacija. Rad pruža uvid u konkretnu sintaksu jezika,

dizajn, arhitekturu i implementaciju ovog rešenja.

Poređenje sa pet postojećih rešenja, omogućilo je kritičku

evaluaciju mogućnosti i funkcionalnosti razvijenog FAGL

jezika koja je pokazala da su postavljeni ciljevi rada

ostvareni razvojem tekstualnog JSD-a koji je jednostavan

za korišćenje, lak za učenje i sadrži sve neophodne

funkcionalnosti.

Ključne reči: Jezik specifičan za domen, textX, Python,

generator koda, veb aplikacija

Abstract – This work describes the development of the

FAGL domain-specific language for the description and

generation of web applications. The paper provides insight

into the specific syntax of the language, its design,

architecture, and implementation. A comparison with five

existing solutions enabled a critical evaluation of the

features and functionalities of the developed FAGL

language, demonstrating that the goals of the study were

achieved through the development of a textual DSL that is

user-friendly, easy to learn, and includes all necessary

functionalities.

Keywords: Domain specific language, textX, Python, code

generator, web application

1. UVOD

Kao odgovor na sve složenije zahteve tržišta i potrebe za

što većom produktivnošću, raste potražnja za

automatizovanim razvojem softverskih rešenja koja se

mogu brzo i efikasno implementirati. Takođe, napredak u

tehnologijama kao što su veštačka inteligencija, Internet of

Things i Cloud computing stvara nove prilike i zahteve u

razvoju inovativnih softverskih rešenja.

Računar izvršava zadatke na osnovu instrukcija zapisanih

na programskom jeziku. JON imaju primenu u izradi

softvera u različitim domenima primene. Domen se može

posmatrati s dva aspekta: horizontalnog, koji se odnosi na

tehničke aspekte sistema, i vertikalnog, koji obuhvata

poslovne aspekte i specifične potrebe organizacije.

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je bio

dr Igor Dejanović, red. prof.

Horizontalni ili tehnički domen može biti: bekend

aplikacija, frontend aplikacija, bezbednost, baze podataka,

blokčejn, obrada podataka, veštačka inteligencija, mobilne

aplikacije. Vertikalni ili poslovni domen je oblast u kojoj

se softver primenjuje: finansije, osiguranje, zdravstvo,

administracija i mnogi drugi.

Potrebe za daljim povećavanjem efikasnosti i

omogućavanjem programiranja ne-tehničkom osoblju

kvalifikovanom za određene oblasti, dovele su do nastanka

malih specijalizovanih programskih jezika – Jezika

Specifičnih za Domen (JSD). Iako JON jezici nude veliku

fleksibilnost programeru prilikom razvoja softvera,

upotreba JSD-a za razvoj više sličnih softvera za isti domen

(bilo horizontalni ili vertikalni) donosi brojne benefite:

veću produktivnost programera, kvalitetnija rešenja

opisana u manje linija programskog koda, manji broj

bagova, bolji kvalitet programskog koda, bolje modeliranje

složenih sistema [1].

Prema vrsti konkretne sintakse JSD se dele na grafičke,

tekstualne i tabelarne [2]. U literaturi su opisani JSD-ovi

različite kompleksnosti, fleksibilnosti i mogućnosti

primene. Jednostavnija rešenja najčešće imaju ograničene

funkcionalnosti za opis sistema, generisanje programskog

koda i upravljanje korisnicima [2,3]. JSD koji nude veće

mogućnosti za opisivanje sistema u kontekstu

mikroservisnih aplikacija i poseduju generatore za više

platformi često imaju složenu sintaksu, koja se znatno

razlikuje od JON. Zbog toga njihova primena zahteva

značajan angažman programera i dodatno vreme za

prilagođavanje [1,4,5]. Bez obzira na nivo složenosti,

većini JSD-ova nedostaju mogućnosti za validaciju

vrednosti atributa [1,2,4,5], kao i podrška za automatsko

generisanje frontend aplikacija [2,4,5].

Polazeći od prednosti i nedostataka tekstualnih JSD-ova

opisanih u literaturi, cilj ovog rada bio je razvoj tekstualnog

JSD-a koji je intuitivan za korišćenje, jednostavan za

učenje i koji integriše sve neophodne funkcionalnosti za

sveobuhvatno rešavanje problema.

2. ARHITEKTURA I DIZAJN REŠENJA

FAGL JSD opisan u ovom radu implementiran je

korišćenjem Python programskog jezika i biblioteka:

io.StringIO, os, textX, jinja2, i click. Projekat je razvijen na

Python interpreteru, verzija 3.10.0, a virtuelno okruženje

kreirano je pomoću alata virtualenv.

Arhitektura softvera zasniva se na modularnom pristupu, a

glavni moduli su: model, parser, checker,

1304

https://doi.org/10.24867/33BE09Pavlovic

generator_config, generator_backend i

generator_frontend.

Faze u radu programa su:

1. Parsiranje programa napisanog na FAGL jeziku

2. Provere nad učitanim modelom

3. Generisanje programskog koda

Konkretna sintaksa FAGL JSD-a definisana je pomoću

metamodela koji uključuje semantičke informacije o

njemu. Za definiciju metamodela korišćena je biblioteka

textX [6]. Parsiranje programa napisanog na FAGL jeziku

obavlja se korišćenjem textX biblioteke i gramatike,

odnosno metamodela. Rezultat parsiranja programa je

učitan program konvertovan na klase definisane u modulu

Model. Provere nad učitanim modelom obezbeđuju

adekvatnost ulaznog programa za generisanje validnog

programskog koda na JON. U poslednjoj fazi, vrši se

generisanje programskog koda, koje obuhvata generisanje

programskog koda bekend i frontend aplikacije, kao krajnji

rezultat rada programa.

Bekend aplikacija implementirana je na Go programskom

jeziku, pomoću generator_backend generatora. Oslanja se

na Gin framework za kreiranje aplikativnog servera, dok za

rad sa sqllite bazom podataka koristi GORM Objektno

Relacioni Maper. Generisana frontend aplikacija

implementirana je pomoću Vue3.js framework-a.

Generisanje aplikacija vrši se na osnovu ulaznih podataka

i šablona definisanih upotrebom biblioteke jinja2.

Komunikacija između frontend i bekend aplikacije

realizovana je upotrebom REST arhitekturnog stila.

3. KONKRETNA SINTAKSA FAGL JEZIKA

FAGL omogućava definisanje programa u jednom fajlu, ali

je zbog kvalitetnijeg programskog koda i veće čitljivosti

moguće napisati programski kod u više fajlova, koje je

potrebno importovati. U svakom fajlu definiše se naziv

paketa, importi i elementi jezika. Glavni elementi

konkretne sintakse FAGL jezika su: konstanta (Constant),

entitet (Entity), enumeracija (Enum), uloga (Role),

restrikcija (Restriction) i servis (Service), koji su u

metamodelu definisani posebnim pravilima.

Constant je apstraktno pravilo za izbor RegularConst ili

GeneralConst elementa. RegularConst se koristi za

definisanje konstanti čije se vrednosti prikazuju na

korisničkom interfejsu, dok se GeneralConst primenjuje za

prikaz vrednosti konstanti sa predefinisanim imenima.

Enum element predstavlja tip podatka enumeracije sa

predefinisanim vrednostima (literali), što omogućava

definisanje i upravljanje kolekcijom imenovanih vrednosti,

poboljšava čitljivost i konzistentnost programskog koda.

Entity element opisuje klasu modela i sadrži minimalno

jedan atribut i reprezentaciju instance entiteta. Kako bi se

postigla jednostavnost sintakse, uvedeno je pravilo prema

kojem prvi atribut svakog Entity elementa mora imati ime

id i biti tipa uuid ili long. Ovo ograničenje nije

implementirano na nivou sintakse JSD-a, već je provera

ovog pravila obavljena u checker modulu, koji osigurava

njegovo sprovođenje. Atributi entiteta, odnosno uloga se

prepoznaju Attribute pravilom, definisanim u gramatici

jezika. Atributi su definisani tipom, kardinalitetom,

imenom i opciono validatorskim funkcijama. Za

validiranje vrednosti atributa u toku izvršavanja (engl. run-

time) generisanog programa u trenutnoj implementaciji

FAGL JSD-a postoji 26 različitih validatorskih funkcija,

koje su u gramatici definisane pravilom ValidationBlock.

Tip atributa definisan je apstraktnim pravilom Type, koje

predstavlja izbor između SimpleType i

ComplexTypeReference pravila. SimpleType predstavlja

izbor između prostih tipova definisanih u jeziku: uuid,

string, integer, date, float, bool i long.

ComplexTypeReference je apstraktno pravilo koje sadrži

referencu na kompleksni tip predstavljen ComplexType

pravilom koje predstavlja izbor između prethodno

definisanih entiteta, enumeracija ili uloga.

Role element koristi se za opis uloge korisnika sistema.

Sintaksa ovog elementa slična je sintaksi Entity elementa.

Predefinisana su imena prva tri atributa: id (uuid ili long

tipa), username (tipa string) i password (tipa string).

Nakon atributa navodi se reprezentacija instance uloge.

Restriction element predstavlja ograničenje prethodno

definisanog entiteta. Ograničenje se ogleda u navođenju

atributa čije vrednosti će korisnik moći da menja (ažurira).

Ovaj element jezika koristi se prilikom definisanja

servisnih metoda koje ažuriraju entitet (engl. update).

Service element predstavlja skup CRUD servisnih metoda

za jedan prethodno definisan entitet. Servisna metoda

definiše jednu od CRUD operacija, uloge autorizovane za

izvršavanje metode, povratni tip metode i njegov

kardinalitet, jedinstveno ime servisne metode, parametre

metode tipa restrikcije ili jedinstvenog identifikatora (ID),

a mogu da sadrže i poruke o grešci ili uspehu.

4. STUDIJA SLUČAJA

Mogućnosti FAGL JSD-a demonstrirane su na primeru

sistema za inventuru pića. Sistem je opisan sa dve

enumeracije, pet entiteta (klasa), dve uloge, četiri servisa i

12 generalnih i 59 regularnih konstanti. Enumeracije su

PakageStatus i TransactionType. Enumeracija

PakageStatus se koristi za opis statusa paketa i sadrži pet

literala: Available, Reserved, Expired, InConsuming i

Consumed. Enumeracija TransactionType se koristi za opis

tipa transakcije i sadrži literale In i Out. Entiteti su

Category, DrinkType, Location, Pakage i

InventoryTransaction. Definisane uloge su Worker i

Admin. Za entitete specificirani su servisi

DrinkTypeService, LocationService, PackageService i

CategoryService.

Rad je započet unosom opisa sistema na FAGL jeziku

distribuiranim u šest fajlova. Komandom fagl definišu se

putanje ulaza i izlaza koda i pokreće program, koji generiše

programski kod. U cilju pokretanja bekend aplikacije

manuelno su uklonjeni neupotrebljeni import iskazi i

formatiran je generisani programski kod pomoću

goimports alata, nakon čega su instalirane zavisnosti

navedene u go.mod fajlu. Nakon pokretanja komande go

run server.go generisana bekend aplikacija je dostupna na

portu 8080. Instaliranjem zavisnosti navedenih u

package.json fajlu pomoću npm install komande, ispunjen

je uslov za pokretanje frontend aplikacije. Aplikacija se

pokreće komandom npm run dev, nakon čega je dostupna

na portu 5173. Pristup početnoj stranici frontend aplikacije

moguć je pomoću veb pretraživača, na adresi

http://localhost:5173/.

1305

Programski kod sistema za inventuru pića na FAGL jeziku

sadrži 269 linija. Generisana bekend aplikacija ima ukupno

2883 linija, a generisana frontend aplikacija 2469, što je

ukupno 5352 linija. Jednoj liniji koda na FAGL JSD-u

odgovara 19,9 linija generisanog programskog koda na

JON jezicima Go i JavaScript. Ova metrika prikazuje

veliku efikasnost i ubrzanje rada ostvareno upotrebom

FAGL JSD-a.

5. POREĐENJE SA DRUGIM REŠENJIMA

Analizom dostupne literature identifikovano je pet

relevantnih radova koji opisuju JSD slične namene:

MaGiC [1], CRUDyLeaf [2], DOMMLite [3], Silvera [4] i

MicroBuilder [5]. Svi ovi jezici kao i FAGL imaju

tekstualnu konkretnu sintaksu. Za razvoj JSD-a

(metaprogramiranje) koriste se različiti alati, biblioteke i

platforme. Na primer, jezik MaGiC razvijen je korišćenjem

alata Jetbrains MPS, dok su CRUDyLeaf, DOMMLite i

MicroBuilder kreirani pomoću Xtext-a. Za razliku od njih,

jezici Silvera i FAGL JSD, implementirani su pomoću

biblioteke textX, koja je inspirisana alatom Xtext.

Iako svi navedeni JSD imaju sličan domen, značajno se

razlikuju po svojim mogućnostima i načinu modelovanja.

Na primer, MaGiC koristi tri različita JSD-a za specifične

celine: mikroservisnu backend aplikaciju, klijentsku

aplikaciju i jezik za definisanje komunikacije između ove

dve aplikacije (eng. gateway). Silvera i MicroBuilder su

ograničeni na opis mikroservisnog backenda i ne

podržavaju modelovanje klijentskih aplikacija. S druge

strane, FAGL JSD, razvijen u ovom radu, dizajniran je za

modelovanje monolitne backend aplikacije. Po svojim

mogućnostima sličan je jezicima CRUDyLeaf i

DOMMLite, ali istovremeno nudi unapređene

funkcionalnosti uz veću jednostavnost korišćenja.

Generisanje programskog koda može se realizovati na više

načina. Autori jezika MaGiC koristili su Plaintextgen,

M2T generator, za kreiranje koda svih komponenti

aplikacije. Za generisanje koda jezici CRUDyLeaf i

MicroBuilder oslanjaju se na biblioteku Xtend, dok

DOMMLite koristi specijalizovani jezik Xpand za

definisanje šablona prema kojima se generiše kod. Za jezik

Silvera, navedeno je da se generisanje koda zasniva na

M2T transformacijama i korišćenju šablona za generisanje

Java koda, ali nije precizirano koja je biblioteka korišćena

za ovu svrhu. Za razliku od njih, FAGL JSD koristi M2T

transformaciju pomoću jinja2 biblioteke, čime se postiže

jednostavnost i fleksibilnost u radu sa šablonima.

Generatori na osnovu modela generišu programski kod na

JON jezicima, koji se može izvršavati. Kako postoji više

različitih JON jezika, jedno rešenje može da sadrži

generatore za više JON jezika. Iako je za osnovnu

funkcionalnost dovoljan samo jedan, prisustvo generatora

za više jezika povećava fleksibilnost i kvalitet rešenja.

Rešenja kao što su MaGiC i Silvera sadrže generatore za

različite JON jezike. Na primer, MaGiC nudi tri

generatora, po jedan za svaki JSD. Bekend aplikacije

(mikroservisi) i gateway generišu se u Node.js korišćenjem

Express frejmvorka ili u Python-u sa Flask frejmvorkom,

dok se frontend aplikacija generiše korišćenjem React

frameworka. Sa druge strane, jezik Silvera uključuje

generator za Java programski kod koji koristi Spring Boot

frejmvork. Dodatno, zahvaljujući modularnoj arhitekturi,

razvijeni su generatori i za druge JON jezike, poput

Python-a, C# i Go.

Ostala rešenja analizirana u ovom radu implementiraju

generatore samo za jedan JON jezik. Na primer, generator

CRUDyLeaf-a generiše bekend aplikaciju na Java

programskom jeziku koja koristi Spring Boot frejmvork.

DOMMLite generiše bekend aplikaciju u Python

programskom jeziku, koja koristi Django frejmvork, dok

MicroBuilder generiše Java programski kod koji se oslanja

na Spring, Spring Cloud i NetflixOSS frejmvorke. FAGL

razvijen u ovom radu, ima dva generatora: jedan za

monolitnu bekend aplikaciju na Go programskom jeziku i

drugi za frontend aplikaciju na JavaScript jeziku.

Osim MaGiC i FAGL rešenja, ostala razmatrana rešenja

nemaju implementirane generatore za frontend aplikacije.

Ovaj nedostatak generatora za frontend aplikacije

predstavlja značajan problem, jer iako se generisanje

bekend aplikacija može automatizovati, nije moguće

automatski generisati frontend kod, koji omogućava

interakciju sa aplikacijom krajnjim korisnicima, posebno

onim koji nisu tehnički osposobljeni. Iako DOMMLite ne

sadrži generator za frontend aplikaciju, zbog korišćenja

Django frejmvorka, bekend aplikacija generiše

administrativni interfejs koji se može koristiti za

upravljanje aplikacijom tokom razvoja ili nakon isporuke

krajnjim korisnicima. Međutim, ovo rešenje nije potpuno,

jer izmene u dizajnu ili funkcionalnostima frontend

aplikacije postaju znatno složenije i zahtevaju dodatno

manuelno podešavanje, što može biti prepreka za brzu

kastomizaciju i razvoj.

JSD-ovi CRUDyLeaf, Silvera i MaGiC omogućavaju

automatsko generisanje dokumentacije. CRUDyLeaf u te

svrhe koristi OpenAPI i Swagger, a Silvera generiše

dokumentaciju zasnovanu na OpenAPI specifikaciji.

MaGiC ide korak dalje, jer osim generisanja

dokumentacije pomoću SwaggerUI, omogućava i

generisanje infrastrukture za kontejnerizaciju i skripti koji

poboljšavaju korisničko iskustvo prilikom upotrebe alata.

S druge strane, FAGL slično DOMMLite i MicroBuilder,

ne podržava generisanje dokumentacije i infrastrukture za

kontejnerizaciju.

FAGL kao i svi razmatrani JSD-ovi podržava CRUD

operacije. MaGiC pored toga nudi funkcionalnosti za

definisanje specifičnih operacija poput GetEntitiesBy i

GetEntity. DOMMLite i MicroBuilder omogućavaju

pretragu entiteta pomoću operacije Search, što je naročito

korisno u scenarijima kada se obim podataka u sistemu

značajno poveća. DOMMLite i Silvera omogućavaju

definisanje metoda koje nemaju unapred definisano

ponašanje, što uvećava mogućnost operacija. U tom

slučaju nakon generisanja programskog koda, korisnik

manuelno implementira metode. U MicroBuilder-u,

operacija create je preimenovana u insert, a operacija read

zamenjena je funkcionalnošću search. Svi analizirani jezici

omogućavaju ažuriranje vrednosti svih atributa entiteta, ali

ne pružaju mogućnost definisanja atributa čije vrednosti se

mogu izmenjeni. Ovaj nedostatak uspešno je rešen u FAGL

JSD-u, uvođenjem restrikcija nad entitetima, što

omogućava preciznu kontrolu promena nad podacima.

Nijedan od prethodno analiziranih jezika ne nudi

mogućnost definisanja korisnika sistema i opisivanja

1306

dozvola (permisija) koje regulišu pristup određenim

metodama. Za razliku od njih, FAGL JSD omogućava obe

funkcionalnosti, čime značajno pojednostavljuje rad

korisnicima, eliminiše potrebe za naknadnim izmenama

generisanog koda radi implementacije autorizacije i

omogućava preciznije i efikasnije opisivanje sistema.

Još jedna slabost većine analiziranih JSD-ova je odsustvo

podrške za validacione funkcije, koje su od ključnog

značaja za proveru ispravnosti podataka unetih u sistem.

Ipak treba istaći da su validacione funkcije implementirane

u FAGL-u kao i u DOMMLite-u, čime oba jezika

omogućavaju kontrolu i pouzdanost prilikom obrade

podataka.

Sintakse analiziranih rešenja značajno se razlikuju po

složenosti. CRUDyLeaf se ističe izuzetno jednostavnom

sintaksom koja omogućava brzo usvajanje i skraćuje vreme

razvoja softvera. Međutim, ova jednostavnost dolazi sa

ograničenjima — CRUDyLeaf ne podržava opis

mikroservisne arhitekture, što ga čini neprikladnim za

kompleksnije projekte. MicroBuilder, takođe nudi

jednostavnu sintaksu, koja za razliku od CRUDyLeaf-a

omogućava opisivanje mikroservisne arhitekture. Ipak,

njegova sintaksa za definisanje tipova atributa (npr.

„%Single String%“) nije intuitivna, a entiteti se mogu

definisati samo unutar mikroservisa, što otežava rad sa

većim modelima i može rezultirati nepreglednim kodom.

Silvera JSD ima složeniju sintaksu koja je pogodna za

iskusne programere upoznate sa mikroservisnom

arhitekturom i njenim mogućnostima. Suprotno ovim

jezicima, MaGiC ima kompleksniju sintaksu, koja više

podseća na govorni jezik nego na standardne programske

jezike. Pored toga, korisnici MaGiC-a moraju da savladaju

čak tri različita JSD-a kako bi opisali ceo sistem, što

predstavlja značajnu prepreku za njegovu primenu.

Sintaksa FAGL jezika podseća na JON i po jednostavnosti

i preglednosti slična je sintaksi DOMMLite-a. Definisanje

entiteta i CRUD operacija u FAGL jeziku sintaksno je

najsličnije onome opisanom u Silvera-i.

Analizirana rešenja pružaju različite nivoe udobnosti za

programere. Rad sa MaGiC-om je zahtevan jer uključuje

instalaciju MPS softvera, nakon čega sledi čak 17 koraka

kako bi se kreirala najjednostavnija aplikacija. Autori

CRUDyLeaf, DOMMLite i MicroBuilder-a preporučuju

rad u okviru Eclipse alata, koji je poznat po brojnim

dokumentovanim nedostacima i često izaziva frustracije

kod korisnika [7]. S druge strane, rešenja Silvera i FAGL

su značajno jednostavnija za upotrebu. Ova rešenja

omogućavaju programerima da koriste bilo koji tekstualni

editor po sopstvenom izboru, čime se eliminiše potreba za

specijalizovanim softverom. Nakon instalacije u Python

virtuelno okruženje, FAGL se slično Silvera-i pokreće

intuitivno i brzo.

6. ZAKLJUČAK

Rad pruža uvid u tehničke mogućnosti FAGL jezika

specifičnog za domen, koji uključuje dva generatora

programskog koda. Detaljno su analizirani konkretna

sintaksa jezika, kao i dizajn, arhitektura i implementacija

ovog rešenja. Posebna pažnja posvećena je definisanju

atributa čije vrednosti korisnik može da ažurira,

specifikaciji korisnika sistema i implementaciji

autorizacije za pristup CRUD operacijama nad entitetima.

Rezultati rada prikazani su studijom slučaja, koja ilustruje

proces opisivanja sistema i njegovog generisanja na

konkretnom primeru. Takođe, izvršeno je poređenje

razvijenog rešenja sa pet postojećih JSD-ova, što je

omogućilo kritičku evaluaciju mogućnosti i

funkcionalnosti razvijenog FAGL jezika. Na osnovu ove

analize, može se zaključiti da su postavljeni ciljevi rada

ostvareni razvojem tekstualnog JSD-a koji je jednostavan

za korišćenje, lak za učenje i sadrži sve neophodne

funkcionalnosti. Fleksibilnost i lakoća korišćenja čine

FAGL pogodnim izborom, posebno za programere koji

traže efikasne alate bez suvišnih komplikacija.

Ovaj rad postavio je temelje za dalje unapređenje ovog

rešenja, razvojem generatora programskog koda za više

JON jezika, uvođenjem koncepata mikroservisne

arhitekture i dodavanjem novih funkcionalnosti kao što je

pretraga. Takođe, implementacija alata za generisanje

dokumentacije i infrastrukture za kontejnerizaciju otvorila

bi mogućnosti za dalja poboljšanja, čineći rešenje još

efikasnijim i fleksibilnijim.

7. LITERATURA

[1] A. Bucchiarone, C. Ciumedean, K. Soysal, N.

Dragoni, and V. Pech, "MaGiC: a DSL framework for

implementing language-agnostic microservice-based

web applications," Journal of Object Technology, vol.

22, no. 1, 2023.

[2] O. S. Gómez, R. H. Rosero, and K. Cortés-Verdín,

"CRUDyLeaf: a DSL for generating Spring Boot

REST APIs from entity CRUD operations,"

Cybernetics and Information Technologies, vol. 20,

no. 3, pp. 3–14, 2020.

[3] I. Dejanović, G. Milosavljević, B. Perišić, and M.

Tumbas, "A domain-specific language for defining

static structure of database applications," Computer

Science and Information Systems, vol. 7, no. 3, pp.

409–440, 2010.

[4] A. Suljkanović, B. Milosavljević, V. Inđić, and I.

Dejanović, "Developing microservice-based

applications using the silvera domain-specific

language," Applied Sciences, vol. 12, no. 13, p. 6679,

2022.

[5] B. Terzić, V. Dimitrieski, S. Kordić, G. Milosavljević,

and I. Luković, "MicroBuilder: a model-driven tool

for the specification of REST microservice

architectures," in Proc. Int. Conf. Inf. Soc. Technol.,

2017, pp. 179–184.

[6] I. Dejanović, R. Vaderna, G. Milosavljević, and Ž.

Vuković, "TextX: A Python tool for Domain-Specific

Languages implementation," Knowledge-Based

Systems, vol. 115, pp. 1-4, 2017.

[7] https://medium.com/@ashaytikekar/why-eclipse-

sucks-dd70e572c675 (pristupljeno u novembru 2024.)

Kratka biografija:

Lazar Pavlović rođen je u Požarevcu

2001. god. Master rad na Fakultetu

tehničkih nauka iz oblasti Elektrotehnike i

računarstva – Softversko inženjerstvo i

informacione tehnologije odbranio je

2024.god.

kontakt: lp.pavlovic.001@gmail.com

1307

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.9

DOI: https://doi.org/10.24867/33BE10Ubiparip

PRIMENA LINEARNOG PROGRAMIRANJA U OPTIMIZACIJI PLANIRANJA I

UPRAVLJANJA PROJEKTIMA

THE APPLICATION OF LINEAR PROGRAMMING IN THE OPTIMIZATION OF

PROJECT PLANNING AND MANAGEMENT

Jelena Ubiparip, Fakultet tehničkih nauka, Novi Sad

Oblast – ELEKTROTEHNIKA I RAČUNARSTVO

Kratak sadržaj – Ovaj rad je u potpunosti posvećen

optimalnom upravljanju projektima posebno iz oblasti

upravljanja IT projektima uz oslonac na metodologiju i

tehnike linearnog programiranja. Da bismo upotpunili rad

i upotrebu projekta optimizacionog softvera učinili

dostupnom, razvili smo jedno veb-bazirano rešenje koje

omogućuje optimalno planiranje svih procesa u projektu.

Ključne reči: Linearno programiranje, Veb aplikacija,

Naučni menadžment, Projektni menadžment

Abstract – This paper is fully dedicated to optimal project

management, especially in the field of IT project

management, based on the methodology and techniques of

linear programming. In order to make the use of the

optimization software project available, we have

developed a web-based solution that enables optimal

planning of all processes in the project.

Keywords: Linear programming, Web application,

Scientific management, Project management

1. UVOD

Uspeh i opstanak svake organizacije zavisi od kvaliteta

odluka koje donose njeni menadžeri. Osnovno pitanje u

mnogim problemima koji se javljaju u poslovanju i

industriji je kako raspodeliti ograničene resurse na različite

aktivnosti. Odgovornost menadžera (donosioca odluke) je

da rasporedi resurse na određene aktivnosti kako bi se

postigli najbolji rezultati za organizaciju. Iz tog razloga,

razvijeni su alati i tehnike koje mogu pomoći u potrazi za

optimalnim raspodelom resursa.

Upravo iz tog razloga je razvijena aplikacija „Upravljanje

projekta“. Pre svega, korisniku je omogućeno da unosi

podatke o zadacima koje je potrebno izvršiti tokom trajanja

projekta na lak način i nakon toga sledi računanje najbolje

putanje toka projekta. Odnosno, koliko bi se cena projekta

mogla uvećati ukoliko se redukuje vreme trajanja projekta.

Osim toga, određuje se i u kom trenutku je najbolje

započeti određeni zadatak.

Bilo bi pogrešno smatrati da ova aplikacija oslobađa

korisnika od donošenja odluka. Ona mu samo pomaže u

procesu odlučivanja, dajući perspektivu odluke koju treba

da donese.

__

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je bio

dr Željko Kanović, red. prof.

Kada se ova komponenta (rezultati) doda kvalitativnoj,

iskustvenoj i intuitivnoj – odluka korisnika nesumnjivo

postaje bolja.

2. OPERACIONA ISTRAŽIVANJA I PRIMENA

LINEARNOG PROGRAMIRANJA U

OPTIMIZACIJI

Osnovna karakteristika savremenog društva je postojanje

velikog broja složenih sistema, kao što su tehnološko-

proizvodni sistemi, energetski sistemi, komunikacioni

sistemi, transportni sistemi, razni sistemi u poljoprivredi,

industriji, i dr.

U ovakvim uslovima, upravljanje se mora vršiti metodično,

sa programom koji podrazumeva planiranje odluka,

odnosno izrada plana i upravljanje realizacijom plana.

Operaciona istraživanja su nastala upravo na tim temeljima

i zahtevima sa ciljem da primenom postojećih i razvojem

novih naučnih metoda na kvantitativnim osnovama daju

odgovore po pitanju najboljeg funkcionisanja složenih

sistema u postojećim uslovima. Danas postoji čitav niz

raznih naučnih metoda i tehnika koje su razvijene i koje

imaju primenu rešavanja raznih problema upravljanja

sistemima.

Metode i tehnike operacionih istraživanja su prvenstveno

namenjene donosiocima odluka (menadžeri), ali i

ekspertima i specijalistima koji dobro poznaju prirodu

problema koji se rešava i koji, zajedno sa menadžerima,

trebaju biti uključeni u ceo proces donošenja optimalnih

odluka.

2.1. Funkcija cilja ili kriterijum upravljanja

U procesima upravljanja postoje tri jedinstvena pojma sa

kojima se često operiše. Ti pojmovi naročito dolaze do

izražaja kod primene matematičkih metoda u izučavanju

procesa upravljanja, a to su funkcija cilja (kriterijum

upravljanja), skup ograničenja i matematički model.

Nijedan upravljački zadatak ne može da postoji bez

definisanog cilja. Drugim rečima, bez definisane funkcije

cilja nemoguće je ostvariti konkretno upravljanje.

Po svom karakteru i sadržaju ciljevi mogu biti veoma

različiti. U odnosu na definisani cilj meri se kvalitet

upravljanja i vrši komparacija u procesu odabiranja

najbolje ili zadovoljavajuće upravljačke akcije.

U matematičkom smislu funkcija cilja izražava se nekom

funkcijom F(X) gde je X=(x1,x2…,xn) n-dimenzioni vektor,

pri čemu treba odrediti njen minimum ili maksimum.

Drugim rečima, funkcija cilja predstavlja funkciju više

1308

https://doi.org/10.24867/33BE10Ubiparip

promenljivih za koju je potrebno odrediti ekstremnu

vrednost.

Funkcija cilja se minimizira ukoliko su njome izraženi

troškovi, vreme realizacije zadatka, utrošak materijala,

gubitak, škart u proizvodnji, vreme transporta, itd.

Funkcija cilja se maksimizira ako odražava dobit, prinos

po jedinici površine, dohodak po glavi stanovnika, učinak,

itd. Svaki konkretni zadatak zahteva poseban pristup u

realizaciji funkcije cilja, čiji oblik zavisi od specifičnih

uslova zadatka.

Optimalno ostvarivanje cilja, posredstvom traženja

ekstremne vrednosti funkcije F(X), u realnim uslovima ne

može se ni zamisliti bez skupa ograničenja, koja

karakterišu granice potencijalnih mogućnosti određenog

sistema. Svaki organizacioni sistem karakterisan je

brojnim ograničenjima, čija se priroda najčešće vezuje za

različite kategorije ograničenih resursa (radna snaga,

mašine, materijal, novčana sredstva, prostor, itd.). Pored

navedenog skupa ograničenja postoji još i prirodni skup

ograničenja koji se sastoji u tome da komponente vektora

X moraju biti nenegativne veličine xi≥0, (ⅈ=1,2,…,n).

Metode odabiranja upravljačkih odluka koje se zasnivaju

na angažovanju matematičkih modela pružaju mogućnost

sveobuhvatnijeg sagledavanja problema, boljeg

iskorišćenja resursa, bržeg obavljanja procesa, smanjenje

troškova i povećanje efikasnosti. Vrednost upravljačke

odluke, dobijene pomoću matematičkog modela zavisi od

adekvatnosti modela sa procesom koji se izučava.

Matematički model koji realno odražava sistem koji se

istražuje omogućava da se pronađu uticaji upravljačkih

parametara na izmenu karakteristika sistema u cilju

postizanja uslova njegovog optimalnog funkcionisanja.

2.2. Linearno programiranje

Zadaci koji se sa aspekta odgovarajućeg matematičkog

modela M svode na linearno programiranje, karakterišu se

funkcijom cilja F(X) koja predstavlja linearnu kombinaciju

nepoznatih, kao i skupom ograničenja koji se zadaje

sistemom linearnih jednačina ili nejednačina.

Ako se sa stanovišta matematičkog modela osvrnemo na

linearno programiranje, problem se sastoji u tome kako

naći minimum ili maksimum jedne linearne funkcije F(X),

pri određenom skupu ograničenja L zadanih linearnim

vezama. Broj nepoznatih i ograničenja može da bude

veoma različit.

Linearno programiranje predstavlja metodu određivanja

takve kombinacije uzajamno povezanih faktora, koja od

niza mogućih kombinacija predstavlja najpovoljniju.

Drugim rečima, traži se takva kombinacija koja će, pored

toga što će zadovoljiti data ograničenja, dati kriterijumu

optimalnosti najbolju moguću (optimalnu) vrednost.

Opšta matematička formulacija zadatka linearnog

programiranja sastoji se u sledećem:

Treba odrediti takav skup vrednosti x1,x2,...,xn, tj.

komponenata n-dimenzinog vektora X=(x1,x2,...,xn) iz

oblasti koja je zadata sistemom linearnih jednačina

∑ 𝑎𝑖𝑘𝑥𝑘

𝑛

𝑘=1

+ 𝑏𝑖 ≥ 0, (ⅈ = 1,2, … 𝑚) (1)

𝑥𝑘 ≥ 0, (𝑘 = 1,2, … , 𝑛) (2)

za koje funkcija cilja

𝐹(𝑥) = 𝐹(𝑥1, 𝑥2, … , 𝑥𝑛) =

= 𝐶1𝑥1 + 𝐶2𝑥2 + ⋯ + 𝐶𝑛𝑥𝑛
(3)

koja predstavlja linearnu kombinaciju nepoznatih xk

dostiže maksimalnu (minimalnu) vrednost.

Različite metode rešavanja zadataka linearnog

programiranja imaju niz specifičnosti u pretraživanju

mogućih varijanti plana u cilju izbora optimalnog plana.

Pored toga, postoje opšte metode koje omogućavaju da se

nađe rešenje bilo kog zadatka linearnog programiranja. U

takve metode spada Dantzig-ova metoda koja je više

poznata kao simpleks metoda kao i njene modifikacije

razvijene vremenom.

2.3. Simpleks metoda

Ideja simpleks metode sadrži tri bitna elementa:

1. mogućnost određivanja bar jednog dopustivog

plana X

2. mogućnost provere da li je određeni dopustivi

plan X optimalan ili ne

3. mogućnost da se u slučaju izbora dopustivog

plana X koji nije optimalan odredi novi plan koji

je bliži optimalnom

U slučaju da postoje sve tri ove mogućnosti, može se u

okviru konačnog broja koraka (računski korak u

iteracionom procesu traženja rešenja) dobiti optimalni plan

koji predstavlja rešenje formulisanog zadatka. Prema tome,

simpleks metoda zasniva se na sukcesivnom poboljšanju

dopustivog plana, sve dok se ne dobije optimalan plan.

Ovakav prilaz u formiranju algoritma simpleks metode,

takođe omogućava da se u procesu rešavanja bilo kog

zadatka ustanovi da li je on rešiv ili ne, što znači da postoji

mogućnost ispitivanja postojanja protivrečnosti u

ograničenjima i ispitivanje da li je funkcija cilja F(X)

neograničena u oblasti.

2.4. Optimizacioni proces u Phyton-u

Korišćenje Python-a za linearno programiranje obuhvata

nekoliko ključnih koraka:

1. Definisanje problema

2. Definisanje promenljivih

3. Definisanje funkcije cilja

4. Definisanje ograničenja

5. Rešavanje problema

6. Prikaz rezultata

Cilj definisanja problema je da se dođe do formalnog opisa

modela. Uzimajući u obzir dostupne podatke, često

problem može da bude mnogo zahtevniji nego što je

potrebno. Iz tog razloga je potrebno dobro proučiti koji su

podaci zaista potrebni jer ograničenja dostupnih podataka

mogu značajno promeniti opis modela i kasniju

formulaciju.

Za rešavanje problema u Python-u najčešće se koriste

biblioteke „Scipy“ i „PuLP“. Prednost biblioteke „PuLP“

nad „Scipy“ je u tome što omogućava lakše definisanje i

rešavanje problema linearnog programiranja.

„PuLP“ je, kao što je navedeno, biblioteka koja se koristi

za rešavanje problema optimizacije, posebno u kontekstu

linearnog programiranja i celobrojnog programiranja. Ova

biblioteka je vrlo korisna iz nekoliko razloga:

1309

- Podrška za različite vrste optimizacije - linearno

programiranje, celobrojno programiranje,

mešovito celobrojno programiranje

- Kompatibilnost sa različitim solverima –

podržava širok spektar solvera za rešavanje

optimizacionih problema kao što su COIN-OR

CBC, GLPK, CPLEX i Gurobi

- Prilagodljivost – omogućava korisnicima da

kreiraju različite vrste problema, bilo da se radi o

logistici, proizvodnji, finansijama, planiranju…

- Integracija sa drugim Python alatima – lako se

integriše sa drugim alatima i bibliotekama kao što

su Pandas (za rad sa podacima), NumPy (za

numeričke operacije), i mnoge druge.

3. APLIKACIJA „UPRAVLJANJE PROJEKTOM“

Aplikacija “Upravljanje Projektom” je osmišljena tako da

unos projektnih zadataka kao i podataka o samom zadatku

budu jednostavni za korišćenje. Cilj aplikacije je da

upotrebu projekta optimizacionog softvera učini

dostupnom.

Zamisao je da aplikacija bude veb-bazirana, što

omogućava lakši pristup i upotrebu sa različitih uređaja.

Aplikacija nije namenjena svim zaposlenima, već

isključivo menadžerima, kako bi imali uvid u ključne

zahteve za izvršavanje projekta. Pored toga, aplikacija,

koristeći prethodno objašnjeno linearno programiranje,

izračunava najbolju putanju toka projekta, odnosno

određuje optimalne trenutke za započinjanje svakog

zadatka.

1. Ova aplikacija je veb aplikacija a za njeno

razvijanje je korišćeno:

2. SQLite – ugradna baza podataka koji koristi

standardni SQL jezik za upravljanje podacima.

3. Angular - open-source framework za izgradnju

veb aplikacije.

4. Python – korišćen je za proces optimizacije.

5. Django veb okvir – koristi Phython za razvoj veb

aplikacija.

Na Slici 1. je prikazan primer projekta sa manjim brojem

zadataka, u cilju lakšeg objašnjenja i razumevanja.

Slika 1. Aplikacija „Upravljanje Projektom“

Aplikacija „Upravljanje Projektom“ razvijena je kao veb-

bazirana aplikacija koja koristi modernu arhitekturu

klijent-server modela. Ova arhitektura omogućava

efikasnu obradu podataka, brzu interakciju sa korisnicima

i skalabilnost sistema.

Dijagram arhitekture aplikacije dat je na Slici 2.

Slika 2. Arhitektura aplikacije

4. PRIMENA – PLANIRANJE I UPRAVLJANJE

PROJEKTIMA

U radu je iskorišćeno prethodno opisano softversko

rešenje, koje je primenjeno na konkretne podatke iz

kompanije „Yris Solutions“ sa ciljem analize mogućnosti

optimizacije vremenskih i resursnih parametara. Projekat

čiji se podaci koriste u radu predstavlja skup zadataka koje

je neophodno rešiti da bi se projektovala a posle i proizvela

štampana ploča (engl. Printed Circuit Board - PCB).

U podacima koji su dostavljeni od strane kompanije svaki

zadatak ima 8 obeležja:

1. ID (jedinstveni broj)

2. Ime (skraćeni opis zadatka)

3. Opis (detaljan opis zadatka)

4. Od kog prethodnog zadatka zavisi (ne može

početi izvršavanje zadatka dok se navedeni

zadatak ne izvrši)

5. Trajanje izvršavanja zadatka

6. Cena

7. Ubrzano izvršavanje zadatka

8. Cena ubrzanog izvršavanja zadatka

Cilj je odrediti koje zadatke treba vremenski skratiti,

uzimajući u obzir da je cena ukoliko se zadatak skrati veća.

„Ubrzano izvršavanje zadatka“ određuje zaposleni koji

izvršava zadatak i predstavlja najkraće vreme u kojem

zadatak može biti uspešno završen ako se poveća broj

resursa, odnosno ako zaposleni bude u potpunosti

posvećen samo tom zadatku.

Cena se povećava ukoliko se vreme izvršavanja zadatka

skrati, jer ubrzavanje procesa obično zahteva dodatne

resurse, kao što su dodatni radnici, rad u vanrednim

uslovima ili korišćenje specijalizovane opreme. Ove

dodatne potrebe povećavaju ukupne troškove projekta, što

dovodi do viših cena u slučaju skraćivanja vremena

izvršenja zadatka.

4.1. Određivanje kriterijuma optimalnosti na osnovu

podataka

Da bi formulisanje funkcije bilo jednostavnije objašnjeno,

upotrebićemo uopštenu formulaciju problema koja je

prikazana u Tabeli 1.

ID

Zadatka

Zavisi

od

zadatka

Trajanje

[T]

Cena

[C]

Ubrzano

trajanje

[TU]

Cena

ubrzanog

trajanja

[CU]

A TA CA TUA CUA

B A TB CB TUB CUB

C B TC CC TUC CUC

n n-1 Tn Cn TUn CUn

Stvarno trajanje zadatka definiše se kao standardno trajanje

umanjeno za vremenski period za koji je moguće njegovo

skraćenje:

𝐷𝑗 = 𝑇𝑗 − 𝑥𝑗 (4)

Tj predstavlja standardno vreme trajanja zadatka, odnosno

vreme koje je potrebno da se zadatak završi bez ikakvog

ubrzanja; xj predstavlja broj nedelja (ili bilo koja druga

jedinica vremena) koliko se trajanje zadatka može skratiti

ako se ulože dodatni resursi; j je ID zadatka.

Dakle, formula (4) predstavlja novo trajanje zadatka nakon

što je njegovo standardno vremensko razdoblje Tj skraćeno

Klijent - Angular Backend - Django/Python Baza podataka - SQLite

1310

za xj. Ako uzmemo uopštene vrednosti iz tabele gore,

trajanje zadatka je:

𝐵 = 𝑇𝐵 − 𝑥𝐵 (5)

TB predstavlja standardno vreme trajanja zadatka B,

odnosno vreme koje je potrebno za izvršavanje zadatka B

bez bilo kakvog ubrzanja; xB predstavlja vreme skraćenja

za zadatak B, tj. vreme koje se oduzima od standardnog

vremena TB kako bi se skratilo trajanje zadatka B kroz

dodatne resurse ili ubrzanje bilo koje vrste; B je novo

vreme trajanja zadatka B nakon što se primeni skraćivanje

xB.

Veza između zadatka C i zadatka B od kojeg zadatak C

zavisi je takva da početak zadatka C (yC) ne može nikako

biti pre nego što zadatak B završi, tj:

𝑦𝐶 = 𝑦𝐵 + 𝑇𝐵 − 𝑥𝐵 (6)

yC predstavlja novo vreme ili trenutak kada će zadatak C

biti završen; yB predstavlja vreme ili trenutak kada je

zadatak B završen; TB i xB su prethodno objašnjeni.

Na osnovu prethodno definisanih veličina, funkcija

kriterijuma optimalnosti, čija se minimalna vrednost traži,

formuliše se na sledeći način:

𝑚𝑖𝑛𝑍 = ∑(𝐶𝑈𝑖 − 𝐶𝑖) · (𝑇𝑗 − 𝐷𝑗) (7)

за i = 1,…,n. U ovom izrazu, Z označava ukupni trošak koji

treba minimizirati. Parametar CUi predstavlja cenu

ubrzanog izvršenja zadatka, odnosno dodatni trošak koji

nastaje kada se vreme trajanja zadatka smanji, dok je Ci

standardna cena izvršenja zadatka. Veličine Tj i Dj

označavaju redom standardno i stvarno (ubrzano) trajanje

zadatka.

Konkretizacijom opšte funkcije kriterijuma optimalnosti

date u formuli (7), dobija se sledeća funkcija za slučaj

razmatranog projekta:

𝑍 = 1000𝑥1 + 600𝑥2 + 800𝑥5 + 1200𝑥7

+ 106,67𝑥6 + 106,67𝑥8 + 160𝑥9 + 160𝑥10

+ 160𝑥11 + 177,77𝑥12 + 145,45𝑥13

+ 160𝑥14 + 160𝑥15 + 200𝑥16 + 400𝑥17

+ 400𝑥18 + 177,78𝑥19 + 80𝑥20 + 80𝑥21

+ 80𝑥22 + 160𝑥23 + 228,57𝑥24 + 160𝑥25

+ 533,33𝑥26 + 160𝑥27 + 400𝑥28

+ 320𝑥29 + 333,33𝑥30 + 320𝑥31

+ 320𝑥32 + 320𝑥33 + 320𝑥34 + 320𝑥35

+ 400𝑥36 + 400𝑥37 + 320𝑥38 + 320𝑥39

+ 733,33𝑥4 + 160𝑥40 + 160𝑥41 + 160𝑥42

+ 160𝑥43 + 160𝑥44 + 160𝑥45 + 160𝑥46

+ 160𝑥47 + 80𝑥48 + 1200𝑥49 + 1600𝑥50

+ 17542,86𝑥51 + 500𝑥5

(8)

Pored funkcije cilja, model uključuje i sledeća ograničenja:

1. Ograničenja maksimalne redukcije vremena

Za svaki zadatak unapred je određeno koliko njegovo

trajanje može maksimalno da se skrati. Na primer:

x10 ≤ 1, x11 ≤ 1, x12 ≤ 0.9, ..., x9 ≤ 1

2. Uslov nenegativnosti

Sve promenljive koje predstavljaju trajanja i vremenske

pomake zadataka moraju biti nenegativne:

xi ≥ 0, yi ≥ 0, за i = 1, ..., 52.

3. Vremenska ograničenja (zavisnost između

zadataka)

Redosled izvršavanja zadataka uslovljen je logičkim

zavisnostima. Na primer, ako zadatak y10 ne može da

počne dok se ne završi zadatak y9, to se izražava

nejednačinom : y9 + y10 - x9 ≥ 15

5. DISKUSIJA REZULTATA

Na osnovu analize ključnih zadataka projekta, procenjeno

je da će njegovo trajanje biti 242 nedelje. Ovaj rezultat

pokazuje ukupan vremenski okvir potreban za završetak

svih zadataka, uzimajući u obzir njihove međusobne

zavisnosti i raspored. Ipak, postoji mogućnost optimizacije

tog vremena.

Ukoliko bi se maksimalno smanjio vremenski period

izvršavanja projekta na 228 nedelja, uz odgovarajuće

povećanje resursa i ubrzanje određenih zadataka, troškovi

skraćivanja vremena izvršavanja bi bili 44.325,81. Ovaj

iznos predstavlja dodatne troškove koji bi bili neophodni

za ubrzanje izvršenja, uključujući povećanje broja radnih

sati, angažovanje dodatnih resursa i primenu tehnologija

koje omogućavaju brže završavanje zadataka.

6. ZAKLJUČAK

Ovaj rad istražuje primenu linearnog programiranja u

optimizaciji planiranja i upravljanja projektima, sa

posebnim fokusom na IT projekte i projekte proizvodnje

štampanih ploča. Kroz analizu teorijskih osnova, razvoja

matematičkih modela i implementacije softverskih rešenja,

postignuti su značajni rezultati koji unapređuju proces

donošenja odluka i upravljanja resursima.

Razvijeni alat pokazao je visok stepen fleksibilnosti i

prilagodljivosti za primenu u različitim industrijama i

vrstama projekata.

Rad je uspešno demonstrirao kako primena linearnog

programiranja može unaprediti planiranje i upravljanje

projektima. Matematički modeli, softverska rešenja i

praktične primene pokazali su vrednost optimizacije u

smanjenju troškova i vremena, doprinoseći efikasnijem

korišćenju resursa i donošenju boljih odluka. Ova

istraživanja pružaju solidnu osnovu za dalji razvoj u oblasti

upravljanja projektima.

7. LITERATURA

[1] P.E. Amiolemhen, J. Akpomwomwo „Building

Project Activities/Tasks Time Scheduling using a

Linear Programming Model“, Department of

Production Engineering, University of Benin, Nigeria

[2] Jovan J.Petrić „Operaciona istraživanja“

[3] Mokhtar S. Bayaraa, John J. Jarvis, Hanif D. Sherali

„Linear Programming and Network Flows“

[4] Dimitris Bertsimas, John N. Tsitsiklis „Introduction to

Linear Optimization“

[5] Erić D.“Uvod u menadžment”, Ekonomski fakultet,

Beograd

Kratka biografija:

Jelena Ubiparip rođena je u Novom Sadu

1995. godine. Osnovne akademske studije

završila je 2019. godine na studijskom

programu Biomedicinsko inženjerstvo.

Kontakt: jelena.antelj1@gmail.com

1311

Зборник радова Факултета техничких наука, Нови Сад

UDK: 4.633

DOI: https://doi.org/10.24867/33BE11Knezevic

ПРОШИРЕЊЕ АЛАТА AUTOPSY СА МОДУЛОМ ЗА ДЕТЕКЦИЈУ ОБЈЕКАТА НА

ФОТОГРАФИЈАМА

EXTENDING AUTOPSY TOOL WITH OBJECT DETECTION MODULE

Исидора Кнежевић, Факултет техничких наука, Нови Сад

Област – ЕЛЕКТРОТЕХНИЧКО И

РАЧУНАРСКО ИНЖЕЊЕРСТВО

Кратак садржај – Дигитална форензика се суочава

са изазовом анализе великих колекција фотографија

које могу садржати кључне доказе у

криминалистичкој истрази. У овом раду је

представљено решење модул за Autopsy алат,

„Детектор оружја и новца“, који користи YOLOv8

модел дубоког учења за детекцију објеката попут

пиштоља, ножева, новчаница и кредитних картица,

чиме се значајно убрзава процес анализе. Предложено

решење показује знатно боље перформансе у

детекцији објеката у односу на постојећа решења.

Кључне речи: дигитална форензика, детекција

објеката, YOLOv8, Autopsy

Abstract – Digital forensics faces the challenge of

analyzing large collections of phоtographs that may

contain key evidence in a criminal investigation. This

paper presents a solution, module for the Autopsy tool,

“Weapon and Money Detector”, which uses the YOLOv8

deep learning model to detect objects such as guns,

knives, banknotes and credit cards, significantly speeding

up the analysis process. The proposed solution shows

significantly better performance in object detection

compared to existing solutions.

Keywords: digital forensics, object detection, YOLOv8,

Autopsy

1. УВОД

Дигитална форензика jе научна дисциплина чиjи

предмет су идентификациjа, прикупљање, чување,

прегледање, анализа и презентациjа дигиталних

доказа коришћењем научно и правно ваљаних метода

и алата [1]. У савременој дигиталној форензици,

фотографије представљају важан извор доказа који

могу садржати информације од суштинског значаја за

истрагу. Пораст броја рачунара и других рачунарских

система које константно користимо у свакодневном

животу, довео је до стварања великих количина слика.

Међутим, ручна анализа великих колекција

фотографија може бити изузетно временски захтевна

за дигиталне форензичаре.

У овом раду акценат је стављен на проналажењу

фотографија на којима се налазе објекти као што су

пиштољи, ножеви, новчанице и кредитне картице.

__

НАПОМЕНА:

Овај рад проистекао је из мастер рада чији ментор

је био др Стеван Гостојић, ред. проф.

Њихова аутоматска детекција значајно смањује време

потребно за анализу слика и пружа истражитељима

могућност да се фокусирају на друге аспекте истраге.

Да би се ова аутоматизација постигла, коришћен је

напредни модел дубоког учења YOLOv8 за детекцију

наведених објеката. Модел је трениран и евалуиран на

скупу података који садржи фотографије са објектима

од интереса. Развијен је додатак за форензички алат

Autopsy верзије 4.21.0, назван Детектор оружја и

новца (енг. Weapons and Money Detector), који

омогућава примену овог тренираног модела за

аутомаско проналажење фотографија на којима се

налазе наведени објекти.

2. ПРЕГЛЕД СЛИЧНИХ СОФТВЕРА

Главни критеријуми за избор сличних апликација

били су њихова примена у форензичким истрагама,

могућност аутоматске анализе мултимедијалног

садржаја и подршка за идентификацију одређених

објеката од интереса. Посебна пажња је посвећена

алатима који укључују методе машинског учења за

детекцију објеката. На основу ових критеријума,

идентификовани су и анализирани алати као што су

Autopsy, верзије 4.21.0, у поглављу 2.1, и Magnet

Axiom, верзије 6.8, у поглављу 2.2.

2.1. Autopsy

Autopsy [2] је алат за дигиталну форензику отвореног

кода, који омогућава анализу дигиталних доказа са

чврстих дискова рачунара и мобилних уређаја.

Дизајниран и имплементиран је модуларно, што значи

да постоје модули који проширују функције алата.

Један од модула јесте и Object Detection модул који

служи за детекцију објеката на сликама. Модул

користи каскадни класификатор (енг. Cascade

Classifier) алгоритам машинског учења из библиотеке

за рачунарски вид и машинско учење OpenCV. Пошто

библиотека OpenCV, верије 3.4.16, има само

класификаторе за детекцију лица, очију, тела, мачака

и регистарских таблица, a и Autopsy не садржи своје

класификаторе уз модул, било је потребно тренирати

и евалуирати класификаторе за објекте које желимо

да детектујемо, а то су: пиштољи, ножеви, новчанице

и кредитне картице. Метрике које су коришћене за

евалуацију су прецизност, одзив и F1 мера. На табели

1 се могу видети вредности евалуације за сваки

класификатор.

1312

https://doi.org/10.24867/33BE11Knezevic

Табела 1. Резултати евалуације класификатора

Објекти Прецизност Одзив F1 мера

Пиштољи 0.114 0.472 0.184

Новчанице 0.048 0.245 0.08

Ножеви 0.007 0.087 0.013

Кред. карт. 0.036 0.193 0.06

Резултати евалуације показују да каскадни

класификатори имају ниске вредности прецизности и

одзива, што указује на велики број лажних

позитивних резултата и пропуштање стварних

објеката.

2.2. Magnet Axiom

Magnet Axiom [3] је комерцијални софтвер за

дигиталну форензику, који је специјализован за

анализу података са различитих извора као што су

чврсти дискови, мобилни уређаји, cloud сервиси и

друштвене мреже. Једна од функционалности је и

напредна функција за категоризацију текста у

разговорима, слика и видео записа помоћу Magnet AI.

Magnet AI је интегрисани систем који користи

машинско учење за аутоматску анализу и

категоризацију података. Mоже да идентификује

слике које садрже специфичне објекте или сцене, као

што су оружје, документа, новац, возила, неподобан

садржај и разне друге објекте, У раду [4] Василарас и

сарадници су извршили евалуацију функционалности

категоризације слика, алата Magnet Axiom, верзије

6.8. Метрике које су коришћене за евалуацију су

тачност, прецизност, одзив и F1 мера. Категорије које

су евалуиране су: дрога, оружје, голотиња, новац и

возила. У табели 2 су приказани резултати евалуације.

Табела 2. Резултати евалуације алата Magnet Axiom

Објекти Тачност Прецизност Одзив F1

мера

Дрога 0.988 0.066 0.279 0.107

Оружје 0.993 0.156 0.052 0.078

Голотињ

а

0.992 0.231 0.146 0.179

Новац 0.980 0.021 0.333 0.040

Возила 0.991 0.810 0.545 0.652

Резултати евалуације показују да Magnet AI има

ограничене перформансе у неким категоријама, попут

оружја, дроге и новца, где су ниске вредности

прецизности и одзива. Ово указује на повећан број

лажних позитивних и пропуштених објеката у тим

категоријама. Функционалност категоризације слика

помоћу Magnet AI је најпоузданија за категорију

возила.

3. AUTOPSY

Овај одељак се бави анализом Autopsy алата за

дигиталну форензику. У одељку 3.1 ће бити

објашњене основне карактеристике алата и

могућностима које нуди корисницима, док ће у

одељку 3.2 бити објашњено како се могу проширити

функционалности овог алата.

3.1. Основне карактеристике алата

Autopsy се базира на следећим кључним концептима:

• Случај (енг. case): дефинисан је као контејнер

који садржи један или више извора података.

• Извор података (енг. data source): могу бити

форензичке копије диска, локални дискови и

логички фајлови и фолдери.

• Модули за обраду података (енг. ingest modules):

обављају анализе фајлова из извора података и

парсирају њихов садржај.

• Црна табла (енг. blackboard): представља начин

комуникације између модула. Модули постављају

своје резултате на црну таблу у облику

артефаката, а кориснички интерфејс их приказује.

Неки од модула за обраду података који постоје у

Autopsy-у су:

• File Type Identification – идентификује датотеке на

основу њихових интерних потписа и не ослања се

на екстензије датотека.

• Picture Analyzer – овај модул издваја Exchangeable

Image File Format (EXIF) информације из слика,

тј. метаподатке. Ове информације могу да садрже

податке о геолокацији слике, времену и датуму

настанка, моделу камере и њеним подешавањима

као и друге информације.

• Object Detection – користи OpenCV да детектује

објекте на сликама.

Корисници да би покренули дигиталну форензичку

истрагу помоћу Autopsy-a потребно је да направе

случај и попуне све неопходне податке о њему. Затим

додају извор података и бирају модуле за обраду

података који ће се извршавати над тим извором.

Након завршетка рада модула, корисници могу ручно

да прегледају садржај фајлова и резултате модула

како би идентификовали доказе. Када је завршена

анализа корисник може да покрене генерисање

финалног извештаја на основу одабраних ознака и

резултата. Ово укључује креирање HTML или Excel

извештаја.

3.2. Проширивост Autopsy-a

Autopsy је препознатљив као један од

најприлагодљивијих алата за дигиталну форензику,

због могућности проширења функционалности кроз

различите модуле. Неке од врста модула које постоје

у оквиру Autopsy-а су:

• Модули за обраду података (енг. Ingest Modules):

ови модули се покрећу када се нови извор

података дода у случај, и могу се поново

покренути након тога. Ови модули постоје у два

облика: Модули за обраду датотека (енг. File

Ingest Modules) – позивају се за сваку датотеку у

извору података, и модули за обраду извора

података (енг. Data Source Ingest Modules) –

позивају се једном за сваку слику диска или сет

логичких датотека.

• Модули за извештаје (енг. Report Modules): ови

модули се (типично) покрећу након што је

корисник прегледао резултате и означио датотеке

од интереса. Њихова сврха је креирање извештаја

о резултатима, али могу се користити и за

анализу.

Autopsy је писан у Java програмском језику, док

модули могу бити писани у Java или Python језику (тј.

1313

Jython језику, који претвара код писан у Python-у у

Java код). Сваки Python модул, који се пише у једној

Python скрипти, треба да буде у фолдеру за Python

скрипте у оквиру Autopsy-а. У Autopsy GitHub

репозиторијуму [5] се налазе примери за модул за

обраду датотека, модул за обраду извора података и

модул за извештаје. Сви примери имају TODO

напомене које указују на то шта треба да се промени.

Све детаљније информације о имплементацији

модула, укључујући кораке, примере кода и додатне

могућности, могу се пронаћи у званичној Autopsy

документацији за девелопере [6].

4. ДЕТЕКЦИЈА ОБЕЈАКТА

Детекција објеката представља један од кључних

задатака рачунарског вида и вештачке интелигенције,

чији је циљ да препозна и лоцира објекте на

дигиталним сликама или видео-снимцима [7]. У

одељку 4.1 биће објашњено шта је детекција објеката

и како функционише, док ће у одељку 4.2 бити

представљени неки од модела за детекцију објеката.

4.1. Основни концепти детекције објеката

Детекција објеката је општи термин који описује скуп

повезаних задатака у области рачунарског вида, а који

подразумевају идентификацију објеката на

дигиталним фотографијама. Општи принцип рада

детекције објеката је следећи:

1. Улазна слика: Процес детекције објеката почиње

анализом слике или видеа.

2. Предобрада: Слика се предобрађује како би се

обезбедио одговарајући формат за модел који се

користи.

3. Издвајање карактеристика: Модел разлаже слику

на регионе и из сваког региона извлачи

карактеристике како би детектовао обрасце

различитих објеката.

4. Класификација: Сваки регион слике се

класификује у категорије на основу извађених

карактеристика. Задатак класификације може да се

обавља помоћу SVM-а (support vector machines – тип

алгоритма за надгледано учење који се може

користити за задатке класификације или регресије)

или неуронске мреже која рачуна вероватноћу сваке

категорије присутне у региону.

5. Локализација: Истовремено са процесом

класификације, модел одређује оквире за сваки

детектовани објекат. Ово укључује израчунавање

координата оквира који окружује сваки објекат, чиме

се објекат прецизно лоцира унутар слике.

6. Сузбијање преклапања (енг. non-max suppression):

Када модел идентификује више оквира за исти

објекат, примењује се сузбијање преклапања. Ова

техника задржава само оквир са највишим нивоом

поузданости и уклања све остале који се преклапају.

7. Излаз: Процес се завршава оригиналном сликом на

којој су означени оквири и називи класа, које

илуструју детектоване објекте и њихове одговарајуће

категорије.

4.2. Методе и алгоритми детекције објеката

Детекција објеката ослања се на различите методе и

алгоритме који се углавном деле на традиционалне

(пре 2014. године) и модерне методе (после 2014.

године), засноване на дубоком учењу. Традиционалне

методе које се издвајају су: Виола-Џонс детектори (тј.

каскадни класификатори), HOG (histogram of oriented

gradients) детектор и DPM (deformable part-based

model) модел. Модерне методе се деле на две

категорије: „двостепена детекција“ и „једностепена

детекција“. Код „двостепених детекција“ издвајају се

методе: RCNN, SPPNet, Fast RCNN, Faster RCNN, док

се код „једностепених детекција“ издвајају методе:

you only look once (YOLO) и single shot multibox

detector (SSD).

4.2.1. YOLOv8

YOLOv8 је развијен од стране Ultralytics тима.

Архитектура YOLOv8 се састоји од два главна дела,

кичме и главе, која чине две конволуционе неуронске

мреже.

У раду [8] Билоус и сарадници су поредили

перформансе модела, као што су YOLOv4-v8, Faster

RCNN, SSD и EfficientDet, за детекцију људи и

техничких објеката. Главне метрике за поређење биле

су тачност (mAP), прецизност, одзив, F1 мера и

брзина обраде (FPS). На табели 3 су приказани

резултати евалуације модела. YOLOv8 се показао као

најефикаснији модел захваљујући својој високој

тачности, брзини обраде и способности

прилагођавања разноврсним сценаријима. И због тога

је YOLOv8 модел изабран за решавање проблема овог

рада.

Табела 3. Резултати евалуације модела

Модел Прецизност Одзив mAP
F1

мера
FPS

YOLOv4 0.81 0.83 0.82 0.82 40

YOLOv5 0.73 0.73 0.73 0.73 45

YOLOv6 0.62 0.62 0.62 0.62 42

YOLOv7 0.68 0.68 0.68 0.68 43

YOLOv8 0.87 0.89 0.88 0.88 48

Faster

RCNN
0.84 0.82 0.83 0.83 10

SSD 0.76 0.75 0.75 0.75 35

EfficientDet 0.82 0.80 0.81 0.81 30

5. ДЕТЕКТОР ОРУЖЈА И НОВЦА НА

ДИГИТАЛНИМ СЛИКАМА

Детектор оружја и новца (енг. Weapons and Money

Detector) je модул развијен за форензички алат

Autopsy, верзије 4.21.0, који анализира дигиталне

слике из извора података и издваја слике на којима се

налазе пиштољи, ножеви, новчанице и кредитне

картице. Модул је имплементиран у Python скрипти и

за детекцију наведених објеката користи YOLOv8

модел, који је трениран и евалуиран на скупу

података који садржи фотографије са објектима од

интереса. Скуп података над којим је трениран модел

преузет је из рада [9] Перез-Ернандеза и сарадника.

На табели 4 је приказан скуп података који је

коришћен за тренирање и евалуацију модела.

1314

Табела 4. Скуп података
 Пиштољи Новчанице Ножев

и

Кредитне

картице

Тренирање 855 425 621 222

Тест 214 102 172 57

Модел је трениран у 25 епоха. Након тренирања је

урађена евалуација. Метрике које су коришћене за

евалуацију су прецизност, одзив и F1 мера. На табели

5 се могу видети резултати евалуације модела.

Табела 5. Резултати евалуације YOLOv8 модела

Објекти Прецизност Одзив F1 мера

Пиштољи 0.913 0.937 0.925

Новчанице 0.911 0.931 0.921

Ножеви 0.930 0.820 0.872

Кред. карт. 0.882 0.474 0.617

Модул Weapons and Money Detector у Autopsy алату

садржи фолдер utils, у коме се налазе два фолдера

model и dist. У фолдеру model се налази фајл best.pt,

који представља YOLOv8 модел, док се у фолдеру dist

налази weaponsMoneyDetector.exe датотека.

Корисник када започиње дигиталну форензичку

истрагу потребно је прво да направи нови случај и

дода извор података. Након тога покреће Weapons and

Money Detector модул, који издваја све слике са

подржаном екстензијом и копира их у привремени

фолдер. Модул затим позива

weaponsMoneyDetector.exe датотеку која на сликама

детектује објекте од интереса (пиштоље, ножеве,

новчанице и кредитне картице) и резултате записује у

текстуалну датотеку report.txt. Модул обрађује

резултате из текстуалне датотеке и слике са

детектованим објектима додаје на Blackboard у

секцији Interesting Files груписане у листу под

називом Weapons and Money in Images. Након

завршетка рада модула, модул обавештава корисника

да је процес обраде завршен и корисник може да

генерише финални HTML или Excel извештај.

6. ЗАКЉУЧАК

Проблем који је анализиран у овом раду односи се на

детекцију потенцијално опасних и значајних објеката,

као што су пиштољи, новчанице, ножеви и кредитне

картице, у дигиталним сликама. Као метод решавања

проблема коришћен је YOLOv8 модел за дубоко

учење и развијен је модул за форензички алат Autopsy

верзије 4.21.0, Детектор оружја и новца (енг. Weapons

and Money Detector), који омогућава примену овог

модела за аутоматско проналажење фотографија на

којима се налазе наведени објекти. Мотивација за

овакав приступ лежи у потреби за ефикаснијом

анализом дигиталних доказа у форензичким

истрагама, као и у ограничењима постојећих решења,

као што су Autopsy и Magnet Axiom, која показују

недовољне резултате у прецизности и одзиву њихових

модела. Иако YOLOv8 модел показује знатно боље

резултате од конкуренције, његова детекција

кредитних картица и даље остаје изазов. Правци

даљег развоја обухватају побољшање детекције

кредитних картица, кроз повећање скупа података за

тренирање са већим бројем слика на којима се налазе

кредитне картице. Такође, тренирање модела да

детектује још више категорија објеката, што ће

проширити примену решења у другим областима.

7. ЛИТЕРАТУРА

[1] A. Arnes, Digital Forensics: An Academic

Introduction, John Wiley & Sons Ltd, 2018.

[2]"Autopsy User Documentation 4.21.0," [Online].

Available: https://sleuthkit.org/autopsy/docs/user-

docs/4.21.0/index.html. [Accessed 7 December 2024].

[3] "Magnet Axiom," Magnet Forensics, [Online].

Available:

https://www.magnetforensics.com/products/magnet-

axiom/. [Accessed 9 December 2024].

[4] A. Vasilaras, N. Papadoudis and P. Rizomiliotis,

"Artificial intelligence in mobile forensics: A survey of

current status, a use case analysis and AI alignment

objectives," Forensic Science International: Digital

Investigation, vol. 49, no. 301737, 2024.

[5] https://github.com/sleuthkit/autopsy/tree/autopsy-

4.21.0/pythonExamples [Accessed 9 December 2024].

[6]"Autopsy Forensic Browser Developer's Guide and

API Reference," [Online]. Available:

http://sleuthkit.org/autopsy/docs/api-docs/4.21.0//.

[Accessed 10 December 2024].

[7] J. Murel and E. Kavlakoglu, "What is object

detection?" IBM, 3 January 2024. [Online]. Available:

https://www.ibm.com/think/topics/object-detection.

[Accessed 12 December 2024].

[8] N. Bilous, V. Malko, M. Frohme and A.

Nechyporenko, "Comparison of CNN-Based

Architectures for Detection of Different Object Classes,"

AI, vol. 5, pp. 2300-2320, 2024.

[9] F. Pérez-Hernández, S. Tabik, A. Lamas, R. Olmos,

H. Fujita and F. Herrera, "Object Detection Binary

Classifiers methodology based on deep learning to

identify small objects handled similarly: Application in

video surveillance," Knowledge-Based Systems, vol. 194,

no. 105590, 2020.

Кратка биографија:

Исидора Кнежевић рођена је у

Новом Саду 2000. год. Дипломирала

је на Факултету техничких наука у

Новом Саду 2023. године и исте

године уписала мастер студије на

Факултету техничких наука,

студијски програм Рачунарство и

аутоматика, смер Примењене

рачунарске науке и информатика – Електронско

пословање.

1315

https://sleuthkit.org/autopsy/docs/user-docs/4.21.0/index.html
https://sleuthkit.org/autopsy/docs/user-docs/4.21.0/index.html
https://www.magnetforensics.com/products/magnet-axiom/
https://www.magnetforensics.com/products/magnet-axiom/
https://github.com/sleuthkit/autopsy/tree/autopsy-4.21.0/pythonExamples
https://github.com/sleuthkit/autopsy/tree/autopsy-4.21.0/pythonExamples
http://sleuthkit.org/autopsy/docs/api-docs/4.21.0/
https://www.ibm.com/think/topics/object-detection

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.9

DOI: https://doi.org/10.24867/33BE12Vasic

RAZVOJ SAVREMENIH VEB APLIKACIJA U .NET EKOSISTEMU PRIMENOM

WEBASSEMBLY I BLAZOR TEHNOLOGIJA

DEVELOPMENT OF MODERN WEB APPLICATIONS IN THE .NET ECOSYSTEM

THROUGH THE USE OF WEBASSEMBLY AND BLAZOR TECHNOLOGIES

Nataša Vasić, Fakultet tehničkih nauka, Novi Sad

Oblast – ELEKTROTEHNIČKO I RAČUNARSKO

INŽENJERSTVO

Kratak sadržaj – U ovom radu prikazano je istraživanje

WebAssembly i Blazor tehnologija, sa ciljem da se

predstave njihovi osnovni koncepti, prednosti i praktične

primene. WebAssembly bajtkod može se izvršavati u

različitim okruženjima, ali u ovom radu fokus je na .NET

okviru zbog njegovih širokih mogućnosti i popularnosti

među programerima. Dat je pregled mogućnosti koje ove

tehnologije pružaju uz doprinos boljem razumevanju

njihove primene u savremenoj industriji.

Ključne reči: WebAssembly, Blazor, .NET, veb

tehnologije, veb aplikacija

Abstract – This paper presents a study of WebAssembly

and Blazor technologies, aiming to introduce their

fundamental concepts, advantages and practical

applications. WebAssembly bytecode can be executed in

various environments, however this paper focuses on its

use within the .NET ecosystem due to its extensive

capabilities and popularity among developers. The paper

provides an overview of the opportunities these

technologies offer and contributes to a better

understanding of their application in modern industry.

Keywords: WebAssembly, Blazor, .NET, web

technologies, web application

1. UVOD

Razvoj veb tehnologija omogućio je pojavu kompleksnih

aplikacija kao što su igrice, različiti audio i video softveri i

slične aplikacije, te zahtevi za efikasnošću i sigurnošću

rastu. JavaScript, HTML i CSS i dalje dominiraju u razvoju

veb aplikacija, ali zbog svojih ograničenja ne mogu u

potpunosti da ispune te zahteve. WebAssembly, otvoreni

standard koji omogućava izvršavanje binarnog koda

direktno u pregledaču, uspeo je da ispuni zahteve [1, 2]. U

okviru .NET Blazor tehnologije WebAssembly se koristi

kao ključna tehnologija za pokretanje aplikacija u veb

pregledačima. Blazor je UI framework koji omogućava

razvoj interaktivnih veb aplikacija koristeći C# i .NET

umesto korišćenja JavaScript jezika.

__

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je bila

dr Dunja Vrbaški, docent

Blazor omogućava programerima da koriste poznate alate

i biblioteke iz .NET okruženja. Ovaj pristup eliminiše

potrebu za dva programera, jednog za JavaScript, a drugog

za backend u klasičnom veb projektu, povećava

produktivnost i omogućava kreiranje aplikacija koje mogu

da se pokrenu na svim modernim pregledačima [3].

2. WEBASSEMBLY

WebAssembly (Wasm) je tip koda koji se može izvršavati

u modernim veb pregledačima. To je jezik niskog nivoa

sličan asembleru koji koristi kompaktan binarni format i

omogućava izvršavanje sa performansama bliskim

nativnim. Pruža mogućnost kompajliranja programskih

jezika kao što su C/C++, C#, Rust i drugi u oblik pogodan

za izvršavanje unutar veb pregledača. Dizajniran je da

funkcioniše uporedo sa JavaScript jezikom,

omogućavajući im da rade zajedno [4]. Razvijen je u

saradnji četiri glavne kompanije koje se bave razvojem

pregledača – Google, Microsoft, Mozilla i Apple [1].

Prema W3C organizaciji, WebAssembly je četvrti jezik za

veb koji omogućava izvršavanje koda u pregledaču [5].

JavaScript, HTML i CSS su ostala tri jezika [2].

WebAssembly je dizajniran da bude kompaktan, brz i

siguran, a da pritom omogućava validaciju, kompilaciju i

bezbedno izvršavanje uz minimalne troškove. Nezavisan je

od programskih jezika, hardvera i platforme. Od samog

početka dizajniran je sa formalnom semantikom [1].

2.1. Primene

Google, eBay i Norton implementirali su WebAssembly u

svoje projekte kako bi unapredili performanse. Primeri

primene uključuju čitače bar kodova [7], mašinsko učenje

sa TensorFlow.js bibliotekom [8], prepoznavanje

obrazaca, grafičke alate, kompresiju podataka,

kriptografske biblioteke, igrice, obradu slika, numeričke

proračune i druge specijalizovane zadatke [6].

Jednostavnost i univerzalnost podstakla je njegovu

primenu u različitim domenima, uključujući serversku

stranu u kombinaciji sa Node.js, serverless računarstvo u

oblaku, Internet stvari (IoT) i integrisane uređaje, pa čak i

kao samostalno okruženje za izvršavanje [9]. Unutar

pregledača koristi se i za uređivanje slika i video sadržaja,

podržava različite vrste igrica, razvoj aplikacija,

prepoznavanje slika, VPN i drugo. Izvan pregledača koristi

se za distribuciju računarskih igara, izvršavanje

nepoverljivog koda na serveru, server-side aplikacije i

slično [10].

1316

https://doi.org/10.24867/33BE12Vasic

2.2. Razlozi za razvoj novih veb tehnologija

JavaScript je dugo bio jedina opcija za kreiranje

interaktivnih aplikacija u pregledaču. Međutim, razvoj

aplikacija koje zahtevaju visoke performanse procesora,

kao što su igre, bio je ograničen zbog slabih performansi.

Da bi se rešili problemi napravljeni su brojni pokušaji da

se prednosti nativnog koda prenesu na veb. Adobe je

promovisao Flash platformu, Microsoft je predložio

ActiveX, Google uvodi Native Client tehnologiju [11].

2.3. Prethodna rešenja

ActiveX kojeg je uveo Microsoft, Flash platforma koju je

promovisao Adobe, Native Client kojeg je predložio

Google i asm.js, prvi su pokušali da reše izazove sigurnog,

brzog i prenosivog koda niskog nivoa. Međutim, to nisu u

potpunosti uspeli jer je svaki od njih zahtevao dodatne

plugin-ove i bio vezan za specifičan pregledač. Ove

tehnologije često su imale problema sa sigurnošću,

kompatibilnošću i performansama što je ograničavalo

njihovu upotrebu [1, 11].

2.4. Struktura i funkcionalnost binarnih fajlova

Binarni format koda definisan je tako da može da se

posmatra kao jezik sa sintaksom i strukturom. Ovaj format

olakšava razumevanje, a da pritom ne ugrožava kompaktnu

formu ili jednostavnost dekodiranja. Struktura u smislu

apstraktne sintakse može se videti na Slici 1 [1].

Slika 1. WebAssembly pravila sintakse [1]

Neki od osnovnih koncepata koje WebAssembly koristi su

moduli, funkcije, instrukcije, lokalne varijable, globalne

varijable i tako dalje [1].

Moduli su binarni fajlovi koji sadrže funkcije, globalne

promenljive, tabele i memoriju. Sastoje se od različitih

tipova sekcija kojih ima ukupno 11, od kojih su četiri

najvažnije: sekcija koda, sekcija podataka i sekcije importa

i eksporta. Dok moduli predstavljaju statičku strukturu,

instanca modula omogućava dinamičko izvršavanje sa

memorijom i stekom. Instanciranje modula obezbeđuje

okruženje kao što je JavaScript VM ili operativni sistem.

Sekcija koda predstavlja najveću sekciju obuhvatajući sve

funkcije modula. Slika 2 prikazuje primer funkcije iz ove

sekcije, koja uključuje osnovne operacije poput kontrolnih

naredbi, oduzimanja i množenja [1, 11].

Slika 1. Jednostavna C funkcija sa leve strane i

odgovarajući WebAssembly bajtkod zajedno sa

tekstualnom reprezentacijom poznatom kao Wat format sa

desne strane [11]

Kod u modulu organizovan je u funkcije koje primaju

vrednosti kao parametre i vraćaju vrednosti kao rezultate,

prema definisanom tipu funkcije. Funkcije mogu

međusobno pozivati jedna drugu, uključujući rekurziju, ali

ne mogu biti ugnježdene [1].

Izvršavanje operacija u WebAssembly tehnologiji bazira

se na stek mašini. Funkcije se sastoje od instrukcija koje

manipulišu vrednostima na steku. Sistem sa tipom

omogućava statičko određivanje rasporeda steka, što

omogućava direktnu kompilaciju tokova podataka bez

stvarnog materijalizovanja steka. Ova organizacija steka

omogućava kompaktno predstavljanje programa [1].

Neke instrukcije mogu izazvati izuzetke koji odmah

prekidaju izvršavanje. WebAssembly kod ne može obraditi

izuzetke direktno, ali ih JavaScript okruženje može

obraditi. WebAssembly izuzetak će generisati (eng. throw)

JavaScript izuzetak koji sadrži trag steka (eng. stacktrace)

sa JavaScript i WebAssembly stekom. Trag steka se može

uhvatiti i pregledati uz pomoć JavaScript koda [1].

U funkcijama, lokalne promenljive se inicijalizuju na nulu

i njima se upravlja pomoću instrukcija get_local i set_local.

Instrukcija tee_local omogućava upis u lokalnu

promenljivu dok ulazna vrednost ostaje na steku [1].

Moduli mogu deklarisati globalne promenljive koje se

čitaju i pišu pomoću instrukcija get_global i set_global.

Globalne promenljive mogu biti promenljive ili

nepromenljive i moraju imati početnu vrednost koja je

konstantan izraz [1].

WebAssembly koristi linearnu memoriju koja predstavlja

veliki niz bajtova. Svaki modul može definisati samo jednu

memoriju koja se može deliti između različitih instanci

putem uvoza/izvoza. Memorija se kreira sa određenom

veličinom, ali se može dinamički proširivati pomoću

instrukcije za povećanje memorije. Usled nedostatka

memorije, proširenje neće uspeti i biće vraćena vrednost -

1 kao signal neuspeha. Trenutna veličina memorije može

se proveriti korišćenjem instrukcije za ispitivanje

memorijskog stanja. WebAssembly memorija definisana je

da koristi little-endian redosled bajtova, što znači da

platforme sa big-endian redosledom zahtevaju eksplicitne

konverzije endian redosleda. Ove konverzije mogu biti

optimizovane od strane WebAssembly kompajlera [1].

1317

2.5. Arhitektura

WebAssembly je dizajniran tako da ne definiše način na

koji se programi učitavaju u izvršno okruženje, niti kako se

obavljaju I/O operacije. Ovakva arhitektura omogućava

fleksibilnu integraciju WebAssembly tehnologije u

različita izvršna okruženja. Sistem koji implementira

WebAssembly preuzima odgovornost za učitavanje

modula, povezivanje uvoznih i izvoznih funkcija,

obezbeđivanje pristupa I/O operacijama i tajmerima, kao i

rukovanje izuzecima [1].

2.6. Performanse

Kompaktni binarni format omogućava brzo učitavanje i

dekodiranje. Analiza je dovela do sledećih zaključaka:

• WebAssembly kompajleri uglavnom su zasnovani na

LLVM-u, gde optimizacije nisu specifično prilagođene za

WebAssembly.

• JIT optimizacije značajno utiču na performanse

JavaScript jezika, dok za WebAssembly nema značajne

razlike u performansama između verzija sa i bez JIT-a.

• Performanse JavaScript-a i WebAssembly-ja variraju u

zavisnosti od pregledača i platforme. Na desktop

računarima Firefox pruža bolje rezultate u izvršavanju

WebAssembly koda u odnosu na Chrome, dok Edge

postiže najlošije rezultate. Nasuprot tome, na mobilnim

uređajima, Firefox je sporiji od Chrome-a, dok Edge

nadmašuje oba pregledača. Performanse JavaScript jezika

takođe variraju u zavisnosti od platforme. Tako je na

desktop računarima Firefox sporiji u odnosu na Chrome,

dok je na mobilnim uređajima brži.

• WebAssembly zahteva više memorije u poređenju sa

JavaScript jezikom. Ovo se može pripisati činjenici da

WebAssembly koristi linearni model memorije koji ne

oslobađa memoriju automatski, dok JavaScript koristi

sakupljanje smeća za automatsko oslobađanje memorije

[6].

Rezultati pokazuju da iako se očekuje da WebAssembly

bude brži od JavaScript jezika, to nije uvek slučaj i

performanse mogu značajno varirati. Kada WebAssembly

želi da pristupi ili manipuliše DOM-om, mora da zatraži od

JavaScript-a da izvrši te operacije. Ova upotreba uvodi

dodatno opterećenje, što može smanjiti performanse

WebAssembly koda. WebAssembly se iz tog razloga

koristi za zadatke koji zahtevaju intenzivno računanje [12].

JavaScript često postiže bolje rezultate u odnosu na

WebAssembly, naročito ako je ulaz u program velik.

Prilikom instanciranja WebAssembly modula, veliki deo

linearne memorije se inicijalizuje kako bi se simulirale

memorijske lokacije. Kada se linearna memorija potpuno

popuni, umesto oslobađanja memorije koja više nije u

upotrebi, ona se proširuje na veću veličinu. Nasuprot tome,

JavaScript koristi automatsko upravljanje memorijom,

koje dinamički prati alokaciju memorije i oslobađa onu

koja više nije potrebna. Ova dinamika čini JavaScript

efikasnijim u korišćenju memorije u poređenju sa

WebAssembly tehnologijom [6].

Još jedno od ključnih poboljšanja koje WebAssembly nudi

odnosi se na energetsku efikasnost, koja je u proseku

poboljšana za 30%. Iako JavaScript u nekim situacijama

daje bolje rezultate, opšte je prihvaćeno da je

WebAssembly ne samo brži od njega nego i koristi manje

energije, što ga čini boljim izborom za razvoj aplikacija

[2].

3. BLAZOR

Blazor je .NET frontend veb framework koji omogućava

kreiranje interaktivnih korisničkih interfejsa korišćenjem

programskog jezika C#, uz mogućnost deljenja aplikativne

logike između serverske i klijentske strane. Renderovanje

korisničkog interfejsa ostvaruje primenom HTML i CSS

koda, čime se omogućava široka podrška za različite

pregledače, uključujući i one na mobilnim uređajima.

Blazor pruža značajne prednosti kao što su pisanje koda u

C#, korišćenje postojećeg .NET ekosistema i integraciju sa

savremenim alatima kao što su Docker, Visual Studio i

Visual Studio Code, što doprinosi produktivnosti i

sigurnosti u procesu razvoja veb aplikacija [13].

Blazor aplikacije zasnivaju se na komponentama, koje

predstavljaju osnovne jedinice korisničkog interfejsa,

poput stranica, dijaloga ili formi za unos podataka.

Komponente su klase implementirane u C# jeziku koje

omogućavaju fleksibilno definisanje logike za prikaz

korisničkog interfejsa, upravljanje događajima,

ugnježdavanje i ponovno korišćenje. Ove komponente

mogu se deliti i distribuirati putem Razor biblioteka ili

NuGet paketa. Komponente se pišu u formi Razor stranica

sa ekstenzijom .razor i koriste Razor sintaksu koja

kombinuje HTML i C# kod. Ovaj pristup doprinosi većoj

produktivnosti i omogućava efikasnije programiranje

unutar integrisanih razvojnih okruženja kao što je Visual

Studio. U formalnom kontekstu ove komponente se

nazivaju Razor komponente, dok se neformalno često

nazivaju Blazor komponente [13].

3.1. Tipovi

Blazor pruža različite tipove implementacije, među kojima

su server-side, client-side i hosted. Svaki od ovih tipova

dolazi sa specifičnim šablonima koji su dostupni unutar

Visual Studio okruženja. Nije moguće odrediti koji tip je

najbolji, budući da izbor zavisi od zahteva i potreba

projekta [3].

Server-side Blazor omogućava izvršavanje celokupne

aplikacione logike na serverskoj strani, koristeći

WebSocket tehnologiju za uspostavljanje komunikacije

između klijenta i servera. Prednost ovog pristupa leži u

mogućnosti pisanja frontend logike u programskom jeziku

C#, čime se pojednostavljuje razvoj aplikacije. Međutim,

ključni nedostatak ovog tipa je eliminacija potrebe za API

pozivima, jer se sve potrebne biblioteke direktno integrišu

u frontend, što može dovesti do smanjene efikasnosti ovog

rešenja [3].

Client-side Blazor funkcioniše isključivo na klijentskoj

strani unutar pregledača. Iako su stranice host-ovane na

serveru, sva logika se izvršava na klijentu. Ova opcija je

posebno pogodna za prezentacione veb sajtove ili

jednostavne veb aplikacije, ali može postati neefikasna u

situacijama kada je potrebna interakcija sa bazama

podataka ili kada aplikacija već koristi postojeće API

servise [3].

Hosted Blazor predstavlja najefikasnije rešenje, gde se

logika aplikacije izvršava na klijentskoj strani, čime se

optimizuje korišćenje resursa servera. Ovaj pristup

1318

integriše client-side Blazor sa posebnim API projektom,

omogućavajući im da funkcionišu zajedno kao jedna

celina. Ova kombinacija pruža optimalno rešenje za

aplikacije koje zahtevaju intenzivnu interakciju sa

serverom [3].

3.2. Blazor WebAssembly Hosted projekat – struktura

i sastavni delovi

Blazor WebAssembly šablon automatski kreira inicijalne

fajlove i strukuru direktorijuma prilikom generisanja

početnog projekta, uključujući demonstracioni kod koji

služi kao primer implementacije osnovnih funkcionalnosti.

Struktura projekta sastoji se od tri glavna segmenta:

klijentski deo (Client), serverskog dela (Server) i deljenih

resursa (Shared). Ova struktura omogućava jasno

razdvajanje poslovne logike aplikacije od korisničkog

interfejsa, pri čemu se zajednički kod održava u okviru

posebnog modula kako bi se olakšala njegova ponovna

upotreba i konzistentnost između klijentskog i serverskog

dela aplikacije.

3.3. Opšti pregled

Blazor pruža širok spektar funkcionalnosti, ali i dalje

postoje situacije u kojima je neophodno koristiti

JavaScript. Blazor omogućava jednostavnu i efikasnu

integraciju sa JavaScript kodom, olakšavajući pristupanje

skladištu podataka, rad sa fajlovima i korišćenje postojećih

JavaScript biblioteka. Interakcija sa JavaScript kodom u

Blazor aplikacijama ostvaruje se putem IJSRuntime

interfejsa koji se injektuje u odgovarajuću stranicu. HTML

elementi podržavaju širok spektar događaja, od kojih su

neki od njih generički, a drugi specifični za određene

elemente. Ovi događaji se mogu koristiti direktno u Blazor-

u bez potrebe za interakcijama sa JavaScript kodom [3].

4. ZAKLJUČAK

Rezultati ovog rada potvrdili su važnost integracije

WebAssembly i Blazor tehnologija u modernom razvoju

veb aplikacija. Implementacija WebAssembly tehnologije

omogućava visok nivo performansi i fleksibilnosti u

aplikacijama, omogućavajući izvršavanje koda na strani

klijenta mnogo brže nego tradicionalni pristup zasnovan na

JavaScript jeziku. Blazor koristeći C# jezik

pojednostavljuje razvoj, pružajući programerima

mogućnost da koriste poznat ekosistem i alate i smanjuje

potrebu za korišćenjem više programskih jezika.

Korišćenje ovih tehnologija dovelo je do ubrzanja razvoja

aplikacija, poboljšanja održavanja koda i smanjenja

upotrebe JavaScript koda.

5. LITERATURA

[1] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M.

Holman, D. Gohman, L. Wagner, A. Zakai, and J. F.

Bastien, „Bringing the Web up to Speed with

WebAssembly“, In Proceedings of the 38th ACM

SIGPLAN Conference on Programming Language

Design and Implementation, pp. 185-200, 2017.

[2] J. De Macedo, R. Abreu, R. Pereira, and J. Saraiva,

„WebAssembly versus JavaScript: Energy and

Runtime Performance“, In 2022 International

Conference on ICT for Sustainability (ICT4S), pp. 24-

34, 2022.

[3] T. Litvinavicius, Exploring Blazor: Creating Hosted,

Server-side, and Client-side Applications with C#, 1st

ed., 2019.

[4] Mozilla Developer Network, „WebAssembly“,

https://developer.mozilla.org/en-

US/docs/WebAssembly, (pristupljeno u septembru

2024.)

[5] World Wide Web Consortium, „World Wide Web

Consortium (W3C) brings a new language to the Web

as WebAssembly becomes a W3C Recommendation“,

https://www.w3.org/press-releases/2019/wasm/,

(pristupljeno u septembru 2024.)

[6] Y. Yan, T. Tu, L. Zhao, Y. Zhou, and W. Wang,

„Understanding the Performance of WebAssembly

Applications“, In Proceedings of the 21st ACM

Internet Measurement Conference, pp. 533-549, 2021.

[7] S. Padmanabhan, and P. Jha, „WebAssembly at eBay:

A Real-World Use Case“,

https://innovation.ebayinc.com/tech/engineering/weba

ssembly-at-ebay-a-real-world-use-case/, (pristupljeno

u oktobru 2024.)

[8] D. Smilkov, N. Thorat, and A. Yuan, „Introducing the

WebAssembly backend for TensorFlow.js“,

https://blog.tensorflow.org/2020/03/introducing-

webassembly-backend-for-tensorflow-js.html,

(pristupljeno u oktobru 2024.)

[9] D.Lehmann, J. Kinder, and M. Pradel, „Everything

Old is New Again: Binary Security of

WebAssembly“, In 29th USENIX Security

Symposium (USENIX Security 20), pp. 217-234,

2020.

[10] WebAssembly, „WebAssembly“,

https://webassembly.org/, (pristupljeno u septembru

2024.)

[11] M. Musch, C. Wressnegger, M. Johns, and K. Rieck,

„New Kid on the Web: A Study on the Prevalence of

WebAssembly in the Wild“, In Detection of

Intrusions and Malware, and Vulnerability

Assessment: 16th International Conference, DIMVA

2019, Gothenburg, Sweden, Springer International

Publishing, pp. 23-42, 2019.

[12] D. Kievits, „What effect does applying

WebAssembly have on a compute intensive client-

side application versus JavaScript?“, 2021.

[13] Microsoft, „ASP.NET Core Blazor“,

https://learn.microsoft.com/en-

us/aspnet/core/blazor/?view=aspnetcore-8.0,

(pristupljeno u avgutu 2024.)

Kratka biografija:

Nataša Vasić rođena je u

Novom Sadu 1999. god.

Master rad na Fakultetu

tehničkih nauka iz oblasti

Elektrotehnike i

računarstva odbranila je

2025.god.

kontakt:

natasavas00@gmail.com

1319

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.92

DOI: https://doi.org/10.24867/33BE13Ruzicic

RAZVOJ INTERPETERA U PROGRAMSKOM JEZIKU GO

DEVELOPMENT OF AN INTERPRETER IN THE GO PROGRAMMING LANGUAGE

Ratko Ružičić, Fakultet tehničkih nauka, Novi Sad

Oblast – RAČUNARSTVO I AUTOMATIKA

Kratak sadržaj – Ovaj rad bavi se izradom interpretera

hipotetičkog programskog jezika, on predstavlja nastavak

prethodnog rada autora na temu kompajlera izrađenog u

programskom jeziku C, koji je koristio alate “flex” i

“bison” za faze leksičke analize i parsiranja. Za razliku od

tog rada, interpretator predstavljen u ovoj tezi razvijen je

isključivo korišćenjem standardne biblioteke programskog

jezika Go, bez oslanjanja na dodatne alate ili postojeći

kod.

Ključne reči: Programski jezici, Interpreteri, Dinamički

tipovi

Abstract – This paper explores the implementation of a

hypothetical programming language, it is an extension of

a previous paper by the same author of a compiler

implemented in C programming language using tools

“flex” and “bison” for lexical analysis and parsing. In

contrast to that paper, an interpreter presented here was

developed exclusively using a standard library of Go

programming language without relying on any other tools

or existing code.

Keywords: Programming languages, Interpreters,

Dynamic types

1. UVOD

1.1. Definicija problema

Za početak neophodno je definisati programski jezik koji

bi imao sledeće funkcionalne osobine:

● dinamički sistem tipova

● podrška za kondicionale(if...else)

● podrška za funkcije

● osnovni aritmetički i logički operatori

● nizovi

● petlje

● osnovni tipovi podataka: integer, double, boolean,

string

● interaktivni(REPL) mod i učitavanje programa iz

fajla

Pored funkcionalnih zahteva interpreter bi trebao da

zadovolji i određene nefunkcionalne zahteve. Najbitniji

među njima jeste lako distribuiranje interpretera i

omogućavanje krajnjim korisnicima da preuzmu

__

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je bio

dr Dunja Vrbaški, docent

interpreter i da ga pokrenu bez potrebe za mukotrpnim

podešavanjem radnog okruženja i instaliranja dodatnih

programa. Kao dodatni zahtev može se izdvojiti i

pokretanje interpretera uz pomoć samo jedne komande.

1.1. Opseg i ograničenja

Polje kompajlera i interpretera je jako složeno i vrlo dobro

proučavano, takođe postoji vrlo dobra povezanost sa

industrijom pa je mnogo novca i vremena uloženo u

proučavanje ove oblasti od strane vrlo uspešnih kompanija.

Uzevši to u obzir može se zaključiti da su današnji

interpeteri često rezultat višedecenijskog napora što od

strane samih kompanija, što od strane nezavisnih

kontributora što samo potvrđuje činjenicu da je

dizajniranje novog programskog jezika i implementiranje

interpretera za njega ogroman poduhvat i da je put od rane

implementacije do prihvatanja od strane industrije i

entuzijasta vrlo dug i jako nepredvidiv [1].

2. TEORIJA

2.1. Leksička analiza

Leksička analiza je prvi korak prilikom interpretacije (ili

kompilacije) programskog jezika. Ulaz u leksičku analizu

predstavlja ”sirovi” tekst sačinjen od niza karaktera a izlaz

predstavlja niz tokena. Tako na primer ako postoji ulaz

sadržine “var a = 3;”. Kao izlaz se može očekivati niz

tokena: “VAR, IDENTIFIER, ASSIGN, NUMBER,

SEMICOLON”. Pored toga očekuje se da leksička analiza

javi grešku u slučaju da za dati ulaz nije moguće generisati

listu tokena ili da pak dostavi token koji bi označio da za

dati unos postoji greška. Na primer, za ulaz “var @ = 3;”,

očekivani izlaz bi bio: “VAR, ERROR”. Dakle lekser

(nekada u literaturi nazvan i skener) je javio da je prvi

token VAR a da njega sledi ERROR token pošto @

karakter nije podržan u gramatici jezika. U ovom primeru

može se uočiti da je lekser efektivno prestao sa radom u

momentu kada je naišao na karakter koji je uzrokovao

grešku, u praksi ovo često nije slučaj. Skoro sve

implementacije modernih jezika omogućavaju dalji rad

leksera kako bi pronašao što više grešaka i o tome

obavestio krajnjeg korisnika koji bi onda dobio listing

grešaka koje treba da reši.

Današnji lekseri takođe uz sam token generišu i značajnu

količinu metapodataka o samom tokenu, osnovni

metapodaci mogu biti broj linije i broj karaktera unutar

fajla nad kojim je vršeno leksiranje, dok neki napredniji

metapodaci mogu biti dužina same lekseme, sadržaj

lekseme i ime fajla u kom je leksema pronađena.

1320

https://doi.org/10.24867/33BE13Ruzicic

2.2. AST

Kako bi opisali značenje i značaj AST-a moguće je

osvrnuti se na sam akronim(u obrnutom redosledu): stabla

(eng. Tree) označavaju da se radi o običnoj strukturi

podataka stabla koje su jako česte u kompjuterskoj nauci,

sintaksna (eng. Syntax) označava da se radi o sintaksi

samog jezika tj. da se sintaksa samog jezika može opisati

jednim takvim stablom i apstraktna(eng. Abstract) u ovom

slučaju znači da ova stabla predstavljaju strukturu a ne da

mapiraju svaki karakter na svaki čvor u datom stablu.

2.3. Parsiranje

Sledeća faza u interpretaciji programa jeste parsiranje,

zadatak parsera programskog jezika jeste da definiše

sintaksu jezika tj. da preuzme tokene dobijene iz

prethodnog koraka (leksičke analize) i da utvrdi da li je

redosled tih tokena ispravan i da dodatno vrati neku

strukturu podataka koja bi bila reprezent samog programa.

Parseri se uglavnom mogu ručno implementirati i većina

implementacija programskih jezika ima ručno napisane

parsere ali takođe postoje alati za generisanje koda parsera

poput “ANTLR”, “bison” ili “yacc” alata koji za definisanu

formalnu gramatiku generišu skelet koda parsera a korisnik

može definisati svoju logiku provere semantike jezika, pa

čak i generisanje koda.

Parseri se ugrubo mogu podeliti u 2 različite kategorije,

“top-down” i “bottom-up”. Glavna razlika između ova dva

tipa jeste da “top-down” parseri kreću od korena

abstraktnog stabla i pokušavaju da dođu do listova samog

stabla pri tom proveravajući da li su zadovoljena pravila

gramatike jezika, dok “bottom-up” parseri kreću od samih

tokena (tj. listova stabla) i pokušavaju da "izgrade" stablo.

Generalno govoreći “top-down” parseri su lakši za

implementaciju ako su ručno implementirani, dok su alati

za generisanje parsera najčešće napravljeni da generišu

neki derivat “bottom-up” parsera.

Klasičan primer “top-down” parsera je Pratov parser

(takođe poznat kao "recursive descent parser") koji je

osmislio Von Prat 1970-ih godina. Pratov parser se u

suštini bavi parsiranjem izraza i rešavanjem problema

redosleda aritmetičkih operacija nad izrazima, on nudi

elegantan način da se predstave odnosi između različitih

operacija. Sve što je potrebno jeste da se definišu operatori

i njihov prioritet i Pratov parser će znati kako tačno da

grupiše operatore. Ako se na primer uzme sledeći izraz za

razmatranje “1 + 2 * 3 - 10 / 5”, onda izlaz Pratovog parsera

može biti sama vrednost izraza, u ovom slučaju “5”, ili isti

izraz ali u formatu grupisanom uz pomoć zagrada tj. “(1 +

((2 * 3) - (10 / 5)))” ili na kraju krajeva kao apstraktno

sintaksno stablo koje će prikazati koje podizraze treba

evaluirati prvo.

2.4. Evaluacija

Evaluacija se odnosi na korak u interpretaciji u kom se u

apstraktnom sintaksnom stablu posećuju svi čvorovi i na

osnovu tipa čvora (i njegovih atributa) vrši evaluacija

izraza. Radi o jednostavnoj implementaciji "šetanja" kroz

stablo i implementiranje logike evaluacije.

Sve do koraka evaluacije razlike između interpretera i

kompajlera nije bilo ali u procesu evaluacije je došlo do

bitnog razdvajanja. U ovom koraku su zaista bile

evaluirane vrednosti izraza ali ako bi cilj bio da se

implementira kompajler onda to ne bi bilo moguće učiniti.

Kod implementacije kompajlera isti bi generisao nekakav

kod, bilo da je u pitanju mašinski kod, asemblerski kod ili

nekakav bajtkod za neku hipotetičku (ili pravu) virtuelnu

mašinu. Razlika deluje suptilno, i u primeru jednog "hobi"

programskog jezika ona suštinski to i jeste ali ako se

sagleda šira slika primetno je da interpreter zapravo

izvršava sve što mu je dato što znači da ako bi interpreter

želeo da pristupi fajlovima ili da otvori nekakvu datoteku

on bi morao da to uradi preko jezika u kome je

implementiran, dok bi kompajler za taj korak samo

generisao mašinski kod koji bi uputio par sistemskih

poziva i otvorio fajl a taj mašinski kod bi kasnije bio i

izvršen. Svaki moderan programski jezik današnjice

podržava pristup fajlovima sa fajl sistema tako da to nije

realan problem ali i dalje treba biti svestan činjenice da

izbor jezika u kome se implementira interpreter može

mnogo da doprinese performansama i funkcionalnostima

rezultujućeg interpretera.

3. DIZAJN

Prilikom faze dizajniranja jezika pristupilo se istraživanju

koje su popularne osobine jezika današnjice, u tome je

najviše pomogao “StackOverflow Developer Survey” tj.

anketa koju na kraju svake godine popunjavaju programeri.

Između svih programskih jezika najviše su se izdvajali

“Python” i “JavaScript” kako među profesionalcima tako i

među početnicima pa je prilikom dizajniranja sintakse i

odabira osobina jezika bilo logično pokušati imitirati

određene osobine tih jezika [2].

3.1. Interpretacija

Prva i glavna osobina ovog programskog jezika jeste to da

je isti interpretiran a ne kompajliran. Postoji više razloga

zašto je interpretirani jezik ponekad dobar izbor: veća

fleksibilnost, prenosivost, manja kriva učenja za početnike

itd. No, za krajnjeg korisnika najbitniji razlog jeste

prenosivost samog jezika, prilikom konstruisanja

kompajlera bitna je odluka koju će arhitekturu pogađati

kompajler: ARM, x86 ili PowerPC itd., mada je u današnje

vreme donošenje takve odluke olakšano postojanjem

radnih okvira za kompajlere poput LLVM. Bilo kako bilo,

definitivno je lakše napisati interpreter u nekom dobro

podržanom jeziku koji se može izvršavati na skoro svakoj

arhitekturi (a takvih jezika danas ne manjka pogotovu zbog

prethodno pomenutog LLVM) i time obezbediti da se i

ovaj interpreter može pokrenuti na istim tim arhitekturama.

3.2. Dinamički tipovi

Inicijalna zamisao bila je da interpreter podržava statičke

tipove, i prva implementacija interpretera zaista jeste imala

statičke tipove, ali tokom korišćenja interpretera došlo se

do zaključka da je ipak bolje slediti primere čisto

interpretiranih jezika koji podržavaju dinamičke tipove.

Većina interpretera zaista jeste dinamički tipizirana i iako

možda jeste moguće naći primere statički tipiziranog jezika

koji je interpreteran, npr. “TypeScript” (doduše pitanje je

koliko je ovo dobar primer pošto se “TypeScript” zapravo

transpajlira u “JavaScript” koji je interpretiran i dinamički

tipiziran), glavni razlog jeste lakoća upotrebe jezika i to je

definitivno tačno kada se radi o malim programima i

1321

kratkim skriptama, a budući da će većina programa

pisanim u jeziku koji je implementirao interpreter biti mali

programi ili kratke skripte onda je logično da se sa

korisnika skine "teret" tipiziranja promenljivih.

3.3. Automatsko upravljanje memorijom

Tokom uobičajenog rada programa isti zauzima i oslobađa

određenu količinu radne memorije. U računarstvu,

memorija je ograničen a često i veoma vredan resurs o

kome se mora pažljivo voditi računa, pa je jako bitno

minimizovati količinu upotrebljene memorije. Postoje dva

pristupa u rukovođenju radnom memorijom. Prvi pristup

jeste da se rukovođenje memorijom prepusti programeru

koji implementira program. On će određivati trenutke kada

i koliko memorije će biti zauzeto pozivanjem funkcija iz

programskog jezika koje će tokom izvršavanja vršiti

sistemske pozive ka operativnom sistemu na kom se

program izvršava. U onom trenutku kada određeni komad

memorije bude nepotreban, ta memorija se potom može

osloboditi. Postoje dva ključna aspekta na koje programer

u ovom slučaju uvek mora da misli: prvi, da ne zauzme više

memorije nego što mu je neophodno i drugi, da ne zaboravi

da oslobodi memoriju koju je zauzeo. Drugi pristup u

rukovođenju memorije jeste da se programeru oduzme

sloboda zauzimanja i oslobađanja memorije i da se

rukovođenje prepusti kompajleru ili interpreteru. Ovaj deo

posla vrši zasebna komponenta interpretera koja se zove

modul za automatsko upravljanje memorijom, a češće se

koristi pojam na engleskom tj. "garbage collector".

Kada bi se jezik interpretera implementirao u jeziku koji ne

podržava automatsko upravljanje memorijom (npr. C)

onda bi bilo nepohodno da se isti i implementira (zapravo

postoji i druga opcija a to je da prepustimo

zauzimanje/oslobađanje memorije krajnjem korisniku što

nije uobičajeno ili treća opcija da nikad ne oslobađamo

memoriju što je suludo). Budući da je odabran jezik koji

ima ugrađeno automatsko upravljanje memorijom ovaj deo

posla je već odrađen pošto svako zauzimanje memorije za

promenljive u jeziku koji implementira automatski znači

da će se ista operacija prevesti u zauzimanje memorije od

strane jezika koji implementira interpreter.

4. ZAKLJUČAK

Interpreteri možda nisu najefikasnije rešenje za izvršavanje

koda ali oni nude određene karakteristike koje ih čine vrlo

privlačnim u današnjim razvojnim okruženjima poput

brzine razvoja aplikacija i lakšeg otkrivanja grešaka

prilikom razvoja ali to dolazi po cenu nižih performansi u

odnosu na kompajlere.

Današnji intereteri postigli su mnogo u pogledu

performansi, pa je ta razlika je dosta manja u odnosu na

period pre par decenija što ih čini odličnim kandidatima za

započinjanje novih projekata [3].

Svrha ovog rada bila je da se proširi znanje stečeno tokom

master i osnovnih studija kao i upoznavanje sa novim

konceptima prilikom dizajniranja i implementacije jezika,

radi se o kompleksnoj temi koja je predmet istraživanja i

industrije i akademije i spada u red onih tehnologija koji

predstavljaju temelj modernih informacionih tehnologija.

5. LITERATURA

[1] L. A. Meyerovich and A. S. Rabkin, ”Empirical

analysis of programming language adoption”,

Association for Computing Machinery, vol. 48, pp. 1-

18, Oktobar 2013.

[2] StackOverflow, https://survey.stackoverflow.co/2024/,

(pristupljeno u junu 2025.)

[3] T. H. Romer, D. Lee, G. M. Voelker, A. Wolman, W.

A. Wong, J. Baer, B. N. Bershad, H. M. Levy, ”The

structure and performance of interpreters”,

Association for Computing Machinery, vol. 31, pp.

150-159, Septembar 1996.

Kratka biografija:

Ratko Ružičić rođen je 2000. godine u Čačku.

Završio Tehničku školu u istom gradu 2019. godine.

Diplomirao je na Fakultetu Tehničkih Nauka

Univerziteta u Novom Sadu 2023. godine.

kontakt: rruzicic@gmail.com

1322

Зборник радова Факултета техничких наука, Нови Сад

UDK: 4.3

DOI: https://doi.org/10.24867/33BE14Maksic

РЈЕШАВАЊЕ ПРОБЛЕМА АУТОМАТИЗАЦИЈЕ ПРЕГЛЕДАЊА VHDL ЗАДАТАКА

КРОЗ ИНТЕГРАЦИЈУ SYSTEM VERILOG И PYTHON АЛАТА

SOLVING THE PROBLEM OF AUTOMATING VHDL ASSIGNMENT REVIEW

THROUGH THE INTEGRATION OF SYSTEM VERILOG AND PYTHON TOOLS

Миленко Максић, Факултет техничких наука, Нови Сад

Област – ЕЛЕКТРОТЕХНИКА И РАЧУНАРСТВО

Кратак садржај – Рад се бави развојем система за

аутоматизовано прегледање студентских задатака

написаних у VHDL-у, кроз интеграцију SystemVerilog

алата за верификацију и Python скрипти за анализу

резултата. Циљ система је убрзавање и уједначавање

процеса оцјењивања, посебно у условима великог броја

студената. SystemVerilog се користи за дефинисање

тврдњи и тест сценарија, док Python омогућава

аутоматско покретање симулација, парсирање лог

фајлова и генерисање извјештаја са бодовима. Систем

је примјењен на архиву од 223 студентска рада, а

добијени резултати су упоређени са ручним

прегледањем. Анализа показује да аутоматизовано

оцјењивање може значајно смањити вријеме

прегледања и повећати објективност, али и да

постоје изазови у праведном бодовању дјелимично

тачних рјешења, што је посебно важно у образовном

контексту.

Кључне ријечи: аутоматизација прегледања, VHDL,

SystemVerilog, Python, тврдње, симулација,

студентски задаци, дигитални дизајн, верификација

хардвера, образовање

Abstract – This paper presents a system for automated

evaluation of student assignments written in VHDL,

integrating SystemVerilog verification tools with Python

scripts for result analysis. The goal is to accelerate and

standardize the grading process, especially in large

academic groups. SystemVerilog is used to define assertion

and test scenarios, while Python automates simulation

execution, log parsing, and score report generation. The

system was applied to a dataset of 223 student submissions,

and the results were compared with manual grading. The

analysis shows that automated evaluation can significantly

reduce grading time and improve objectivity, but also

highlights challenges in fairly assessing partially correct

solutions – an important consideration in educational

environments.

Keywords: automated evaluation, VHDL, SystemVerilog,

Python, assertions, simulation, student assignments,

digital design, hardware verification, education

__

НАПОМЕНА:

Овај рад је проистекао из мастер рада чији ментор

је био др Небојша Пјевалица, редовни професор.

1. УВОД

Брзи развој интегрисаних кола и дигиталних система

значајно је утицао на хардверско инжењерство.

Савремени дизајн дигиталних система ослања се на

језике за опис хардвера (HDL), као што су VHDL и

Verilog, који омогућавају прецизно пројектовање,

симулацију и верификацију сложених компоненти.

Сложеност система захтијева темељну верификацију,

која често траје дуже од самог дизајна. Због тога се

користе напредни алати попут SystemVerilog-а, који

комбинује објектно оријентисано програмирање и

алате за тестирање. Ови алати побољшавају квалитет

производа, убрзавају развој и смањују ризик од

грешака, што је кључно за индустријску примјену и

тржишну конкурентност.

2. ТЕОРИЈСКЕ ОСНОВЕ

Језици за хардверски опис (HDL), као што су VHDL и

SystemVerilog, представљају темељ савременог дизајна

дигиталних система. Они омогућавају описивање

структуре, понашања и временских аспеката хардвера,

уз подршку за симулацију и синтезу. VHDL се истиче

својом структуром заснованом на ентитетима и

архитектурама, што омогућава јасно раздвајање

интерфејса и функционалности. Његова примјена

обухвата симулацију, прототиповање и

документацију, чиме се убрзава развој и смањује ризик

од грешака. SystemVerilog, као надоградња Verilog-а,

уводи напредне могућности за верификацију,

укључујући тврдње (assertions), објектно оријентисано

програмирање и подршку за сложене тестне сценарије.

Његова интеграција дизајна и тестирања омогућава

рано откривање грешака и већу поузданост система.

Верификација је кључна фаза у развоју дигиталних

система. Поред симулације, све више се користе

аутоматизоване методологије и алати као што је

SVUnit, који омогућава модуларно тестирање у

SystemVerilog-у. SVUnit подржава аутоматизацију,

генерисање извјештаја и интеграцију са симулационим

окружењима, чиме доприноси ефикаснијем и

поузданијем развоју.

3. МОТИВАЦИЈА ПРОБЛЕМА СА КОНЦЕПТОМ

РЈЕШЕЊА

Обука студената у домену техничких дисциплина

подразумјева објективну провјеру знања кроз задатке у

којима се сагледава оспособљеност у самосталном

раду на доменским проблемима у ограниченом

1323

https://doi.org/10.24867/33BE14Maksic

времену. Курс „Логичко пројектовање рачунарских

система 1“, уводи студенте у основе пројектовања

дигиталних система коришћењем VHDL језика,

слушају га студенти друге године основних

академских студија на три студијска програма. Битна

карактеристика курса је релативно велики број

студената, што последично доноси веома масовне

провјере знања. Ручно оцјењивање великог броја

студентских радова представља значајан изазов због

сложености задатака и ризика од људских грешака.

Као рјешење, предложен је систем за аутоматизовано

прегледање, који комбинује Python скрипте за обраду

података и SystemVerilog алате за симулацију и

верификацију.

Асистенти креирају прилагођене тестне сценарије и

тврдње (SVA) како би се осигурала тачна и објективна

процјена. Овај приступ омогућава брже, поузданије и

конзистентније оцјењивање, уз бољу повратну

информацију за студенте, што позитивно утиче на

њихово учење и развој.

4. ПРОГРАМСКО РЈЕШЕЊЕ

Основу програмског рјешења чини раније

имплементирана инфраструктура за чување

студентских задатака, покретање симулација и

техничку валидацију, уз коришћење алата Siemens

Questa и Quartus. У овом раду додати су модули за

обраду добијених извјештаја, систематско бодовање и

аутоматизовано формирање резултата, што унапређује

објективност и ефикасност оцјењивања.

4.1. Студентска архива

Архива садржи студентске директоријуме са

рјешењима постављеног задатка и пратећим лог

фајловима. Ови логови настају као резултат

аутоматске валидације и детекције грешака као што су

комбинационе петље, лечеви и непотпуне листе

осјетљивости.

4.2. Аутоматска провјера и валидација студентских

рјешења

Скрипта sva.py покреће симулацију у Siemens Questa

алату, тестирајући DUT и тестбенч. Резултати се

биљеже у лог фајлове run_dut.log и run_tb.log, што

омогућава детаљну и објективну процјену сваке

компоненте.

4.3. Идентификација комбинационих петљи и

лечева

Скрипта qaas.py анализира дизајн у Quartus окружењу,

генеришући извјештаје о грешкама као што су лечеви,

петље и непотпуне листе. Ови подаци се чувају у

top_map_rpt.log, што омогућава бодовање по унапријед

дефинисаним критеријумима.

4.4. Креирање извјештаја са коначним резултатима

Процес бодовања се одвија у два корака: парсирање

лог фајлова и формирање табеларног приказа бодова

по студенту.

4.4.1. Парсирање лог фајлова

Скрипта провјерава постојање логова и анализира

тврдње (assertions), број исправних DFF-ова и

присуство грешака. Резултати се чувају у JSON

фајловима:

• assertions_summary.json

• synth_vho_rst_summary.json

• synth_3problem_summary.json

4.4.2. Сумарно формирање бодова

Бодови се сабирају на основу тачних тврдњи и

исправних DFF-ова, а затим се умањују за број

детектованих грешака. Коначни резултат представља

укупан број бодова по студенту.

5. РЕЗУЛТАТИ

Програмско рјешење примјењено је на базу од 223

студентска рада, при чему су резултати аутоматске

анализе упоређени са оцјенама добијеним путем

ручног прегледа. Циљ поређења био је утврђивање

тачности, досљедности и мјере разлике између ова два

приступа. Машинско бодовање изведено је према два

критеријума, базирана на присуству и исправности

тврдњи у рјешењима студената.

5.1. Резултати добијени критеријумом 1

Критеријум 1 додјељује бод ако се појединачна тврдња

у рјешењу бар једном појављује тачно, без обзира на

евентуалне нетачне појаве у остатку кода. На примјер,

ако студент у свом дизајну има тврдњу попут

ASSERT_sCNT1, која провјерава инкрементацију

бројача sCNT на позитивну ивицу сигнала iCLK, бод

се додјељује ако је та тврдња најмање једном била

тачно симулирана.

• Машинско бодовање је стабилније и

досљедније; ручно оцјењивање показује

варијације због субјективних оцјена.

• Просјечно оштећење: 2.11 бодова по студенту

• Највеће оштећење: −10.05 бодова

• Највећа добит: +4.00 бода

Потпуно поклапање резултата код 13

студената

Слика 1 Анализа бодовања – критеријум 1

5.2. Резултати добијени критеријумом 2

Критеријум 2 додјељује бод само ако се тврдња ни

једном не појављује нетачно – чак и ако је једном била

тачна, бод се укида ако је током других симулација

тврдња погрешно активирана. На примјер, за

ASSERT_sSIFRA2, која провјерава правилно додавање

цифре у шифру приликом уноса, студент губи бод ако

се у било ком тренутку током симулације та тврдња

испостави као нетачна.

1324

• Строжија оцјена доводи до већег губитка

бодова, али с већом прецизношћу у техничкој

процјени исправности.

• Просјечно оштећење: 3.70 бодова по студенту

• Највеће оштећење: −13.75 бодова

• Највећа добит: +2.95 бодова

Потпуно поклапање резултата код 2 студента

Слика Анализа бодовања – критеријум 2

6. ЗАКЉУЧАК

У хардверској индустрији, верификација система се

ослања на методе као што су coverage, functional

coverage и тврдње (assertions), које омогућавају

бинарну процјену исправности – систем је или

исправан или није. Овај приступ је ефикасан у

техничком контексту, али када се примјењује у

образовању, јављају се специфични изазови.

Студентска рјешења често нису потпуно исправна, али

ни потпуно погрешна, што захтијева флексибилнији и

нијансиранији приступ бодовању.

Coverage у индустрији значи да је систем бар једном

радио исправно. Functional coverage провјерава да ли

су све функционалности тестиране, док тврдње служе

за формалну потврду да је систем реаговао у складу са

очекивањима у одређеним условима. У академском

контексту, овакви критеријуми могу бити недовољни

јер не одражавају степен разумјевања студента, нити

сложеност његовог рјешења.

Кључна дилема у образовању је: да ли студент

заслужује пуне бодове ако је тврдња једном тачна, али

у другим случајевима није? У индустрији, то би се

сматрало успјехом, али у настави је потребно увести

парцијално бодовање које узима у обзир и дјелимичну

исправност. На примјер, ако рјешење функционише у

већини тест случајева, али садржи мању грешку у

једном сценарију, треба размотрити да ли заслужује

дио бодова.

Да би се овај проблем ријешио, потребно је развити

систем класификације својстава студентских рјешења

и дефинисати критеријуме успјеха. То укључује:

• идентификацију критичних својстава која

морају бити задовољена,

• одређивање степена исправности (нпр. 90%

тачности),

• и формулисање флексибилног модела

оцјењивања који уважава различите нивое

тачности.

У даљем истраживању, потребно је развити објективан

модел бодовања који ће балансирати између

индустријских стандарда и академских потреба. Такав

модел треба да буде праведан, транспарентан и

педагошки оправдан, омогућавајући студентима да

добију јасну повратну информацију и подстицај за

даље усавршавање.

7. ЛИТЕРАТУРА

[1] „C. Spear, SystemVerilog for Verification: A Guide to

Learning the Testbench Language Features,“ 3rd ed.

Springer, 2012.

[2] „Н. Пјевалица: Верификација дигиталних

интегрисаних кола, System Verilog са основама

UVM-a“, Факултет Техничких наука у Новом

Саду, 2022, ISBN 9788660224073

[3] „B. Cohen, SystemVerilog Assertions Handbook,“ 3rd

ed. VhdlCohen Publishing, 2010.

[4] „D. L. Perry, VHDL: Programming by Example,“ 4th

ed. McGraw-Hill, 2002.

[5] „IEEE Standard for SystemVerilog—Unified

Hardware Design, Specification, and Verification

Language, IEEE Std 1800™-2017,“ IEEE Computer

Society, 2017.

[6] „Intel Corporation, Intel Quartus Prime Pro Edition

User Guide: Design Compilation, 2023.“ [На мрежи].

Available: https://www.intel.com

[7] „Siemens Digital Industries Software, QuestaSim

User’s Manual, 2023.“ [На мрежи]. Available:

https://eda.sw.siemens.com

[8] „AgileSoC Inc., SVUnit User Guide, 2023.“ [На

мрежи]. Available: https://github.com/svunit/svunit

[9] „Python Software Foundation, Python 3

Documentation, 2023.“ [На мрежи]. Available:

https://docs.python.org/3/

Кратка биографија

Миленко Максић је рођен 13.

септембра 1997. године у Бијељини. У

школској 2016/17 уписује студијски

програм Рачунарство и аутоматика на

Факултету техничких наука у Новом

Саду. Након завршених основних

студија, 2022. године, уписује мастер

студије на истом студијском програму,

смјер Софтвер за потрошачку

електронику.

1325

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 7.52

DOI: https://doi.org/10.24867/33BE15Pavkovic

PRIMENA VEŠTAČKIH NEURONSKIH MREŽA U ESTIMACIJI UNUTRAŠNJE

TELESNE TEMPERATURE

APPLICATION OF ARTIFICIAL NEURAL NETWORKS IN ESTIMATING CORE BODY

TEMPERATURE

Vukašin Pavković, Fakultet tehničkih nauka, Novi Sad

Oblast – ELEKTROTEHNIKA I RAČUNARSTVO

Kratak sadržaj – Rad se bavi procenom unutrašnje

telesne temperature čoveka na osnovu neinvazivnih

fizioloških signala. Primenom različitih arhitektura

veštačkih neuronskih mreža razvijeni su modeli za

estimaciju unutrašnje temperature. Nakon obrade i

normalizacije podataka, modeli su obučeni i testirani, a

njihova tačnost procenjena primenom standardnih metrika

Ključne reči: Veštačke neuronske mreže, unutrašnja

telesna temperatura, obrada podataka

Abstract – This thesis addresses the estimation of core

body temperature using non-invasive physiological

signals. Machine-learning models based on different

artificial neural-network architectures were developed to

estimate temperature. After data preprocessing and

normalization, the models were trained and tested, and

their accuracy assessed with standard regression metrics.

Keywords: Artificial neural networks, core body

temperature, data processing

1. UVOD

Precizno praćenje unutrašnje telesne temperature je od

suštinskog značaja u mnogim situacijama od intenzivne

nege pacijenata do praćenja stanja sportista i radnika u

ekstremnim uslovima [1]. Unutrašnja telesna temperatura

pouzdan je indikator zdravstvenog stanja; čak i relativno

mala odstupanja mogu ukazivati na ozbiljne probleme

(npr. hipertermiju ili hipotermiju). Ipak, direktno merenje

temperature jezgra tela obično zahteva invazivne metode

(npr. rektalne ili ezofagealne sonde) koje nisu pogodne za

kontinuirani nadzor ili terensku primenu [2]. Razvoj

neinvazivnih metoda za procenu unutrašnje temperature

postao je važan istraživački izazov. Jedan od pristupa je

korišćenje veštačkih neuronskih mreža (VNM) koji na

osnovu lako merljivih fizioloških signala mogu predvideti

unutrašnju temperaturu. Motivi za primenu VNM leže u

njihovoj sposobnosti da modeluju složene nelinearne

odnose između ulaznih parametara (npr. temperatura kože,

puls, spoljašnja temperatura okoline) i telesne temperature.

Na taj način, moguće je dizajnirati sistem za kontinuirano

praćenje koji je istovremeno neinvazivan i dovoljno

precizan.

 __

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je bio

dr Nikola Jorgovanović, red. prof.

U ovom radu istražene su dve strukture neuronskih mreža:

klasična feedforward mreža i njena proširena verzija

rekurentna feedforward mreža sa ciljem estimacije

unutrašnje telesne temperature.

2. METODOLOGIJA

2.1. Prikupljanje i obrada podataka

U istraživanju su korišćeni preuzeti podaci prikupljeni sa

više ispitanika tokom kontrolisanih fizičkih aktivnosti u

okviru projekta SixthSense. Merene su spoljašnje

fiziološke veličine, uključujući temperaturu na površini

grudnog koša, srčana frekvencija i varijabilnost srčanog

ritma, dok je referentna unutrašnja temperatura tela merena

invazivnom metodom (kapsulama). Eksperimenti su

obuhvatili više scenarija, sa variranjem uslova okoline i

stanja ispitanika (nivo fizičke aktivnosti, hidracije,

aklimatizacije), kako bi model mogao da nauči odnose u

različitim okolnostima [3, 4]. Prikupljeni sirovi podaci

filtrirani su radi uklanjanja šuma, a zatim normalizovani i

podeljeni na skup za obuku i testiranje.

2.2. Razvoj modela

Formirana su dva modela neuronskih mreža za predikciju

unutrašnje temperature:

1. Feedforward neuronska mreža (FFNN) – klasična

višeslojna perceptronska mreža, sa ulaznim čvorovima koji

predstavljaju trenutne vrednosti fizioloških parametara:

temperatura kože - T_chest, srčana frekvencija – HR i

varijabilnost srčanog ritma - HRV. Mreža se sastoji od

jednog ili više skrivenih slojeva sa nelinearnim

aktivacionim funkcijama, i jednim izlaznim čvorom koji

estimira unutrašnju telesnu temperaturu – Slika 1.

Slika 1. Struktura feedforward neuronske mreže

Kao najjednostavnija struktura razmatrana je mreža sa

samo dva skrivena sloja sa po jednim neuronom i jedan

izlazni neuron. Takođe je isprobana arhitektura sa dva

skrivena sloja sa po dva neurona radi povećanja kapaciteta

1326

https://doi.org/10.24867/33BE15Pavkovic

modela, kao i složenija konfiguracija sa tri skrivena sloja.

Poređenjem ovih struktura obezbeđeno je da se ispita uticaj

kompleksnosti modela na tačnost estimacije. FFNN model

nema internu memoriju stanja odnosno svaka predikcija se

vrši samo na osnovu trenutnih ulaza, bez eksplicitnog

uvažavanja prethodnih vrednosti signala. Veći broj

neurona u skrivenom sloju omogućava modelu da nauči

složenije nelinearne odnose, dok minimalistička mreža

služi kao baseline za upoređivanje. Sve neuronske jedinice

u eksperimentima koristile su nelinarnu aktivacionu

funkciju (ReLU), osim izlaznog neurona koji je bio linearni

regresor, čime se omogućava predviđanje kontinuirane

vrednosti temperature.

2.Rekurentna feedforward neuronska mreža (RFFNN) ili

proširenje FFNN modela dodatkom jednostavne povratne

veze. U RFFNN arhitekturi, originalnom skupu ulaza dodat

je još jedan ulaz koji nosi informaciju o prethodnoj

predikciji unutrašnje temperature. Na taj način, model pri

predviđanju sledeće vrednosti uzima u obzir i neposredno

prethodnu izlaznu vrednost, omogućavajući mu osnovni

vid “pamćenja” dinamike sistema – Slika 2.

Slika 2. Rekurentna veštačka neuronska mreža

Tokom treniranja, za ovaj dodatni ulaz koriste se stvarne

prethodno izmerene vrednosti temperature (jer su poznate

u trening skupu), dok se prilikom testiranja koristi

prethodna predikovana vrednost (feedback petlja). Ovakva

jednostavna rekurentna povratna sprega omogućava

RFFNN modelu da bolje uhvati vremenske zavisnosti u

podacima u poređenju sa običnim FFNN [5, 6].

2.3. Obuka modela

Za treniranje obe mreže korišćen je skup označenih

podataka (ulazi sa pripadajućom merenom unutrašnjom

temperaturom kao izlazom). Modeli su trenirani metodom

nadgledanog učenja, minimizacijom funkcije greške

između predikcija mreže i stvarne temperature. Isprobano

je više konfiguracija hiperparametara (broj slojeva i

neurona, parametri učenja) i različitih funkcija greške

MAE, MSE, kao i Huber-ova funkcija kako bi se pronašla

optimalna arhitektura za dati problem. Korišćena je k-fold

unakrsna validacija, pri čemu su podaci jednog ispitanika

ostavljani za validaciju (pristup Leave-One-Subject-Out)

da bi se proverila sposobnost generalizacije modela.

Treniranje je ponavljano za svaku arhitekturu (FFNN i

RFFNN), a modeli su upoređeni po performansama na

nezavisnom test skupu.

2.4. Evaluacija tačnosti

U radu su izvršene dve vrste evaluacije i odabira modela u

cilju analize performansi i izbora optimalnog rešenja. Kod

obe arhitekture urađena je evaluacija korišćenjem globalno

najboljeg prosečnog modela i evaluacija korišćenjem

individualno optimalnog modela za svakog subjekta. U

nastavku teksta razmatraće se rezultati dobijeni kod

individualno optimalnog modela.

Za kvantitativnu ocenu performansi modela korišćene su

standardne metrike regresije: srednja apsolutna greška

(MAE), srednja kvadratna greška (MSE), koren srednje

kvadratne greške (RMSE) i koeficijent determinacije (R2).

MAE i RMSE izražavaju prosečno odstupanje predikcije

od stvarne vrednosti (u °C), dok R2 pokazuje udeo

varijanse objašnjen modelom (vrednost bliža 1 označava

bolju usklađenost predikcije sa realnim podatkom). Nakon

treniranja, za svakog ispitanika izračunate su navedene

metrike posebno, a zatim je izvršeno poređenje rezultata

FFNN i RFFNN modela.

3. REZULTATI I DISKUSIJA

Dobijeni rezultati potvrđuju da model sa povratnom vezom

(RFFNN) uspešnije predviđa unutrašnju temperaturu u

odnosu na klasičnu neuronsku mrežu. Tabela 1. prikazuje

vrednosti evaluacionih metrika za jednog reprezentativnog

ispitanika (oznaka BM13) pri korišćenju oba tipa modela.

RFFNN model ostvaruje znatno manje greške (niže MAE,

MSE, RMSE) i viši R2 u poređenju sa FFNN, što znači da

bolje prati stvarne promene temperature.

Tabela 1. Metrike predikcije unutrašnje temperature za

ispitanika BM13 (poređenje arhitektura)

Model MAE MSE RMSE R2

FFNN 0.186 0.042 0.205 0.501

RFFNN 0.071 0.006 0.078 0.928

Na slikama ispod prikazane su krive stvarne temperature

tela (Actual output, plava linija) i predikcije neuronske

mreže (Predicted output, narandžasta linija) za ispitanika

BM13. Slika 3. prikazuje model FFNN. Vidljivo je da

postoje izvesna odstupanja kao i da reaguje sa

zakašnjenjem na nagli pad temperature. Suprotno tome,

Slika 4. predstavlja RFFNN model koji prati unutrašnju

temperaturu kroz vreme. Takođe, može se primetiti da su

promene pravilnije predviđene.

Slika 3. Rezultati predikcije za ispitanika BM13

korišćenjem FFNN modela

1327

Slika 4. Rezultati predikcije za ispitanika BM13

korišćenjem RFFNN modela

4. ZAKLJUČAK

U ovom radu prikazana je primena veštačkih neuronskih

mreža za estimaciju unutrašnje telesne temperature na

osnovu spoljašnjih fizioloških merenja. Upoređene su dve

arhitekture – feedforward i rekurentna feedforward

neuronska mreža – i pokazano je da dodavanje povratne

veze (memorije) značajno poboljšava performanse

predikcije. RFFNN model se pokazao bolji u odnosu na

običnu feedforward neuronsku mrežu, što potvrđuje

hipotezu da uvođenje vremenskog konteksta u modele

poboljšava preciznost predikcija. Prednost ovog pristupa

jeste sistem za praćenje telesne temperature zasnovan na

ovakvim modelima bio bi neinvazivan i pogodan za

implementaciju u različite uređaje.

4. LITERATURA

[1] P. N. Stuart Russell, Artifical Intelligence: A Modern

Approach, Pearson, 2016..

[2] Y. B. G. H. Yann LeCun, "Deep Learning," Nature,

2015.

[3] H. B. Youngjoo Kim, Introduction to Kalman Filter

and Its Applications, InTechOpen, 2018.

[4] S. S. K. G. M. F. Shahin Tasoujian, Real-Time

Cubature Kalman Filter Parameter Estimation of

Blood Pressure Response Characteristics Under

Vasoactive Drugs Administration, IEEE, 2020.

[5] W. J. T. S. N. C. S. J. M. R. W. K. J. C. W. A. L. W.

S. R. M. R. O. C. J. R. W. H. Mark J Buller 1,

Estimation of human core temperature from, PubMed,

2013.

[6] E. W. S. A. A. P. S. D. R. M. R. Reto Niedermann 1,

"Prediction of human core body temperature using

non-invasive," Springer Nature Link, 2013.

Kratka biografija:

Vukašin Pavković rođen je u Sr.

Mitrovici 1999. god. Fakultet

tehničkih nauka upisuje 2018.

godine. Položio je sve ispite

predviđene studijskim programom

i ispunio sve fakultetske obaveze

na master akademskim studijama

kontakt:

vukasinpavkovic@gmail.com

1328

..
Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.4

DOI: https://doi.org/10.24867/33BE16Pasanovic

ANALIZA ARTEFAKTA KOLABORATIVNOG RAZVOJA SOFTVERA PUTEM

VELIKIH JEZIČKIH MODELA ZA UNAPREĐENJE TIMSKOG RADA

ANALYSIS OF COLLABORATIVE SOFTWARE-DEVELOPMENT ARTIFACTS USING

LARGE LANGUAGE MODELS TO ENHANCE TEAMWORK.

Halid Pašanović, Fakultet tehničkih nauka, Novi Sad

Oblast – ELEKTROTEHNIKA I RAČUNARSTVO

Kratak sadržaj – Efikasnost timova direktno utiče na

uspeh organizacija, naročito u oblasti softverskog

inženjerstva gde je uspešna saradnja ključna. Ovaj rad

detaljno istražuje primenu velikih jezičkih modela (VJM-a)

kao alata za analizu i poboljšanje timske dinamike,

posebno kroz razvoj deljene svesti (Shared Cognition).

Eksperimentalni pristup je korišćen za analizu različitih

podataka iz sprint retrospektiva, GitHub-a i Trello

platforme kako bi se identifikovali obrasci ponašanja

članova tima i predložile konkretne mere za njihovo

unapređenje.

Ključne reči: VJM, Shared Cognition, timska dinamika,

softversko inženjerstvo

Abstract – Team efficiency directly impacts

organizational success, especially within software

engineering contexts, where effective collaboration is

critical. This paper comprehensively explores the use of

Large Language Models (LLMs) as tools for analyzing and

improving team dynamics, emphasizing the development of

Shared Cognition. An experimental approach was

employed to analyze various data sources, including sprint

retrospectives, GitHub histories, and Trello activity logs,

identifying team behavior patterns and proposing specific

improvement strategies.

Keywords: LLM, Shared Cognition, team dynamics,

software engineering

1. UVOD

U savremenom poslovnom okruženju timovi predstavljaju

osnovne jedinice koje omogućavaju efikasno rešavanje

kompleksnih zadataka zahvaljujući sinergiji različitih

veština, znanja i kompetencija svojih članova.

Efikasnost timskog rada direktno utiče na ukupne

performanse i konkurentnost organizacije, posebno u

tehničkim disciplinama poput softverskog inženjerstva.

Ovaj rad istražuje primenu velikih jezičkih modela (VJM-

a) kao inovativnog alata za analizu i unapređenje timske

dinamike, sa posebnim akcentom na razvoj deljene svesti

kao ključnog faktora uspeha.

__

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je bio

dr Nikola Luburić, docent

2. TIMSKA DINAMIKA I SHARED COGNITION

Timska dinamika se odnosi na međusobne interakcije

članova tima koje omogućavaju efikasno postizanje

zajednički definisanih ciljeva [1]. U okviru ovih interakcija

posebno su važni faktori poput komunikacije,

koordinacije, poverenja, zajedničkog donošenja odluka,

kao i međusobnog razumevanja.

Efikasan timski rad može se analizirati kroz tri osnovne

dimenzije:

• Stavovi (Attitudes): Ova dimenzija obuhvata

međusobno poverenje, koheziju i kolektivnu

efikasnost [2].

• Ponašanja (Behaviors): Odnosi se na konkretne

aktivnosti i interakcije koje tim obavlja tokom rada. To

uključuje razmenu informacija, pružanje podrške

članovima tima u kriznim situacijama i kontinuirano

praćenje napretka kako bi se pravovremeno

identifikovali i rešavali problemi [2].

• Kognicija (Cognition): Podrazumeva deljenu svest

unutar tima, odnosno zajedničko razumevanje uloga,

odgovornosti, ciljeva, normi, kao i veština i

sposobnosti ostalih članova [2].

2.1. Deljena svest kao ključni aspekt timske dinamike

Deljena svest (Shared Cognition) predstavlja zajedničko

razumevanje među članovima tima, koje nastaje kroz

kontinuiranu interakciju i saradnju [1]. Ona uključuje dva

važna koncepta: deljene mentalne modele i transaktivne

memorijske sisteme.

Deljeni mentalni modeli omogućavaju članovima tima da

precizno predvide ponašanja i odluke drugih članova na

osnovu zajedničkih očekivanja i razumevanja zadataka [3].

Ovakvi modeli su ključni za efikasnu koordinaciju

aktivnosti i pravovremenu reakciju na promene u

okruženju.

Transaktivni memorijski sistemi se odnose na zajedničku

memoriju tima koja omogućava optimalnu raspodelu

zadataka prema individualnim sposobnostima i

specijalizacijama članova tima [4]. Ovi sistemi pomažu

timu da efikasnije koristi svoje unutrašnje resurse,

smanjujući redundansu i povećavajući ukupnu

produktivnost.

Istraživanja pokazuju da razvijena deljena svest značajno

doprinosi adaptabilnosti tima, omogućavajući implicitnu

koordinaciju i bržu reakciju na izazove [1]. Nedostatak

zajedničke svesti, s druge strane, može rezultirati

1329

https://doi.org/10.24867/33BE16Pasanovic

nesporazumima, konfliktnim situacijama i smanjenom

efikasnošću tima [1].

Kroz upotrebu velikih jezičkih modela, moguće je

analizirati i unaprediti deljenu svest u timovima,

identifikujući obrasce ponašanja i nudeći konkretne savete

za poboljšanje timske dinamike.

3. VELIKI JEZIČKI MODELI (VJM-I)

Veliki jezički modeli (engl. LLM - Large Language

Models) predstavljaju kompleksne sisteme veštačke

inteligencije bazirane na dubokim neuronskim mrežama,

koje omogućavaju obradu, razumevanje i generisanje

ljudskog jezika [5]. Ovi modeli koriste ogromne količine

tekstualnih podataka za učenje statističkih obrazaca i veza

između reči i izraza, čime stiču sposobnost predviđanja,

analize i kreiranja novog, smislenog sadržaja [6].

Najvažnija arhitektura na kojoj se zasnivaju savremeni

VJM-i je arhitektura transformera, koja je 2017. godine

uvedena kao revolucionarno rešenje za obradu prirodnog

jezika zahvaljujući primeni mehanizma pažnje (engl.

attention mechanism) [7]. Ovaj pristup omogućava

modelima da efikasnije prepoznaju i analiziraju veze

između reči unutar konteksta, prevazilazeći ograničenja

prethodnih tehnika baziranih na rekurentnim ili

konvolucionim mrežama.

Zahvaljujući sposobnosti obrade velikih količina podataka,

VJM-i poput GPT (engl. Generative Pretrained

Transformer) modela, posebno GPT-4 i ChatGPT,

pokazali su izuzetnu efikasnost u raznim primenama,

uključujući analizu i unapređenje timske dinamike u

oblasti softverskog inženjerstva. Ovi modeli mogu detaljno

analizirati podatke iz različitih izvora kao što su

komunikacija između članova tima, istorije verzionisanja

koda i izveštaji sa sastanaka (npr. sprint retrospektive),

identifikovati obrasce ponašanja i predložiti konkretne

mere za optimizaciju zajedničke svesti i timskog rada.

U kontekstu timske dinamike, primena VJM-a pruža

mogućnost dubokog uvida u kvalitet i obrasce

komunikacije, omogućavajući blagovremeno

prepoznavanje potencijalnih problema i formulisanje

preporuka za njihovo rešavanje, što direktno doprinosi

boljoj koordinaciji, efikasnosti i ukupnoj uspešnosti

timova.

4. METODOLOGIJA

U ovom istraživanju korišćen je eksperimentalni pristup

zasnovan na detaljnoj analizi podataka koji dokumentuju

različite aspekte timskih aktivnosti. Proces generisanja,

prikupljanja, obrade i analize podataka je ilustrovan na slici

1. Eksperimentalna postavka obuhvatila je nekoliko jasno

definisanih koraka: prikupljanje, predobradu i analizu

podataka pomoću velikih jezičkih modela.

Prvi korak podrazumevao je prikupljanje podataka iz

različitih izvora, koji uključuju sprint retrospektive, istorije

GitHub komitova, komentare sa pull request-ova, kao i

aktivnosti zabeležene putem Trello platforme. Nakon

prikupljanja, svi podaci su prošli kroz fazu

predprocesiranja, tokom koje su uklonjeni nevalidni,

nepotpuni i redundantni podaci, dok je preostali sadržaj

strukturiran i formatiran radi efikasnije analize.

Zatim je za svaki pojedinačni tip podataka inicirana

zasebna sesija sa VJM-om (u ovom slučaju ChatGPT), čiji

zadatak je bio da identifikuje ključne pozitivne i negativne

obrasce ponašanja unutar svake od analiziranih kategorija

podataka. Dakle, zasebno su obrađivani podaci iz sprint

retrospektiva, aktivnosti na GitHub platformi (komitovi i

pull request-ovi) i aktivnosti na Trello platformi, čime je

omogućena detaljna i specijalizovana analiza za svaku

vrstu podataka.

Svakom VJM-u prosleđuje se odlomak iz knjige Scotta

Tannenbauma „Teams That Work: The Seven Drivers of

Team Effectiveness“, konkretno poglavlje 8 —

„Cognitions – Are We on the Same Page“ [8]. Time

modelima obezbeđujemo jasan teorijski okvir i smernice za

prepoznavanje relevantnih koncepata pri analizi

dostavljenih podataka.

Po završetku pojedinačnih sesija, rezultati dobijeni iz svih

inicijalnih analiza objedinjeni su i prosleđeni završnoj

(finalnoj) sesiji VJM-a. Finalni ChatGPT je imao zadatak

da objedini rezultate prethodnih analiza, pruži integrativan

pogled na celokupnu timsku dinamiku, identifikuje

dominantne obrasce ponašanja koji značajno utiču na

Slika 1. Tok koji opisuje kako su podaci generisani, prikupljani, obrađivani i analizirani u eksperimentu

1330

razvoj zajedničke svesti, te da formuliše konkretne

preporuke za unapređenje efikasnosti i koordinacije unutar

tima.

Ovakva eksperimentalna postavka omogućila je dubinski

uvid u timske interakcije kroz višestepenu analizu, čime su

osigurani visok kvalitet i relevantnost dobijenih preporuka.

5. PROMPT FINALNOG GPT-A

Finalni GPT funkcioniše kao meta-analizator: ne radi nad

sirovim podacima, već nad sažecima konverzacija

prethodnih GPT modela (Pull Request-ovi, commit

istorija, Trello aktivnosti, retrospektive), sa ciljem da

objedini nalaze i formira celovitu sliku timske dinamike.

Listing 1 prikazuje sistemski prompt za dati GPT.

Role Description:

You are an assistant specializing in

supporting young software engineering teams.

Your task involves summarizing specific

content from a book about teamwork, with a

focus on Chapter 8 - "Shared Cognitions." It

is crucial that you comprehend the factors

that positively and negatively influence

Shared Cognitions.

Context and Inputs:

Your users, software engineering teams, will

provide you with summaries of conversations

they had with other GPT models. These

conversations will analyze Pull Requests,

Commit History, Trello History and Sprint

Retrospectives, identifying behaviors that

affect Shared Cognition within the team.

Tasks and Output Requirements:

Behavior Analysis:

When requested to analyze these summaries:

List all behaviors that align with the

analysis in question.

For each behavior, specify the parts of the

provided conversations that led to your

conclusion.

Cite Chapter 8 of the book to explain why each

identified behavior influences Shared

Cognition positively or negatively.

By following these guidelines, you will help

software engineering teams understand the

dynamics of Shared Cognition and how to foster

a collaborative environment effectively.

Listing 1. Prompt Finalnog GPT-a

Prompt je strukturisan kroz tri celine: (1) Opis Uloge –

model se pozicionira kao asistent za mlade softverske

timove; (2) Contekst i Ulazi – ulaz čine sažeci konverzacija

drugih GPT-eva o Pull Request-ovima, commit-ima, Trello

istoriji i retrospektivama; (3) Zadatci i specifikacija izlaza

– pri analizi model treba da navede sva relevantna

ponašanja, za svako pokaže delove sažetaka koji vode

zaključku i obrazloži uticaj na deljenu svest pozivanjem na

poglavlje 8 knjige „Teams That Work“ [8].

Ovakav dizajn prompta obezbeđuje dosledne, teorijski

utemeljene izlaze i omogućava dublju, precizniju sintezu

timskih obrazaca od pojedinačnih modela.

6. REZULTATI ISTRAŽIVANJA

Rezultati eksperimentalne analize jasno pokazuju da VJM

efikasno identifikuje pozitivne obrasce timskog ponašanja,

uključujući jasnu i transparentnu komunikaciju,

konstruktivne i detaljne revizije koda, kao i proaktivnu

međusobnu podršku članova tima. Takođe, identifikovani

su i negativni obrasci poput nedovoljne jasnoće u raspodeli

odgovornosti, neprecizne komunikacije i nedostatka

redovnog praćenja aktivnosti.

Za potrebe procene kvaliteta identifikovanih obrazaca od

strane VJM-a, uvedena je skala ocenjivanja u rasponu od 1

do 3, gde pojedinačna ocena znači:

• 1: Моdel je u potpunosti pogrešno protumačio ulaz.

• 2: Odgovor delimično odgovara kontekstu deljene

svesti.

• 3: Analiza je temeljna i adekvatno adresira zadati

problem.

Pregledači izlaza modela primenili su ovu skalu prilikom

evaluacije rezultata dobijenih za svaki od analiziranih

setova podataka. Ocene su dodeljene posebno za slučaj

kada su podaci individualno obrađivani, zatim za slučaj

kada su podaci prosleđivani u segmentima, te na kraju za

rezultate finalnog GPT-a (meta-analizatora).

6.1 Git Commit GPT Model

Rezultati analize pojedinačnih Git commit-ova jasno

ukazuju na sposobnost GPT modela da precizno

identifikuje pozitivne i negativne obrasce timskog

ponašanja čak i na nivou pojedinačnih akcija programera.

Pregledači izlaza modela ocenili su da je model u 31

slučaju (94%) ponudio analizu koja je ocenjena kao

potpuni pogodak (ocena 3), dok su preostala dva ocenjena

kao delimičan pogodak (ocena 2).

Kada je analiza vršena nad segmentima commit-ova,

rezultati evaluacije pokazuju još viši nivo uspešnosti

modela. Ukupno je analiziran 21 segment, pri čemu su svi

segmenti dobili maksimalnu ocenu (ocena 3). Ovaj pristup

omogućio je jasnije prepoznavanje kontekstualnih veza

između različitih commit-ova, kao i bolju identifikaciju

dugoročnih pozitivnih trendova u timskoj komunikaciji,

koordinaciji i rešavanju problema.

6.2 Pull Request GPT Model

Analizom individualnih Pull Request-ova utvrđeno je da je

u 8 od ukupno 9 slučajeva (89%) model pružio analizu koja

je ocenjena kao potpun pogodak (ocena 3), dok je u jednom

slučaju analiza ocenjena kao delimičan pogodak (ocena 2).

Kada su podaci analizirani u formi segmenata, rezultati su

još konzistentniji – od ukupno 9 segmenata, svi su ocenjeni

maksimalnom ocenom (3), što ukazuje na visok nivo

preciznosti i pouzdanosti GPT modela pri obradi

kontekstualno bogatijih ulaza.

6.3 Trello GPT Model

Rezultati analize pojedinačnih Trello kartica pokazali su da

je model u 20 od ukupno 21 analiziranog slučaja (95,2%)

pružio analizu ocenjenom kao potpuni pogodak (ocena 3),

dok je jedna analiza ocenjena kao delimičan pogodak

(ocena 2).

Segmentna analiza podataka sa Trello platforme pokazala

je potpunu konzistentnost i tačnost, jer je svih 8

analiziranih segmenata ocenjenom maksimalnom ocenom

(3), čime je potvrđen visoki nivo sposobnosti GPT modela

da efikasno prepozna timske obrasce u širem kontekstu.

1331

6.4 GPT Model za Retrospektive

Analiza pojedinačnih rečenica retrospektiva pokazala je

relativno visoku pouzdanost modela. Od ukupno 102

rečenice, u 74 slučaja (72,5%) pružena je analiza ocenjena

kao potpuni pogodak (ocena 3), 16 slučajeva (15,7%)

ocenjeno je kao delimičan pogodak (ocena 2), dok je 12

slučajeva (11,8%) ocenjeno kao potpuni promašaj (ocena

1).

U segmentnoj analizi retrospektiva, evaluacija je pokazala

izuzetnu stabilnost i preciznost GPT modela. Svi

analizirani segmenti (ukupno 4) dobili su maksimalnu

ocenu (ocena 3), ukazujući na efikasnost modela u

kontekstualno agregiranim analizama.

6.5 Finalni GPT Model

Za razliku od prethodnih modela koji su analizirali

isključivo sirove podatke, finalni GPT model funkcioniše

kao meta‑analizator: njegov ulaz predstavljaju

konverzacije koje su već prošle kroz pregled ranijih

modela.

Tokom analize, model je imao zadatak da izdvoji sve

pozitivne segmente koji osnažuju deljenu svest i sve

negativne segmente koji je narušavaju. Od ukupno 18

detektovanih ponašanja, 17 je ocenjeno najvišom

ocenom 3, dok je jedno dobilo ocenu 1, što ukazuje na

visoku tačnost i konzistentnost u klasifikaciji složenih

obrazaca.

Pored kategorizacije ponašanja, od modela je zatraženo da

na skali 1‑100 proceni nivo deljene svesti u timu. Dok je

GPT model za retrospektive u finalnoj retrospektivi svest

ocenio sa 90, meta‑analizator je, uključujući širi kontekst

celokupnih konverzacija, dao znatno niži rezultat – 68.

Ova razlika osvetljava jaz između percepcije GPT modela

na osnovu subjektivne percepcije tima i objektivno

izmerenog stanja, čime model pruža dragocene uvide koji

prevazilaze ono što pojedinačni GPT‑evi mogu da uoče.

Sumirano, finalni GPT meta‑analizator dokazuje

sposobnost da sintetizuje multimodalne izvore podataka i

isporuči dublje, preciznije procene stanja timske dinamike,

u odnosu na individualne GPT-e.

7. ZAKLJUČAK

Upotreba VJM-a kao analitičkih alata za unapređenje

timske dinamike pokazala se kao izuzetno efikasan pristup.

Rezultati istraživanja ukazuju na značajan potencijal VJM-

a za razvoj zajedničke svesti u timu, omogućavajući

blagovremeno identifikovanje problema i ciljano rešavanje

izazova.

Istraživanje pokazuje da primena VJM‑a na pojedinačnim

skupovima podataka daje solidne uvide u deljenu svest

tima, ali da se objedinjavanjem analiza više skupova i

njihovim prosleđivanjem završnom VJM‑u – koji

funkcioniše kao meta‑analizator – problemi u timu

otkrivaju jasnije, što rezultira znatno kvalitetnijom

analizom. Buduća istraživanja trebalo bi proširiti

uključivanjem dodatnih izvora podataka i proverom

primenljivosti ovog pristupa u raznovrsnijim timovima i

organizacionim okruženjima, a istovremeno usmeriti se na

razvoj preciznijih modela kako bi se utvrdilo donose li

pouzdanije zaključke.

8. LITERATURA

[1] Understanding and improving teamwork in

organizations: A scientifically based practical guide –

Eduardo Salas, Marissa L. Shuffler, Amanda L.

Thayer, Wendy L. Bedwell, Elizabeth H. Lazzara.

[2] Factors that influence Teamwork – Julie V. Dinh and

Eduardo Salas.

[3] Shared Mental Models: A Conceptual Analysis.

Catholijn M. Jonker, M. Birna van Riemsdijk, Bas

Vermeulen -

https://www.researchgate.net/publication/221456658_

Shared_Mental_Models_-_A_Conceptual_Analysis

[4] Routines and transactive memory systems: Creating,

coordinating, retaining, and transferring knowledge in

organizations -

https://www.sciencedirect.com/topics/psychology/tran

sactive-

memory#:~:text=A%20transactive%20memory%20sy

stem%20(TMS,information%20than%20they%20indi

vidually%20possess.

[5] What are large language models (LLMs)? -

https://www.techtarget.com/whatis/definition/large-

language-model-LLM

[6] Large Language Model -

https://en.wikipedia.org/wiki/Large_language_model

[7] Attention Is All You Need -

https://arxiv.org/abs/1706.03762

[8] Tannenbaum S., Salas E. (2021). Teams that work:

The seven drivers of team effectiveness. Oxford

University Press.

Kratka biografija:

Halid Pašanović rođen je 2000.

godine u Prijepolju, gde je završio

osnovnu i srednju školu. Studije na

smeru Računarstvo i automatika na

Fakultetu tehničkih nauka započeo je

školske 2019/20. godine, a osnovne

akademske studije uspešno je

okončao 2023. godine. Iste godine

upisao je master akademske studije

Primenjene računarske nauke i

informatika, na modulu Elektronsko

poslovanje.

kontakt:

halidpasanovic1000@gmail.com

1332

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.3

DOI: https://doi.org/10.24867/33BE17Sekeres

RAZVOJ QGIS PLUGINA ZA VIZUALIZACIJU I ANALIZU KRETANJA OBJEKTA U

PROSTORU

DEVELOPMENT OF A QGIS PLUGIN FOR VISUALIZATION AND ANALYSIS OF

OBJECT MOVEMENT IN SPACE

Ivana Sekereš, Srđan Popov, Fakultet tehničkih nauka, Novi Sad

Oblast – ELEKTROTEHNIKA I RAČUNARSTVO

Kratak sadržaj – U radu je prikazan proces razvoja QGIS

plugina namenjenog vizualizaciji i analizi kretanja objekta

u prostoru, ilustrovan na primeru simulacije putanje

bespilotne letelice (UAV) unutar definisane oblasti

interesa. Plugin je razvijen u programskom jeziku Python

i integriše PostgreSQL sistem za upravljanje bazama

podataka sa PostGIS ekstenzijom, čime se omogućava

efikasno skladištenje, obrada i analiza prostornih

podataka.

Ključne reči: QGIS, GIS, plugin, UAV, Planiranje putanje

pokirvanja, PostgreSQL, PostGIS, Python

Abstract – The paper presents the development process of

a QGIS plugin designed for the visualization and analysis

of object movement in space, illustrated through a

simulation of an unmanned aerial vehicle (UAV) trajectory

within a defined area of interest. The plugin is developed

in Python and integrates a PostgreSQL database system

with the PostGIS extension, enabling efficient storage,

processing, and analysis of spatial data.

Keywords: QGIS, GIS, plugin, UAV, Coverage Path

Planning, PostgreSQL, PostGIS, Python

1. UVOD

Geografski informacioni sistemi (GIS) predstavljaju skup

alata, tehnologija i metoda namenjenih za prikupljanje,

skladištenje, obradu, analizu i vizualizaciju prostornih i

geografskih podataka. GIS tehnologija se primenjuje u

naučnim istraživanjima, upravljanju resursima i

prostornom planiranju u različitim oblastima. Da bi se GIS

koncepti primenili u praksi koriste se specifični softverski

alati, poznati i kao GIS aplikacije. Jedna od najpoznatijih i

najraširenijih aplikacija otvorenog koda je QGIS.

Cilj rada je razvoj dodataka (eng. plugins) koji

omogućavaju proširenje standardnih funkcionalnosti

QGIS platforme. Rad prikazuje praktičnu primenu

korišćenja QGIS-a u analizi kretanja objekta u prostoru. U

nastavku rada, radi lakše terminološke doslednosti,

koristiće se engleski izraz plugins za označavanje

dodataka.

__

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je bio

dr Srđan Popov, redovni profesor

2. TEHNOLOGIJE

U razvoju plugina korišćene su sledeće tehnologije: QGIS

(za vizualizaciju i rad sa prostornim podacima), Python (za

implementaciju logike), PostgreSQL sa PostGIS

ekstenzijom (za čuvanje prostornih podataka). Algoritmi

planiranja kretanja koji su obrađeni u radu uključuju

Nearest Neighbor (NN) i A* algoritam, dok je vizualizacija

kretanja realizovana putem animacije u QGIS interfejsu.

Plugin omogućava povezivanje sa bazom, unos i čuvanje

koordinata, kao i prikaz animacije putanje, kao što je to

prikazano na slici 1.

Slika 1. Generisana putanja UAV-a

3. QGIS

QGIS je besplatan geoinformacioni sistem (GIS)

otvorenog koda koji korisnicima omogućava kreiranje,

uređivanje, vizualizaciju, analizu i objavljivanje

geoprostornih podataka [2].

3.1 QGIS GUI

Interfejs QGIS-a, prikazan na slici 2, je dizajniran tako da

korisnicima omogući jednostavan pristup različitim

funkcionalnostima i alatima za rad sa geoprostornim

podacima [2]. Razvijeni plugin dodatno proširuje interfejs,

uvodeći nove opcije za vizualizaciju i analizu kretanja

objekata.

1333

https://doi.org/10.24867/33BE17Sekeres

Slika 2. QGIS GUI

3.2 Slojevi

U QGIS-u se podaci organizuju kroz slojeve (eng. layers)

koji mogu biti vektorski (tačke, linije, poligoni) ili rasterski

(satelitski snimci, digitalni modeli terena i sl.).

Vizualizacija i analiza podataka zasnivaju se na

kombinaciji slojeva.

3.3 Pluginovi

Pluginovi omogućavaju proširenje osnovnih

funkcionalnosti QGIS-a. Mogu se instalirati iz zvaničnog

repozitorijuma ili razvijati lokalno, najčešće u

programskom jeziku Python korišćenjem PyQGIS API-ja.

Upravljanje pluginovima obavlja se preko Plugin

Manager-a, u kojem se oni instaliraju, aktiviraju i

održavaju.

3.4 Plugin Manager

Plugin Manager je centralni alat za upravljanje

pluginovima u QGIS-u. Pristupa mu se direktno putem

glavnog menija Plugins > Manage and Install Plugins.

Kroz njega korisnici mogu pretraživati i instalirati

pluginove, dodavati privatne repozitorijume, pregledati

metapodatke (npr. detalje o autoru, verziji, opisu i

zavisnostima (eng. dependencies) svakog plugina, kao i

uključivati/isključivati instalirane pluginove.

3.5. Python

Python je interpretirani, objektno-orijentisani programski

jezik visokog nivoa sa dinamičkom tipizacijom. Njegova

jednostavna i čitljiva sintaksa, zajedno sa moćnim

ugrađenim strukturama podataka, čini ga pogodnim za brzi

razvoj aplikacija, skriptovanje i povezivanje postojećih

komponenti, uz smanjenje troškova održavanja koda [4].

3.5.1 Python i QGIS

QGIS poseduje integrisanu Python konzolu, koja

omogućava direktno izvršavanje Python komandi u okviru

QGIS okruženja. Ova konzola se otvara putem menija

Plugins > Python Console. Python jezik se široko koristi za

implementaciju pluginova u QGIS-u. Za razvoj pluginova

koristi se PyQGIS API, putem kojeg QGIS pruža

developerima programski interfejs za interakciju i

modifikovanje osnovnih funkcija QGIS-a, ali i grafičkog

interfejsa.

3.6. PostgreSQL

PostgreSQL, odnosno Postgres, predstavlja objektno-

relacioni sistem za upravljanje bazama podataka (eng.

Object-Relational Database Management System –

ORDBMS) otvorenog koda (eng. open source) koji, za

razliku od klasičnih relacionih baza podataka, poseduje

mogućnost čuvanja objekata i vektora.

3.7. PostGIS ekstenzija

PostGIS je ekstenzija za PostgreSQL bazu podataka, koja

omogućava skladištenje, upravljanje i analizu prostornih

podataka direktno u bazi. PostGIS omogućava skladištenje

različitih vrsta prostornih podataka, uključujući tačke,

linije i poligone, u oba formata: dvodimenzionalnom (2D)

i trodimenzionalnom (3D) [3].

3.8. Planiranje kretanja

Planiranje kretanja predstavlja proces određivanja

optimalne putanje kretanja objekta kroz određeni prostor,

uzimajući u obzir različite kriterijume kao što su

minimalna dužina puta, vreme kretanja ili izbegavanje

prepreka. Planiranje može biti realizovano od strane

čoveka ili mašine koja ima mogućnost planiranja svog

kretanja. Ukoliko je onaj koji planira mašina, tada

govorimo o algoritmima planiranja kretanja [5].

3.8.1 Primene u geoinformacionim sistemima

Coverage Path Planning nalazi široku primenu u oblasti

geoinformacionih sistema (GIS). Geoinformacioni sistemi

omogućavaju prikupljanje i obradu prostornih podataka

potrebnih za planiranje optimalnih putanja.

Upotrebom bespilotnih letelica, naročito dronova, proces

prikupljanja prostornih podataka postao je znatno

efikasniji, brži i ekonomičniji. Na ovaj način GIS industrija

ostvaruje velike benefite jer čine da skupljanje prostornih

podataka bude jednostavnije i pristupačnije. Tradicionalni

način sakupljanja podataka podrazumevao je

iznajmljivanje letelica i pilota, kao i postavljanje

instrumenta za snimanje za letelicu, što je zahtevalo

složenu pripremu i visoke troškove. Velika prednost

upotrebe bespilotnih letelica je što mogu preleteti veliku

površinu za nekoliko sati i prikupiti podatke visoke

rezolucije. Pored toga moguće je snimiti teško dostupne i

rizične lokacije bez ugrožavanja ljudi. Podaci prikupljeni

dronovima lako se integrišu u GIS softvere, kao što je to

QGIS.

3.9. Algoritmi

U radu su za planiranje putanje kretanja objekta u prostoru,

sa ciljem pokrivanja cele površine od interesa, korišćeni

algoritmi Nearest Neighbor (NN) i A* (A star), koji

omogućavaju određivanje optimalnih ili približno

optimalnih putanja u okviru definisanog prostora interesa.

Nearest Neighbor (NN) algoritam je heuristički pristup

kojim se iz trenutne pozicije bira najbliža neposećena tačka

kao sledeća destinacija.

A* algoritam se primenjuje u svrhe određivanja najkraćeg

puta između dva čvora u grafu. Predstavlja unapređenje

Dijkstrinog algoritma i smanjuje broj čvorova koje je

potrebno posetiti odnosno ispitati. Ovaj algoritam koristi

heuristički pristup za procenjivanje cene pružanja do

ciljnog čvora. Algoritam održava celo stablo i iterativno se

pruža ka jednom čvoru u svakom koraku. Cena pružanja do

sledećeg čvora se određuje na osnovu najmanje pređenog

rastojanja, vremena putovanja i slično, u zavisnosti od

zahteva praktične namene. Svakom iteracijom odnosno

svakim korakom, algoritam određuje cenu putanje

sledećom formulom:

1334

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) (1)

Gde je 𝑛 sledeći čvor, 𝑔(𝑛) cena putanje od početnog čvora

do 𝑛, i ℎ(𝑛) heuristička funkcija koja određuje optimalan

put od n ka ciljnom čvoru. ℎ(𝑛) se smatra prihvatljivom

cenom, što znači da nikada neće preceniti dostizanje cilja,

odnosno uvek predstavlja najnižu granicu moguće cene

kretanja [1].

4. KREIRANJE PLUGINA

Plugin u QGIS-u može se kreirati na dva načina:

korišćenjem alata Plugin Builder, koji automatski generiše

osnovnu strukturu projekta ili ručno definisanjem

potrebnih fajlova i direktorijuma. Plugin Builder je veoma

koristan jer ubrzava početnu fazu razvoja. Ručno kreiranje

plugina zahteva poznavanje osnovne strukture i obaveznih

komponenti koje svaki plugin mora da sadrži.

4.1. Struktura tipičnog plugina

Pluginovi se sastoje od seta fajlova koji moraju da prate

standardnu strukturu. Plugin Manager upravlja

pluginovima i oni se učitavaju kada pokrenemo QGIS

program.

Plugin mora da sadrži sledeće fajlove:

● metadata.txt: tekstualni fajl koji sadrži

informacije o pluginu. Ove informacije su vidljive

u Plugin Manageru.

● __init__.py: koji se poziva od strane Plugin

Managera i učitava glavni fajl. Ovaj fajl se učitava

prvi i on sadrži funkciju classFactory() koja kreira

instancu glavne plugin klase.

● main.py: glavni fajl definiše glavnu plugin klasu i

očekivano je da ima minimum tri metode.

○ __init__() metoda koja daje pristup

QGIS interfejsu.

○ initGui() metoda koja se poziva kada se

plugin učita.

○ unload() metoda koja se poziva kada se

plugin uklanja.

4.3. Proširenje korisničkog interfejsa

Korisnički interfejs QGIS-a može se dodatno proširiti

instalacijom ili razvojem pluginova. Kada se plugin

integriše, on ne utiče na već postojeći GUI programa, već

ga dodatno proširuje kreiranjem novih elemenata i

funkcionalnosti.

5. DIZAJN I IMPLEMENTACIJA PLUGINA

Cilj kreiranja plugina je omogućiti vizualizaciju i analizu

kretanja objekta na mapi. U ovom primeru, realizovana je

simulacija kretanja drona na osnovu koordinata koje

definiše korisnik. Plugin omogućava praćenje kretanja

objekta i analizu putanje u realnom vremenu na osnovu

prethodno zadatih podataka.

Podaci o kretanju drona se čuvaju u PostgreSQL bazi.

Plugin treba da omogući animaciju kretanja drona na mapi,

upisivanje i čuvanje novih koordinata i podataka u bazu.

Plugin ne obuhvata kontrolu stvarnog drona, već

predstavlja simulaciju potencijalnog kretanja na osnovu

odabranih koordinata.

5.1. Konfiguracija radnog okruženja

Za implementaciju plugina korišćene su sledeće

komponente:

● QGIS verzija 3.40 LTR (kodnog imena

Bratislava), korišćen za vizualizaciju i obradu

prostornih podataka.

● Python, koji dolazi integrisan sa QGIS

instalacijom na Windows operativnom sistemu i

koristi se za razvoj.

● PostgreSQL sa PostGIS ekstenzijom, koji

obezbeđuje čuvanje i prostornu obradu podataka,

instaliran i konfigurisan unutar Docker kontejnera

radi lakše portabilnosti i izolacije okruženja.

5.1.1 Docker

Docker je platforma za kontejnerizaciju koja omogućava

pokretanje aplikacija u izolovanom okruženju, odnosno

kontejneru (eng. container). U okviru ovog projekta,

PostgreSQL baza podataka pokrenuta je unutar Docker

kontejnera i koristi se specifična slika postgres_qgis. Ova

slika je kreirana tako da u sebi sadrži zvaničnu PostgreSQL

sliku (postgres:latest), čime omogućava jednostavno

postavljanje baze sa svim osnovnim funkcionalnostima

PostgreSQL-a.

5.1.2. Struktura baze podataka

U bazi se čuvaju podaci o poligonima i parametrima

vezanim za kretanje, tabela sastoji se od sledećih kolona iz

tabele 4.1.

Tabela 4.1. Opis podataka koji su čuvaju u tabeli

polygon_data

Kolona Opis

id Jedinstveni ID broj poligona.

geometry Koordinate granica poligona.

area Površina u kvadratnim metrima.

mov_duration Vreme potrebno dronu da pokrije

ceo poligon, u minutama.

path Putanja drona kroz poligon,

formatirana kao JSON.

flight_height Visina leta drona u metrima.

camera_flow Brzina snimanja kamere, izražena u

fps.

image_overlap Procenat preklapanja između slika

(0–100%)

strategy_cost Procena troška misije.

ground_sampling

_distance

Rezolucija slike u cm po pikselu.

created_at Datum i vreme kreiranja.

1335

Polje geometry je tipa GEOMETRY(POLYGON, 4326)

predstavlja definiciju kolone u prostornoj bazi podataka.

Poligon označava tip geometrije, što znači da se u tom

polju mogu čuvati isključivo poligoni.

5.2. Slojevi

U okviru projekta, slojevi služe kao osnovni način

organizacije i prikaza prostornih podataka potrebnih za

simulaciju kretanja drona. Svaki sloj nosi određeni tip

informacija i omogućava korisniku da prikaže različite

aspekte projekta unutar QGIS interfejsa. Pored osnovnih

slojeva koji definišu poligon i putanju, moguće je dodati i

slojeve sa preprekama, čime se omogućava simulacija

realnog okruženja u procesu planiranja kretanja letelice.

Slika 3: Prikaz aktivnih slojeva u projektu

5.2.1 OpenStreetMap

U okviru projekta korišćena je OpenStreetMap (OSM), jer

predstavlja besplatnu i otvorenu mapu sveta. OSM nudi

detaljne geografske podatke o ulicama, zgradama,

granicama, rekama i drugim objektima. Podaci su dostupni

pod licencom koja omogućava slobodnu upotrebu, izmene

i distribuciju.

5.2.2 Generisanje mreže

Pre nego što se putanja može odrediti, generiše se mreža

koja obezbeđuje potpunu pokrivenost poligona. Svaka

ćelija u mreži predstavlja pojedinačnu sliku koju bi

bespilotna letelica fotografisala u toku kretanja po putanji.

Funkcionalnost kreiranja mreže sastoji se od dva važna

koraka: računanje dimenzija ćelija i generisanje mreže sa

pripadajućom putanjom.

5.2.4 Generisanje putanje algoritmom

Pre nego što dron počne simulirano kretanje, putanja se

izračunava korišćenjem algoritma za planiranje kretanja.

Algoritam generiše redosled tačaka koje dron treba da

poseti, a zatim se ove tačke povezuju linijama u

vektorskom sloju, čime se dobija definisana putanja.

5.2.5 Simulacija kretanja

Vektorski slojevi za kretanje drona predstavljaju tačke i

linije koje definišu putanju drona. Svaka tačka sadrži

koordinate, a linije povezuju te tačke kako bi se

vizualizovala simulirana putanja. Tačke se prikazuju u

realnom vremenu, a dron se kreće od početne ka završnoj

tački, prateći generisanu putanju.

5.3. Metapodaci

Plugin podržava definisanje metapodataka (naziv, opis

funkcionalnosti, verzija, autor i slično) koji se unose u fajl

metadata.txt. Na osnovu ovih podataka QGIS omogućava

identifikaciju, pretragu i prikaz osnovnih informacija o

pluginu u listi dodataka.

6. REZULATI

Razvijeni QGIS plugin omogućava simulaciju kretanja

bespilotne letelice (UAV) unutar definisanog poligona od

interesa. Rezultati pokazuju da plugin pruža jednostavnu i

interaktivnu vizualizaciju kretanja objekata, uz

fleksibilnost za dalje proširenje i primenu u različitim

oblastima.

7. ZAKLJUČAK

Implementacijom ovog rešenja pokazano je da QGIS, kao

fleksibilna platforma otvorenog koda, omogućava razvoj

specijalizovanih alata koji mogu unaprediti proces analize

prostornih podataka i planiranja kretanja. Pre svega, plugin

je u potpunosti integrisan u QGIS okruženje, što

korisnicima omogućava da koriste poznate GIS alate bez

potrebe za dodatnim softverom. Iako je u radu fokus bio na

simulaciji kretanja UAV-a, potencijalne primene

razvijenog rešenja prevazilaze ovaj domen. Plugin se može

koristiti u poljoprivredi (planiranje ruta za prskanje i

mapiranje parcela), urbanizmu i prostornom planiranju

(analiza kretanja vozila i pešaka), ekologiji (monitoring

zaštićenih područja i praćenje kretanja životinja), kao i u

bezbednosnim i spasilačkim misijama.

6. LITERATURA

[1] Hart, P.E., Nilsson, N.J., Raphael, B. A Formal Basis

for the Heuristic Determination of Minimum Cost

Paths.

[2] QGIS Documentation, https://qgis.org (pristupljeno u

septermbru 2025.)

[3] PostGIS Documentation,

https://postgis.net/documentation/ (pristupljeno u

septermbru 2025.)

[4] Python Documentation, https://www.python.org/

(pristupljeno u septermbru 2025.)

[5] Enric Galceran and Marc Carreras. A Survey on

Coverage Path Planning for Robotics.

Kratka biografija:

Ivana Sekereš rođena je 01.10.1995. u

Somboru. Završila je „Fakultet tehničkih

nauka” u Novom Sadu, smer

Računarstvo i automatika, i 2020. godine

stekla zvanje diplomirani inženjer

elektrotehnike i računarstva. Iste godine

upisala je master akademske studije na

smeru „Primenjene računarske nauke i

informatika – Elektronsko poslovanje”.

kontakt: sankovicivana27@gmail.com

1336

https://qgis.org/
https://postgis.net/documentation/
https://www.python.org/

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.9

DOI: https://doi.org/10.24867/33BE18Ninkovic

ORKES CONDUCTOR – POREĐENJE PERFORMANSI SA APACHE KAFKA

ORKES CONDUCTOR – PERFORMANCE COMPARISON WITH APACHE KAFKA

Jelena Ninković, Fakultet tehničkih nauka, Novi Sad

Oblast – ELEKTROTEHNIKA I RAČUNARSTVO

Kratak sadržaj – U ovom radu opisani su Orkes

Conductor kao primer orkestracije događajima i Apache

Kafka kao primer koreografije. Urađena je analiza i

poređenje performansi ova dva alata. Rad uključuje i opis

implementacije oba alata, napisane u programskom

jeziku Java, kao i poređenje redova koji predstavljaju

osnovnu strukturu podataka na koju se alati oslanjaju.

Ključne reči: Conductor, zadatak, razmena poruka,

Apache Kafka, red

Abstract – This paper describes Orkes Conductor as an

example of event orchestration and Apache Kafka as an

example of choreography. A performance analysis and

comparison of two tools is provided. This paper also

includes description of implementation of both tools,

written in Java programming language, as well as a

comparison of queues, which represent the fundamental

data structure these tools rely on.

Keywords: Conductor, task, messaging, Apache Kafka,

queue

1. UVOD

Mikroservisna arhitektura (MSA) predstavlja

arhitekturalni dizajn šablon koji je uveden da reši

probleme oko horizontalne skalabilnosti, dostupnosti,

modularnosti i agilnosti arhitekture u tradicionalnim

monolitnim sistemima. Aplikacija se razvija kao skup

malih servisa [1], gde je svaki nezavisno razvijan,

testiran, ažuriran, skaliran i deploy-ovan i komunicira sa

ostatkom preko jednostavnih mehanizama, najčešće

HTTP poziva. Servisi su tako definisani da svaki ima

sopstvene entitete i bazu podataka, što čini da promene u

bazi podataka jednog servisa nisi vidljive u bazi drugog

servisa. Ukoliko dođe do rollback-a transakcije zbog

greške u jednom od servisa povratak na pređašnje stanje

nije moguć jer su u pitanju distribuirane transakcije.

Da bi se rešio problem uvodi se SAGA [2] šablon. U

slučaju greške okida se sekvenca rollback događaja, od

jednog servisa ka drugom, u obrnutom redosledu. SAGA

šablon može biti implementiran korišćenjem koreografije

događaja i orkestracionim tehnikama.

U slučaju koreografije događajima, svaki mikroservis radi

zasebno i kada završi lokalnu transakciju emituje događaj,

koji drugi servisi osluškuju sa ciljem da započnu svoje

transakcije.

__

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je

bio dr Srđan Popov, red. prof.

Proces se nastavlja sve dok poslednji servis ne emituje

nijedan događaj, što predstavlja kraj transakcije.

Kod orkestracije postoji centralni orkestrator, koji se

ponaša kao „roditeljski“ servis, sluša sve događaje koje

emituju lokalne transakcije mikroservisa i na osnovu

događaja okida sledeću lokalnu transakciju u drugom

mikroservisu ili servisima.

2. ORKES CONDUCTOR

Orkes Conductor [3] je radni okvir koji je razvijen povrh

Netflix Conductor-a. Pored osnovnih funkcionalnosti koje

je nudila platforma dodate su funkcionalnosti i

poboljšanja i cilju lakšeg deploy-ovanja i upravljanja

tokovima u produkcionom okruženju.

2.1. Osnovni pojmovi

Proces orkestriranja korišćenjem Conductor-a obuhvata

korišćenje tri osnovna koncepta: zadatke, radnike i

tokove.

Zadatak predstavlja jedinicu posla ili korak u toku, poput

kreiranja HTTP poziva, slanja mejla, procesiranja

podataka ili izvršavanja poslovne logike. Predstavlja

osnovnu gradivnu jedinicu toka i dodatno može biti

podeljen na operatore, sistemske zadatke ili radnike za

sopstveni kod.

Radnici su kod zadužen za izvršavanje zadataka. Za

sistemske zadatke i operatore je zadužen Conductor

server, dok zadacima koje je definisao korisnik upravljaju

aplikacije koje ih implementiraju. Nakon što radnik

kontaktira server da primi i izvrši zakazane zadatke

Conductor će proslediti ulazne parametre zadatka radniku

i preuzeti izlazne podatke nakon završetka.

Tok se definiše kao kolekcija zadataka i operatora, koji

specificiraju redosled i izvršenje definisanih zadataka.

Ova orkestracija se dešava u hibridnom ekosistemu koji

objedinjuje serverless funkcije, mikroservise i monolitske

aplikacije. Kako je Conductor jezički agnostičan

orkestracija može biti izvršena u bilo kom programskom

jeziku. Workflow scheduler omogućava tokovima da

budu pokrenuti po određenom rasporedu. Ovo daje

mogućnost da tokovi budu konfigurisani da se pokreću u

željenoj učestalosti i da se prilikom kreiranja rasporeda

bira verzija toka.

2.2. AI zadaci

Orkes Conductor omogućava kreiranje aplikacija koje

koriste generativne AI modele i vektorske baze podataka.

Generativni AI je tip veštačke inteligencije sposoban za

kreiranje novog „čovekolikog“ sadržaja na osnovu pre-

treniranih modela koji su bili izloženi velikim količinama

1337

https://doi.org/10.24867/33BE18Ninkovic

sličnog sadržaja. Ljudska interakcija je i dalje potrebna da

se modeli usmere šta treba da bude generisano -

usmeravaju se slanjem promptova (tekstualnih

instrukcija). Odgovor Gen-AI modela je isto tekstualan, i

ovi modeli se nazivaju LLM. LLM su deep learning

algoritmi obučeni na velikoj količini podataka. Mogu da

obavljaju razne NLP zadatke, poput generisanja,

prevođenja, chatbot-ova, AI asistenata i sl.

2.3. Alert zadaci

Alert zadaci su poseban vid zadataka koji imaju ulogu da

šalju notifikacije ili upozorenja na osnovu određenih

uslova ili događaja u sistemu.

2.4. Rukovalac događajima

Rukovalac događajima procesira dolazeće poruke i

izvršava akcije na osnovu njihovih detalja. Okidač može

biti okinut od strane narednih akcija – complete task,

terminate workflow, update variables, fail task i start

workflow.

2.5. Kontrola pristupa

Orkes Conductor nudi kontrolu pristupa baziranu na

ulogama (RBAC) korisnicima Orkes platformi, kao i

aplikacijama koje koriste Conductor API. RBAC

obezbeđuje pristup metapodacima tokova, zadataka, tajni,

promenljivama okruženja, integracijama, promptovima,

korisničkim formama, rukovaocima događaja,

rasporedima, webhook-ovima i domenima.

Korisnik predstavlja čoveka koji interaguje sa Conductor-

om preko Orkes platforme, i autentifikovan je

korišćenjem SSO provajdera ili mejla/lozinke. Svaki

korisnik može imati jednu ili više dodeljenih uloga.

Grupa predstavlja set korisnika, i predstavlja brz način da

se dodele permisije većem broju korisnika. Svaka grupa

može biti povezana sa jednom ili više uloga. Takođe

može imati dodeljen set permisija, koje obezbeđuju

pristup određenim resursima. Kada je korisnik dodat u

grupu automatski nasleđuje sve uloge i permisije grupe, a

kada je uklonjen iz nje gubi sve uloge i permisije koje je

nasledio iz nje.

Aplikacija predstavlja aplikaciju koja interaguje sa

Conductor serverom putem API-ja ili SDK-ja. Aplikaciji

mogu biti dodeljene permisije, koje će obezbediti pristup

određenim Conductor resursima. Svaka aplikacija može

imati jedan ili više ključ/tajna parova, koji se koriste za

dobijanje pristupa.

Tag predstavlja par ključ/vrednost koji može biti

pridružen metapodacima resursa. Služi kao prečica za

deljenje permisija brojnih resursa ili korisnika.

Uloga predstavlja set opštih podrazumevanih permisija

resursima. Može biti dodeljena korisniku, grupi ili

aplikaciji. Ako je dodeljeno više uloga biće dodeljene

permisije za svaku od njih.

Pored permisija baziranih na ulogama moguće je dodeliti i

granularne permisije grupama ili aplikacijama.

Granularne permisije pružaju dodatni pristup povrh

korisnikovih ili aplikacijskih permisija baziranih na ulozi.

Domen se koristi da se dodeli pristup svim zadacima u

određenom domenu. Koristan je za masovno dodeljivanje

prava radnik aplikaciji da izvrši sve zadatke, bez da se

mora dodati svaki pojedinačni zadatak i da se definiše

njegov domen.

2.6. Rutiranje zadataka

Za svaki konfigurisani tip zadatka Conductor server će

održavati red i distribuiraće zadatke svim radnicima

konektovanim na server. Postoji i opcija gde isti zadatak

može biti rutiran različitom setu radnika na osnovu

koncepta zvanog Task to Domain. Ova vrednost se

prosleđuje toku kada je pokrenut, i ako je prisutna znači

da se zadaci rutiraju drugačije od podrazumevanog

načina.

2.7. Nadgledanje redova zadataka

Red zadataka sadrži zadatke koji čekaju da se izvrše.

Nadgledanje ovih redova obezbeđuje optimalni

performans i efikasnost u procesiranju zadataka,

identifikovanje potencijalnih problema i održavanje

pouzdanosti sistema.

2.8. Metrika i skaliranje radnika

Skaliranje i podešavanje performansi radnika zavisi od

sledećih metrika: broja zadataka na čekanju, propusnosti

pojedinačnog radnika i ukupnog broja pokrenutih radnika.

2.9. Rukovanje greškama

Conductor je napravljen da nudi najmanje jednu garanciju

isporuke – sve poruke mogu da se čuvaju, trajne su i biće

isporučene radnicima najmanje jednom. Ovakav model

osigurava dve stvari: kada tok započne biće kompletiran

ako su svi zadaci kompletirani i ako izvršavanje toka bude

neuspešno zbog ponovnih pokušaja i sl., poruke će biti

isporučene sledećem čvoru koji je živ i responsivan.

Timeout se može dogoditi ako nema radnika za zadati tip

zadatka, radnik primi poruku ali prekine svoj rad pre nego

što završi zadatak i zadatak nikada ne pređe u complete

status ili je radnik završio procesiranje, ali ne može da

komunicira sa Conductor serverom usled greške u mreži,

ili srušenog Conductor servera.

3. APACHE KAFKA

Apache Kafka [4] je distribuirana platforma za striming

podataka koja može da objavljuje, prima, čuva i procesira

strimove u realnom vremenu. Dizajnirana je da rukuje

velikim brojem real-time informacija i rutira ih

mnogostrukim consumer-ima.

Osnovna jedinica unutar Kafke je poruka – niz bajtova.

Poruke mogu imati opcione metapodatke – ključ. Ključ je

takođe niz bajtova i koristi se kada se poruke upisuju u

particije. Zbog bolje efikasnosti poruke se u Kafku

upisuju kao batch – kolekcija poruka, gde se poruke

kategorišu u teme, koje su dodatno razbijene na particije.

Poruke se upisuju na kraj teme i čitaju sa početka.

Ukoliko tema ima više particija ne može biti garantovano

da će u celoj temi biti ispoštovan redosled kako su poruke

stizale, samo u pojedinačnoj particiji. Particije su način na

koji Kafka obezbeđuje skalabilnost, jer svaka particija

1338

može biti na drugom serveru, što znači da jedna tema

može biti horizontalno skalirana na više servera.

3.1. Producer

Producer-i [5] su aplikacije koje kreiraju poruke i šalju ih

Kafka brokeru za dalje konzumiranje. Producer ne upisuje

poruke u particije, već kreira zahteve za poruke i šalje ih

vođi brokera. Kafka producer-i mogu biti sinhroni i

asinhroni. Sinhroni producer-i nakon slanja poruke čekaju

potvrdu od brokera, dok asinhroni nastavljaju sa daljim

radom bez čekanja. Prednost sinhronih producer-a je

pouzdanost, međutim čekanje na potvrdu može dovesti do

zastoja u sistemu i ograničavanja broja poruka koje mogu

biti poslate odjednom. Kod asinhronih producer-a ovi

problemi su rešeni, ali su dosta komplikovaniji za

implementiranje, naročito rukovanje greškama i ako nisu

pažljivo implementirani može doći do gubitka podataka.

3.2. Consumer

Consumer-i [5] su aplikacije koje konzumiraju poruke.

Consumer se pretplaćuje na jednu ili više tema i čita

poruke u redosledu kojim su stigle. Consumer vodi računa

koje poruke je već pročitao tako što vodi računa o offset-u

poruka. Offset je metapodatak, integer brojač koji se

stalno uvećava, na koji Kafka daje svaku poruku kako je

objavljena. Čuvanjem offset-a poslednje konzumirane

poruke za svaku particiju, u Zookeeper-u ili u samoj

Kafki, consumer može biti zaustavljen i ponovo pokrenut

bez gubljenja podataka. Consumer-i se nalaze unutar

consumer grupe – jedan ili više consumer-a koji rade

zajedno i konzumiraju temu. Grupa osigurava da je svaka

particija konzumirana od samo jednog člana. Mapiranje

consumer-a i particije se naziva vlasništvo particije od

strane consumer-a. Na ovaj način consumer-i mogu biti

horizontalno skalirani da konzumiraju teme sa velikim

brojem poruka. Ukoliko jedan consumer ima grešku ostali

članovi grupe će rebalansirati particije tako da preuzmu

posao neuspešnog člana.

3.3. Brokeri i klasteri

Jedan Kafka server se naziva broker. Broker prima poruke

od producer-a, dodeljuje im offset, i commit-uje poruke

na disku. Takođe servisira consumer-e, odgovarajući na

fetch zahteve porukama koje je prethodno commit-ovao.

Kafka brokeri funkcionišu kao deo klastera. Unutar

klastera, jedan broker služi kao kontroler, izabran

automatski iz skupa živih članova klastera. Kontroler je

zadužen za administrativne operacije, uključujući

dodeljivanje particija brokerima i nadgledanje brokera u

slučaju neuspeha. Particija je u vlasništvu samo jednog

brokera unutar klastera, i taj broker se zove vođa particije.

Međutim, particija može biti dodeljena više brokera, što

će rezultovati repliciranjem particije.

Karakteristika Kafke je period zadržavanja. Brokeri su

konfigurisani sa podrazumevanim periodom ili dok tema

ne dostigne određenu veličinu. Pojedinačne teme mogu

biti definisane sa sopstvenim periodom zadržavanja.

3.3. Zookeeper

Zookeeper je komponenta Kafke koja služi kao

koordinator i služi za biranje kontrolera, čuvanje statusa

brokera, čuvanje metapodataka tema, održavanje

informacija o klijentskim normama i ACL tema.

4. POREĐENJE ORKES CONDUCTOR-A I

APACHE KAFKE

Za poređenje orkestracije i koreografije uzet je primer

onlajn prodavnice. Kreiran je Java projekat u kome su

definisani sledeći mikroservisi: ordering servis, inventory

servis, payment servis, notification servis i shipping

servis.

4.1. Implementacija Conductor toka

Mikroservis ordering preuzima ulogu orkestratora i

koordiniše komunikaciju između preostalih servisa. Tok

je definisan u JSON formatu i dodat u Orkes server. U

okviru ordering servisa definisan je REST endpoint koji

pokreće tok korišćenjem WorkflowClient-a definisanog u

zavisnosti io.orkes.conductor:orkes-conductor-client.

Prilikom pokretanja toka zadaje se ime toka koji se

pokreće, kao i imena i vrednosti ulaznih promenljivih.

Prilikom definisanja radnika potrebno ga je anotirati sa

@WorkerTask. Anotacija od ulaznih parametara ima ime

zadatka, broj niti koje se koriste za izvršavanje zadatka,

kao i interval koliko često radnik šalje upite serveru.

4.2. Implementacija Kafke

Koristi se event-driven komunikacija. Kafka server (kafka

i zookeeper) je podignut na portu 9092 u Doker

kontejneru i korišćenjem Java biblioteke u

mikrosrevisima se kreiraju KafkaTemplate i

ConcurrentKafkaListenerContainerFactory (samo u

servisima gde postoji consumer) na osnovu konfiguracije

definisane u application.yml fajlu. U okviru ordering

servisa definisan je endpoint koji pokreće slanje poruka –

ovaj servis jedini nema consumer-a, budući da je servis od

kojeg počinje slanje.

Prilikom definisanja consumer-a potrebno ga je anotirati

sa @KafkaListener. Anotacija od ulaznih parametara ima

identifikator consumer-a, temu koji osluškuje,

identifikator grupe – u ovom slučaju servis u kojem se

nalazi, kontejner fabrike – definisano Java kodom

prilikom konfiguracije Kafke i rukovalac u slučaju greške.

4.3. Poređenje primena struktura podataka tipa red

Red kao strukturu podataka koriste i Conductor i Kafka.

Kod Conductor-a zadaci koji čekaju da se izvrše se nalaze

u redu, a kod Kafke se poruke smeštaju u redove.

Conductor koristi FIFO (First-in First-out) strukturu,

realizovanu preko Redis liste kao skladišta podataka.

Kafka koristi log-baziranu distribuiranu append-only

strukturu, što znači da su poruke redosledno upisane po

particiji, ali redosled među različitim particijama nije

zagarantovan i višestruki consumer-i mogu čitati poruku

nezavisno (poruka ne nestaje nakon čitanja).

1339

Tabela 1. Poređenje Orkes Queues i Kafka redova

 Orkes Queues Kafka

Tip reda FIFO lista
Commit

log/append-only

Redosled Globalni FIFO
Definisan

particijom

Čuvanje poruka Da Da

Višestruku

consumer-i
Ne Da

Lokacija

skladišta

U memoriji

(Redis)
Disk

Performanse
Odlično za real-

time zadatke

Odlično za bulk

striming

Ponovno čitanje

poruka
Ne Da

4.4. Komparativna analiza performansi

Uzevši u obzir da performanse sistema mogu zavisiti od

različitih parametara – poput konfiguracije, hardverskih

resursa i memorije, teško ih je kvantifikovati.

Za potrebe ovog rada, projekat čita podatke o

porudžbinama iz pet datoteka, sa različitim brojem

porudžbina.

Tabela 2. Rezultati izvršavanja

Broj

poruka
500 1000 2000 5000 10000

Conductor 10s 15s 26s 49s 95s

Kafka 0.41s 0.31s 0.43s 1.32s 7.24s

Razlika prilikom obrade malog broja podataka nije velika,

ali može se videti da Kafka ima bolje performanse, i

razlika u performansama se povećava sa brojem podataka.

Kako servisi za shipping i notification ne zavise jedan od

drugog definisani su u paraleli. Ovaj paralelizam kod

Conductora-a zahteva i dodatne FORK i JOIN zadatke,

gde prilikom izvršavanja najviše vremena odlazi na JOIN

zadatak. U verziji gde je Conductor tok definisan kao

sekvencijalni (izvršavaju se shipping pa notification

zadatak) dolazi do ubrzanja - u slučaju sa 10000 podataka

vreme izvršavanja je palo sa 95s na 76s. Razlozi zašto je

sekvencijalni tok ispao brži od paralelnog su da je

paralelizam logički, a ne fizički i overhead orkestracije –

svaki zadatak mora biti evidentiran u bazi, status zadatka

se upisuje u skladište metapodataka, radnik ga mora

preuzeti i vratiti rezultat, što znači da kod jednostavnih

tokova overhead postaje veći nego korist paralelizacije.

Na primeru implementacije Kafke, vidi se da Kafka ne

čeka da poruke i od notification i shipping servisa budu

primljene da bi se smatralo da je proces uspešno završen.

Za dobijanje informacija o tome uvodi se još jedan servis

– delivery servis, koji čeka uspešnu obradu obe poruke i

nakon što su obrađene, razmena poruka će biti uspešna.

Sa dodatnim servisom dolazi do značajnog usporavanja

obrade poruka korišćenjem Kafke, gde je za 10000

poruka sada potrebno 29.9s.

5. ZAKLJUČAK

Sam Conductor ne obrađuje podatke direktno, već deluje

kao centralni koordinator koji ih delegira radnicima, koji

zatim vraćaju rezultate po završetku. Ova arhitektura

omogućava sistemu da ostane slabo spregnut, uz potpunu

vidljivost i kontrolu nad dugotrajnim i složenim

procesima. Za razliku od Kafke koja je optimizovana za

brzo i pouzdano prosleđivanje poruka između producer-a

i consumer-a, Conductor je usmeren na orkestraciju

tokova i upravljanje stanjem kroz kompletan životni

ciklus procesa.

U situacijama gde je potrebna jednostavna razmena

poruka ili linearno procesiranje, Kafka je adekvatniji

izbor. Međutim, u slučajevima sa kompleksnijom

logikom, gde je neophodno izvršavanje u paraleli,

ponovni pokušaji, rukovanje greškama, uslovno grananje

ili su zadaci vezani za specifične korisnike Conductor

pruža prednost u pogledu deklarativnog modeliranja,

bolje preglednosti, naprednog upravljanja greškama i

načina upravljanjem zavisnostima između zadataka –

redosled izvršavanja zadataka zavisi samo od definicije

toka, a ne od implementacije u mikroservisima, što

omogućava dinamično ažuriranje poslovne logike, bez

modifikacije pojedinačnih komponenti.

Sami Conductor i Kafka nisu međusobno isključivi –

Kafka može funkcionisati kao centralna infrastruktura za

rukovanje događajima, dok Conductor može da služi kao

„mozak“ procesa, koji orkestrira kako će se ti događaji

obrađivati, transformisati i povezivati u smislene

rezultate. Ovakav hibridni pristup omogućava korišćenje

prednosti obe platforme – Kafke za stabilno prosleđivanje

poruka, a Conductor za strukturiranu orkestraciju tokova

poslovanja, čime se postižu sistemi koji su istovremeno

skalabilni i inteligentni.

6. LITERATURA

[1] N. Alshuqayran, N. Ali and R. Evans, “A Systematic

Mapping Study in Microservice Architecture”, Proc.

of the 9th International Conference on Service

Oriented Computing and Applications, IEEE, 2016.

[2] R. H. Campbell and P. G. Richards, “SAGA: A

system to automate the management of software

roduction”, Proceedings of the May 4-7 1981.

National Computer Conference on AFIPS, pp. 231-

234, 1981.

[3] https://orkes.io/content (pristupljeno u septembru

2024.)

[4] https://en.wikipedia.org/wiki/Apache_Kafka

(pristupljeno u novembru 2024.)

[5] N. Gard, “Apache Kafka”, PACKT Publishing, 2013.

Kratka biografija:

Jelena Ninković je rođena u Šapcu 1993.

godine. Upisala je fakultet 2013. godine,

smer Elektrotehnika i računarstvo.

Diplomirala je 2019. godine sa temom

„Implementacija korisničkog interfejsa

podsistema bankarskog poslovanja

korišćenjem AngularJS razvojnog

okvira“.

1340

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.9

DOI: https://doi.org/10.24867/33BE19Popov

PLATFORMA ZA TRGOVINU ENERGIJOM SA MIKROSERVISNOM

ARHITEKTUROM I AI ANALIZOM TRŽIŠTA

ENERGY TRADING PLATFORM WITH A MICROSERVICES ARCHITECTURE

AND AI MARKET ANALYSIS

Aleksa Popov, Fakultet tehničkih nauka, Novi Sad

Oblast – PRIMENJENO SOFTVERSKO

INŽENJERSTVO

Kratak sadržaj – U radu je prikazana realizacija

aplikacije za automatizovano trgovanje električnom

energijom, koja koristi treniran AI model za predikciju

cena. Rešenje je implementirano upotrebom mikroservisne

arhitekture, a celokupna aplikacija je bazirana na Docker

kontejnerima.

Ključne reči: Mikroservis, AI model, Docker, trgovina

energijom

Abstract – The paper presents the implementation of an

application for automated electricity trading, which uses a

trained AI model for price prediction. The solution is

implemented using a microservices architecture, and the

entire application is based on Docker containers.

Keywords: Microservice, AI model, Docker, energy

trading

1. UVOD

Tržište električne energije se danas menja velikom

brzinom. Ključni pokretač ovih promena je razvoj

pametnih energetskih mreža (Smart Grid) koje

omogućavaju dvosmernu komunikaciju između

proizvođača i potrošača. U skladu sa ovakvim sistemom,

korisnici više nisu samo pasivni potrošači, već mogu i sami

da proizvode i skladište energiju, na primer, pomoću

solarnih panela i kućnih baterija. Ova nova dinamika

dovodi do čestih i naglih promena u cenama energije, čime

dolazi do sve veće potrebe za automatizovanim sistemima

koji će nam olakšati praćenje promena.

Cilj ovog rada je osmišljen da zadovolji potrebe nastale

novom dinamikom trgovine, kreiranjem softverske

platforme koja automatizuje proces trgovine energijom.

Platforma koristi veštačku inteligenciju da predvidi

kretanje cena i na osnovu tih prekdikcija donosi odluke o

kupovini ili prodaji, olakšavajući korisnicima da ostvare

uštedu ili profit. Za osnovu sistema izabrana je

mikroservisna arhitektura, koja omogućava da se

kompleksan problem razloži na manje delove. Na taj način,

stvoren je skalabilan temelj za buduća unapređenja I

dodavanje novih funkcionalnosti.

__

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je bio

dr Aleksandar Bošković, doc.

2. IZBOR ARHITEKTURE SISTEMA

Izbor prave arhitekture je ključan korak u izradi svakog

softvera, koja će uticati na svaku dodatnu promenu na

sistemu u budućnosti. Za ovaj projekat, postojale su dve

glavne opcije pristupa: monolitnog i mikroservisnog.

Monolitna arhitektura podrazumeva da se sve komponente

aplikacije nalaze unutar jedne, jedinstvene celine. Iako je

ovakav pristup jednostavniji za početni razvoj, on sa

sobom nosi veliki broj nedostataka kako sistem raste.

Svaka pa i manja izmena zahteva ponovno testiranje i

implementaciju celokupne aplikacije. Još jedna velika

mana je da je ceo sistem vezan za jednu tehnologiju.

Zbog ovih nedostataka, za ovaj projekat je odabrana

mikroservisna arhitektura [1]. Ona podrazumeva razbijanje

sistema na skup manjih, nezavisnih servisa, gde je svaki

servis odgovoran za jedan specifičan poslovni zadatak.

Ovaj pristup je doneo par ključnih prednosti. Fleksibilnost

tehnologije, koja je bilo od ključnog značaja za AI servis,

nezavisnost i lakše održavanje što omogućava da se svaki

servis razvija, testira i ažurira nezavisno i skalabilnost.

2.1. Način organizacije mikroservisa

Slika 1. Arhitektura sistema sa prikazom komunikacije

1341

https://doi.org/10.24867/33BE19Popov

Unutar mikroservisne arhitekture, primenjeno je nekoliko

ključnih obrazaca kako bi se sistem efikasno sagradio. On

je podeljen na servise po njihovoj poslovnoj funkciji.

Postoje četiri servisa koja izvršavaju glavne funkcije ovog

sistema. Vizualan prikaz ove arhitekture, kao i način na

koji servisi međusobno komuniciraju, dat je na Slici 1.

• User Service: upravlja korisničkim nalozima,

procesima registracije i prijave, kao i izdavanjem

sigurnosnih JWT tokena [4]

• Trade Service: sadrži ključnu poslovnu logiku,

upravlja stanjem baterije i donosi odluke o

trgovini.

• AI Service: funkcioniše kao specijalizovana

komponenta koja na zahtev isporučuje predikcije

cena.

• Data Service: centralna tačka za pristup bazi

podataka, obezbeđujući potrebne podatke svim

ostalim servisima.

“Baza podataka kao servis” (DaaS) [5]: Mikroservis-data

simulira ulogu DaaS provajdera. Umesto da svaki servis

direktno pristupa bazi podataka, svi zahtevi za čitanje ili

pisanje podataka idu isključivo preko ovog servisa. Iako

prestavlja odstupanje od “čistog” mikroservisnog pravila

gde svaki servis ima svoju bazu, ovaj pristup je odabran

kao savršeno rešenje za početnu fazu projekta. Postoje

mnoge prednosti u korišćenju paterna Shared Database [6]

za razvoj nove velike aplikacije koja uključuje

mikroservise.

3. KORIŠĆENE TEHNOLOGIJE I ALATI

Za realizaciju ovog projekta korišćena je kombinacija

modernih tehnologija, gde je svaka odabrana tako da na

najbolji način odgovari na specifične zahteve.

Frontend – Korisnički interfejs je izgrađen pomoću React

biblioteke, koja omogućava kreiranje dinamičkih I

reaktivnih komponenti. Za upravljanje globalnim stanje

aplikacije, korišćen je Redux.

Backend – Osnovu za User, Trade i Data servise čini

Node.js, platforma izabrana zbog svoje efikasnosti u obradi

mrežnih zahteva. Na njoj je korišćen Express.js framework

za lako kreiranje REST API endpointa. Za AI servis

odabran je Python zbog velike dostupnosti biblioteka, dok

je Flask [3] poslužio kao web framework.

Baza podataka – Svi podaci se čuvaju unutar MongoDB,

popularnoj noSQL bazi podataka. Za komunikaciju drugih

servisa i baze korišćen je Mongoose, alat koji olakšava

definisanje modela podataka i rad sa njima.

Veštačka inteligencija – Model za predikciju cena je

implementiran pomoću Scikit-learn biblioteke.

Kontejnerizacija – Ceo sistem je orhanizovan pomoću

Docker [2] platforme, gde je svaki mikroservis zapakovan

u sopstveni izolovani kontejner. Za pokretanje i

međusobno povezivanje svih kontejnera u lokalnom

okruženju korišćen je Docker Compose, čime je postignuta

laka prenosivost i konzistentnost sistema.

4. SPECIFIKACIJA SISTEMA

Ovo poglavlje detaljno opisuje funkcionalnosti sistema iz

korisničkog i sistemskog ugla.

4.1. Korisničko iskustvo i funkcionalnost sistema

Korisnik po prvom ulasku na aplikaciju ima pristup

početnoj strani, gde se nalazi cena energije kao i istorija

cena, i takođe može da pristupi predikcijama i strategijama

trgovine. Pre korišćenja glavne funcionalnosti, potrebno je

prvo kreiranje profila. Nakon uspešne registracije, kao i

prilikom svake sledece prijave, korisnik unosi svoje

kredencijale. Ukoliko je autentifikacija uspešno prošla,

korisniku se generiše JWT (JSON Web Token) [4]. Ovaj

token služi kao digitalni ključ koji korisniku omogućava

siguran pristup svim delovima platforme.

Glavna kontrolna tabla, koja je centralno mesto za sve

aktivnosti, dizajnirana je da bude pregledna i intuitivna, a

njen izgled je prikazan na slici 2. Na tabeli se ističe

grafikon koji vizualizuje istorijke, ali i predviđene cene

električne energije dobijene od AI servisa. Pored ovog

grafa korisnik ima i opciju da pogleda predikcije za ceo

sledeci dan na stranici Market.

Battery stranica korisniku omogućava da registruje svoje

baterije i definise parametre za njih. Svaka baterija pored

svojih vrednosti ima i strategiju trgovine kao i stanje u kom

se nalazi. Pored pasivnog praćenja, korisnik ima

mogućnost I da aktivno upravlja svojim resursima.

Platforma nudi izbor predefinisanih strategija tgovanja

koje korisnik može da dodeli svojim baterijama. Svaka

strategija definiše različit pristup trgovini. I van strategija

korisnik može da upravlja svojim baterijama manuelno.

Ipak, ključna prednost platforme leži u njenom

automatskom radu. Jednom kada korisnik odabere

strategiju, sistem u pozadini preuzima upravljanje. Ovo je

najvažniji sistemski proces, nevidljiv za korisnika, gde

Trade Service neprestano analizira predikcije cena

dobijene od servisa i u skladu sa aktivnom strategijom, on

samostalno donosi odluke o najboljem trenutnom stanju

baterije.

Sve spomenute automatske akcije se beleže kao transakcije

i ažuriraju stanje korisnikovog virualnog novčanika. Svi

ovi podaci su vidljivi na user stranici, i korisnik može uvek

da doda sredstva na spomenut novcanik. Uplata je ovde

obezbedjena Google reCaptcha-om v3 [8].

4.2. Dizajn model podataka

Osnovu sistema čine Mongoose modeli koji definišu

ključne entitete I njihove međusobne veze. Statička

struktura ovih modela, koja predstavlja temelj celog

sistema, detaljno je prikazana na klasnom dijagramu na

slici 3.

Kao što dijagram ilustruje, User model je centralni entitet

koji sadrži osnovne informacije o korisniku I njegovom

novčaniku. On je direktno povezan sa Battery modelom,

omogućavajući da jedan korisnik poseduje više baterija,

kao i sa TransactionHisotry modelom, koji čuva zapise o

svim njegovim finansijkim aktivnostima. TradingStrategy

model povezan je sa baterijom.

1342

Slika 2. Izgled glavne kontrolne table aplikacije

Slika 3. Klasni dijagram

5. MODEL ZA PREDIKCIJU CENA

Za potrebe ovog projekta izabran je model Linearne

Regresije [7] implementiran pomoću Scikit-learn

biblioteke. Iako postoje kompleksniji modeli za vremenske

serije, ovaj model je odabran iz nekoliko praktičnih

razloga. On predstavlja odličnu polaznu osnovu I veoma je

brz za treniranje. Takođe rezultati su lako razumljivi, što

znači da se može jasno rezumeti kako svaka ulazna

karakteristika utiče na krajnju predikciju. Za prototip

sistema čiji je cilj dokazivanje koncepta, ove prednosti su

bile presudne.

5.1. Proces treniranja

Proces rada modela se odvija u dve faze:

• Faza treniranja: U ovoj fazi, model se trenira na

istorijskim podacima. Ulazni podaci su

numeričke karakteristike, a ciljna vrednost koju

model uči da predvidi je cena. Pozivom fit

metode, model pronalazi matematičku formulu,

odnosno linearnu vezu izmedju ulaznih

karakteristika i cene. Jednom istreniran model,

odnosno naučeni koeficijenti, čuvaju se u .pkl

fajlu pomoću Joblib biblioteke.

• Faza predikcije: Kada Trade Service zatraži

predikciju, učitava se sačuvani model iz .pkl fajla.

Zatim se kreiraju buduće vremenske oznake I na

njima se primenjuje isti proces inženjeringa

karakteristika. Tako pripremljeni podaci se

prosleđuju modelu, koji pomoću naučene

formule izračunava i vraća predviđene cene za

naredni dan.

6. ZAKLJUČAK

Na osnovu iznetih rezultata, može se zaključiti da primena

mikroservisne arhitekture predstavlja efikasno rešenje za

razvoj kompleknse platforme za trgovinu energijom.

Pokazalo se da je ovakav pristup značajno fleksibilniji od

monolitnog, naročito u domenu kombinovanja tehnologija.

Korišćenje pragmatičnog obrazca kao što je Daas se

pokazalo kao dobar kompromis koji je ubrzao početni

razvoj kao i testiranje aplikacije. Potrebno je u buducnosti

istražiti da li je ovakav model pouzdan i za globalnu

upotrebu ili je “tradicionalni” pristup ipak bolji.

U daljem radu, primarni fokus bi se mogao staviti na

unapređenje prediktivnog modela. Istraživanje upotrebe

primene napredinijih modela, poput LSTM (Long Short-

Term Memory) neuronskih mreža, koje su specijalizovane

za analizu vremenskih serija. Ovo bi bilo od velikog

značaja za preciznost same platforme, a samim tim i

profitabilnosti iz automatske trgovine i pouzdanosti celog

sistema.

Još jedan ocigledan korak jeste hostovanje platforme na

1343

nekom od cloud servisa i detaljno testiranje performansi u

realnom okruženju, što bi potvrdilo spremnost sistema za

praktičnu upotrebu.

4. LITERATURA

[1] Sam Newma – Building Microservices: Designing

Fine-Grained Systems

[2] Docker -

https://www.techtarget.com/searchitoperations/definiti

on/Docker

[3] Flask - https://flask.palletsprojects.com/en/stable/

[4] JWT Token - https://www.geeksforgeeks.org/web-

tech/json-web-token-jwt/

[5] DaaS - https://www.mongodb.com/solutions/use-

cases/data-as-a-service

[6] Pattern: Shared database -

https://microservices.io/patterns/data/shared-

database.html

[7] Linear Regression -

https://www.geeksforgeeks.org/machine-learning/ml-

linear-regression/

[8] reCAPTCHA -

https://developers.google.com/recaptcha/docs/v3

Kratka biografija:

Aleksa Popov rođen je u Zrenjaninu

1998. god. Završio je osnovne

akademske studije na Fakultetu

tehničkih nauka 2021. godine, smer

Primenjeno softversko inženjerstvo.

Nakon toga upisao je iste godine

master studije, smer Primenjeno

softversko inženjerstvo.

Kontakt:popovaleksa123@gmail.com

1344

https://www.techtarget.com/searchitoperations/definition/Docker
https://www.techtarget.com/searchitoperations/definition/Docker
https://flask.palletsprojects.com/en/stable/
https://www.geeksforgeeks.org/web-tech/json-web-token-jwt/
https://www.geeksforgeeks.org/web-tech/json-web-token-jwt/
https://www.mongodb.com/solutions/use-cases/data-as-a-service
https://www.mongodb.com/solutions/use-cases/data-as-a-service
https://microservices.io/patterns/data/shared-database.html
https://microservices.io/patterns/data/shared-database.html
https://www.geeksforgeeks.org/machine-learning/ml-linear-regression/
https://www.geeksforgeeks.org/machine-learning/ml-linear-regression/
https://developers.google.com/recaptcha/docs/v3
mailto:popovaleksa123@gmail.com

Зборник радова Факултета техничких наука Нови Сад

УДК: 4.9

ДОИ: https://doi.org/10.24867/33BE20Kuzmanovic

КОМПАРАТИВНА АНАЛИЗА ОСНОВНИХ КАРАКТЕРИСТИКА И

ПЕРФОРМАНСИ БРОКЕРА ПОРУКА NATS, RABBITMQ И APACHE

ROCKETMQ

A COMPARATIVE ANALYSES OF THE MAIN CHARACTERISTICS AND

PERFORMANCE OF NATS, RABBITMQ AND APACHE ROCKETMQ MESSAGE

BROKERS

Огњен Кузмановић, Факултет техничких наука, Нови Сад

Област - ЕЛЕКТРОТЕХНИКА И РАЧУНАРСТВО

Кратак садржај – У овом раду дато је поређење

основних карактеристика и перформанси брокера

порука NATS, RabbitMQ и Apache RocketMQ. Анализа

перформанси урађена је кроз мерење кашњења порука

и протока порука. За сваки брокер порука извршен је

скуп тестова на платформи за рачунарство у облаку

Azure. Конфигурација сваког теста се добила

комбиновањем неколико различитих величина и броја

порука. Зарад објективне компарације перформанси,

осмишљен је и направљен посебан алат у програмског

језику Python.

Кључне речи: Брокер порука, поређење перформанси,

NATS, RabbitMQ, Apache RocketMQ.

Abstract - This paper compares the basic characteristics

and performance of NATS, RabbitMQ and Apache

RocketMQ message brokers. Performance is measured

through message lattency and message throughput. Tests

were conducted on the Azure cloud platform. The

configuration of each test was obtained by combining

several different message sizes and numbers. To ensure

objective comparison, a custom Python-based tool was

developed.

Keywords: Message broker, performance comparison,

NATS, RabbitMQ, Apache RocketMQ.

1. Увод

Временом, услед повећаног броја корисника

интернета, расла је и количина података који су

сервиси, који опслужују кориснике, морали да обраде.

Стога, поједини дистрибуирани системи постојали су

све комплекснији са све више повезаних компоненти

које се прикључују и искључују из система са

географски различитих локација, а све то ради

опслуживања све више надолазећих корисника са

различитих локација.

__

НАПОМЕНА:

Овај рад проистекао је из мастер рада чији је

ментор био др Владимир Димитриески, ванредни

професор.

У таквим системима, уско повезани ентитети који

међусобно комуницирају, у комбинацији са факторима

попут непоузданости мреже и хетерегености

различитих апликација могу да наштете трајности и

поузданости система [1]. Из ових разлога, ексклузивно

коришћење само синхроног модела комуникације

„захтев/одговор“ не би пратило динамичну природу и

потребе поменутих дистрибуираних система [2]. Како

би се надоместиле мане синхроног модела

комуникације, на значају је добио асинхрон модел

комуникације који нуди већи ниво флексибилности, и

то модел размене порука „објава/претплата“ са

брокером порука као посредником у опслуживању

порука јер не захтева да процеси који су учесници у

размени порука буду континуирано активни.

Током претходног периода, настао је велики број

различитих система за размену порука попут Apache

Kafka, ActiveMQ, Apache Pulsar, NSQ итд. За предмет

овог рада одлучено је да буду обрађене следеће

имплементације: NATS, RabbitMQ и Apache RocketMQ.

Поменути брокери порука истичу се тиме да су јавно

доступни (енгл. open source), популарни су у

инжењерско-академској заједници, нуде диверзитет

различитих особина, а такође аутор није пронашао

ниједан рад који је акценат ставио на баш њих.

Поред теоријске обраде поменутих брокера порука,

циљ овог рада било је и мерење перформанси брокера

порука на платформи за рачунарство у облаку Azure,

као и крајње извођење закључака о томе у којим

ситуацијама би требало користити који брокер порука.

2. NATS

Према [3], NATS представља инфраструктурну

компоненту модерних дистрибуираних система која

омогућава размену података између апликација и

сервиса у виду порука. NATS услуге су омогућене од

стране више NATS серверских процеса који су

међусобно повезани и тако креирају NATS сервисну

инфраструктуру. Кроз апликативни код дефинишу се

клијенти који се повезују на NATS серверске процесе и

њима објављују поруке или од њих примају поруке на

које су претплаћени.

1345

Основни скуп функционалности које NATS нуди

назива се Core NATS. На ову, базичну, NATS

компоненту може се гледати као на једноставан систем

за размену порука „објава/претплата“. Прималац

порука ће поруке примати само ако су и он и генератор

порука повезани на NATS у истом моменту. Основни

скуп функционалности може се проширити кроз

JetStream компоненту која нуди перзистентни

дистрибуирани систем који омогућава олабављенију

спрегу између генератора и конзумента порука, као и

додатан скуп функционалности попут репликација

порука, складишта кључ/вредност итд.

3. RabbitMQ

RabbitMQ је популаран брокер порука отвореног кода,

написан у програмском језику Erlang, јавно доступан

од 2007. године. Имплементира неколико различитх

протокола међу којима су AMQP 0-9-1 и МQТТ.

Архитектура RabbitMQ брокера порука изгледа тако да

се с једне стране налазе генератори порука, а са друге

примаоци порука. Генератор поруке креира поруку

којој придодаје кључ за трасирање (енгл. routing key)

који шаље ка брокеру, а брокер прима поруку кроз

компоненту за размену порука (енгл. exchange),

односно размењивач порука. За размењивач порука

потенцијално може бити везано много редова чекања

уз помоћ различитих техника увезивања које зависе од

конкретног типа размењивача поруке.

Табела 1. Табеларна компарација неперформатних

категорија посматраних брокера порука

Особина NATS RabbitMQ RocketMQ

Година

настајања
2011 2007 2012

Jeзик Go Erlang Java

Гаранција

доставе

Најмање

један/најви

ше

један/тачно

један

Најмање

један/

највише

један

Најмање

један

Гаранција

редоследа

ФИФО

редослед

по

генератору

порука

Редослед у

реду

чекања,

ФИФО

редослед

Редослед у

реду

чекања,

ФИФО

редослед

Доступност Висока Висока Висока

Трансакције Не Да Да

Скалабилност Висока Слаба Добра

Протоколи
NATS

протокол

HTTP,

MQTT,

AMQP,

STOMP

MQTT

Компаније [5]

[6]

Nutanix,

MasterCard

Reddit,

CircleCI

Alibaba,

ByteDance

Размењивач порука има задатак да дистрибуира копије

порука ка редовима чекања у зависности његовог типа,

од тога како су редови чекања увезани са њим, као и

кључа за трасирање који је придодат порукама које се

трасирају. С друге стране, примаоци порука

претплаћени су на редове чекања и конзумирају

поруке у њима.

4. Apache RocketMQ

RocketMQ је брокер порука креиран од стране

компаније Alibaba како би решили проблеме

перформанси које су имали са ActiveMQ брокером

порука, а који су дошли до изражаја тек онда када је

знатно порасла потражња за услугама ове компаније.

Према [4], RocketMQ добио је на популарности услед

његове једноставне архитектуре, великој лепези

функционалности, као и изузетној скалабилности.

Аутори овог брокера порука сматрају да је он постао

индустријски стандард када је реч о порукама у којима

се налазе финансијски подаци за које је неопходна

изузетна доза сигурности преноса и обраде.

5. Поређење неперформантних особина

У табели 1, дато је поређење најзначајних

неперформантних особина брокера порука које могу

имати утицај на избор конкретног брокера порука за

имплементацију у неки софтверски систем.

6. Тестирање перформанси брокера порука

За потребе компаративне анализе перформанси

брокера порука упоређене су две перформантне

категорије: кашњење порука (енгл. latency), као и

проток порука (енгл. throughput). Како би се по ове две

категорије добиле конкретне и упоредиве метрике,

сваки брокер порука био је подвргнут серији тестова

на пларформи Azure. Тестови су извршавани

употребом алата посебно направљеног само за потребе

овог рада.

6.1. Хардверско-софтверско окружење

За потребе тестирања перформанси брокера порука,

коришћене су виртуелне машине Standard D4ds v4 које

нуди платформа Azure у склопу Azure Virtual Machines

сервиса. Овај тип виртуелних машина нуди следећу

спецификацију: 4 vCPUs / 16GiB RAM / 30 GiB HDD /

6400 IOPS / Ubuntu 22.04. Као физичка локација

машина, изабран је регион северне Европе, у зони 3.

Зарад олакшаног покретања изолованих окружења у

којима су се брокери порука извршавали, на машину

су били инсталирани алати Docker v27.3.1 и Docker

Compose v2.29.6. Docker контејнери нису били

условљени ограничењима ресурса.

Тестирање се вршило на једној виртуелној машини

како би се обезбедило добијање фер резултата на које

не утиче кашњење мреже.

6.2. Параметри тестирања

Као предмети тестирања, у обзир су се узели

најзначајније перформантне метрике у свету брокера

порука [7], а то су кашњење порука, као и проток

порука. За сваку од поменутих категорија тестирања,

тестирање се вршило за три могуће величине поруке

како би се установило да ли и како величина порука

утиче на перформансе брокера порука. Величине

порука:

1346

1. Мала порука – 1KB

2. Средња порука – 100KB

3. Велика порука – 1MB

Свака порука је садржала низ унапред насумично

генерисаних карактера (ASCII карактери, цифре, као и

знакови интерпункције).

Као додатан параметар тестирања употребљен је број

порука како би се установило да ли постоје промене у

перфомансама за различите редове величина броја

порука. За сваку величину порука, три различите

количине порука су биле тестиране:

1. Мали број порука - 1.000

2. Средњи број порука - 10.000

3. Велики број порука - 100.000

За сваку комбинацију поменутих параматера

тестирања, извршено је најмање три теста. У случају

да се међу извршена три теста нашао резултат који

значајно одступа од осталих резултата, извршено је

још три теста. Као крајњи резултат узимала се

просечна вредност три најбоља резултата.

6.3. Спецификација брокера порука

У наставку су дате тачне верзије коришћених брокера

порука:

- NATS v2.10.14

- RabbitMQ v3.13.2

- Apache RocketMQ v5.2.0

Код свих сценарија тестирања генератор порука,

брокер и прималац порука су били заједно на једној

машини. Модел комуникације који је био коришћен је

„објава/претплата“.

6.4. Начин тестирања и бележења резултата

За потребе свих описаних тестирања и зарад

максимално објективних резултата, креиран је посебан

алат у програмском језику Python. Први корак у раду

са алатом јесте конфигурисање параметара теста кроз

JSON конфигурациони фајл. Кроз овај фајл, корисник

има опцију да подеси жељени брокер порука, величину

и број порука. Корисник задаје команду за покретање

конзумента порука који се повезује са брокером

порука и креће да ослушкује поруке. У том тренутку,

конзумент у терминалу исписује поруку да је спреман

и корисник може приступити покретању генератора

порука. На основу параметара из конфигурационог

фајла који се односе на тип брокера порука, број и

величину порука, генератор порука се инстацира и

креће да генерише поруке. Конзумент порука их прима

и обрађује. Оба процеса задужена су за вођење бриге о

прикупљању метрика током извршавања теста, а потом

и њихово чување. Након извршења теста, потребно је

покренути парсер добијених метрика ради извлачења

информација везаних за мерене категорије. Визуелни

приказ архитектуре описаног алата дат је на слици 1.

Код је доступан на платформи GitHub и може му се

приступити путем [8].

Слика 1. Визуелни приказ архитектурe алата за

извршавање тестова

7. Резултати

У наставку су дати резултати брокера порука у

контексту кашњења и протока порука.

7.1. Кашњење

У табели 2, приказани су брокери порука сортирани по

резултатима које су остварили у сваком тесту.

Табела 2. Табеларни приказ резултата кашњења

порука брокера порука

 Мала порука
Средња

порука

Велика

порука

Број

порука
1к 10к 100к 1к 10к 100к 1к 10к 100к

RabbitMQ 1 1 1 2 3 3 3 3 2

NATS 3 3 2 3 2 2 2 2 1

RocketMQ 2 2 3 1 1 1 1 1 3

Оно што се може закључити евалуацијом резултата

мерења кашњења порука јесте, да је целокупно

гледано, Apache RocketMQ показао најбоље резултате

са убедљиво најмањим кашњењем код средње и велике

величине величине порука за све количине порука (уз

недостатак резултата са велику величину порука и

обим од 100.000 порука), док је за мале величине

порука показао минимално лошије резултате од

најбољег RabbitMQ брокера порука. Разлог за веома

ниско кашњења се првенствено огледа у томе што су

аутори Apache RocketMQ брокера уложили велике

напоре да направе што више оптимизација у

извршавању процеса. Према [9] [10], знатна

унапређења су направљена на пољу оптимизације

извршавање процеса унутар Java виртуелне машине,

као и на пољу смањења кашњења у закључавању

ресурса (енгл. lock latency) узевши у обзир да је

закључавање ресурса једна од основих потреба у

вишенитним окружењима. RabbitMQ је показао

најбоље резултате код мале величине порука, док је

код средње и велике величине порука показао веома

лоше резултате. Разлог за његове лошије резултате

може се тражити у томе да је RabbitMQ фокусиран на

процесирање порука у групама (енгл. batches) како би

се побољшао проток на уштрб кашњења. NATS брокер

порука, иако није показао најбоље резултате ни у

једном тесту, био је конзистентан у резултатима.

1347

7.2. Проток порука

У табели 3, приказани су брокери порука сортирани по

резултатима које су остварили у сваком тесту мерења

протока слања и конзумирања порука. Резултати су

код оба предмета мерења били идентични.

Табела 3. Табеларни приказ резултата протока слања

и конзумирања порука

 Мала порука
Средња

порука

Велика

порука

Број порука 1к 10к 100к 1к 10к 100к 1к 10к 100к

RabbitMQ 2 2 2 1 1 1 1 1 1

NATS 1 1 1 2 2 2 2 2 2

RocketMQ 3 3 3 3 3 3 3 3 3

Евалуацијом резултата мерења протока порука се

може закључити да је Apache RocketMQ показао

убедљиво најгоре резултате у оба посматрана случаја

протока порука. Објашњење за овакво понашање би се

могло пронаћи у томе што RocketMQ чува сваку

поруку на диск, док то није предефинисано понашање

код остала два брокера порука. NATS је приказао

изузетно добре резулате са врло високим протоком

порука код мале величине порука. Са друге стране,

RabbitMQ приказао је конзистентне и најбоље

резултате код свих мерења за средњу и велику

величину порука што је и логично узевши у обзир

његову усмереност на обраду у групама.

8. Закључак

У овом раду, извршено је поређење NATS, RabbitMQ и

Apache RocketMQ брокера порука кроз њихове

перформантне и неперформантне категорије. У оквиру

перформатних категорија, акценат је стављен на

кашњење и проток порука, као две најзначајније

категорије код брокера порука. Како би се тестирало

што више варијација реалних сценарија коришћења

самих брокера, сваки брокер порука тестиран је кроз

два параметра тестирања – величина и број порука.

Зарад добијања што објективнијих резултати, креиран

је посебан алат у програмском језику Python који

омогућава инстанцирање примаоца и генератора

порука на основу конфигурационих параметара теста

дефинисаних кроз JSON конфигурациони фајл,

бележење метрика, њихово чување, као и парсирању у

смислене резултате који се могу записати и тумачити.

Сви чиниоци алата били су покренути на виртуелној

машини Azure платформе на којој су тестови и

извршавани. Оно што се може закључити из крајње

анализе резултата мерења јесте да ниједан од

посматраних брокера порука није идеалан за све

сценарије употребе. Приликом одабира коришћења

једног од посматраних брокера порука, препорука

аутора јесте да се првенствено сагледа перформантна

категорија која је битнија за систем који се развија, као

и очекивана величина порука. На основу ова два

параметра може се направити следећа матрица одлука:

1. Битност – минимално кашњење поруке

a. Мала величина порука – RabbitMQ

b. Средња и велика величина порука –

Apache RocketMQ

2. Битност – максималан проток порука

a. Мала величина порука – NATS

b. Средња и велика величина порука –

RabbitMQ

У овом раду, акценат је стављен на извршавање на

једној машини како би се искључио утицај кашњења

мреже на перформансе. Стога би будући правац

развоја могао бити мерење перформанси брокера

порука у дистрибуираном окружењу.

9. Литература

[1] L. Magnoni, "Modern Messaging For Distributed

Systems," 2015.

[2] K. S. E. Philippe Dobbelaere, "Kafka versus

RabbitMQ," 2017.

[3] "Oficijalna veb stranica NATS dokumentacije,"

[Online]. Available: https://docs.nats.io/nats-

concepts/overview.

[4] "Zvanična dokumentacija Apache RocketMQ

brokera poruka," [Online]. Available:

https://rocketmq.apache.org/docs/. [Accessed 03

2024].

[5] S. Raje, "Performance Comparison of Message

Queue Methods," 2019.

[6] "HG Insights," [Online]. Available:

https://discovery.hgdata.com/. [Accessed 05

2024].

[7] "Benchmarking Apache Pulsar, Kafka, and

RabbitMQ," 21 08 2020. [Online]. Available:

https://www.confluent.io/blog/kafka-fastest-

messaging-system/. [Accessed 05 2024].

[8] O. Kuzmanovic, "Programski kod korišćen za

izvšavanje testova".

[9] Y. Z. A. G. Y. Guo Fu, "A Fair Comparison of

Message Queuing Systems," IEEE Access, 2020.

[10] A. Shi, "DZone," [Online]. Available:

https://dzone.com/articles/apache-rocketmq-how-

did-we-lowered-latency. [Accessed 10 2024].

Кратка биографија:

Огњен Кузмановић рођен je 1998.

године у Новом Саду. Основну

школу „Светозар Марковић Тоза”

завршио је 2013. године као

носилац дипломе „Вук Караџић”.

Исте године уписује природно-

математички смер у гимназији

„Јован Јовановић Змај” коју

завршава 2017. године. Потом,

уписује Факултет техничких

наука, одсек Рачунарство и аутоматика. Све

предвиђене испите положио је са просечном оценом

9,68.

1348

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.9

DOI: https://doi.org/10.24867/33BE21Kasikovic

KOMPARATIVNA ANALIZA AGENTSKIH RAG PRISTUPA U KONTEKSTU

IZGRADNJE KONVERZACIONOG ASISTENTA

COMPARATIVE ANALYSIS OF AGENTIC RAG APPROACHES IN THE CONTEXT OF

BUILDING A CONVERSATIONAL ASSISTANT

Ivana Kašiković, Aleksandar Kovačević, Fakultet tehničkih nauka, Novi Sad

Oblast – SOFTVERSKO INŽENJERSTVO

Kratak sadržaj – U okviru rada je predstavljeno

istraživanje i implementacija dvije verzije konverzacionog

asistenta. Fokus je na konceptu Retrieval Augmented

Generation (RAG) koji pored „ugrađenog“ koristi i

eksterno znanje za generisanje odgovora i interakciju sa

korisnikom. Prva implementacija koristi osnovnu

kombinaciju dobavljanja znanja i generisanja odgovora, a

zatim je razvijen složeniji pristup sa agentima i

specijalizovanim alatima za obradu upita. Cilj je detaljno

opisati proces izrade sistema, uporediti arhitekture po

kompleksnosti, proširivosti, performansama i relevantnosti

odgovora. Evaluacija je prvo rađena ručno, a kasnije

automatizovana pomoću Ragas okvira. Na kraju su

istaknute prednosti i mane oba pristupa, primjeri njihove

primjene te prijedlozi za unapređenje i dalja istraživanja.

Ključne reči: RAG, Vanilla RAG, agentski RAG, agenti,

alati, konverzacioni asistent

Abstract – As part of this paper, we present research and

the implementation of two versions of a conversational

assistant. The focus was on exploring Retrieval-Augmented

Generation (RAG), which uses external knowledge in

addition to built-in knowledge to generate responses and

interact with users. The implementation started with a

simple version that combines retrieval and generation.

Afterwards, a more advanced approach was developed

using agents and specialized tools for query processing.

The goal of the paper is to provide a detailed description

of the system development process, compare the

architectures in terms of complexity, scalability,

performance, and answer relevance. Initially, system

evaluation was performed manually, while later

performance analysis was automated using the Ragas

framework. Finally, the advantages and disadvantages of

both approaches are highlighted, along with scenarios

where each would be appropriate. The paper concludes

with suggestions for improvements and directions for

future research.

Keywords: RAG, Vanilla RAG, agentic RAG, agents,

tools, chatbot

__

NAPOMENA: Ovaj rad proistekao je iz master rada

čiji mentor je bio dr Aleksandar Kovačević, red. prof.

1. UVOD

Arhitektura sistema konverzacionih asistenata,

organizacija komponenti, veliki jezički model i još mnogo

drugih stvari značajno utiču na ponašanje I rezultate

pomenutog sistema. LLM—ovi [1] iako veoma moćni alati

imaju ograničeno znanje, tj. znanje na kome su se

obučavali što je dosta umanjivalo vrijednost

konverzacionih asistenata koji su se bazirali isključivo na

njima. Kao rješenje za taj problem uveden je RAG [2]

koncept, pomoću kog se stvara mogućnost da se prilikom

generisanja odgovora uključi i neko eksterno znanje koje

do tada nije bilo poznato velikom jezičkom modelu.

Brzim razvojem ove oblasti stvorene su različite

implementacije ovih sistema. Stoga, cilj ovog rada je da

izvrši komparativnu analiza izmedju najjednostavnije

verzije i kompleksnijeg pristupa implementiranog uz

pomoć agenta i specializovanih alata, pri čemu smo prvo

dali detaljan opis arhitekture oba rješenja. Kao rezultat

imaćemo realnu sliku o tome koliko je implementacija kog

sistema kompleksna, koliko pouzdane i relevantne

odgovore možemo očekivati za tu količinu utrošenog

vremena i na taj način ćemo moći procijeniti koja vrsta

arhitekture i implementacije bi bila adekvatna za koji slučaj

upotrebe.

U drugom poglavlju biće opisane teorijske osnove RAG

sistema kao koncepta, ali i osnove jednostavnog i

agentskog RAG-a. Naredno poglavlje baviće se detaljnim

opisivanjem procesa implementacije i koraka koji su

sprovedeni kako bismo došli do krajnjih verzija sistema.

Nakon toga slijedi poglavlje gdje smo opisali proces

evaluacije. U petom poglavlju diskutovali smo o

rezultatima sistema i data su potencijalna objašnjenja za

određene metrike i neka ponašanja. Posljednje poglavlje

donosi zaključak sa sažetkom istraživanja.

2. TEORIJSKE OSNOVE

U ovom poglavlju biće date teorijske osnove RAG

koncepta, kao i teorijske osnove oba pristupa za

implementaciju koji će kasnije biti i realizovana.

2.1. Šta je RAG?

Retrieval-Augmented Generation (RAG) је

arhitektonski obrazac koji kombinuje dvije bitne

komponente, а то sу: pretraga (retrieval) relevantnih

informacija iz izvora i generacija (generation) odgovora

pomoću velikog jezičkog modela. Uvođenjem ovog

koncepta riješili smo problem stagnirajućeg znanja, niske

1349

https://doi.org/10.24867/33BE21Kasikovic

objašnjivosti i otvorili smo mogućnost generisanja

odgovora i na osnovu domenski specifičnog znanja.

2.2 Eksterno znanje i njegova integracija u RAG sistem

Eksterno znanje predstavlja osnovni benefit RAG

koncepta. Može biti bilo koji struktuirani ili nestruktuirani

tekst, a sama procedura indeksiranja je ista i svodi se na

pretprocesiranje teksta i podjelu na manje segmente, zatim

generisanje embedding reprezentacija od tih elemenata i

čuvanje u odabranu vektorsku bazu. Nakon toga, proces

pretrage zasniva se na konvertovanju korisničkog upita u

embedding reprezentaciju i vrši se pretraga po sličnost gdje

su semantički slični vektori nalaze blizu u prostoru [3].

2.3 Mehanizmi promptovanja

Prompt [4] je jedna od ključnih stavki koje utiču na kvalitet

generisanog odgovora. To predstavlja niz instrukcija koje

se prosljeđuju velikom jezičkom modelu tokom

inferencije. Za što bolje rezultate dobra je praksa

ispoštovati karakteristike efektivnog prompta, a to su da

bude jasan i precizan, da u okviru prompta bude uključen

relevantan kontekst, kao i da instukcije budu neutralne tj.

da ne sugerišu neki odgovor i da ne nameću određeno

mišljenje i stav.

Sa druge strane, postoje i različite tehnike i strategije za

unapređenje prompta posebno u slučaju RAG-a od kojih

možemo izdvojiti instruction based promptovanje, few

shot promptovanje itd.

2.4 Vanilla RAG

Vanilla RAG predstavlja osnovni i najjednostavniji vid

RAG koncepta. Ovu implementaciju odlikuje linearan tok

obrade upita, prvo se pokreće proces dobavljanja

relevantnog konteksta, a zatim se na osnovu toga i generiše

odgovor. U nastavku ćemo istaći osnovne osobine ovog

pristupa.

2.4.1 Ključne osobine

Karakterisične osobine značajne za ovaj pristup su

jednostavnost implementacije i statička logika. To znači da

se ovakvi sistemi poprilično brzo stavljaju u upotrebu i da

se svi upiti obrađuju na isti način. Kao posljedica svega

toga možemo zaključiti da bi debagovanje ovakvog

sistema bilo veoma lako.

2.4.2 Nedostaci

Iako je Vanilla RAG veoma jednostavan za

implementaciju, ovo rješenje imamo određenih mana,

pogotovo kada imamo kompleksnije upite. Glavni problem

je što nema mogućnost adaptacije logike na osnovu upita,

tako da ukoliko postavimo neki složeni upit vrlo vjerovatno

nećemo dobiti adekvatan i složen odgovor.

2.4.3 Praktična primjena

Kao posljedica pomenutih osobina možemo reći da bi ova

implementacija najbolje funkcionisala u manjim

okruženjima gdje upiti nisu toliko česti i kompleksni, a

baza znanja je statična i nije podložna čestim promjenama.

2.5 Agentski RAG

Agentski RAG [5] predstavlja napredni oblik RAG

arhitekture u kojoj ključnu ulogu ima inteligentni agent,

odnosno entitet sposoban za donošenje odluka, upravljanje

kontekstom i strategijsko izvršavanje zadataka u više

koraka uz pomoć alata.

2.5.1 Agenti

Agenti [6] predstavljaju samostalne jedinice koje imaju

sposobnost da rezonuju, donose odluke i izaberu adekvatne

alate za izvršavanje određenih akcija. Postoje različite vrste

agenata u zavisnosti od toga koji je njihov cilj. U okviru

ovog rada koristiće se ReAct agent koji može da rezonuje

i na osnovu međurezultata može da mijenja strategiju i

prilagođava je.

2.5.2 Alati

Alati [7] su pomoćne strukture koje agent koristi tokom

procesa odlučivanja. U suštini, to je interfejs za funkcije

koje mogu da dobavljaju određeno znanje ili izvršavaju

neku akciju adekvatnu za obradu upita. Bitna stavka

prilikom specificiranja nekog alata je opis, na osnovu koga

inteligenti koordinator, agent zna šta je uloga tog alata i u

zavisnosti od toga ga pozove ili ne.

2.5.3 Ključne osobine

Ključne osobine karakteristične za agentski RAG su

modularnost i fleksibilnost. U nastavku će biti prikazano

da se cijela arhitektura ove implementacije sastoji od

komponenti, tako da je veoma praktično proširiti neku

funkcionalnost, zamijeniti neku komponentu. Pored toga,

ima mogućnost orkestracije složenih zadataka i generisanje

adekvatnog odgovora i za kompleksnije zadatke.

2.5.4 Nedostaci

S obzirom da raste kompleksnost sistema, to sa sobom

povlači neke mane kao što je složenost implementacije. Za

kreiranje ovakvog sistema potrebno je više vremena i javlja

se povećana latencija pošto se izvršava veći broj koraka.

Povezano sa tim, javlja se i problem većih troškova

izvršavanja.

2.5.5 Praktična primjena

Upotreba agentskog RAG-a je opravdana u sistemima koji

zahtjevaju složenije radnje i laku proširivost sistema

dodatnim alatima. Npr. To bi bio slučaj u velikim

kompanijama koje zahtjevaju pretragu dokumentacije,

generisanje izvještaja slanje mejlova itd.

3. METODOLOGIJA

U ovom poglavlju opisane su metode i koraci koji su

primijenjeni tokom rada na projektu, čiji je cilj bio

istraživanje i implementacija RAG sistema. Projekat je

obuhvatio specifikaciju dizajna i implementaciju obje vrste

RAG sistema. U nastavku slijedi detaljniji opis.

3.1 Specifikacija zahtjeva

Projekat je realizovan korištenjem programskog jezika

Typescript i Nodej.js radnog okvira, pri čemu je serverski

dio organizovan upotrebom modularne monolitne

arhitekture. Korisnički interfejs je razvijen u React-u sa

ciljem da omogući jednostavnu interakciju sa sistemom.

Aplikacija je odrađena za imaginarnu kompaniju koja bi

imala mogućnost da pretražuje kompanijsku

dokumentaciju u jednostavnijoj verziji sistema, a u

agentskoj verziji ta implementacija je proširena i pristupom

internetu i mogućnošću riješavanja matematičkih izraza

1350

preko aplikacije. Prvo je dat opis pripreme podataka za

testiranje aplikacije, a onda ćemo opisati i konkretno

implementaciju.

3.2 Indeksiranje dokumenata

Prvi koraci u razvoju sistema su indeksiranje dokumenata

i priprema eksternog znanja koje će se koristiti za testiranje

ovih sistema. Za čuvanje generalnog znanja odlučili smo

se za vektorsku bazu Zilliz [8]. Ovaj proces započinje

raščlanjivanjem dokumenata na manje segmente, u našem

slučaju vršena je semantička podjela teksta po pasusima.

Sljedeći korak je kreiranje vektorskih reprezentacija od tih

pasusa upotrebom modela za embedovanje. U ovom

slučaju koristili smo OpenAIEmbeddings, koji u pozadini

podrazumjevano koristi napredni model text-embedding-

3-small.

Posljednji korak pri indeksiranju dokumenata je čuvanje u

vektorsku bazu. Odabrana vektorska baza nudi više načina

ažuriranja baze, a u ovom radu iskorišten je inkrementalni

način ažuriranja baze, pri čemu se tokom ažuriranja unose

samo novi ili izmijenjeni segmenti, dok se zastarjeli

automatski uklanjaju.

3.3 Implementacija Vanilla RAG-a

Vanilla RAG arhitektura implementirana je kao prva

verzija konverzacionog asistenta i kombinuje proces za

dobavljanje relevantnih dokumenata i proces generisanja

odgovora. Proces dobavljanja relevantnih dokumenata

oslanja se isključivo na veliki jezički model i nema

mogućnost rezonovanja. Za implementaciju korišten je

Langchain [9] radni okvir i ChatGPT Turbo 3.5. Slika

čitave arhitekture prikazana je na slici 1.

Slika 1. Arhitektura Vanilla RAG-a

3.4 Implementacija agentskog RAG-a

Аgentski RAG predstavlja napredniju verziju RAG

koncepta, u kom se umjesto velikog jezičkog modela kod

jednostavne verzije koristi čitav agentski sistem sa

različitim alatima, Uz pomoć agenta ovaj pristup dobija

mogućnost rezonovanja I adaptacije logike za rješavanje

kompleksnih korisničkih zahtjeva.

Za realizaciju ovog sistema korišten je LangGraph [10]

gdje je svaki čvor predstavljao neki korak u obradi

zahtjeva. Dok smo za definisanje alata koristili Langchain

interfejs. Detaljniji prikaz arhitekture prikazan je na slici 2.

Slika 2 Arhitektura agentskog RAG-A

Na osnovu priloženog možemo zaključiti da prvi korak je

dobavljanje relevantnog znanja pomoću agenta i alata. U

ovom slučaju korišten je reaktivni agent koji planira dalji

korak u skladu sa trenutnim stanjem.

Što se tiče alata za demonstraciju rada kreirali smo tri alata,

a to su:

• Alat za dobavljanje znanja o kompaniji

• Alat za internet pretragu

• Alat za rješavanje matematičkih izraza

Zatim slijedi korak provjere da li je kontekst relevantan,

ukoliko jeste ide se na kraj i generiše se odgovor, a u

suprotnom pitanje se reformuliše i proces se ponavlja.

4. EVALUACIJA

Pod procesom evaluacije podrazumjeva se da se „izmjeri“

koliko tačne i relevantne odgovore sistem daje. Pošto se

generalno proces sastoji od dvije faze dobavljanja znanja i

generisanja odgovora, dobra praksa je evaluirati te dvije

faze odvojeno.

U početku evaluacija je rađena ručno i empirijski na

osnovu testnog skupa pitanja, a naknadno je taj proces

automatizovan upotrebom Ragas radnog okvira.

5. REZULTATI

U ovom poglavlju biće dato finalno poređenje ove dvije

implementacije na osnovu tehničkih metrika koje definišu

tačnost odgovora, ali i poređenje po sekundarnim

osobinama bitnim za razvoj ovih rješenja.

U prilogu je data tabela sa vrijednostima tehničkih metrika

dobijenih preko Ragas [11] radnog okvira.

Tabela 1. Evaluirane vrijednosti

Vanilla RAG Аgentski RAG

Relevantnost

konteksta

0.6987 0.8903

Pridržavanje

konteksta

0.2951 0.2698

1351

Povraćaj

konteksta

0.4773 0.4833

Relevantnost

odgovora

0.7818 0.8196

Tačnost

odgovora

0.6192 0.8684

Semantička

sličnost

0.8434 0.9020

Na osnovu tabele, agentski pristup ima dosta bolje rezultate

u relevantnosti konteksta, razlog za to su složeni upiti gdje

drugi pristup dosta bolje rezonuje i pronalazi adekvatna

dokumenta. Тakođe, agentski pristup se neznatno bolje

pokazao I u metrici povraćaj konteksta, do toga je došlo,

jer agenti malo bolje rade u slučaju kadaa se kontekst vraća

iz više dokumenata. Sa druge strane, posmatrajući

pridržavanje konteksta jednostavniji model neočekivano

daje bolji rezultat. Razlog za to je što agentski pristup daje

dosta informacija da što bolje objasni koncept, ali u ovom

slučaju to smanjuje vrijednost ove metrike.

Sa druge strane, što se tiče metrika vezanih za generisanje

odgovora agentski pristup se dosta bolje pokazao kod

tačnosti odgovora, jer ovo rješenje detaljnije vraća odgovor

I detalje koji naizgled ne djeluju bitni. Kao posljedica

svega toga možemo vidjeti da agentski prisup prednjači I u

metrici semantičkoj sličnosti odgovora koji mjeri

usklađenost generisanog i referentnog odgovora. Isto

objašnjenje važi I za dosta bolju relevantnost odgovora kod

agentskog rješenja.

Poredeći sekundarne osobine ovih sistema, očigledno je da

je agentski pristup dosta kompleksniji, zahtjeva više

vremena za razvoj I troškovi održavanja arhitekture su

dosta veći. Ali glavna prednost ovog pristupa je što je lako

proširiv i daje bolje, relevantnije I pouzdanije odgovore.

6. ZAKLJUČAK

U radu je predstavljen razvoj i implementacija jednostavne

i agentske implementacije RAG sistema. Motivacija za

razvoj sistema je uočiti prednost agenata u okviru ovog

koncepta s obzirom na brzi razvoj tehnologije. Glavni cilj

ovog rada je uporediti spomenute arhitekture, istaći

prednosti i mane oba pristupa, kao i potencijalne prijedloge

praktične primjene.

Na osnovu rezultata možemo zaključiti da jednostavnija

implementacija RAG sistema se relativno brzo postavlja,

nema složenu arhitekturu i ima linearan tok izvršavanja

akcija. Dok sa druge strane agentski RAG daje detaljnije

odgovore, ima sposobnost rezonovanja i značajno

prednjači pri odgovaranju na složene upite. Takođe,

arhitektura agentskog pristupa je lako proširiva, ali nosi

veće troškove i kompleksnija je za razvoj. Stoga prilikom

izbora načina implementacije RAG sistema bitno je naći

balans između performansi, održavanja i budućeg razvoja.

Za buduća unapređenja, predlaže se optimizacija

promptova uz pomoć predloženih alata. Takođe, korisno bi

bilo da sistem ima mogućnost učenja tokom konverzacija i

pamćenja dobrih praksi. Još jedno ograničenje je ograničen

kontekst koji se šalje velikom jezičkom modelu, ukoliko bi

se ovaj problem riješio model bi imao više informacija za

odgovaranje što bi proizvelo relevantnije odgovore.

7. LITERATURA

[1] What are large language models (LLMs)?

https://www.ibm.com/think/topics/large-language-models

[датум приступа јун 2025]

[2] Newhauser, Mary; (2024). Introduction to Retrieval

Augmented Generation

(RAG) https://weaviate.io/blog/introduction-to-rag

[датум приступа јун 2025]
[3] Vector Databases: Tutorial, Best Practices & Examples

https://nexla.com/ai-infrastructure/vector-databases/

[датум приступа јун 2025]
[4] Prompt Engineering Guide https://www.promptingguide.ai

[датум приступа јун 2025]
[5] What is agentic RAG?

https://www.ibm.com/think/topics/agentic-rag [датум

приступа јун 2025]

[6] Tahir; (2024). What are AI Agents?

https://medium.com/@tahirbalarabe2/what-are-ai-agents-

f06ef775e78f [датум приступа јун 2025]
[7] What are tools? https://huggingface.co/learn/agents-

course/en/unit1/tools [датум приступа јун 2025]
[8] Zilliz званична документација https://docs.zilliz.com/

[датум приступа јул 2025]
[9] Званична документација Langchain-a

https://python.langchain.com/docs/introduction/ [датум

приступа јун 2025]

[10] Званична документација Langgraph-a https://langchain-

ai.github.io/langgraph/concepts/why-langgraph/ [датум

приступа јун 2025]

[11] Званична документација за Ragas радни оквир

https://docs.ragas.io/en/stable/getstarted/ [датум приступа

август 2025]

Kratka biografija:

Ivana Kašiković rođena je 03.

oktobra 2000. godine u Trebinju.

Kao nosilac diplome „Vuk

Karadžić“ 2019. godine završava

gimnaziju „Jovan Dučić“, nakon

čega upisuje Fakultet tehničkih

nauka, smer Softversko

inženjerstvo i informacione

tehnologije. Po završetku studija

u roku, upisuje master akademske

studije i iste završava 2025.

godine.

1352

https://www.ibm.com/think/topics/large-language-models
https://weaviate.io/blog/introduction-to-rag
https://nexla.com/ai-infrastructure/vector-databases/
https://www.promptingguide.ai/techniques
https://www.ibm.com/think/topics/agentic-rag
https://medium.com/@tahirbalarabe2/what-are-ai-agents-f06ef775e78f
https://medium.com/@tahirbalarabe2/what-are-ai-agents-f06ef775e78f
https://huggingface.co/learn/agents-course/en/unit1/tools
https://huggingface.co/learn/agents-course/en/unit1/tools
https://docs.zilliz.com/
https://python.langchain.com/docs/introduction/
https://langchain-ai.github.io/langgraph/concepts/why-langgraph/
https://langchain-ai.github.io/langgraph/concepts/why-langgraph/
https://docs.ragas.io/en/stable/getstarted/

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.41

DOI: https://doi.org/10.24867/33BE22Stokic

BEZBEDNOST PODATAKA U KONTEKSTU BIG DATA

DATA SECURITY IN THE CONTEXT OF BIG DATA

Aleksa Stokić, Fakultet tehničkih nauka, Novi Sad

Oblast – ELEKTROTEHNIKA I RAČUNARSTVO

Kratak sadržaj – U ovom radu su istražene specifične

pretnje i ranjivosti u okviru Big Data i analizirana primena

savremenih tehnika i alata za bezbednost podataka.

Posebna pažnja je posvećena principima kao što su

autentifikacija, enkripcija i zaštita od brute force i SQL

injection napada. Takođe, na primeru veb aplikacije je

prikazan primer implementacije bezbednosnih

mehanizama.

Ključne reči: Big Data, Bezbednost, 2FA, Jake lozinke,

Enkripcija, Brute force, SQL injection

Abstract – In this paper, specific threats and

vulnerabilities within Big Data were explored and the

application of modern techniques and tools for data

security wa analyzed. Special attention was given to

principles such as authentication, encryption and

protection against brute force and SQL injection attacks.

Additionallz, the implementation of securit mechanisms

was demonstrasted thtough the example of a web

application.

Keywords: Big Data, Security, 2FA, Strong passwords,

Encryption, Brute force, SQL injection

1. UVOD

Big Data donosi značajne prednosti u analizi i donošenju

odluka, ali istovremeno predstavlja ozbiljan izazov po

pitanju bezbednosti i privatnosti korisnika. Ogromna

količina i raznolikost podataka, koja često uključuje

osetljive lične informacije, povećava rizik od zloupotrebe i

otkrivanja identiteta. Cilj rada je da analizira pretnje i

ranjovsti u okviru Big Data i prikaže primenu savremenih

bezbedonosnih tehnika kao što su enkripcija,

autentifikacija i zaštita od napada. Kao praktičan primer,

razvija se veb aplikacija za turističku agenciju koja će

demonstrirati implementaciju ovih mehanizama radi

zaštite podataka korisnika.

2. BIG DATA

Big Data predstavlja jedan od najznačajnijih fenomena

savremenog digitalnog doba. Rast obima, brzine i

raznovrsnosti podataka zahteva nove pristupe njihovom

skladištenju, obradi i analizi. Dok je tradicionalna obrada

podataka ograničena kapacitetom računarskih sistema, Big

Data omogućava upotrebu masivnih i razuđenih skupa

podataka kako bi se iz njih izvukle vrednosti.

__

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je bio

Prof. Dr Aleksandar Kupusinac

Ključne karakteristike Big Data opisuju se korz koncept

“5V”: obim, brzina, raznovrsnost, verodostojnost i

vrednost. Upravo kombinacija ovih elemenata čini Big

Data jedinim načinom da se odgovori na savremen potrebe

u oblasti kao što su finansije, zdravstvo, industrija i

trgovina.

Razvoj cloud infrastrukture omogućio je veću fleksibilnost

i elastičnost u radu sa velikim podacima. Koncept Big Data

as a Service (BDaaS) integriše prednosti cloud-a i

analitičkih alata, pružajući organizacijama pristup

računarskim resursima bez potrebe za sopstvenim skupim

sistemima. Među najvažnijim tehnologijama ističu se

Hadoop, MapReduce, Hive i Spark, koji omogućavaju

paralelnu obradu i upravljanje velikim podacima.

Big Data danas predstavlja industriju koja menja tržište

rada, stvara nove poslovne modele i podstiče razvoj

digitalne ekonomije. Kompanije koje se oslanjaju na

podatke beleže veću produktivnost, bržu reakciju na tržišne

promene i bolje razumevanje korisnika. Istraživanja

pokazuju da organizacije orjentisane na podatke imaju

znatno veće stope rasta i inovacija u odnosu na

konkurenciju.

Ipak, uz brojne prednosti javljaju se i izazovi, kao što su

bezbednost i privatnsot. Pitanja regulacije, kao i etičke

dileme u vezi sa korišćenjem podataka, ostaju otvorena i

predstavljaju ključni pravac budućeg razvoja ove oblasti.

Zaključno, Big Data nije samo tehnološki već i ekonomski

i društveni fenomen, koji značajno oblikuje poslovanje,

nauku i svakodnevni život. Njegov dalji razvoj zavisiće od

balansa između tehničkog napretka, regulatornih okvira i

etičkih standarda u korišćenju podataka.

3. BEZBEDNOST PODATAK U KONTEKSTU BIG

DATA

Bezbednost po dataka u Big Data okruženjima predstavlja

kompleksnu kombinaciju metodologija, tehnologija i

dobrih praksi usmerenih na zaštitu poverljivosti, integriteta

i dostupnosti podataka. Veliki obim, raznolikost i dinamika

podataka koji potiču iz IoT uređaja, senzora i društvenih

mreža nameću nove izazove koje tradicionalni modeli

zaštita ne mogu u potpunosti rešiti. Pored tehničkih rizika,

značajan problem predstavlja i privatnost, jer savremene

analitike omogućavaju deanomalizaciju pojedinaca, zbog

čega regulative poput GDRP i HIPAA propisuju stroge

standarde obrade i čuvanja podataka.

Istorijski gledano, zaštita podataka evoluirala je od fizičkih

mera i osnovne enkripcije, preko razvoja mrežnih

protokola (SSL/TLS), do sveobuhvatnih pravnih okvira

1353

https://doi.org/10.24867/33BE22Stokic

kao što su GDRP i CCPA. Pored njih, međunarodni

standardi poput ISO/IEC 27001 i PCI DSS definišu

kontrole i procedure za bezbedno upravljanje

inforamcijama. Tehnološki napredak doneo je i nove

mehanizme – homomorfnu enkripciju, blockchain za

integritet podataka, kao i koncepte diferecijalne privatnosti

i k-anonimnosti.

U oblasti metodologija, posebno se ističu Risk Managment

Framework (RMF), Security by Design, Zero Trust

Architecture, Data Lifecycle i procene uticaja na privatnost

(PIA/DPIA). Ovi okviri omogućavaju sistematičan pristup

zaštiti podataka, od inicijalnog projektovanja, preko

kontinuiranog upravljanja rizikom, do procene

usaglašenosti sa regulativom.

Tehnološka implementacija zaštite obuhvata enkripciju u

mirovanju i tranzitu, autentifikaciju i autorizaciju, zaštitu

od brute force i SQL injection napada, kao i sisteme za

logovanje i praćenje anomalija. Savremene Big Data

platforme zahtevaju skalabilna rešenja koja mogu raditi u

realnom vremenu i u distribuiranim cloud okruženjima.

Praktične mere podrazumevaju primenu enkripcije,

segemntaciju mreže, kontrolu pristupa zasnovanu na

ulogama, analizu mrežnog saobraćaja, kontinuirano

praćenje cloud okruženja, redovno pravljenje rezervnih

kopija i planove za brz odgovor na incidente. Podjednako

je važna i obuka zapslenih, jer ljudski faktor često

predstavja najslabiju kariku. Uočavanje internih pretnji i

stalno praćenje usaglašenosti sa regulativom dodatno jača

bezbedonosnu kulturu organizacije.

Bezbednost podataka u Big Data kontekstu nije samo

tehnički izazov, već i strateško pitanje koje zahteva

integraciju metodologija, tehnologija, praksi i regulatornih

okvira. Samo takav holistički pristup omogućava izgradnju

pouzdanih i održivih sistema koji štite podatke, grade

poverenje i omogućavaju odgovorno korišćenje Big Data

analitike.

4. IMPLEMENTACIJA BEZBEDONOSNIH

PRAKSI

Intenzivan razvoj tehnologije, zajedno sa globalnom

povezanošću, nametnuo je potrebu za sistematičnom

implementacijom bezbedonosnih praksi koje osiguravaju

integrtiet, povreljivost i dostupnost informacija. Ovaj rad

daje pregled najvažnijih tehnika i metoda koje

predstavljaju temelj moderne sajber bezbednosti, uz

poseban naglasak na primenu u Big Data i veb sistemima.

4.1. Jake lozinke i autentifikacija

Jedna os osnovnih mera zaštite predstavlja upotreba jakih i

jedinstvenih lozinki, koje značajno umanjuju rizik od

neovlašćenog pristupa. Istraživanja pokazuju da složene

lozinke sa njmanje 12 karaktera, kombinacija slova,

brojeva i simbola, mogu izdržati brute force napade u

vremenskom okviru od više hiljada godina. Ipak, lozinke

same po sebi nisu dovoljne. Zato je u praksi sve

zastupljenija dvofaktorska autentifikacija (2FA), koja

uvodi dodatni sloj sigurnosti kombinovanjem faktora

znanja (lozinka), posedovanja (tokeni, mobilni uređaj) i

inherencije (biometrijski podaci). Otvoreni standardi kao

što su FIDO, Oauth2.0, OpenID Connect i SAML

omogućavaju interoberabilnost i otpornost na phishing

napade, dok budući pravci ukljućuju autentifikaciju bez

lozinki i koncepte decentralizovanog identiteta.

Iako značajno povećava bezbednost, ona nije imuna na

napade. Slabosti mogu nastati usled zloupotrebe porcesa

oporavka naloga, kompromitacije tokena ili nesigurnosti

SMS kanala. Nacionalni instituti (na primer NIST) već

preporučuju izbegavanje SMS-a u sistemima visokog

rizika. Ipak, prednosti 2FA – jednostavnost, dostupnost i

visok nivo sigurnosti – čine je jednim od najpouzdanijih

rešenja za zaštitu digitalnih servisa.

 4.2. Zaštita od brute force napada

Brute force napadi, zasnovani na sistematičnom

isprobavanju kombinacija lozinki i ključeva, ostaju jedan

od najrasprostranjenijih metoda kompromitovanja naloga.

Iako su jednostavni i teoretski nepogrešivi, njihova

efikasnost zavisi od dužine i složenosti akreditiva.

Savremeni sistemi primenjuju više mera zaštite:

ograničenje broja prijava, CAPTCHA mehanizme, crne

liste IP adresa, praćenje mrežnog saobraćaja kao i uvođenje

višefaktorske autentifikacije. Korisnicima se preporučuje

upotreba jedinstvenih lozinki, mendžera lozinki i

izbegavanje nebezbednih sajtova. Na ovaj način brute force

napada postaju sve manje delotvorni, ali i dalje

predstavljaju ozbiljnu pretnju ako se sistemi ne održavaju

redovno i bezbednosno ne ažuriraju.

4.3. Primena enkripcije

Enkripcija predstavlja jedan od najmoćnijih mehanizma

zažtite podataka, jer osigurava njihovu povreljivost čak i u

slučaju presretanja i krađe. Primena obuhvata i podatke u

mirovanju i podatke u prenosu, uz poseban značaj u

oblastima finansija, e-trgovina i e-uprave. U Srbiji je ova

oblast pravno uređena Zakonom o elektronskom

dokumentu, dok GDRP na nivou EU posebno prepoznaje

enkripciju kao preporučenu meru.

Najznačajniji algoritmi uključuju simetrični AES

iasimtrični RSA. Simetrična enkripcija je brza i efikasna za

velike količine podataka, ali zahteva siguran prenos

ključeva. RSA rešava ovaj problem upotrebom javnih i

privatnih ključeva, iako je računarski zahtevniji. U praksi

se često primenjuje hibridni pristup – AES za sadržaj, RSA

za razmenu ključeva. Glavni izazovi odnose se na

upravljanje kriptografskim ključevima, kao i na rizike od

zloupotrebe enkripcije u ransomware napadima.

4.4. Zaštita od SQL injection napada

SQL injection je jedna od najopasnijih veb ranjivosti koja

omogućava napadaču manipulaciju upitima ka bazi

podataka. Posledice uključuju neovlašćen pristup, krađu ili

brisanje podataka, pa čak i eskalaciju privilegija. Ključne

mere prevencije obuhvataju validiranje unosa, upotrebu

parametrizovanih upita i skladištenje porcedura, kao i

primenu belih lista za kontrolu unosa. Redovno skeniranje

aplikacija alatima kao što su Burp Scanner ili Acunetix

omogućava rano otkrivanje ranjivosti. Primeri iz prakse

pokazuju da dinamičko kreiranje SQL upita putem

konkatenacije string-ova predstavlja najveći rizik, dok

parametrizovani upiti i savremeni okviri pružaju pouzdanu

zaštitu.

1354

Implementacije bezbedonosnih praksi nije više opcija, već

je nužnost u digitalnom dobu. Jake lozinke, 2FA,

enkripcija, zaštita od brute force i SQL injection napada

predstavljaju temeljnemehanizme za izgradnju otpornih

sistema. Međutim, svki od ovih mehanizama nosi svoja

ograničenja i zahteva kontinuirano unapređenje.

Budućnost bezbednosti leži u integraciji više faktora –

biometrijskih, bihejvioralnih i decentralizovanih – koji

zajedno mogu osigurati robusnije i prilagodljivije sisteme.

Samo sistematičnim i sveobuhvatnim pristupom moguće je

izgraditi poverenje korisnika i očuvati integritet

inforamcionih resursa u sulovima stalno rastućih sajber

pretnji.

5. INTEGRISAN PRIMER IMPLEMENTACIJE

BEZBEDONOSNIH MEHANIZAMA U VEB

APLIKACIJI

U okviru ovog rada razvijena je aplikacija koja služi kao

ilustrativni primer integracije ključnih bezbedonosnih

mera. Iako funkcionalno zasnovana na modelu turističke

agencije, aplikacija ima primarno edukativni i

demonstrativni karakter, pokazujući kako se kroz jedan

sistem mogu implementirati mehanizmi autentifikacije,

zaštite podataka u prenosu i skladištenju, kao i prevencije

zlonamernih aktivnosti.

5.1. Tehnološki stek i arhitektura

Aplikacija je izgrađena primenom savremenog

tehnološkog steka. Frontend je realizovan u React.js-u, koji

omogućava komponentni razvoj jednostraničnih aplikacija

i komunikaciju sa serverom preko HTTP zahteva (Axios).

Backend je izgrađen u Python-u korišćenjem Flask

framework-a, koji omogućava izgradnju RESTful API

servisa i modularni arhitekturu. Za upravljanje podacima

korišćenja je MongoDB NoSQL baza, pogodna za

dinamične strukture. Arhitektura je troslojna, sa jasnom

podelom na kontrolere (obrada zahteva), servise (poslovna

logika) i repozitorijume (rad sa bazom), što doprinosi

lakšem održavanju i proširivosti.

5.2. Implementacija bezbedonosnih mehanizama

5.2.1. Provera jačine lozinki

Prilikom registracije vrši se dvostruka provera lozinki

korišćenjem regulatornih izraza. Ovaj mehanizam

osigurava da lozinke zadovoljavaju minimalne kriterijume

složenosti. Čime se umanjuje rizik od brute force napada.

Slika 1. Provera jačine lozinke na frontend delu

aplikacije

5.2.2. 2FA

Realizovana je integracija sa TOTP standardom putem

PzOTP biblioteke i prikaza QR koda pomoću Qrcode

modula. Nakon inicijalnog podešavanja, korisnik prilikom

svkaog logovanja unosi jednokratni kod iz aplikacije kao

što je Google Authenticator. Ovim se znatno povećava

sigurnost prijave.

Slika 2. Generisanje QR koda u Python-u

Slika 3. Servis za proveru OTP koda

5.2.3. Zaštita od brute force napada

Implementirana je višeslojna strategija koja obuhvata

globalni rate-limiting (Flask-Limiter), ograničenje broja

zahteva po kritičnim rutama (/signin, /signup), kao i

privremeno blokiranje naloga nakon više neuspelih

pokušaja. Ovim se efikasno sprečavaju automatizovani

napadi i kreiranje lašnih naloga.

Slika 4. Ograničenje na maksimum 5 pristupa za rutu

Slika 5. Logika za blokiranje korisničkog naloga na

backend delu aplikacije

5.2.4. Zaštita od NoSQL injection napada

Kreiran je poseban validacioni servis koji proverava sve

unose pre slanja u bazu. Pored regularnih izraza za

verifikaciju formata, primenjuje se parametrizovaniupiti u

pymongo biblioteci, čime se eliminiše rizik od direktne

interpolacije korisničkog unosa u upit.

1355

Slika 5. Izgled validacionog servisa na backend delu

aplikacije

5.2.5. Implementacija enkripcije

Osetljivi podaci (JMBG, broj pasoša) čuvaju se u

šifrovanojformi korišćenjem simterične enkripcije (Fernet

iz crzptography biblioteke). Tajni ključ se čuva u .env fajlu,

što obezbeđuje minimalnu zaštitu od kompromitacije koda.

Slika 6. Enkripcioni servis

Slika 7. Izgled enkriptovanih podataka iz baze

Implementacija prikazanih mehanizama pokazuje da je

moguće izgraditi veb apliakciju koja ispunjava savremene

bezbedonosne standarde uz minimalne resurse i upotrebu

dostupnih biblioteka. Sistem je edukativno osmišljen kako

bi demonstrirao najčešće načine odbrane. Ipak, naglašeno

je da svaki mehanizam ima svja ograničenja, pa se

preporučuje kombinovanje više mera i njihovo

kontinuirano unapređenje.

Integracija bezbedonosnih mehanizama u veb aplikaciji

predstavlja uslov za njihovu pouzdanu i bezbednu

upotrebu. Primer aplikacije turističke agencije pokazuje da

pravilnom primenom validacije lozinki, 2FA, zaštite od

brute force i NoSQL injection napada, kao i enkripcije

osetljivih podataka, moguće je značajno umanjiti rizik od

kompromitacije sistema. Rad pokazuje da kombinacija

dobrih praksi, adekvatnog tehnološkog izbora i edukacije

korisnika predstavlja najbolji pristup izgradnji otpornih i

pouzdanih veb aplikacija u savremenom digitalnom

okruženju.

5. ZAKLJUČAK

U eri digitalne transformacije i eksponencijalnog rasta

količine podataka, bezbednost u Big Data okruženjima

postaje jedan od ključnih preduslova za očuvanje

integriteta, poverljivosti i dostupnosti informacija. Veliki

podaci pružaju izuzetne mogućnosti za naprednu analizu i

donošenje strateških odluka, ali istovremeno uvode broje

izazove u pogedu zaštite osetljivih informacija i otpornosti

sistema na sajber napade. Karakteristike velikih podataka

zahtevaju nove, fleksibilne i skalabilne pristupe u dizajnu i

implementaciji bezbedonosnih mera.

U ovom radu istraženi su ključni bezbedonosni aspekti Big

Data okruženja, pri čemu su analizirane najčešće pretnje

kao što su krđa identiteta, neovlašćeni pristup, brute force

i injection napadi, kao i izazovi uporavljanja

autentifikacijom i privatnošću. Teorijski okvir upotpunjen

je praktičnim delom u okviru kojeg je razvijena veb

aplikacija zasnovana na arhitekturi Flask-React.js-

MongoDB. U aplikaciji su implementirani mehanizmi kao

što su dvofaktroska autentifikacija, kontrola jakih lozinki,

validacija unosa, enkripcija osetljivih podataka i

ograničenje zahteva, čime je pokazano kako se kroz

slojevit pristup može značajno povećati bezbednost

sistema.

Rezultati ukazuju da ne postoji univerzalno rešenje za sve

pretnje i da bezbednost mora biti tretirana kao kontinuirani

proces koji podrazumeva stalno praćenje, prilagođavanje i

unapređeje mehanizama. Posebno je istaknuta potreba za

integracijom sistema za detekciju anomalija u realnom

vremenu, primenom zero-trust arhitekture i korišćenjem

mašinskog učenja u otkrivanju zloupotreba.

Zaključno, rad potvrđuje da je bezbednost podataka

neodvojiv deo Big Data sistema i da samo

interdisciplinarni pristup – koji kombinuje tehničke,

organizacione i edukativne mere – može obezbediti

pouzdanost i otpornost u savremenom digitalnom

okruženju.

1356

6. LITERATURA

[1] https://cloud.google.com/learn/what-is-big-data

[2]https://www.forbes.com/sites/gartnergroup/201

3/03/27/gartners-big-data-definition-consists-of-

three-parts-not-to-be-confused-with-three-vs/

[3] https://www.turing.com/resources/big-data-

security#what-is-big-data-security?

[4]https://www.keepersecurity.com/blog/2023/08/

31/what-makes-a-strong-password/

[5]https://www.techtarget.com/searchsecurity/defi

nition/two-factor-authentication

[6]https://www.fortinet.com/resources/cyberglossa

ry/brute-force-attack

[7]https://www.techtarget.com/searchsecurity/defi

nition/encryption

[8]https://www.acunetix.com/websitesecurity/sql-

injection/

Kratka biografija:

Aleksa Stokić je rođen 2001. godine u

Požarevcu, Srbija. Završio je Požarevačku

gimnaziju u Požarevcu, 2019. godine.

Fakultet Tehničkih Nauka u Novom Sadu

je upisao 2019. godine. Diplomirao je u

septembru 2023. godine, smer Primenjeno

softversko inženjerstvo. Uspešno je

ispunio sve akademske obaveze i položio

sve ispite predviđene master studijskim

programom Primenjeno softversko

inženjerstvo.

kontakt: stokic.aleksa.01@gmail.com

1357

https://cloud.google.com/learn/what-is-big-data
https://www.forbes.com/sites/gartnergroup/2013/03/27/gartners-big-data-definition-consists-of-three-parts-not-to-be-confused-with-three-vs/
https://www.forbes.com/sites/gartnergroup/2013/03/27/gartners-big-data-definition-consists-of-three-parts-not-to-be-confused-with-three-vs/
https://www.forbes.com/sites/gartnergroup/2013/03/27/gartners-big-data-definition-consists-of-three-parts-not-to-be-confused-with-three-vs/
https://www.turing.com/resources/big-data-security%23what-is-big-data-security?
https://www.turing.com/resources/big-data-security%23what-is-big-data-security?
https://www.keepersecurity.com/blog/2023/08/31/what-makes-a-strong-password/
https://www.keepersecurity.com/blog/2023/08/31/what-makes-a-strong-password/
https://www.techtarget.com/searchsecurity/definition/two-factor-authentication
https://www.techtarget.com/searchsecurity/definition/two-factor-authentication
https://www.fortinet.com/resources/cyberglossary/brute-force-attack
https://www.fortinet.com/resources/cyberglossary/brute-force-attack
https://www.techtarget.com/searchsecurity/definition/encryption
https://www.techtarget.com/searchsecurity/definition/encryption
https://www.acunetix.com/websitesecurity/sql-injection/
https://www.acunetix.com/websitesecurity/sql-injection/

Зборник радова Факултета техничких наука, Нови Сад

UDK: 621.31

DOI: https://doi.org/10.24867/33BE23Maksimovic

ПРОЈЕКТОВАЊЕ АУТОМАТИКЕ КЛИМА КОМОРЕ ПОСЛОВНЕ ЗГРАДЕ И

ИНТЕГРАЦИЈА СА BMS-OМ (BUILDING MANAGEMENT SYSTEM)

DESIGN OF AIR HANDLING UNIT (AHU) AUTOMATION FOR A COMMERCIAL

BUILDING AND INTEGRATION WITH THE BUILDING MANAGEMENT SYSTEM

Момчило Максимовић, Дарко Марчетић, Факултет техничких наука, Нови Сад

Област – ЕЛЕКТРОТЕХНИКА И РАЧУНАРСТВО

Кратак садржај – У овом раду приказано је решење

управљања клима комором путем BMS система, са

посебним освртом на избор и повезивање

компонената, радну логику и сигурносне функције.

Детаљно су анализирани елементи клима коморе

попут вентилатора, грејача, рекуператора,

хладњака, овлаживача и релевантних сензора.

Описани су принципи рада и повезивања компонената

кроз електричне шеме, као и коришћење EC мотора.

Обрађена је интеграција са BMS системом уз

коришћење Schneider Electric опреме. Обухваћени су

критеријуми за безбедан рад, као и логичке секвенце

реализоване релејном техником, које прате нормалан

и алармни режим рада климатске коморе.

Кључне речи: Клима комора, BMS, Релејна техника

Abstract – This paper presents a solution for managing

an air handling unit (AHU) through a Building

Management System (BMS), with a special focus on

component selection and interconnection, control logic,

and safety functions. Key elements of the AHU such as

fans, heaters, heat recovery units, coolers, humidifiers,

and relevant sensors are analyzed in detail. The operating

principles and wiring of components are described

through electrical schematics, including the use of EC

motors. The integration with the BMS system using

Schneider Electric equipment is elaborated. Safety

operation criteria are addressed, along with logic

sequences implemented via relay technology that govern

both normal and alarm operating modes of the AHU.

Keywords: Air kandling unit, BMS, Relay logic

1. УВОД

Клима коморе представљају централни део система за

обраду ваздуха у савременим објектима, а захтеви

који се пред њих постављају у погледу комфора,

енергетске ефикасности и безбедности све су строжи

[1]. Циљ овог рада је приказ избора компонената:

вентилатора, грејача, рекуператора, овлаживача,

хладњака и припадајућих сензора. Обрађено је

__

НАПОМЕНА:

Овај рад проистекао је из мастер рада чији је

ментор био др Дарко Марчетић, ред. проф.

њихово електрично повезивање и дефинисање логике

рада клима коморе у оквиру BMS система, уз посебан

акценат на безбедносне функције и флексибилност

коју пружа релејна техника у комбинацији са

савременим сензорима и актуаторима. Анализирана је

улога EC мотора, као и интеграција опреме

произвођача Schneider Electric, са описом примене

њихових PLC уређаја, I/O модула и комуникационих

протокола. Оваквим приступом обухваћени су како

аспекти практичне имплементације, тако и

критеријуми безбедног и поузданог рада у реалним

условима експлоатације.

2. ОСНОВНА ФУНКЦИЈА И ПРИНЦИПИ РАДА

КЛИМА КОМОРЕ

Принцип рада укључује неколико основних фаза,

спољашњи ваздух се усисава кроз улазне каналзе где

се припрема за даљу обраду. Обрада ваздуха се врши

кроз различите секције унутар клима коморе што се

може видети на блок шеми клима моморе слика 1.

Након обраде третирани ваздух се дистрибуира кроз

систем или директно у просторије. Детаљно су

описане секције за мешање ваздуха, филтерске

јединице, грејачи и хладњаци, рекуператори топлоте

(плочасти и ротациони), овлаживачи, вентилатори

(центрифугални и аксијални), као и пратећи сензори и

контролни елементи.

Слика 1. Блок шема клима коморе са својим

елементима

Дефинисани су принципи управљања компонентама

као што су: управљање вентилаторима, функција

мразостата и противпожарног термостата, као и значај

диференцијалних сензора притиска на филтерима. Рад

1358

https://doi.org/10.24867/33BE23Maksimovic

такође обухвата и логичке основе управљања

системом у нормалном и алармном режиму рада.

3. BUILDING MANAGEMENT SYSTEM (BMS)

BMS представља централизовани систем

аутоматизације који омогућава надзор и контролу над

стањем система, оптимизацију енергетске

ефикасности, интегрисано управљање сигурносним и

алармним режимима, аналитику података и праћење

утицаја објекта на животну средину. Систем је

представљен као слојевита структура која обухвата

део који служи за праћење и контролу параметара

система (SCADA), аутоматски ниво (контролери и I/O

модули) и ниво опреме у пољу (сензори, актуатори и

извршни елементи). На слици 2 представљени су сви

нивои и начин комуникације између њих. Дакле, веза

менаџмент дела и аутоматике представљена је

зеленом линијом тако означавајући да је реч о

одређеном комуникационом протоколу, док црна

линија између слоја аутоматике и опреме у пољу

означава да је реч о сигналном ожичењу

(конвенцијални сигнали).

Слика 2. Нивои комуникације BMS система

У раду је примењена Schneider Electric платформа, са

следећом опремом: PLC контролери

(SXWASPXXX10001), дигитални и аналогни

улазно/излазни модули (SXWDI16XX10001,

SXWUI16XX10001, SXWDOA12X10001,

SXWAOV8XX10001), као и напајања за сензоре и

контролере (SXWPS24VX10001). Повезивање је

могуће реализовати комуникационим протоколима

Modbus и BACnet, који омогућавају интеграцију са

осталим подсистемима зграде. Функција и намена

сваког од примењених модула је детаљно објашњена

с акцентом на њихову функцију у прикупљању,

обради и преносу сигнала, што омогућава ефикасно и

прецизно управљање климатским и техничким

условима у објекту кроз BMS систем. Управљачка

логика обухвата контролу температуре, влажности,

квалитета ваздуха и радне сигнализације.

Имплементиране су заштитне функције путем релејне

технике и дигиталне логике, укључујући надзор

алармних стања, сигурносне сигнале и прецизно

секвенцирање рада компонената.

Модул за напајање (SXWPS24VX10001) пружа

стабилизовани излазни напон од 24 VDC, опремељен

заштитиним функцијама које аутоматски искључују

напајње у случају преоптерећења или кратког споја.

Пружа подршку за широк опсег улазног напона што је

значајно за примене у променљивим енергетским

условима. Максимална снага напајања је 30W.

Контролер (SXWASPXXX10001) има напредне

алгоритме за обраду сигнала и омогућава процесима

као што су регулација температуре, притиска,

влажности и других параметара у систему

климатизације. Подржава стандардне комуникационе

протоколе Modbus, BACnet, LON што омогућава

интеграцију са различитим системима унутар BMS-a.

Поседује више комуникационих портова као што су

2XEthernet, LonWorks, USB host, USB device, 2XRS-

485. Проширивост и скалабилност омогућавају

додавању до 30 модула, а потрошња контролера

износи 10W. Дигитални улазно модул

(SXWDI16XX10001) поседује 16 дигиталних канала

(безнапонски контакти напонског нивоа 24V DC и

2.4mA). Потрошња модула је 1.6W. Модул

универзалних улаза (SXWUI16XX10001) има 16

канала који подржавају аналогне синале у распону од

0-10 VDC , 0-20mA, дигиталне сигнале 24VDC,

2,4mA, отпорничке сигнале (10Ω до 10кΩ или 10кΩ до
60кΩ), температурне улазе (-50°C до 50°C). Потрошња

модула је 1.8W. Модул дигиталних излаза

(SXWDOA12X10001) поседује 12 канала чији

контакти могу радити на напонском нивоу 250VAC

или 30 VDC. Максимална струја по каналу 2А, што

омогућава директно управљање мањим

оптерећењима. Потрошња модула је 1.8W. Аналогно

излазни модул (SXWAOV8XX10001) има 8 излаза

којима се може генерисати напонски (0-10 VDC) или

струјни (1mA do 2mA) сигнали, потрошње 0,7W. Сви

наведени модули се монтирају на DIN шину преко

одговарајући подножија а комуникацију са

контролером преко RS485.

4. ОПЕРАТИВНА ЛОГИКА РАЗМАТРАНЕ

КЛИМА КОМОРЕ КК-01

На слици 3 приказана је апликативна шема клима

коморе КК-01 чији рад се заснива на контроли

кључних параметара као што су температура,

влажност, притисак и квалитет ваздуха. Оперативна

логика система заснива се на прикупљеним сигналима

приказаним у апликативној шеми, а циљ је

обезбеђивање комфорних и енергетски ефикасних

услова у простору.

Слика 3. Апликативна шема клима коморе КК-01

1359

Приоритет система је одржавање квалитета ваздуха у

простору, што се постиже уношењем већих количина

свежег ваздуха у случајевима повећане запрљаности.

Пошто комора КК-01 нема бајпас који раздваја

рециркулацију од рекуперације, уколико је извучени

ваздух превише загађен, систем смањује или

зауставља рад рекуператора. Температура ваздуха

контролише се мерењем на издувној решетки или у

самом простору, а регулацију врши PI регулатор који

управља вентилима измењивача (топле или хладне

воде). Притисак или проток ваздуха у каналима

одржава се мерењем у потисном и одсисном делу и

управљањем брзином обртаја вентилатора путем PID

алгоритма преко фреквентних регулатора или

директно EC моторима који су примењени у

разматраној клима комори КК-01. Важан део система

чине и парни овлаживачи, који служе за довођење

влажности на задате вредности након иницијалног

хлађења ваздуха. Целокупан процес прати се

сензорима влажности, уз хидростате који

сигнализирају критичне вредности у каналу.

Ради бољег разумевања функционалне повезаности

свих компонената клима коморе, потребно је схватити

начин на који су уређаји међусобно повезани и како

се обезбеђује сигурност система путем хардверских

релеја. Сви елементи су груписани у више ормана са

засебним напајањем и комуникационим линијама, а

њихова узајамна повезаност приказана је кроз блок

шему напајања (Слика 4).

Слика 4. Блок шема напајања

1. ROA-EMP – Орман се напаја из мреже са

могућношћу пребацивања на агрегатско напајање.

Агрегатско напајање је неопходно обезбедити за

циркулациону пумпу и вентил грејача (измњивач

топлоте) како би се спречило смрзавање система при

нестанку струје.

2. ROM-EMP – Орман се напаја из мреже. Напаја све

сензоре, актуаторе и моторе. Због мање критичности

ових елемената није потребно обезбеђивати

агрегатско напајање.

3. ROA-BMS – Орман у коме се налази

програмабилни контролер и његови модули. Напаја се

из ROA-EMP ормана и има обезбеђено резервно

агрегатско напајање ради континуираног рада

контролера и безбедности система.

Веза ормана електро-моторних погона и ормана ROА-

BMS у коме се налазе програмабилни контролери

остварује се релејном техником, системом улаза-

излаза. Детаљне шеме повезивања и интеграција BMS

и EMP ормана приказани су у петом поглављу.

5. ИНТЕГРАЦИЈА КОМПОНЕНАТА

РАЗМАТРАНЕ КЛИМА КОМОРЕ СА BMS-oм

Уместо комуникационих протокола, размена сигнала

између компонената коморе и контролера у BMS

орману реализује се путем релејне технике, системом

улаза/излаза. Овај приступ обезбеђује поузданост,

електричну изолацију, флексибилност при

пројектовању логике управљања и лаку интеграцију

са различитим BMS решењима без потребе за

додатним адаптацијама. Релејна техника је класичан

начин повезивања у индустријској аутоматици [2] где

се логички сигнали обрађују преко релеја ради

сигурног и поузданог управљања.

5.1. Релеји као кључни елементи интеграције

Релеји су електромеханички уређаји који

преклапањем контаката омогућавају или прекидају

проток струје ка одређеним потрошачима [3], при

чему се у пројекту користе релеји са 1CO и 4CO

контактима. Примена обухвата прикупљање сигнала

са сензора, управљање актуаторима и контролу

безбедносних уређаја. Захваљујући својој структури,

релејна техника омогућава флексибилно формирање

логике рада и електричну заштиту, јер сваки сигнал

може бити обрађен пре уласка у PLC, чиме се

повећава поузданост и безбедност целог система.

5.2. Интегрисана опрема у клима комори КК-01

MD20SR-24TS је Schneider Electric актуатор са

моментом од 20 Nm и повратном опругом (Failsafe

функција), што обезбеђује враћање жалузине у задати

положај при нестанку напајања. Поседује сигналне

контакте (TS) за повратну информацију о положају.

Тип управљања је двоположајни ON/OFF.

Жалузина се напаја преко трансформатора 230/24VAC

из ормана ROA-BMS, а отварање се врши задавањем

дигиталне командом са контролера. У случају

прекида напајања, захваљујући повратној опрузи,

жалузина се затвара. Стање отворености и

затворености прати се преко повратних сигнала са

клема S1–S2 (затворено) и S4–S6 (отворено), који се

доводе на дигиталне улазе контролера. Исти принцип

важи за обе жалузине — свежег и отпадног ваздуха.

Сензори диференцијалног притиска прате пад

притиска на филтерима, вентилаторима и рототерму

ради детекције алармних стања и потребе за

одржавањем. На филтерима се користе сензори

SDP910-300, директно повезани на дигиталне улазе

контролера без потребе за додатним напајањем.

Сензори на вентилаторима (SDP910-1000)

сигнализирају рад мотора преко релеја у орману

ROM-EMP. Сензор на рототерму (SDP910-500)

алармира у случају зачепљености или промене

протока. Сви сензори доприносе ефикасној контроли

1360

и заштити клима коморе путем повратних сигнала у

BMS.

У систему се користе четири типа температурних

сензора:

1. Цевни сензор (STP100-100) – мери температуру

течности у грејачу, хладњаку и догрејачу; поставља се

у чауру у цевоводу.

2. Каналски сензор температуре и влаге (SHD100-T) –

прати температуру и влажност у вентилационим

каналима; потребно му је напајање.

3. Каналски сензор температуре, влаге и CO₂

(SCD110-H) – омогућава контролу квалитета

повратног ваздуха ради уштеде енергије.

4. Просторни сензор температуре и влаге (SLAXX2) –

кључан за прецизну регулацију у просторији, јер мери

стварне услове у простору и омогућава BMS-у да

оптимизује рад клима коморе.

Сви сензори се директно везују на BMS и омогућавају

ефикасну и прецизну контролу климатизације.

Пожарни термостати RAK-TW1000.HB се постављају

на потисни и одсисни канал клима коморе и служе за

детекцију прегревања, након чега преко релеја

искључују вентилаторе и активирају аларм. Повезани

су са BMS-ом и могу активирати жалузине, аларме,

или проследити сигнал систему за дојаву пожара.

Поред тога, релеји КА3 и КА4 повезани на

противпожарну централу прекидају напајање у

случају пожара, затварају клапне и онемогућавају

ширење ватре кроз вентилацију.

У системима грејања клима комора, циркулациона

пумпа, вентил грејача и мразостат заједно обезбеђују

ефикасну контролу температуре и заштиту од

смрзавања. Циркулациона пумпа обезбеђује сталан

проток топле воде кроз измењивач, док вентил грејача

регулише количину воде и омогућава аналогно

управљање. Мразостат прати температуру у близини

измењивача и уколико она падне испод критичне

вредности (нпр. 5°C), активира релеј који искључује

вентилаторе и шаље сигнал BMS-у или директно

активира циркулациону пумпу и отвара вентил

грејача. На тај начин се спречава смрзавање воде у

грејачу и могућа оштећења инсталације. Узајамна

координација ових уређаја обезбеђује поуздан и

безбедан рад HVAC система чак и при екстремно

ниским температурама.

У овом систему, притисак у просторији се регулише

путем одсисних и потисних вентилатора (по два од

сваке врсте) са ECBlue моторима, који омогућавају

енергетски ефикасан, тих и поуздан рад. ECBlue

мотори имају интегрисану електронику, подршку за

управљање преко 0–10V или Modbus сигнала, софт-

старт функцију и дуг век трајања. Команда за рад

мотора може се дати ручно или преко BMS-а, док се

повратне информације о раду и квару добијају преко

релевантних клема. Брзина се регулише слањем

аналогног сигнала (0–10V), а паралелно повезани

вентилатори омогућавају равномерну расподелу

оптерећења и повећану поузданост система.

Рототерм (KK01-MR) је електромотор снаге 0,5 kW

који обезбеђује континуирану ротацију ротационог

рекуператора у клима комори ради ефикасног преноса

топлоте (и влаге) са издувног на улазни ваздух.

Управљање се може вршити ручно или преко BMS-а,

уз могућност аналогне регулације брзине (0–10 V),

док се сигнали рада и квара преносе преко релеја на

синоптику и BMS. Напајање рототерма обезбеђено је

из ормана ROM-EMP.

6. ЗАКЉУЧАК

Клима коморе су кључна компонента система

централне климатизације, јер омогућавају

контролисано довођење, обраду и дистрибуцију

ваздуха у складу са захтевима простора и комфора

корисника. Оне убацују свеж, филтриран и обрађен

ваздух у простор, док истовремено извлаче топао или

загађен ваздух, чиме се одржава оптималан квалитет

унутрашње средине.

Избор и конфигурација опреме у клима комори КК-01

и интеграција хардверских компонената са BMS

системом од кључног су значаја за квалитетан,

ефикасан и сигуран рад ових система.

Применом BMS-а омогућено је континуирано

праћење и регулисање параметара, што води ка

значајним уштедама енергије и продужетку века

опреме. Комбинација хардверских ограничења преко

релеја и софтверске контроле кључна је за постизање

високе енергетске ефикасности и поузданости

система.

7. ЛИТЕРАТУРА

[1] Велимир Чонградац, Аутоматика у паметним

стамбено-пословним објектима, 21000 Нови

Сад, Трг Доситеја Обрадовића 6.

[2] Дарко Марчетић, Марко Гецић, Борис Марчетић,

Програмабилни логички контролери у

електроенергетици, Факултет техничких наука,

21000 Нови Сад, Трг Доситеја Обрадовића 6.

[3] Страхил Ј. Гушавац, Основни принципи

пројектовања у мрежама средњег и ниског

напона, Факултет техничких наука, 21000 Нови

Сад, Трг Доситеја Обрадовића 6.

Кратка биографија:

Момчило Максимовић рођен је у

Шапцу 1998. год. Дипломски рад на

Факултету техничких наука из области

Електротехнике и рачунарства –

Електроенергетски системи одбранио

је 2022.год.

контакт:momcilo.maks7@gmail.com

Дарко Марчетић рођен је 1968.

године у Новом Саду. И даље се

успешно бави научним

истраживањима.

1361

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.9

DOI: https://doi.org/10.24867/33BE25Jankovic

SAVREMENI CRM SISTEMI: SALESFORCE PLATFORMA U UNAPREĐENJU

POSLOVNIH PROCESA

MODERN CRM SYSTEMS: THE SALESFORCE PLATFORM IN ENHANCING

BUSINESS PROCESSES

Marija Janković, Fakultet tehničkih nauka, Novi Sad

Oblast – ELEKTROTEHNIKA I RAČUNARSTVO

Kratak sadržaj – Rad istražuje značaj i ulogu CRM

sistema u savremenom poslovnom okruženju, detaljan

pregled platforme Salesforce u kontekstu digitalne

transformacije, prilagođavanja, mogućnosti integracije i

primene veštačke inteligencije u cilju unapređenja

poslovnih procesa.

Ključne reči: CRM sistemi, platforma Salesforce,

Integracija veštačke inteligencije, Salesforce AI,

Salesforce Einstein, Agentforce

Abstract – The paper explores the significance and role of

CRM systems in the modern business environment,

providing a comprehensive overview of the Salesforce

platform’s functionalities, with a focus on digital

transformation, customization, integration capabilities

and the use of artificial intelligence to enhance business

processes.

Keywords: CRM Systems, Salesforce Platform, Artificial

Intelligence Integration, Salesforce AI, Salesforce

Einstein, Agentforce

1. UVOD

Savremena poslovna okruženja, dinamična i složena,

izlažu preduzeća svih tipova i obima brojnim izazovima.

Različiti sistemi, neusklađeni timovi, ručni unos i

nedostatak automatizacije procesa, otežavaju obradu i

integraciju podataka, povećavaju rizik od pojave grešaka i

gubitka informacija. Nejasnoće u praćenju poslovnih

procesa, učinka, ciljeva, ograničeni analitički uvidi,

predviđanja, propusti u personalizaciji usluga i upravljanju

povratnim informacijama, otežavaju donošenje odluka,

smanjuju konkurentnost, ograničavaju unapređenje

strategija i negativno utiču na kvalitet usluge, zadovoljstvo

i lojalnost klijenata.

Platforma Salesforce, sa naprednim mogućnostima

prilagođavanja, integracije i primene veštačke

inteligencije, predstavlja sveobuhvatno rešenje za

navedene rizike. Svojom fleksibilnošću i širokim

ekosistemom, omogućava preduzećima transformaciju i

unapređenje poslovanja, uvodeći inovacije u mnogim

industrijama.

__

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je bila

dr Dunja Vrbaški, docent

2. PREGLED SISTEMA ZA UPRAVLJANJE

ODNOSIMA SA KLIJENTIMA

Prepoznavanje potreba, želja, navika, sklonosti i

očekivanja korisnika proizvoda ili usluga u mnoštvu

sakupljenih informacija, postiže se upotrebom CRM

sistema (eng. Customer Relationship Management),

odnosno sistema za upravljanje odnosima sa trenutnim i

potencijalnim klijentima.

Prema Batlu i Maklanu (2015), CRM sistemi su osnovna

poslovna strategija koja integriše interne procese i

funkcije, kao i spoljne mreže, kako bi stvorila i isporučila

vrednost uz ostvarivanje profita. Zasnivaju se na

visokokvalitetnim podacima prikupljenih informacionim

tehnologijama [1,2].

Lehtinen ističe (2007) da je svrha CRM sistema

upoznavanje strateških klijenata i ostvarivanje dugoročnih

odnosa sa njima, umesto usmerenja na povećanje

kratkoročnih prihoda [2].

Prema Pejnu (2007), CRM sistemi se definišu kao strateški

procesi koji nastoje razvijanju odnosa, donoseći veću

vrednost za zainteresovane strane (eng. stakeholders) [2].

Hlebovski navodi (2005) da su CRM sistemi interaktivni

procesi koji teže da postignu optimalnu ravnotežu između

kompanijskog ulaganja i zadovoljstva klijenata, što zavisi

od profita obe strane [2].

Kotler i Armstrong tumače (2004) CRM sisteme kao

specifične softverske programe i ujedno analitičku tehniku

koja služi za integraciju i korišćenje velikih baza podataka

o pojedinačnim klijentima [2].

Prema Čenu i Popoviču (2003) CRM sistemi su poslovne

strategije koje integrišu ljude, procese i tehnologiju kako bi

se ostvarilo razumevanje klijenata. Navode da će

kompanije koje uspešno implementiraju CRM uživati u

nagradama kroz lojalnost i dugoročnu profitabilnost. Iako

tehnologija predstavlja ključni element u implementaciji,

gledanje CRM sistema isključivo kao tehnološko rešenje

nije dovoljno. Neophodno je povezati tehnologiju sa

odgovarajućim poslovnim procesima i angažmanom ljudi

[3, 4].

Objedinjenjem raznih departmana, kao što su marketing,

prodaja, usluge, društveni mediji i njihovom međusobnom

razmenom podataka, stiče se jedinstveni, jasni i detaljni

uvid, kao i bolji odnos i spoznaja korisničkog iskustva.

Centralizacija podataka u CRM sistemima doprinosi

unapređenju organizacije kompanije i smanjenju

administrativnih poslova.

1362

https://doi.org/10.24867/33BE25Jankovic

Integracijom sa alatima veštačke inteligencije (eng.

Artificial Intelligence, AI), moguća je personalizacija i

predikcija interakcija klijenata, automatizacija procesa i

pružanje uvida koji pomažu u donošenju procena. Takođe,

postoji mogućnost integracije sa raznim poslovnim

alatima, kao što su alati za potpisivanje dokumenata,

računovodstvo, fakturisanje, ankete i sticanje

sveobuhvatnog pogleda na klijente i upotpunjenje

poslovanja.

Današnji CRM sistemi implementirani su na platformama

zasnovanim na računarstvu u oblaku (eng. cloud), što

omogućuje čuvanje i pristupanje podacima o klijentima

bilo kada i sa bilo koje lokacije. Podrazumeva laku

implementaciju, bez neophodnog hardvera ili problema

oko praćenja verzija i ažuriranja. Pored obezbeđene

sigurnosti, plaćanje se izvršava po korišćenim

funkcionalnostima, sa prilikom za proširivanje u zavisnosti

od potreba [5].

Na tržištu postoji veliki broj različitih CRM sistema, kao

što su Salesforce, Microsoft Dynamics 365, SAP,

Monday.com, Zoho, HubSpot, Pipedrive i drugi.

Koriste se u različite svrhe i poseduju određene prednosti i

mane, te je razumevanje njihovih karakteristika ključno za

odabir pogodnog CRM rešenja i uspešnost poslovanja.

3. PLATFORMA SALESFORCE

Na vrhu globalnog tržišta CRM sistema nalazi se platforma

Salesforce, menjajući način poslovanja kompanija i

upravljanja odnosima. Često se pogrešno povezuje

isključivo sa prodajom i kompanijama koje se bave

trgovinom.

Platforma Salesforce prevazilazi tradicionalna rešenja,

nudeći čitav ekosistem aplikacija i servisa dostupnih na

cloud okruženju, koji vode, optimizuju i unapređuju

poslovne procese kroz domene prodaje, usluga, marketinga

i mnogih drugih oblasti [6].

Koristi širok spektar tehnologija za razvoj, od specifičnih

programskih jezika i alata do naprednih cloud tehnologija

i veštačke inteligencije.

Objektno orijentisani programski jezik, sličan Java

programskom jeziku, a specifičan za Salesforce platformu,

naziva se Apex. Koristi se za pisanje kontrolera, okidača

(eng. triggers), kao i za kreiranje kompleksnih poslovnih

logika na server strani [7].

Okvir (eng. framework) Lightning Components koristi se

za izgradnju dinamičkih veb aplikacija unutar Salesforce

platforme. Dok je Aura Components stariji okvir za razvoj

korisničkog interfejsa, Lightning Web Components (LWC)

je moderniji, baziran na veb standardima kao što su

JavaScript i HTML [8].

Platforma koristi internu bazu podataka zasnovanu na

relacionom modelu, izgrađenu na osnovu Oracle baze

podataka. Iako je Oracle osnova za čuvanje podataka,

korisnici platforme nemaju direktan pristup bazi. Umesto

toga, Salesforce nudi API pozive i prilagođene jezike poput

SOQL (eng. Salesforce Object Query Language) i SOSL

(eng. Salesforce Object Search Language) za upite i

upravljanje podacima. Platforma koristi multi-tenant

pristup, gde se podaci više klijenata nalaze u istom

fizičkom okruženju, ali su virtuelno odvojeni. Na taj način

podaci se čuvaju efikasno, dok svaki korisnik stiče utisak

da raspolaže sopstvenom bazom podataka. Podaci se

čuvaju u tabelama koje se nazivaju objekti. Standardni

objekti (kao što su Account, Contact, Opportunity) dolaze

uz platformu, dok korisnici mogu kreirati i prilagođene

objekte (eng. custom objects) za specifične poslovne

potrebe [9].

Vodeći proizvodi Salesforce platforme su Sales Cloud,

Service Cloud, Marketing Cloud, Data Cloud, Commerce

Cloud, Experience Cloud, Slack, Tableau, MuleSoft,

Heroku, Einstein AI, Small Business, Net Zero, Partners i

Success [10].

Odabir pogodnog Salesforce Cloud rešenja predstavlja

složen proces i izazov, s obzirom na širok spektar

dostupnih opcija. Različiti faktori utiču na donošenje

odluke, uključujući poslovne potrebe, specifičnosti

industrije, veličinu i složenost organizacije, kao i tehničke

zahteve za prilagođavanjem i integracijom. Najpre je

neophodno identifikovati osnovne potrebe poslovanja. Na

primer, kompanije koje teže poboljšanju prodaje,

korisničke podrške ili automatizaciji marketinga, mogu se

opredeliti za rešenja koja odgovaraju tim prioritetima. Uz

to, specifičnost industrije dodatno usmerava izbor i

precizniju podršku poslovnim procesima. Takođe, veličina

organizacije i složenost njenih operacija imaju uticaja.

Manjim preduzećima često je potrebna jednostavnija

platforma, dok veće kompanije mogu zahtevati

kompleksnija rešenja sa naprednim funkcionalnostima.

Potreba za prilagođavanjem i integracijom sa postojećim

sistemima predstavlja dodatni faktor koji mora biti uzet u

obzir. Ovim pristupom dolazi se do efikasnog izbora

rešenja, uzimajući u obzir specifične potrebe i dugoročne

ciljeve organizacije [11]. Na slici 1 predstavljeni su vodeći

proizvodi, kao i čitav Salesforce ekosistem.

Slika 1. Prikaz ekosistema Salesforce platforme [12]

Skup specijalizovanih rešenja unutar Salesforce platforme,

prilagođenih specifičnim industrijama, nazivaju se

Salesforce Industries. Ova rešenja razvijena su kako bi se

zadovoljile potrebe različitih sektora, nudeći unapred

konfigurisane funkcionalnosti koje omogućavaju bržu

implementaciju, optimizaciju poslovnih procesa i veću

efikasnost. Izdvajaju se Automotive, Communications,

Education, Financial Services, Healthcare & Life

Sciences, Retail, Nonprofit, Manufacturing, Government,

Media, ali i mnoga druga [13].

1363

4. INTEGRACIJA VEŠTAČKE INTELIGENCIJE U

SALESFORCE PLATFORMU

Pouzdana i proširiva veštačka inteligencija, doboko je

integrisana u strukturu Salesforce platforme kroz pojam

Salesforce AI.

4.1. Einstein AI

Proizvod, odnosno set ugrađenih AI funkcija, koji

omogućava personalizovana, prediktivna iskustva i

generisanje sadržaja, naziva se Salesforce Einstein.

Primenjuje konverzacioni korisnički interfejs u okviru

svake aplikacije ili radnog procesa i izgrađen je na Einstein

Trust Layer sloju, sa značajnim zaštitnim mehanizmima.

Ističu se Einstein Prediction Builder, koji omogućava

kreiranje prediktivnih modela bez potrebe za

programiranjem, Einstein Bots koji koriste veštačku

inteligenciju za automatizaciju komunikacije sa

korisnicima putem chatbot alata, dok Einstein Discovery

analizira velike skupove podataka i pruža relevantne uvide.

Koristeći generativnu veštačku inteligenciju, Einstein

GPT, kreira personalizovane odgovore i upite u realnom

vremenu, unapređujući interakciju sa klijentima i

poslovnim korisnicima [14].

Tehnologija Einstein AI se može posmatrati kao platforma,

jer je njen osnovni deo integrisan u svaki Salesforce

proizvod. Takođe, prilikom korišćenja Salesforce

platforme, brojne Einstein aplikacije se mogu koristiti kao

dodaci koje je potrebno povezati ili prilagoditi [15].

Dakle, Salesforce Einstein pruža razne prednosti za

organizacije, uključujući povećanje operativne efikasnosti
kroz automatizaciju zadataka, optimizaciju procesa i brže

donošenje odluka. Omogućava prilagođavanje korisničkog
iskustva, unapređenje saradnje među timovima, bolju

segmentaciju kupaca i doprinosi njihovom zadržavanju.

Kontinuirano uči iz novih podataka, predstavljajući ključni

alat za povećanje produktivnosti i konkurentnosti u

poslovnom okruženju [16, 17].

4.2. Agentforce i AI agenti

Napredna kolekcija autonomnih AI agenata i alata,

Agentforce (ranije poznato kao Einstein Copilot), u

potpunosti su integrisani u Salesforce platformu i

namenjeni za složene interakcije sa klijentima [18].

Dolaze sa unapred pripremljenim šablonima, na osnovu

kojih je moguće brzo razvijanje i prilagođavanje, pružajući

podršku zaposlenima i korisnicima, unapređujući radne

procese za bilo koju ulogu, industriju i poslovni izazov.

Podešavanjem parametara, definisanjem tema, akcija i

specifičnih uputa, optimizuje se rad agenata u poslovnim

procesima. Inteligentni i proaktivni, u potpunosti su

sposobni da razumeju i odgovore na upite korisnika bez

ljudske intervencije. Osnovani su na mašinskom učenju i

obradi prirodnog jezika za obavljanje širokog spektra

zadataka, od odgovaranja na jednostavna pitanja do

rešavanja složenih problema ili istovremeno obavljanje

više zaduženja.

Izvršavanje AI agenata se odvija kroz četiri faze. Prva faza

predstavlja prikupljanje podataka iz različitih izvora u

realnom vremenu. Druga faza je donošenje odluka

koristeći napredne modele mašinskog učenja. Treća faza je

izvršavanje radnje, što se može odnositi na odgovaranje na

korisnički upit, obradu zahteva ili prosleđivanje složenog

problema ljudskom agentu. Poslednja, četvrta faza je

učenje i prilagođavanje svakom interakcijom,

usavršavajući algoritme radi poboljšanja tačnosti i

efikasnosti. Sposobnost kontinuiranog učenja omogućava

AI agentima da ostanu efikasni i relevantni, čak i kada se

očekivanja korisnika i poslovna okruženja menjaju.

Istovremeno mogu obrađivati više korisničkih interakcija,

smanjujući vreme odgovora i povećavajući efikasnost

korisničke podrške. Dostupni su u bilo koje vreme, bez

uticaja na vremensku zonu ili radno vreme, nude

mogućnost skalabilnosti, konzistentnu i pouzdanu podršku,

kao i personalizovane interakcije.

Sa Agentforce platformom, unapred definisani agenti se

mogu brzo implementirati u brojnim oblastima, kao što su

prodaja, marketing, usluge i slično.

Agent Service Agent zamenjuje tradicionalne chatbot alate

rešavajući širok spektar pitanja u vezi sa domenom

korisničke podrške, bez potrebe za unapred programiranim

scenarijima. Agent Sales Development Representative

omogućava kontinuiranu interakciju sa potencijalnim

kupcima, odgovara na njihova pitanja, upravlja

prigovorima i zakazuje sastanke koristeći podatke iz

dostupnih izvora, pružajući prodajnim timovima priliku da

se posvete građenju dubljih odnosa sa klijentima. Agent

Sales Coach nudi personalizovane sesije za vežbanje

prodajnih veština prodajnim timovima, uz prilagođene

govore i odgovore, koristeći Salesforce podatke i

generativnu veštačku inteligenciju. Agent Merchandiser

pomaže menadžerima u oblasti e-trgovine u postavljanju

sajta, definisanju ciljeva, promocijama, kreiranju opisa

proizvoda i pružanju uvida zasnovanih na analizi podataka.

Agent Buyer Agent unapređuje B2B kupovine tako što

pomaže kupcima da pronađu proizvode, obave kupovinu i

prate narudžbine putem poruka ili prodajnih portala. Agent

Personal Shopper funkcioniše kao digitalni savetnik na

sajtovima e-trgovine ili aplikacijama za razmenu poruka,

nudeći specifične preporuke proizvoda i pomoć prilikom

pretrage. Agent Campaign Optimizer automatizuje ceo

životni ciklus kampanja koristeći veštačku inteligenciju za

analizu, generisanje, prilagođavanje i optimizaciju

marketinških kampanja prema poslovnim ciljevima.

Platforma za izgradnju i prilagođavanje AI agenata naziva

se Agent Builder. Olakšava konfiguraciju definisanih

agenata ili izgradnju novih za bilo koju ulogu, industriju ili

poslovni slučaj, koristeći alate kao što su Flows, Prompts,

Apex i MuleSoft API [19, 20, 21, 22].

Kroz studije slučaja u radu, analizirani su izazovi i

problemi sa kojima su se susreli luksuzno odmaralište

Turtle Bay Resort i svetski šampionat Formula 1,

postignuti rezultati i unapređenje korisničkog iskustva

korišćenjem Salesforce AI tehnologije [23, 24].

5. ZAKLJUČAK

U ovoj studiji istraživan je širok spektar mogućnosti,

primene i uticaja platforme Salesforce, sa posebnim

naglaskom na integraciju veštačke inteligencije, koja

predstavlja značajni iskorak u unapređenju savremenog

poslovanja i transformaciji poslovnih procesa.

Korišćenjem navedenih tehnologija unutar Salesforce

platforme, postiže se automatizacija i optimizacija

zadataka, što doprinosi povećanju efikasnosti i

profitabilnosti. Omogućava se brže i preciznije donošenje

odluka, uočavanje obrazaca i pravljenje predikcija.

1364

Praćenjem prethodnih interakcija, postiže se

personalizacija, unapređujući korisničko zadovoljstvo i

produktivnost. Takođe, generisanje sadržaja u realnom

vremenu poboljšava celokupno iskustvo. U skladu sa

priznatim industrijskim standardima, može značajno

uticati na proces razvoja softverskih rešenja, podižući nivo

ekspertize programera i kvalitet koda. Smanjuje se rizik od

pojave grešaka, povećava efikasnost rada, otkrivaju

bezbednosne ranjivosti u ranoj fazi razvoja, kao i

temeljnije razumevanje složenih delova koda, rezultirajući

bržim i pouzdanim napredovanjem. Neprekidnim učenjem

iz novih podataka postiže se kontinuirano poboljšanje i

prilagođavanje, čime se održava relevantnost i

konkurentnost na tržištu.

S obzirom na brz napredak veštačke inteligencije, pred

Salesforce platformom stoji ogroman potencijal za dalji

razvoj i primenu, koji će oblikovati budućnost poslovnih

procesa i strateških odluka i podići ih na potpuno novi nivo.

6. LITERATURA

[1] F. Buttle i S. Maklan, "Customer Relationship

Management: Concepts and Technologies",

ResearchGate, 2015,

researchgate.net/publication/290447911_Customer_Relati

onship_Management_Concepts_and_Technologies,

pristupano: decembar 2024.

[2] A. Chromčáková i H. Starzyczná, “Customer

Relationship Management in Small and Medium-Sized

Enterprises of the Moravian-Silesian Region: Qualitative
Research”, 2019, aak.slu.cz/pdfs/aak/2019/02/04.pdf,

pristupano: decembar 2024.

[3] I. Chen i K. Popovich, “Understanding Customer

Relationship Management (CRM): People, Process and

Technology”, Emerald Insight, 2003,

emerald.com/insight/content/doi/10.1108/1463715031049

6758, pristupano: decembar 2024.

[4] H. Gil-Gomez, V. Guerola-Navarro, R. Oltra-Badenes

i J. A. Lozano-Quilis, “Customer Relationship

Management: Digital Transformation and Sustainable

Business Model Innovation”, Tandfonline, 2020,

tandfonline.com/doi/full/10.1080/1331677X.2019.167628

3, pristupano: decembar 2024.

[5] Salesforce, “CRM: What Is CRM (Customer

Relationship Management)?”,

salesforce.com/eu/crm/what-is-crm, pristupano:

septembar 2024.

[6] P. Pathak, “Research Paper on Salesforce

Technology”, 2024, ijarsct.co.in/Paper15215.pdf,

pristupano: decembar 2024.

[7] Salesforce Developers, “Developers: Apex Developer

Guide”, developer.salesforce.com/docs/atlas.en-

us.apexcode.meta/apexcode, pristupano: oktobar 2024.

[8] Salesforce Developers, “Developers: Get Started with

Lightning Web Components”,

developer.salesforce.com/docs/platform/lwc/guide,

pristupano: oktobar 2024.

[9] Integrate.io, “The Salesforce Database Explained”,

2023, integrate.io/blog/the-salesforce-database-explained,

pristupano: oktobar 2024.

[10] Salesforce, “All Salesforce products. One integrated

platform.”, salesforce.com/products, pristupano:

oktobar 2024.

[11] Synebo, “How to Choose the Right Salesforce

Cloud?”, synebo.io/blog/15-types-of-salesforce-

clouds, pristupano: oktobar 2024.

[12] Salesforce, “Salesforce Platform: Explore the

Salesforce Platform”, salesforce.com/platform,

pristupano: septembar 2024.

[13] Salesforce, “Industries”, salesforce.com/industries,

pristupano: septembar 2024.

[14] Salesforce, “Arificial Intelligence: Salesforce

Artificial Intelligence”, salesforce.com/eu/artificial-

intelligence, pristupano: oktobar 2024.

[15] N. Saini i H. Sharma, “Salesforce Einstein: Artificial

Intelligence for Customer Success Platform”, 2020,

ijsret.com/wp-

content/uploads/2020/06/IJSRET_V6_issue3_402.pdf,

pristupano: januar 2025.

[16] Salesforce, “Artificial Intelligence: Salesforce

Artificial Intelligence”, salesforce.com/artificial-

intelligence, pristupano: oktobar 2024.

[17] Atrium, “What is Salesforce Einstein? Your 2024

Guide to Einstein AI Products and Capabilities”,

atrium.ai/resources/what-is-salesforce-einstein-your-

2024-guide-to-einstein-ai-products-and-capabilities,

pristupano: oktobar 2024.

[18] Salesforce, “Artificial Intelligence: Copilot is now

Agentforce”, salesforce.com/artificial-

intelligence/einstein-ai-assistant, pristupano: oktobar

2024.
[19] Salesforce, “Agentforce: What Are AI Agents?

Benefits, Examples, Types”,

salesforce.com/agentforce/what-are-ai-agents,

pristupano: oktobar 2024.

[20] Salesforce. “Frequently asked questions”,

salesforce.com/products, pristupano: oktobar 2024.

[21] Salesforce, “News & Insights: Salesforce Unveils

Agentforce - What AI Was Meant to Be”,

salesforce.com/news/press-

releases/2024/09/12/agentforce-announcement,

pristupano: oktobar 2024.

[22] Salesforce, “Agentforce”, salesforce.com/agentforce,

pristupano: oktobar 2024.

[23] Salesforce, “Turtle Bay Resort elevates hospitality

with AI-driven personalization”,

salesforce.com/customer-stories/turtle-bay-delivers-

better-experiences-AI, pristupano: avgust 2025.

[24] Salesforce, “Agentforce will help Formula 1 speed

up service response by 80%”,

salesforce.com/customer-stories/formula-one,

pristupano: avgust 2025.

Kratka biografija:

Marija Janković rođena je u Novom

Sadu 1999. godine. Osnovne

akademske studije završila je 2023.

godine na Fakultetu tehničkih nauka u

Novom Sadu. Master rad na Fakultetu

tehničkih nauka iz oblasti Elektroteh-

nike i računarstva – Elektronsko

poslovanje odbranila je 2025. godine.

kontakt:

jankovicmarija15@gmail.com

1365

Зборник радова Факултета техничких наука, Нови Сад

УДК: 4.3

ДОИ: https://doi.org/10.24867/33BE26Zubovic

КОРИШЋЕЊЕ ТЕСТИРАЊА НА ЦРНОЈ КУТИЈИ ЗА ПОКРЕТАЊЕ

АУТОМАТСКИХ ТЕСТОВА НА ТВ ПРИЈЕМНИКУ

USING BLACK BOX TESTING TO RUN AUTOMATED TESTS ON A TV BOX

Јован Зубовић, Факултет техничких наука, Нови Сад

Област: РАЧУНАРСКЕ ТЕХНИКЕ И

РАЧУНАРСКА КОМУНИКАЦИЈА

Кратак садржај – Аутоматизација процеса тестирања

који би иначе био одрађен ручно може да уштеди

много времена и радних сати, посебно ако се

аутоматски тестови могу покретати преко ноћи. Ако

се омогући генерисање извештаја, на пример Ексел

табеле, тест инжењер треба само да их провери ујутру

и проследи програмерима и вођама тимова. Посао

постаје још бржи и ефикаснији ако постоји радни

оквир (енг. framework) који пруже универзалне

функције за руковање најчешће тестираних

функционалности, као што су обрада слике и звука

или комуникациони протоколи. Тај радни оквир се

може прилагодити за различите уређаје и апликације,

које су развијали потпуно различити тимови и

компаније. Овај рад садржи опис прилагођавања

постојећег радног оквира за аутоматизацију процеса

тестирања на тестираном ТВ пријемнику, што

укључује тестирање стабилности и функционалности

постојећих апликација и самог уређаја.

Кључне речи: Системско тестирање, Аутоматско

тестирање, Потрошачка електроника, тест извештај

Abstract - Automating the process of testing which would

otherwise be done manually can save great amounts of

time and working hours, especially given that automated

tests can be run during night hours. If generating files

that summarize test reports is included, for example, an

Excel table, the test engineer only needs to check them out

in the morning and forward them to developers and team

leads. This job becomes even faster and more efficient if

there is a a framework that provides universal functions

for handling the most tested functionalities, such as sound

and image processing, or communication protocols. That

framework can be adjusted for various applications and

devices, developed by completely different teams and

companies. This paper contains a description of adapting

the existing framework for automation of the test process

on the tested TV box, which includes testing of stability

and functionality of existing apps and the device itself.

Keywords: System testing, Automatic testing, Consumer

electronics, test report

__

НАПОМЕНА:

Овај рад проистекао је из мастер рада чио ментор

је био др Илија Башичевић, ред. проф.

1. УВОД

Свака апликација мора бити детаљно истестирана пре

него што се пошаље муштерији. Овај процес се може

одрадити ручно, где ће одабран тим људи узети

даљински, тастатуру, палицу за игру (енг. joystick)

или неки други контролер за ту специфицичну сврху

и прећи разне тестне сценарије један по један. То

мора да се уради више пута да би се осигурало да је

свака могућност функционална и стабилна.

Нажалост, овај процес је далеко од оптималног [1].

Он захтева доста људи којима треба пуно радних

сати. Не само то, него тестер након тога мора да

сакупи све резултате и направи извештај, што

одузима додатно време [2].

Због тога, аутоматизација тестног процеса је веома

ефикасна при смањивању људског фактора, а уз то се

процес сада може обавити преко ноћи. Такође, многи

програмски језици нуде разне библиотеке уз које се

могу генерисати сви потребни извештаји, на пример у

Мајкрософт Ексел табели. Могу се додати и датотеке

са детаљнијим праћењем параметара као што су

искоришћеност RAM меморије, CPU-a, динамичке

меморије (енг. heap) и величине виртуелне меморије.

Даље унапређење би била имплементација радног

оквира у ком би биле сакупљене функције за проверу

најчешће тестираних функционалности, као што су

присутност и квалитет звука и видеа, комуникације са

циљним уређајем, генерисањем извештаја. У овом

раду фокус ће бити на прилагођењу постојећег радног

оквира за аутоматизацију тестног процеса на ТВ

пријемнику под тестирањем, што укључује тестирање

системских и корисничких апликација, како и

понашања самог уређаја.

Остатак рада је структуиран на следећи начин: У

поглављу 2 су описани изазови са којим се суочавамо

при прилагођавању постојећег радног оквира за за

специфичну примену. У поглављу 3 ће бити описано

предложено решење које ће садржати све аспекте

апликације или уређаја које треба покрити. У

поглављу 4 ће бити приказани резултати и начин на

који треба да се тумаче. Коначно, у поглављу 5 ће

бити кратак закључак целог рада.

2. ИЗАЗОВИ ПРИ ПРИЛАГОЂАВАЊУ

ПОСТОЈЕЋЕГ РАДНОГ ОКВИРА

СПЕЦИФИЧНОМ ПРОЈЕКТУ

Постојећи радни оквир је развијен на РТ-РК

Институту и успешно примењен на многим

1366

пројектима. Иако радни оквир пружа универзалне

функције за за често тестиране функционалности,

сваки пројекат захтева прилагођење параметара

функција за специфичну употребу у том пројекту [3].

Унутар пројекта, параметри се неће мењати сваки пут.

Зато би било корисно написати посебан модел у ком

ће се налазити модификоване функције из радног

оквира са параметрима специфичним за тај пројекат.

Тај модул ће бити укључен у сваки тест и тако ће

прегледност и будуће одржавање кода бити много

лакше.

У случају ТВ пријемника под тестирањем, требаће

нам функције за проверу присутности звука и видеа,

читање тренутне позиције и укупне дужине садржаја

са екрана, обрада слике за препознавање прогрес бара,

података о догађајима, контрола на екрану и водича.

Што се тиче самих тестова, итерација не треба да се

настави ако падне провера било којег од тестираних

аспеката. У супротном, време ће се непотребно

потрошити на тестирања неких других аспеката за

итерацију која је свеједно пала. Присуство звука и

видеа треба да буде проверено прво јер нема смисла

тестирати ТВ апликације или пријемника ако нема

слике или звука. Добра идеја би била да се то тестира

два пута по итерацији, због сигурности.

Слика 1. Дијаграм који приказује различите модуле

присутне у радном оквиру

3. ПРЕДЛОЖЕНО РЕШЕЊЕ

У овом решењу, све функције су груписане у базном

модулу за уређај под тестирањем.

Први корак је био сакупљање базе снимака екрана на

којима се виде сви подаци које ћемо тражити.

Координате ових података се даље користе као

референтне у даљим тестовима. Тестови који садрже

проверу звука немају базу података јер звук варира

превише од снимка до снимка. Највероватније је да ће

се тражити прогрес бар, почетно и крајње време неког

догађаја, име догађаја, број канала, тренутну позицију

и неке посебне команде које се приказују на екрану.

Када су одређене координате свих елемената који ће

се претраживати, написали смо функције за њихово

препознавање.

Други корак је проучавање лог датотеке да бисмо

нашли који текст треба да претражујемо да би се

добавиле тренутна позиција, број канала, имена

активности или било који други аспект који нас

занима. Када смо одредили шта тачно тражимо,

написали смо функције које ће претраживати тај текст

у тестовима.

Такође су нам требале функције за претраживање

одређених активности, детектовање притиснутих

дугмића на даљинском управљачу и потврде да је

апликација успешно покренута.

Након тога смо додали неколико функција за праћење

понашања апликације и уређаја, јер желимо да

зауставимо тестирање и поново покренемо уређај ако

нешто критично крене по злу. Ове функције ће бити

корисне и за генерисање коначног тест извештаја. Оне

укључују праћење попуњености RAM меморије, CPU-

a, динамичке меморије и величине виртуелне

меморије. Радни оквир већ садржи функције за

генерисање извештаја, па није потребно додавати

нове. Такође садржи опцију за пуштање веће

количине тестова одједном, који се могу пустити и

преко ноћи. На тест инжењеру је да процени колико

тестова се може извршити преко ноћи. Није проблем

ако се пусти превише тестова јер резултати готових

тестова могу да се прегледају док се чекају преостали.

Важније је да се не пусти премало тестова, јер се онда

непотребно губи време. Док се прегледају резултати

извршених тестова, нова група тестова може бити

пуштена у позадини, ако су сви већ пуштени тестови

завршени.

Још једно корисно унапређење већ присутно у радном

оквиру је могућност слања електронске поште (енг. E-

mail) са свим потребним датотекама свима које би та

електронска пошта интересовала. Менаџмент

углавном жели само табелу са коначним резултатима,

док програмери вероватно желе детаљнији извештај,

па се мејл треба прилагодити на основу тога. Узевши

све горе наведено у обзир, Пајтон је одабран као

најбољи језик за имплементацију јер већ садржи

велики број библиотека и документације. Даље,

радни оквир је идеалан за тестирање на црној кутији-

тестирање у ком није потребно знати тачно шта

апликација ради, већ само шта да се очекује од ње,

што је идеално за тестирање пројеката који нису

отвореног кода.

У овом радном оквиру практично нема корисничког

интерфејса, већ се све ради преко терминала. Тестови

и радни оквир треба да буду на истој локацији, и када

се радни оквир покрене, опције ће се приказати у

терминалу. Може се бирати између више група

тестова, које се могу прилагодити по жељи, а онда се

може бирати да ли ће бити пуштен један или сви

тестови из групе. За пуштање преко ноћи, треба

пустити целу групу, а за испитивање појединачног

теста, само он треба да буде пуштен.

4. РЕЗУЛТАТИ

Резултати су сви сакупљени у једном фолдеру и

садрже извештаје о успешности теста, праћеним

параметрима, лог датотеке, као и аудио и видео

снимке из тренутака када се десило нешто што није

очекивано. Датотека која садржи сумаран преглед

свега праћеног тесту је такође присутан у виду ексел

табеле.

Тест инжењер треба да буде обучен да чита лог

датотеке за пројекат или уређај у питању, јер је

углавном програмер тај који ставља логове зарад

испитивања [4]. Ово је од велике помоћи јер

Main

Sound
Processing

Sending
emails

Generate
Excel report

Execute test
plan

Import test
cases

Image
Processing

Generate
Test Report

1367

драстично скраћује време које програмеру треба да

пронађе шта се десило у случају грешке.

Слика 2. Терминал у ком тест инжењер може да

бира између различитих група тестова, и да ли ће

пустити један или све тестове из одабране групе

У следећем низу снимака екрана (слике 3-6) се не

виде свe генерисане датотеке, али се види довољно да

може да се схвати колико је извештај детаљан.

Слика 3. Приказ тестних резултата

Слика 4. Фолдер који садржи све генерисане

датотеке и извештаје

Слика 5. График који показује искоришћеност RAM

меморије током времена

Слиак 6. Табела која приказује искоришћеност RAM

меморије током итерација уз временске ознаке

5. ЗАКЉУЧАК

У овом раду су приказане различите адаптације

постојећег Пајтон радног оквира који помаже при

аутоматизацији целокупног тестног процеса за ТВ

пријемник на тестирању. Са овим решењем, процес ће

бити готов преко ноћи, а тест инжењера ће извештај

чекати спреман ујутру, а електронска пошта са

потребним датотекама ће бити послати. Сада

програмери и тест инжењери могу да проуче те

датотеке и оптимизује пројекат много брже и

ефикасније. Ако је процес успешно аутоматизован,

ручно тестирање се може свести на истраживачко

играње са апликацијом или уређајем, да би се

одређени ивични случајеви такође покрили.

6. ЛИТЕРАТУРА

[1] D. Marijan, V. Zlokolica, N. Teslic, V. Pekovic and

T. Tekcan, "Automatic functional TV set failure detection

system," in IEEE Transactions on Consumer

Electronics, vol. 56, no. 1, pp. 125-133, February 2010,

doi: 10.1109/TCE.2010.5439135

[2] M. Katona, I. Kastelan, V. Pekovic, N. Teslic and T.

Tekcan, "Automatic black box testing of television

systems on the final production line," in IEEE

Transactions on Consumer Electronics , vol. 57, no.

1, pp. 224-231, February 2011, doi:

10.1109/TCE.2011.5735506

[3] Divya Kumar, K.K. Mishra, The Impacts of Test

Automation on Software's Cost, Quality and Time to

Market, Procedia Computer Science, Volume 79, 2016,

Pages 8-15, doi: 10.1016/j.procs.2016.03.003

[4] Nagabushanam, Durga & Dharinya, Sree &

Vijayasree, Dasari & Sai Roopa, Nadendla & Arun,

Anugu. (2022). A Review on the Process of Automated

Software Testing. 10.48550/arXiv.2209.03069.

Кратка биографија:

Јован Зубовић рођен је у Сомбору 2001.

године. Основне студије на Факултету

техничких наука из области Рачунарство

и аутоматика – Рачунарска техника и

рачунарске комуникације завршио је

2023. године.

Контакт: jovanzubovic2001@gmail.com

1368

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 004.42:004.738.12

DOI: https://doi.org/10.24867/33BE27Janosevic

JEZIK SPECIFIČAN ZA DOMEN MAKROA ZA TASTATURE

KEYBOARD MACRO DOMAIN SPECIFIC LANGUAGE

Dušan Janošević, Fakultet tehničkih nauka, Novi Sad

Oblast – ELEKTROTEHNIKA I RAČUNARSTVO

Kratak sadržaj – U radu je predstavljena implementacija

jezika specifičnog za domen (DSL) makroa za tastature,

kao i analiza domena makroa za tastature. Opisan je alat

koji koristi ovaj domen i implementiran koristeći

programski jezik Python i paket textX za parsiranje

gramatike jezika specifičnog za domen, kao i za samo

čitanje skripti napisanih datim jezikom specifičnim za

domen. Glavni cilj projekta jeste napraviti jednostavni alat

za pisanje makroa za tastature koji je intuitivan i zahteva

niži nivo programerskog znanja.

Ključne reči: DSL, textX, Python, alat, makro

Abstract – The paper presents a domain-specific language

(DSL) implementation of keyboard macros, as well as an

analysis of the keyboard macros domain. A tool using this

domain is described, implemented using the Python

programming language and the textX package for parsing

the grammar of a domain-specific language. The main goal

of the project is to create a simple tool for writing macros

for keyboards that is intuitive and requires a lower level of

programming knowledge

Keywords: DSL, textX, Python, tool, macro

1. UVOD

Makroi za tastaturu predstavljaju unapred definisane

nizove komandi koji omogućavaju automatsko izvršavanje

više radnji na računaru jednim pokretom ili prečicom. Iako

su svi makroi prečice, nisu sve prečice makroi, razlikuju se

po složenosti. Prečice obično aktiviraju jednu funkciju dok

su makroi kompleksniji i aktiviraju više radnji [3].

U savremenom računarstvu makroi su postali neizostavan

deo svakodnevnog rada na računaru, naročito kod

naprednijih korisnika koji žele da optimizuju svoj rad i

povećaju svoju produktivnost. Pored makroa na tastaturi

često se koriste i makroi vezani za miš [3].

Bitan su aspect kod korisnika računara koji imaju

ponavljajuće radnje a vremenom su se proširili i na video

igre.

Uvođenjem kompleksnijih softverskih sistema raste i

potreba za kompleksnijim makroima, posebno onima koje

korisnici sami mogu definisati. Istraživanje sprovedeno na

uzorku od 82 korisnika pokazalo je da postoji snažna veza

između stepena svakodnevnog korišćenja računara i

upotrebe makroa [3].

__

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je bio

dr Igor Dejanović, red. prof.

2. ISTORIJSKI RAZVOJ

2.1. Formatiranje teksta

Prečice su nastale pre pojave računara, još na mehaničkim

pisaćim mašinama. Prva značajna implementacija prečica

bila je na Remingtonovoj pisaćoj mašini koja je koristila

taster Shift za promenu veličine slova. U digitalnom obliku

poznate su još i prečice za kopiranje, lepljenje i sečenje

teksta [1].

Do 1980-ih prečice su postale standardna funkcionalnost.

Uvedena je prečica Ctrl+Alt+Del 1981. Godine dok su

Alt+Tab i Undo pojavili u kasnijim verzijama Windows

operativnog Sistema

2.2. Makroi

Pojam makroa u računarskom smislu potiče iz 1960-ih

kada su korišćeni u asemblerskim jezicima kao makro

instrukcije koje smanjuju količinu izvorne programske

logike. Tokom 1980-ih makroi se pojavljuju u alatima

poput SmartKey i ProKey.

2.2.1. Period 1980-ih

Pojavljuju se prvi makroi u programima za tabelarne

proračune, kao što je lotus 1-2-3. Microsoft office uvodi

jednostavne makroe kroz alat WordBasic. Prvi program za

snimanje pokreta miša i tastature zove se AutoIt.

2.2.2. Period 1990-ih

Microsoft pravi VBA alat za automatizaciju u Office

programima. Makroi se počinju koristiti u video igrama

gde jedno dugme može pokrenuti više radnji. Program

Macro Express omogućava pravljenje makroa bez znanja

programiranja.

2.2.3. Period 2000-ih

Alati kao što su AutoHotKey i RPA proširuju svoju primenu

makroa na poslovne zadatke. Automatizacija polako

prelazi iz licne upotrebe u poslovne tokove rada.

2.2.4. Period 2010-ih

Makroi se sele u cloud okruženja. Selenium omogućava

automatizaciju web zadataka. Počinje integracija veštačke

inteligencije za prepoznavanje elemenata i pokretanje

makroa.

2.2.5 Period 2020-ih

Microsoft uvodi Power Automate u Windows. Makroi se

široko primenjuju u industriji i uslugama, AI alati kao

ChatGPT i Copilot pojednostavljuju kreiranje skripti. VBA

i dalje ima snažnu ulogu a sigurnosni problemi su velikim

delom rešeni [2, 4].

1369

https://doi.org/10.24867/33BE27Janosevic

3. POSTOJEĆA REŠENJA

3.1. Macro Recorder

Komercijalni alat za snimanje i automatsko izvršavanje

akcija mišem ili tastaturom. Razvila ga je kompanija

Bartels Media. Ima vizuelni interfejs i podršku za OpenAI

odnosno ChatGPT. Nije potrebno programersko

predznanje [5].

3.2. Macro Express

Softverski alat još iz 1990-ih. Omogućava kreiranje

složenih makroa bez programiranja. Imao je više verzija

gde su glavne promene po verzijama bile: Verzija 3 je

uvela uslovno izvršavanje, petlje i okidače makroa. Verzija

4 dobila je bolju podršku za Windows operativni sistem i

lakše uređivanje makroa. Verzija 5 dobila je novi interfejs

i 64-bitnu podršku, pored toga dodatno je optimizovana.

Najnovija verzija, pod brojem 6, dobila je integraciju sa AI

alatima i cloud servisima, poboljšanu stabilnost i plaćala se

samo jednom. Poseduje probni period i portabilnu verziju

alata [6].

3.3. AutoHotKey

Besplatan i open-source jezik za automatizaciju na

Windows operativnom sistemu. Podržava kompleksne

skripte za tastaturu, miš i rad sa prozorima i fajlovima.

Jednostavan je za napredne korisnike ali može biti

zahtevan novim korisnicima [7].

3.4. Pulover’s Macro Creator

Besplatan alat baziran na AutoHotKey alatu ali sa

vizuelnim interfejsom. Omogućava lako kreiranje makroa

bez pisanja koda. Ograničen je na Windows platformu [8].

3.5. Windows Power Automate

Windows-ov alat za naprednu automatizaciju poslovni

procesa. Radi i u cloudu i na deskop-u. Integrisan je u

Windows operativni sistem, besplatan je i podržava RPA

funkcionalnosti. Veća moć, ali i kompleksnost u odnosu na

druge alate [9].

4. KORIŠĆENI ALATI

Opisani su alati korišćeni za izradu projekta I opisani su

razlozi izbora. Projekat je rađen uz pomoć Python

programskog jezika verzije 3.12, biblioteke koje su

korišćene su textX za definisanje jezika i parsiranje koda,

pynput kao alat za čitanje i aktivaciju tastera i pyautogui

kao alat za dobijanje podataka sa ekrana radi aktivacije

automatskih makroa.

4.1. Python

Predstavlja interpretirani, jednostavni i svestran jezik

pogodan za automatizaciju, analizu podataka, mašinsko

učenje i web razvoj. Ima veliku zajednicu, bogate

biblioteke i pogodan je za brz razvoj softvera. Mana mu je

što je sporiji od ostalih programskih jezika [10].

4.2. textX

Python biblioteka koja služi za kreiranje domenskih jezika

i parsiranje teksta na osnovu definisane gramatike.

Omogućava lako generisanje Python klasa iz gramatike i

nudi jednostavan način za obradu korisnički definisanih

jezika. Zasnovan je na PEG parseru što osigurava

nedvosmislenost prilikom čitanja ulaza [11].

4.3. Pynput

 Python biblioteka koja omogućava kontrolu i slušanje

ulaza sa tastature i miša. Podržava sve glavne operativne

sisteme i pogodna je za makroe jer omogućava simulaciju

i presretanje tastera. Dobro radi u multi-threading

okruženju ali ne podržava čitanje sadržaja sa ekrana i

zahteva ručno mapiranje specijalnih tastera [12].

4.4 Pyautogui

Biblioteka koja služi sa automatizaciju miša i tastature kao

i za čitanje sadržaja sa ekrana. Podržava glavne operativne

sisteme, ali može čitati sliku samo sa glavnog ekrana i ne

može slušati ulaz sa tastature. Pogodna je za jednostavne

automatizacije i simulacije unosa [13].

5. META MODEL MAKROA ZA TASTATURE

U ovom poglavlju opisan je domen makroa za tastature, sa

naglaskom na pojmove koji čine osnovu za definisanje

jezika specifičnog za domen. Centralni elementi su

događaji koji pokreću makroe i akcije koje se iz tih

događaja izvršavaju. Akcije mogu biti jednostavne ili

kompleksne, uključujući petlje, uslovno izvršavanje, pauze

i funkcije radi ponovne upotrebe koda. Svi ti elementi

objedinjuju meta-model koji definiše koncepte, njihove

veze i ograničenja.

Cilj je omogućiti korisniku da fleksibilno i apstraktno

kreira makroe bez nepotrebnog ponavljanja.

5.1 Vizuelizacija meta-modela

Slika 1. Meta-model jezika za makroe za tastature

6. Interpretiranje

Najbitniji deo samog alata. Opisuje samo izvršavanje

skripte. Pre nego što otpočne izvršavanje skripte, textX

model se svodi na Python klase koje su ručno napisane za

određenu upotrebu, odnosno ne koriste se Python klase

koje generiše textX, samim tim je i gramatika određenog

oblika.

Deo pokretanja pre samog interpretiranja se svodi na

učitavanje meta-modela, zatim učitavanje određenih

skripti, odabir skripte i svođenje te skripte na Python

model. Nakon toga otpočinje interpretiranje skripte.

1370

6.1 main.py

Glavni fajl projekta, sadrži main() funkciju od koje

otpočinje izvršavanje. U njoj se prvo učitavaju sve makro

skripte iz projektnog direktorijuma funkcijom

load_macros(). Nakon čega se vrši provera cikličnosti

pomoću klase Checker. Zatim se izabrana skripta šalje na

izvršavanje kroz funkciju interpret(). Sam meta-model se

učitava pre početka rada funkcija.

6.2. Definicija cli alata

Definiše drugi način pokretanja skripti preko komandne

linije umesto pokretanja skripte kao Python projekta.

Ulazna tačka je cli.py odakle se poziva definicija skripte iz

fajla type_macro.py, koja učitava meta-model i definiše

funkcije za učitavanje i izvršavanje makro skripte.

Korisnik samo navodi putanju do željene skripte kao

argument komandnog alata.

6.3. Checker klasa za proveru cikličnosti

Veoma bitna klasa u projektu. Služi za proveru cikličnosti

poziva makroa, odnosno da li možemo ući u beskonačnu

petlju poziva makroa. Ova pojava je potencijalno opasna

jer može dovesti do gubitka kontrole nad računarom. Zato

je u sam alat ugrađen bezbednosni makro za zaustavljanje

svih akcija (Alt+F12).

Glavna funkcija je detect_cycle() koja primenjuje

algoritam dubinske pretrage (DFS) nad stablom poziva. Za

svaki makro proverava se da li aktivira drugi makro, i ako

je tako taj odnos se prati rekurzivno. Ako tokom pretrage

naiđemo na makro koji je već bio u putanji pretrage,

otkrivena je cikličnost i algoritam vraća upozorenje.

Ako nijedan put ne odvede do takve situacije, makro se

beleži kao bezbedan i isključuje se iz narednih provera.

Ovakva provera obezbeđuje stabilnost sistema i sprečava

slučajne beskonačne petlje u automatizaciji.

6.4. Python klase modela

Selekcija u kojoj se posebno opisuju sve klase domena u

Python obliku, opisuju se njihovi atributi kao i funkcije

koje poseduju date klase.

Nakon što se sam model učita preko klase MacroGroup

koja suštinski poseduje celokupnu skriptu sa makroima,

celokupna stabla koja predstavljaju makroe se svode na

klasu FullMacro koja strukturu stabla svo ina listu akcija.

6.5. Raspetljavanje

Raspetljavanje je proces svođenja stabla akcija jednog

makroa na listu akcija. Na početku modela, svaki

pojedinačni makro poseduje stablo akcija koje obuhvata

izvršavanje makroa. Ovaj oblik nije baš pogodan za

izvršavanje i može se raspetljati zbog jednostavnosti. Na

slici 2. prikazan je primer jednog stabla makroa.

Slika 2. Primer stabla akcija jednog makroa

Nakon što se izvrši raspetljavanje, dobiće se instanca klase

FullMacro koja će u sebi sadržati raspetljanu listu akcija

koje su se nalazile u stablu (Slika 3.).

Slika 3. Primer raspetljane sekvence akcija preko klase

FullMacro

6.6. Interpreter

Sve počinje od funkcije interpret() koja pokreće slušanje

sa tastature ili slušanje specifičnog piksela na ekranu u

zavisnosti od tipa makroa, svako slušanje makroa poseduje

svoju zasebnu nit. Ako je makro zasnovan na tasterima,

koristi se funkcija listen_to_macro(), a ako reaguje na boju

piksela poziva se funkcija listen_to_pixel(), niti koje su

zasnovane ovim funkcijama zovemo nitima slušačima.

Dok se slušaju događaji, odvojena nit iz paketa pynput prati

kada je taster pritisnut ili otpušten i u zavisnosti od toga

puno odnosno prazni set pritisnutih tastera. Kada se ispune

uslovi za pokretanje makroa, nit slušač će pokrenuti novu

nit koja će izvršavati pritiske tastera definisane makroom

koji je aktiviran preko funkcije

execute_macro_sequence().

6.6.1. Multi-threading pojašnjeno

Do sada su spomenute niti koje su prisutne kod

interpretera, ovde su definisani odnosu između njih kao i

detaljniji opis tih niti.

Glavna nit prati pritiske tastera, ova nit potiče iz paketa

pynput. Služi da ubacuje odnosno izbacuje tastere iz seta

pritisnutih tastera.

Niti slušači su niti koje se pokreću u isto vreme kada i

glavna nit. Ove niti prate sadržaj seta pritisnutih tastera i

proveravaju da li je ispunjen uslov za pokretanje makro

sekvence akcija.

Niti radilice su niti koje se instanciraju u nitima slušačima.

Kada je uslov za aktivaciju makroa ispunjen, instancira se

nova nit radilica koja će izvršavati akcije datog makroa, za

to vreme, nit slušač nastavlja da sluša. Ovo znači da jedna

nit slušač može da instancira više istih niti radilica.

Slika 4. Primer modela funkcionisanja niti interpretera

7. PRIMERI SKRIPTI DEFINISANI JEZIKOM

U ovom poglavlju opisani su konkretni primeri korišćenja

skripti napisanih za korišćenje uz pomoć alata opisanog u

ovom radu.

1371

7.1. Otvaranje programa i puštanje muzike

Ova skripta sadrži više funkcija koje pomažu pri apstrakciji

određenih sekvenci akcija i pomažu pri jednostavnije

pisanju. Skripta poseduje makroe za otvaranje Web

pretraživača Opera, makro za otvaranje programa za video

igre Steam [14] kao i dve varijante prečica za puštanje

muzike, jedna varijanta preko browsera, druga preko

aplikacije za muziku Spotify.

Slika 5. Pomoćne funkcije za skriptu otvaranja programa

i pokretanja muzike

Slika 6. Makroi za pokretanje muzike i specifičnih

programa uz pozivanje pomoćnih funkcija

7.2. Skripta za video igru Path of Exile

Pokazuje pravu moć makroa z video igrama, sadrži dva

makroa koja slušaju specifične pozicije piksela na ekranu.

Ukoliko količina životnih poena ili količina magije heroja

u igri padne ispod određenog nivoa, odnosno promeni se

boja piksela bara, aktiviraće se specifičan makroa da taj bar

napuni.

Pored toga sadrži i jednostavan makro za aktivaciju više

magija preko prečice.

Slika 7. Primer skripte za slušanje barova za igru Path of

Exile[16] za aktivaciju moći

8. ZAKLJUČAK

Makroi predstavljaju unapred definisane sekvence akcija

komandi koje značajno ubrzavaju rad na računaru. Njihov

razvoj je prošao dug put. Od mehaničkih prečica do

modernih alata koji mogu koristiti veštačku inteligenciju.

Glavna prednost makroa je ušteda vremena, pritiskom

nekoliko tastera mogu se pokrenuti složene radnje, što je

posebno korisno u profesionalnom okruženju.

U radu je prikazano kako su alati za makroe evoluirali i

kako se danas koriste u alatima poput AutoHotKey-а и

Macro Express-а. Cilj projekta bio je da se napravi

jednostavan, ali moćan alat prilagođen početnicima ali

dovoljno fleksibilan za napredne korisnike. Fokus je

stavljen na lakoću upotrebe, mada to ograničava rad na

složenijim skriptama.

Projekat takođe uključuje proveru postojanja rekurzije

među makroima kao i multi-threading mehanizam za

paralelno izvršavanje, što omogućava bolje performanse.

Primeri upotrebe pokazuju primenu u svakodnevnom radu

i igrama.

Unapređenja ovog alata obuhvataju proširenje sa grafičkim

interfejsom, kontrolu miša, kao i prebacivanje alata na neki

drugi programski jezik zbog performansi. Takođe

interesantno proširenje bila bi podrška za više računara,

odnosno kontrola više računara sa jednog glavnog.

9. LITERATURA

[1] https://www.taskade.com/blog/history-keyboard-

shortcuts-productivity, приступ 26. Фебруар 2025.

[2]

https://en.wikipedia.org/wiki/Macro_(computer_science)

[3] Peres, S. C., Tamborello, F. P., Fleetwood, M. D.,

Chung, P., & Paige-Smith, D. L. (2004). Keyboard

Shortcut Usage: The Roles of Social Factors and

Computer Experience. Proceedings of the Human Factors

and Ergonomics Society Annual Meeting, 48(5), 803–807.

https://journals.sagepub.com/doi/abs/10.1177/154193120

404800513

[4] https://www.digit.in/features/general/digit-mag-the-

origin-of-software-macros-53206.html, приступ 1. Март

2025.

[5] https://www.macrorecorder.com , приступ 1. Март

2025.

[6] https://www.macros.com , приступ 1. Март 2025.

[7] https://www.autohotkey.com , приступ 1. Март 2025

.

[8] https://www.macrocreator.com , приступ 8. Март

2025 .

[9] https://learn.microsoft.com/en-us/power-automate ,

приступ 8. Март 2025 .

[10] https://www.Python.org/about/ , приступ 18. Април

2025.

[11] https://textx.github.io/textX/ , приступ 18. Април

2025.

[12] https://pynput.readthedocs.io/en/latest/ , приступ 17.

Мај 2025.

[13] https://pyautogui.readthedocs.io/en/latest/, приступ

18. Мај 2025.

[14] https://steam.fandom.com/wiki/Steam , приступ 29.

Јун 2025.

[15] https://en.wikipedia.org/wiki/Spotify, приступ 29.

Јун 2025.

[16] https://www.pathofexile.com, приступ 29. Јун 2025.

Kratka biografija:

Dušan Janošević rođen je u Majdanpeku

2001. godine. Master rad na Fakultetu

tehničkih nauka iz oblasti Elektrotehnike i

računarstva – Softversko inženjerstvo

odbranio 2025. godine.

Kontakt: dusan.janosevic123@gmail.com

1372

https://www.taskade.com/blog/history-keyboard-shortcuts-productivity
https://www.taskade.com/blog/history-keyboard-shortcuts-productivity
https://en.wikipedia.org/wiki/Macro_(computer_science)
https://journals.sagepub.com/doi/abs/10.1177/154193120404800513
https://journals.sagepub.com/doi/abs/10.1177/154193120404800513
https://www.digit.in/features/general/digit-mag-the-origin-of-software-macros-53206.html
https://www.digit.in/features/general/digit-mag-the-origin-of-software-macros-53206.html
https://www.macrorecorder.com/
https://www.macros.com/
https://www.autohotkey.com/
https://www.macrocreator.com/
https://learn.microsoft.com/en-us/power-automate
https://www.python.org/about/
https://textx.github.io/textX/
https://pynput.readthedocs.io/en/latest/
https://pyautogui.readthedocs.io/en/latest/
https://steam.fandom.com/wiki/Steam
https://en.wikipedia.org/wiki/Spotify
https://www.pathofexile.com/
mailto:dusan.janosevic123@gmail.com

Зборник радова Факултета техничких наука Нови Сад

UDK: 004.42:004.738.12

DOI: https://doi.org/10.24867/33BE29Bjelica

ИЗРАДА КОМПАЈЛЕРА УПОТРЕБОМ РАСТЕМО БИБЛИОТЕКЕ

COMPILER DEVELOPMENT USING THE RUSTEMO LIBRARY

Марко Бјелица, Факултет техничких наука, Нови Сад

Област – РАЧУНАРСТВО И АУТОМАТИКА

Кратак садржај – У овом раду је уз ослонац на

библиотеку Rustemo, изграђен компајлер Расти,

назван тако јер је имплементиран у програмском

језику Rust. У раду је дата теоријска основа за све

фазе компајлирања које су реализоване у Растију, а

то су лексичка, синтаксна и семантичка анализа, са

највећим фокусом на синтаксну анализу. Расти се

састоји од лексичког анализатора (имплементираног

ручно и изгенерисаног помоћу Rustemo библиотеке),

синтаксног анализатора (имплементираног ручно и

изгенерисаног Rustemo библитеком), семантичког

анализатора и евалуатора.

Кључне речи: Компајлер, Rustemo, Rust, лексички

анализатор, синтаксни анализатор, семантички

анализатор, евалуатор.

Abstract – The paper presents a compiler, named Rasti,

developed witth the Rustemo library. Compiler name

Rasti was chosen, because it is implemented in the Rust

programming language. This work provides the

theoretical foundation for all phases of compilation

realized in Rasti, namely lexical, syntax and semantic

analysis, with the greatest focus on syntax analysis. Rasti

consists of a lexical analyzer (implemented manually and

generated with Rustemo), a syntax analyzer (also

implemented manually and generated with Rustemo), a

semantic analyzer and an evaluator.

Keywords: Compiler, Rustemo, Rust, lexical analyzer,

syntax analyzer, semantic analyzer, evaluator.

1. УВОД

У свијету рачунарства, компајлер је програм који

преводи изворни код написан на високом нивоу у

циљни код погодан за извршавање на рачунару или

виртуелној машини. Изворни код може бити написан

у програмским језицима попут C, C++, Rust, Java,

Python или чак у асемблеру. Циљни код може бити

неки други програмски језик (најчешће нижег нивоа у

односу на изворни), машински код, асемблер, бајткод

или нека међуформа.

Процес компајлирања се састоји од неколико

узастопних фаза, при чему свака фаза има одређен

задатак, а то су:

__

НАПОМЕНА:

Овај рад проистекао је из мастер рада чији ментор

је био др Игор Дејановић, ред. проф.

лексичка анализа, синтаксна анализа, семантичка

анализа, генерисање међукода, оптимизација и на

крају генерисање циљног кода.

У оквиру овог рада представљен је Расти, компајлер

изграђен у програмском језику Rust, уз помоћ

библиотеке Rustemo [1]. Фокус је на теоријској основи

компајлирања и практичној имплементацији

лексичке, синтаксне и семантичке анализе. У пројекту

лексичка анализа је реализована на два начина, а то су

ручном имплементацијом и генерисањем помоћу

Rustemo библиотеке. Слично томе синтаксна анализа

је реализована ручном имплементацијом парсера са

рекурзивним спустом и аутоматски изгенерисаним LR

парсером на основу прослијеђене граматике Rustemo

библиотеци. Затим семантичка анализа обрађује

синтаксно стабло добијено од парсера, провјерава

логичку исправност и гради ново стабло. Након тога,

евалуатор пролази кроз стабло настало семантичком

анализом и извршава наредбе.

Расти подржава рад са изразима који садрже

нумеричке и булове вриједности, као и комбиновање

истих са аритметичким, логичким, релационим и

унарним операторима. Такође, подржане су следеће

наредбе: декларација промјенљивих, додјела

вриједности, петље и условне наредбе.

Рад је структуриран у четири дијела. Први дио

представља наведени увод у којем је укратко описан

концепт компајлера и које фазе има, такође дат је

кратак осврт на Расти. У другом дијелу је теоријски

преглед основа компајлера и опис фаза лексичке,

синтаксне и семантичке анализе. Затим у трећем

дијелу је описан Расти, кроз његове

функционалности, архитектуру и разлике које

изгенерисани и ручно имплементирани парсер носе. И

на крају у четвртом дијелу дат је закључак у којем су

разматране могуће примјене и будући правци развоја.

2. ТЕОРИЈСКЕ ОСНОВЕ

2.1. Процес компајлирања

За успјешно рјешавање проблема из пословног

домена, неопходно је прецизно дефинисање проблема

уз коришћење одговарајућег језика. Док за

комуникацију међу људима користи се природни

језик, рачунари нису у могућности да га

интерпретирају на начин, на који то људи раде. Због

тога је потребно користити језик који рачунари могу

да разумију и формализовати проблем у складу са

правилима тог језика.

1373

https://doi.org/10.24867/33BE29Bjelica

Због сложености машинског језика за људе, развијени

су програмски језици који омогућавају једноставнију

комуникацију са рачунарима. Изворни код написан у

неком програмском језику се не може директно

извршавати на рачунару, јер рачунар разумије само

инструкције у машинском коду. Због тога потребно је

превести изворни код у облик који рачунар може

разумијети и извршити. Тај превод обавља компајлер,

који као улаз прихвата изворни програм, а као излаз

генерише циљни код, и тај процес се зове

компајлирање.

Сваком програмском језику потребан је преводилац,

али неки језици нису погодни за све задатке, па се у

неким доменима јавља потреба за креирањем нових,

прилагођених језика. То су језици специфични за

домен (енг. Domain-specific languages), осмишљени за

рјешавање проблема у конкретном домену и за чију

изградњу је потребно разумијевање процеса

компајлирања.

2.2. Компајлери и интерпретери

Први корак у рјешавању проблема из пословног

домена, формулисаног терминологијом програмског

језика, јесте превођење изворног у извршни код.

Начин превођења може да се разликује у зависности

да ли се користе компајлери или интерпретери [2].

Компајлери у потпуности преводе изворни код у

извршни код, који је затим спреман за покретање.

Овај приступ омогућава оптимизацију кода прије

извршавања, што резултује бржим радом програма.

Интерпретери обрађују код инструкцију по

инструкцију, без стварања извршне датотеке. Спорији

приступ, али омогућава бољу дијагностику проблема,

управо зато што се програм прати током извршавања.

2.3. Етапе компајлирања

Компајлирање је сложен процес који се састоји из

више узастопних фаза. Те фазе се дијеле на двије

главне етапе, а то су анализа и синтеза, као што је

приказано на слици 1.

Слика 1. Графички приказ компајлирања

Етапа анализе или предњи дио (енг. frontend)

компајлера обрађује изворни код и претвара га у

међурепрезентацију, као што је апстрактно синтаксно

стабло. Ова етапа укључује три фазе: лексичка,

синтаксна и семантичка анализа, које провјеравају

исправност кода према правилима језика.

Етапа анализе или задњи дио (енг. backend)

компајлера користи међурепрезентацију за

генерисање извршног кода.

Ове етапе нису строго раздвојене, већ међусобно

сарађују путем табеле симбола, која чува податке о

идентификаторима и игра кључну улогу у

компајлирању.

2.4. Лексичка анализа

Лексичка анализа је прва фаза компајлирања, чији је

задатак да чита изворни код карактер по карактер и

претвара га у низ токена. Овај процес обавља

лексички анализатор или лексер који:

• Препознаје лексеме и класификује их по типу

градећи токене од њих.

• Прескаче непотребне елементе попут

коментара и празног простора (ово је

опционо, јер постоје језици гдје увлачења

имају значење).

• Памти позицију токена у коду, ради лакшег

лоцирања грешке уколико се деси.

• Гради табелу симбола са подацима о

индентификаторима.

• Пријављује грешку, уколико не може да

препозна улазни симбол.

Лексичка анализа је једина фаза која ради директно са

карактерима, све наредне фазе раде са токенима.

2.5. Синтаксна анализа

Синтаксна анализа је друга фаза компајлирања која

слиједи након лексичке анализе. Слично као што

синтакса природног језика проучава правила која

одређују како се ријечи комбинују у реченице, тако

граматика програмског језика представља скуп

правила који дефинише, како се токени могу

комбиновати да би се добио исправно структуриран

код.

Током ове фазе, синтаксни анализатор или парсер на

основу токена, добијених из лексичке анализе,

провјерава да ли њихов редослијед у складу са

граматиком језика, притом градећи синтаксно стабло

[3].

Синтаксно стабло или стабло парсирања (енг. parse

tree) јесте хијерархијска структура која одражава

организацију кода у складу са граматиком

програмског језика. Формира се током синтаксне

анализе и служи као основа за наредну фазу

компајлирања, што је семантичка анализа.

Елементи синтаксног стабла:

• Чворови стабла могу бити терминали или

нетерминали.

• Коријен стабла је почетни симбол граматике.

• Листови стабла су увијек терминали, јер се не

могу даље расчланити.

1374

У зависности од начина изградње синтаксног стабла,

односно правца у којем парсер се креће приликом

препознавања структуре програма, постоје два типа

синтаксне анализе, а то су синтаксна анализа наниже

(енг. top-down parsing) и синтаксна анализа навише

(енг. bottom-up parsing).

2.5.1. Синтаксна анализа наниже

Синтаксна анализа наниже је приступ парсирању који

започиње од почетног нетерминала граматике и

покушава да конструише синтаксно стабло према

доњим листовима, односно терминалима. Анализатор

покушава да усклади улазне токене са продукцијама

граматике, примјењујући правила тако да генерише

улазни низ. У сваком кораку, одлука о примјени

правила доноси се на основу предувидног симбола

(енг. lookahead) [4].

Најзаступљенији парсери који користе ову методу су:

• Парсер са рекурзивним спустом (ручно

имплементиран парсер у Растију).

• LL(1) парсер.

Овај приступ није отпоран на појаву лијеве рекурзије

у граматици.

2.5.1.1. Рекурзивни спуст

Техника рекурзивног спуста представља приступ

синтаксној анализи наниже, при којем се сваки

нетерминални симбол граматике реализује као

засебна рекурзивна функција. На основу предувидног

симбола, ове функције селективно примјењују

одговарајућа продукцијска правила. Терминални

симболи се директно пореде са тренутним улазом, а у

случају непоклапања јавља се синтаксна грешка.

2.5.2. Синтаксна анализа навише

Анализа навише представља процес конструисања

синтаксног стабла за дати улазни низ токена, полазећи

од његових листова и поступно сводећи га ка

коријену, односно ка почетном симболу граматике.

Током овог процеса, у сваком кораку анализе, неки

подниз улаза који одговара десној страни правила

граматике замјењује се његовом лијевом страном. Ако

су ови поднизови изабрани на правилан начин, процес

парсирања одговара обрнутом току крајњег десног

извођења, гдје се продукције примењују од листова ка

коријену стабла

2.5.2.1. Анализа навише пребацивањем и свођењем

Анализа навише пребацивањем и свођењем (енг. shift-

reduce parsing) је општи облик синтаксне анализе

навише која гради синтаксно стабло од листова ка

коријену []. Овај приступ користи стек за праћење

парцијалних резултата обраде и има двије методе:

• Пребацивање (енг. shift), метода која улазне

симболе пребацује на стек.

• Свођење (енг. reduce), метода која секвенцу

симбола замјењује нетерминалом, примјеном

неког продукционог правила.

Циљ је на крају да стек садржи само почетни симбол

граматике, чиме се потврђује синтаксна исправност

улаза. Ову технику користе сви LR парсери.

2.5.2.2. LR парсер

LR парсери представљају класу парсера за анализу

навише који користе технику пребацивања и свођења.

Назив LR означава:

• L слово означава читање улаза са лијева на

десно (енг. Left-to-right).

• R слово означава конструисање обрнуто

крајње десно извођење стабла (енг. Rightmost

derivation in reverse).

LR парсери доносе одлуке током анализе користећи

стек и табелу анализе, на основу којих утврђују да ли

треба наставити читање улаза, свести препознате

симболе, прихватити улаз или пријавити синтаксну

грешку.

2.6. Семантичка анализа

Семантичка анализа је завршна фаза етапе анализе у

процесу компајлирања. Док синтаксна анализа

провјерава структуру кода према граматици,

семантичка анализа провјерава логичку исправност

програма. Њен циљ је да осигура да су сви

идентификатори исправно дефинисани, да се користе

у складу са својим типовима, и да се поштују правила

као што су видљивост и права приступа.

Неке од најчешћих семантичких грешака:

• Неслагање типова (енг. type mismatch).

• Коришћење недекларисаних промјенљивих

• Вишеструка декларација у истом опсегу.

• Приступ промјенљивој ван њеног опсега.

• Неслагање између формалних и стварних

параматера функције.

Семантичка анализа се може изводити током или

након синтаксне анализе. Једнопролазни компајлери

врше синтаксну и семантичку анализу у једном

пролазу, што је ефикасно, док вишепролазни

компајлери одвајају ове кораке ради веће

флексибилности и боље подршке за сложене

структуре програма, овај принцип је имплементиран у

Растију.

3. СПЕЦИФИКАЦИЈА СИСТЕМА

3.1. Функционалности система

Пројекат Расти представља имплементацију

компајлера написаног од нуле у програмском језику

Раст. Подржава парсирање и евалуацију израза са

нумеричким и буловим вриједностима, аритметичким,

логичким, релационим и унарним операторима, као и

рад са заградама. Поред тога, обухвата основне

програмске конструкције као што су додјела,

константе, условне наредбе, петље и угњеждени

блокови кода.

1375

3.2. Архитектура

Пројекат Расти представља имплементацију

компајлера за императиван програмски језик. Иако не

прати у потпуности класичне фазе компајлирања,

састоји се од више компоненти, које су приказане на

слици 2.

Архитектура приказана на слици обухвата:

• Ручно имплементиран лексер који учитава

текст у радну меморију и генерише токене

обрађујући га карактер по карактер.

• Ручно имплементиран парсер који гради

синтаксно стабло методом рекурзивног

спуста.

• Лексер изгенерисан Растемо библиотеком,

који учитава токен по потреби и ради

ефикасније од ручно имплементираног, јер не

држи цијели код у радној меморији.

• LR парсер изгенерисан Растемо библиотеком.

• Семантички анализатор пролази кроз стабло

парсирања и везује га семантичким

правилама, при чему гради ново стабло.

• Након успјешне семантичке анализе,

евалуатор обилази ново стабло, извршава

наредбе, евалуира изразе и крајњи резултат

приказује кориснику.

• Дијагностика која прикупља логове и грешке

уколико се десе у свим фазама компајлирања.

 Слика 2. Архитектура пројекта

3.3. Разлике између изгенерисаног и ручно

имплементираног парсера

Највећа разлика између LR парсера и парсера са

рекурзивним спустом лежи у приступу парсирању. LR

парсер врши синтаксну анализу навише и обично се

аутоматски генерише, док парсер са рекурзивним

спустом обавља анализу наниже и пише се ручно. У

овом поглављу биће разматране конкретне разлике

између ових парсера имплементираних у пројекту.

Ручна имплементација парсера са рекурзивним

спустом је једноставна и ефикасна за једноставне

граматике, али мање проширива и осјетљива на

граматичке проблеме као што је лијева рекурзија. Са

друге стране, изгенерисани LR парсер пружа бољу

подршку за проширења и аутоматску детекцију

граматичких конфликата, што доприноси стабилности

и лакшој одрживости пројекта.

Ефикасност је у оба случаја адекватна тренутној

граматици, али LR приступ је прикладнији за даљи

развој и сложеније граматике. Обје имплементације

нуде сличан ниво дијагностике, коју чине

информативне поруке и грешке.

4. ЗАКЉУЧАК

Рад представља приказ процеса изградње

једноставног компајлера званог Расти, написаног у

програмском језику Rust уз подршку библиотеке

Rustemo. Основна мотивација за реализацију рада

била је боље разумијевање процеса компајлирања и

учење новог програмског језика.

На самом почетку рада дате су теоријске основе о

томе шта је то компајлер, процес компајлирања и које

разлике има у односу на интерпретере. Затим описана

је етапа анализе коју чине лексичка, синтаксна и

семантичка анализа. Посебан акценат стављен је на

синтаксну анализу, гдје се обрађују методе синтаксне

анализе наниже и навише.

У другом дијелу рада описана је спецификација

система, која обухвата функционалност и архитектуру

Растија. У оквиру тог поглавља дато је и образложење

разлика између изгенерисаног и ручно

имплементираног парсера.

Тренутна имплементација Растија пружа стабилну

основу за будући развој и унапријеђење.

Потенцијални правци даљег развоја укључују

функционално проширење програмског језика, као

што је увођење функција, структура или класа, што

омогућава праћење савремених програмских

стандарда. Такође, може се надоградити процес

компајлирања, додавањем фаза као што су генерисање

међукода, оптимизација и креирање циљног кода.

Поред тога, простор за напредак јесте могућа

имплементација неке од техника опоравка од грешака

у лексичкој и синтаксној анализи, што доприноси

робусности компајлера. Сви ови правци доприносе

свеукупном квалитету компајлера и развојном

потенцијалу програмског језика.

5. ЛИТЕРАТУРА

[1] Растемо (енг. Rustemo) библиотека -

https://www.igordejanovic.net/rustemo/

 (посљедњи приступ: 05.05.2025)

[2] Компајлери и интерпретери -

https://www.spiceworks.com/tech/tech-

general/articles/compiler-vs-interpreter-12-critical-

differences-to-know/

(посљедњи приступ: 05.05.2025)

[3] Aho, A. V., Lam, M. S., Sethi, R., Ullman, J. D.

Compilers: Principles, Techniques, and Tools . 2.

издање. Boston: Addison-Wesley, 2006.

[4] Cooper, K. D., Torczon, L. Engineering a

Compiler. 3. издање. Cambridge, MA: Morgan

Kaufmann, 2022.

Кратка биографија:

Марко Бјелица рођен је у Требињу

1999. године. Мастер рад на

Факултету техничких наука из

области Рачунарство и аутоматика –

Електронско пословање је одбранио

2025. године.

контакт: marko.bjelica19@gmail.com

1376

https://www.spiceworks.com/tech/tech-general/articles/compiler-vs-interpreter-12-critical-differences-to-know/
https://www.spiceworks.com/tech/tech-general/articles/compiler-vs-interpreter-12-critical-differences-to-know/
https://www.spiceworks.com/tech/tech-general/articles/compiler-vs-interpreter-12-critical-differences-to-know/
mailto:petarns99@yahoo.com

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.9

DOI: https://doi.org/10.24867/33BE30Vulin

JEZIK ZA OPIS PRAVILA ZA IGRE SA KARTAMA

A LANGUAGE FOR DESCRIBING CARD GAME RULES

Ana Vulin, Fakultet tehničkih nauka, Novi Sad

Oblast – ELEKTROTEHNIKA I RAČUNARSTVO

Kratak sadržaj – U radu je predstavljen dizajn i

implementacija jezika specifičnog za domen (DSL)

namenjenog opisivanju pravila za igre sa kartama. Sistem

obuhvata textX parser, interpreter u Python-u, kao i veb

klijent sa podrškom za interaktivnu vizuelizaciju. Cilj je

omogućiti lako kreiranje igri sa kartama bez potrebe za

programerskim znanjem.

Ključne reči: DSL, textX, Python, WebSocket,

vizualizacija, igre sa kartama

Abstract – The paper presents the design and

implementation of a domain-specific language (DSL)

intended for describing the rules of card games. The system

includes a textX parser, a Python-based interpreter, and a

web client with support for interactive visualization. The

goal is to enable easy creation of card games without the

need for programming knowledge.

Keywords: DSL, textX, Python, WebSocket, visualization

card games

1. UVOD

Kartaške igre predstavljaju jedan od najrasprostranjenijih

oblika društvene zabave, ali i pogodan model za

proučavanje i implementaciju različitih pravila, strategija i

interakcija. Njihova struktura – sa jasno definisanim

fazama, pravilima i uslovima pobede – čini ih idealnim

kandidatom za formalizaciju kroz DSL. Cilj ovog rada je

razvoj i implementacija DSL rešenja koje omogućava

jednostavno, fleksibilno i proširivo definisanje i pokretanje

različitih kartaških igara.

Predloženo rešenje – CardGame DSL – omogućava

korisnicima da tekstualno opišu pravila igre koristeći

specijalizovanu DSL gramatiku, a sistem automatski

generiše i izvršava logiku igre, čime se ubrzava razvoj i

olakšava učešće osobama bez programerskog znanja.

Sistem koristi textX za definisanje i parsiranje DSL

sintakse, dok je izvršna logika realizovana u Python-u kroz

specijalizovan interpreter. Klijentska aplikacija je

razvijena u JavaScript-u sa HTML i CSS podrškom, a

komunikacija klijent–server odvija se u realnom vremenu

putem WebSocket-a, čime je omogućena modularnost i

ponovna upotreba sistema.

__

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je bio

dr Igor Dejanović, red. prof.

2. TEORIJSKE OSNOVE

2.1. Jezici specifični za domen (DSL)

Jezik specifičan za domen [1] je jezik napravljen za

rešavanje problema u određenom domenu. Na primer,

HTML je DSL za opisivanje veb stranica, a SQL DSL za rad

sa bazama podataka. Nasuprot DSL-u se nalazi jezik opšte

namene (GPL – General Purpose Language) koji ima

široku primenu u različitim oblastima razvoja softvera

(Python, Java,..)

2.1.1. Apstraktna i konkretna sintaksa

Apstraktna sintaksa [2] – logička struktura koda bez detalja

koji nisu bitni za razumevanje. Najčešće se koristi u vidu

stable apstraktne sintakse (AST – Abstract Syntax Tree).

Konkretna sintaksa – način na koji korisnik unosi

programski kod ili model. Može biti tekstutualna, grafička,

tabelarna.

 U okviru tekstualne konkretne sintakse definiše se

gramatika. Predstavlja formalizovani skup pravila koji

definiše dopustive nizove karaktera i njihove međusobne

odnose.

2.1.2. Parsiranje

Proces parsiranja uzima tekst u konkretnoj sintaksi i

pretvara ga u strukturu u apstraktnoj sintaksi (AST).

2.1.3. Interpretacija i kompajliranje

Postoje dva glavna načina izvršavanja koda ili naredbi –

interpretacija i kompajliranje/generisanje koda.

Interpretacija – izvorni kod ili neka njegova reprezentacija

(npr. AST) se direktno čita i izvršava od strane interpretera.

Kompajliranje ili generisanje koda – proces stvaranja koda

napisanog u nekom jeziku u niz instrukcija ili mašinski kod

koji procesor može direktno izvršiti.

2.2. Igre sa kartama

Igre sa kartama [3] predstavljaju raznovrstan oblik

društvenih igara i sve više se koriste u obrazovanju. Mogu

se klasifikovati prema svrsi i pravilima, npr. igre na sreću,

strateške, pamćenja i opažanja, socijalne i edukativne igre.

3. SPECIFIKACIJA SISTEMA

3.1. Jezici specifični za domen (DSL)

Glavni cilj sistema jeste da omogući lako i brzo kreiranje

kartaške igre koristeći unapred definisan skup pravila i to

na način koji je intuitivan i pristupačan i osobama bez

programerskog znanja.

1377

https://doi.org/10.24867/33BE30Vulin

3.2. Postojeća rešenja

Postojeća rešenja kao što su biblioteka Cardamom.js [4] i

Construct 3 [5] podržavaju razvoj kartaških igara.

Cardamom.js omogućava rad sa kartama. Špilovima i

rukama kroz funkcije za kreiranje, mešanje i upravljanje.

Construct 3 pruža vizuelni, objektno orijentisan sistem za

razvoj 2D igara bez pisanja koda.

3.3. Arhitektura obrade i interpretacije DSL-a

Jezik CardGame je eksterni DSL. Osnovna komponenta

sistema je Game Parser, koji na osnovu definisane

gramatike parsira specifikaciju koja opisuje igru. Parser

vrši osnovnu validaciju specifikacije (.gme fajla) i kao

rezultat vraća model koji se nakon toga prevodi u interni

CardGame Model čija je uloga semantička validacija.

Interpreter predstavlja glavni deo sistema i vrši tumačenje

pravila igre na osnovu modela, omogućavajući njihovu

primenu i izvršavanje. Na slici 1 je dat šematski prikazan

put od .gme fajla do igre.

Slika 1: Arhitektura obrade i interpretacije DSL-a

3.3.1. Meta-model

Meta-model se sastoji od elemenata: Game, Rules, State,

Transition, Action, CardCount, Card, EnumValue, Rank,

Suit i drugih pomoćnih klasa kao što su ParamList, Param.

Svaka klasa ima svoje atribute i međusobne relacije.

3.3.2. Parser

Za obradu specifikacija napisanih u CardGame DSL-u

koristi se biblioteka textX, koja omogućava definisanje

gramatike i automatsko generisanje parsera.

3.3.3. Model

Radi postizanja veće stabilnosti, podaci dobijeni iz parsera

se ne koriste direktno nego se transformišu u interni model.

Interni model (slika 2) predstavlja skup specijalizovanih

klasa dizajniranih da reprezentuju elemente igre sa svim

potrebnim svojstvima i pravilno implementiranom

logikom.

Slika 2: Dijagram klasa internog modela

3.3.4. Interpreter

Interpreter je centralni deo sistema razvijen u Python-u

koji, koristeći biblioteku textX, tumači specifikacije igara

definisanih u CardGame DSL-u i upravlja logikom i tokom

igre. Integrisan je u backend Flask aplikaciju organizovanu

po kontroler-servis-repozitorijum arhitekturi, uz korišćenje

WebSocket protokola za realnovremensku komunikaciju sa

frontend-om. Stanja igre, potezi i rezultati se čuvaju u

relacionoj bazi podataka, što omogućava kontinuitet

partije. Sistem je dizajniran tako da omogući proširivost i

ponovnu upotrebu, bez potrebe za dodatnim kodiranjem pri

definisanju novih igara

4. IMPLEMENTACIJA SISTEMA

4.1. Tehnologije

Ovaj sistem kombinuje textX, Python, Flask, PostgreSQL,

WebSocket, HTTP, JavaScript, HTML i CSS za izradu

interaktivnog DSL-a i veb aplikacije. Backend upravlja

igrom i komunikacijom u realnom vremenu dok frontend

dinamički generiše interfejs.

4.1.1. textX

TextX [6] je meta-jezik za definisanje gramatika DSL-a u

Python-u. U ovom rešenju koristi se za parsiranje

CardGame skripti i generisanje AST.

4.1.2. Python

Python [7] je dinamički jezik pogodan za obradu teksta,

integraciju i backend aplikacije. Korišćen je za parser,

backend server i upravljanje bazom podataka.

4.1.3. Flask

Flask [8] je backend framework za Python, pogodan za veb

aplikacije. U sistemu CardGame omogućava HTTP

zahteve, upravljanje stanjem igre i WebSocket

komunikaciju.

4.1.4. WebSocket

WebSocket [9] je protokol koji omogućava dvosmernu

komunikaciju u realnom vremenu. Ovde se koristi za

razmenu poruka između igrača, bez potrebe za učestalim

HTTP pozivima.

4.1.5. HTTP

HTTP [10] je osnovni protokol za komunikaciju između

klijenta i servera. U sistemu se koristi za učitavanje

stranica, prijavu i registraciju korisnika.

4.1.6. PostgreSQL

PostgreSQL [14] je objektno-relaciona baza podataka

poznata po stabilnosti i skalabilnosti. U CardGame rešenju

služi za skladištenje korisničkih podataka, rezultata i stanja

partija.

4.1.7. HTML, CSS, JavaScript

HTML [11] definiše strukturu veb interfejsa i sadržaja

aplikacije. CSS [12] određuje izgled veb stranice,

uključujući boje, fontove i razmeštaj elemenata.

JavaScript [13] omogućava interaktivnost i dinamičko

ažuriranje veb interfejsa. U ovom rešenju upravlja

WebSocket komunikacijom, generisanjem HTML sadržaja

i reagovanjem na korisničke akcije.

1378

4.2. CardGame DSL i gramatika

CardGame DSL je realizovan kao eksterni tekstualni DSL.

CardGame, osnovni element gramatike, prikazan je na

slici 3. Sadrži ime igre kao i blokove rules, states i cards

koji opisuju pravila, stanja i karte

Slika 3: Element gramatike CardGame

Element Rules prikazan je na slici 4 i predstavlja pravila

koja uključuju broj igrača, broj rundi, način izbora sledećeg

igrača i kriterijum za pobedu.

Slika 4: Element gramatike Rules

Element States prikazan na slici 5 predstavlja stanja

odnosno logičke faze igre koje sadrže akcije i tranzicije ka

drugim stanjima.

Slika 5: Element gramatike States

Element Action prikazan na slici 6 predstavlja radnju koja

se izvršava u okviru određenog stanja. Svaka akcija ima

svoj jedinstveni naziv (name=ID) kao i opcionalni deo ('('

params=ParamList ')')? koji predstavlja parametre akcije

koji mogu, a ne moraju biti prisutni.

Slika 6: Element gramatike Action

Element Transition prikazan na slici 7 predstavlja

tranziciju koja pokazuje u koje sledeće stanje igra prelazi.

Sastoji se od ključne reči then nakon čega sledi naziv

sledećeg stanja, a zatim sledi opcioni deo ('if'

condition=BOOLEAN)?. Ovaj deo je opcion jer se mogu

javiti različiti scenariji:

1. Ako nema definisanih tranzicija to je kraj igre

2. Ako postoji samo jedna tranzicija bez uslova, prelaz u

sledeće stanje se odvija automatski

3. Ako postoji više tranzicija sa uslovima, prelaz se odvija

u prvo stanje čiji je uslov ispunjen

4. Ako postoji više tranzicija bez uslova, sledeće stanje

zavisi od igrača ili nekog spoljašnjeg faktora

Slika 7: Element gramatike Transition

Element gramatike Cards prikazan na slici 8 predstavlja

karte. Svaka karta (Card) je definisana preko ranga i boje,

a navodi se i broj njenog pojavljivanja, kao i koliko poena

vredi (CardCount).

Slika 8: Element gramatike Cards

4.3. Parsiranje i model

Parsiranje .gme datoteka realizovano je uz pomoć textX

parsera. Parsirani podaci se transformišu u interni model

koji vrši dodatnu semantičku validaciju. Interni model

predstavlja skup Python klasa koje definišu strukturu igre.

Ovaj model je osnova za interpretiranje logike igre.

4.4. Interpreter i povezivanje komponenti

Interpreter napisan u Python-u tumači pravila i upravlja

tokom igre. On je integrisan u Flask backend, koji kroz

WebSocket komunicira sa frontend-om. Ovo omogućava

dinamički tok igre bez učitavanja stranice. Stanja igre i

rezultati čuvaju se u PostgreSQL bazi podataka.

4.5. Frontend i korisnički interfejs

Frontend je razvijen u HTML/CSS/JavaScript

tehnologijama. Koristi WebSocket za interaktivnu

komunikaciju i prikazuje tok igre u realnom vremenu.

Sistem omogućava registraciju, prijavu, pregled postojećih

igara i igranje igre sa protivnikom.

4.6. Pomoćne funkcionalnosti

Sistem sadrži niz funkcionalnosti za podršku korisnicima

kao što su syntax highlighting, podrška za snippet-e i

automatska vizualizacija grafa prelaza stanja.

4.7. Konfiguracija i primer upotrebe sistema

Za pokretanje sistema instalirati Python 3.6+, Flask,

PostgreSQL, PyCharm ili VSC. Klonirati repozitorijum

https://github.com/vulinana/card_game_dsl.git.U

PyCharm-u, dodati interpreter iz foldera card_game_dsl.

Dodati .gme fajl u gme/games. Nakon prijave, u glavnom

interfejsu biće dostupna novododata igra.

5. PRIMER SKRIPTE U CARDGAME DSL-u

Igra memorijskih karata namenjena je za dva do četiri

igrača, a cilj je pronaći što više parova istog ranga. Sastoji

se od pet rundi u kojima se igrači smenjuju, dok se karte

postavljaju licem nadole. Pobednik je onaj sa najviše

poena. Osnovna pravila definisana CardGame DSL-om

prikazana su na slici 9.

Slika 9: Osnovna pravila igre memorijskih karata

1379

https://github.com/vulinana/card_game_dsl.git

Na početku igre, na sto se nasumično postavlja osam karata

(deal_table_cards). Igrač koji je na potezu (next_player)

bira dve karte (action_phase). Ova logika implementirana

je kroz stanja prikazana na slici 10.

Slika 10: deal_table_cards, next_player i action_phase

Karte se okreću (reveal) i proverava da li su istog ranga

(matching_cards). Ako nisu, vraćaju se licem nadole

(flip_back), a ako jesu, igrač dobija poene

(calculate_points) i karte se uklanjaju

(remove_selected_cards). Prikaz stanja dat je na slici 11.

Slika 11: reveal, matching_cards, flip_back,

mark_matching_cards_for_scoring, calculate points i

remove_selected_cards

Sistem proverava da li na stolu postoje parovi

(any_matching_table_cards). Ako postoje, igra nastavlja

sa sledećim igračem (next_player), a ako ne, počinje nova

runda (new_round). Nakon provere broja rundi

(rounds_remaining), igra se završava određivanjem

pobednika (game_end) ili ponovnim deljenjem karata

(deal_table_cards). Prikaz stanja dat je na slici 12

Slika 12: any_matching_table_cards, new_round,

rounds_remainning i game_end

Na kraju je potrebno još definisati karte koje se mogu

pojaviti u toku igre, kao i broj njihovog ponavljanja i broj

poena koji nose (slika 13).

Slika 13: Karte koje se mogu pojaviti u igri

6. ZAKLJUČAK

Razvijeni sistem pruža efikasno rešenje za dizajn kartaških

igara, zasnovano na dostupnosti i jednostavnosti.

Deklarativni pristup omogućava intuitivno definisanje

pravila, toka igre i ponašanja igrača, čime se uklanja

potreba za poznavanjem programskih jezika i sistem

postaje dostupan širokom spektru korisnika.

Dalji razvoj sistema omogućava dodavanje funkcionalnosti

koje bi unapredile korisničko iskustvo, kao što su:

1. Proširenje skupa interpretiranih akcija

2. Vizuelni editor pravila – grafički interfejs za

kreiranje i uređivanje pravila bez pisanja DSL koda.

3. Automatska dijagnostika grešaka –

prepoznavanje nelogičnih mehanika uz predlog

rešenja.

4. Simulacija testnih partija – automatsko izvođenje

više partija radi analize funkcionalnosti igre.

5. Interaktivni debugger pravila – korak-po-korak

interpretacija pravila i lakše otkrivanje grešaka.

LITERATURA

[1] https://en.wikipedia.org/wiki/Domain-

specific_language (pristupljeno u maju 2025.)

[2] https://en.wikipedia.org/wiki/Abstract_syntax_tr

ee (pristupljeno u maju 2025.)

[3] https://gambiter.com/cards/classified-

index.html?utm_source=chatgpt.com

(pristupljeno u junu 2025.)

[4] https://marianpekar.github.io/Cardamom.js/

(pristupljeno u maju 2025.)

[5] https://www.construct.net/en

(pristupljeno u maju 2025.)

[6] https://textx.github.io/textX/

[pristupljeno u avgustu 2025.)

[7] https://www.python.org/doc/

(pristupljeno u maju 2025.)

[8] https://flask.palletsprojects.com/en/latest/

(pristupljeno u maju 2025.)

[9] https://developer.mozilla.org/en-

US/docs/Web/API/WebSockets_API

(pristupljeno u maju 2025.)

[10] https://developer.mozilla.org/en-

US/docs/Web/HTTP (pristupljeno u maju 2025.)

[11] https://developer.mozilla.org/en-

US/docs/Web/HTML (pristupljeno u maju 2025.)

[12] https://developer.mozilla.org/en-

US/docs/Web/CSS (pristupljeno u maju 2025.)

[13] https://developer.mozilla.org/en-

US/docs/Web/JavaScript

(pristupljeni u maju 2025.)

[14] https://www.postgresql.org/about/

(pristupljeno u junu 2025.)

Kratka biografija:

Ana Vulin rođena je u Sremskoj

Mitrovici 2000. god. Master rad

na Fakultetu tehničkih nauka iz

oblasti Elektrotehnike i

računarstva – Softversko

inženjerstvo, odbranila je

2025.god.

kontakt: sm.vulinana@gmail.com

1380

https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://gambiter.com/cards/classified-index.html?utm_source=chatgpt.com
https://gambiter.com/cards/classified-index.html?utm_source=chatgpt.com
https://marianpekar.github.io/Cardamom.js/
https://www.construct.net/en
https://textx.github.io/textX/
https://www.python.org/doc/
https://flask.palletsprojects.com/en/latest/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://www.postgresql.org/about/
mailto:sm.vulinana@gmail.com

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.633

DOI: https://doi.org/10.24867/33BE31Petric

METODE OTKLJUČAVANJA MOBILNIH TELEFONA

METHODS FOR UNLOCKING MOBILE PHONES

Jelena Petrić, Fakultet tehničkih nauka, Novi Sad

Oblast – ELEKTROTEHNIKA I RAČUNARSTVO

Kratak sadržaj – Ovaj rad se bavi forenzičkim

metodama otključavanja ekrana Android i iOS uređaja,

uz analizu savremenih bezbednosnih mehanizama i

izazova koje oni postavljaju. Analizirani su operativni

sistemi i bezbednosne arhitekture pametnih telefona, kao i

postojeći pristupi zaobilaženja biometrijske

autentifikacije, lozinki i šablonske zaštite uz primenu

forenzičkih alata. Posebna pažnja je posvećena

praktičnom testiranju otpornosti biometrijskih sistema i

istraživanju karakterističnih obrazaca za zaključavanje,

uz osvrt na etičke i pravne aspekte prikupljanja dokaza.

Ključne reči: digitalna forenzika, mobilni uređaji,

zaštitni mehanizmi, metode otključavanja

Abstract – This paper deals with forensic methods for

unlocking the screens of Android and iOS devices, along

with an analysis of modern security mechanisms and the

challenges they pose. Smartphone operating systems and

security architectures were analyzed, as well as existing

approaches to bypassing biometric authentication,

passwords, and pattern protection using forensic tools.

Special attention is paid to practical testing of the

resilience of biometric systems and research of

characteristic locking patterns, with a focus on the ethical

and legal aspects of evidence collection.

Keywords: digital forensics, mobile devices, protection

mechanisms, unlocking methods

1. UVOD

Otključavanje ekrana predstavlja bitan korak u procesu

prikupljanja dokaza tokom forenzičke istrage, jer ovaj čin

omogućava direktan pristup podacima u njihovom

originalnom i neizmenjenom obliku. Uspešnim

otključavanjem izbegava se upotreba rizičnih i

potencijalno destruktivnih metoda zaobilaženja zaštite,

koje mogu ugroziti integritet ili pravnu prihvatljivost

dokaza.

Zadatak ovog rada je da istraži forenzičke metode koje se

koriste za otključavanje ekrana pametnih telefona i da

putem izvedenih zaključaka demonstrira postojeće

metode na odabranim uređajima. Rad je isključivo

edukativnog karaktera i nema za cilj podsticanje ili

promociju zloupotrebe stečenih znanja, već prvenstveno

unapređenje razumevanja metoda otključavanja mobilnih

uređaja u kontekstu digitalne forenzike.

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je

bio dr Stevan Gostojić, red. prof.

2. FORENZIKA MOBILNIH UREĐAJA

Forenzika mobilnih uređaja predstavlja specifičnu granu

digitalne forenzike, usmerenu na prikupljanje i analizu

podataka pohranjenih na mobilnim uređajima ili

prenošenih putem celularne mreže [1].

2.1. Izazovi forenzike mobilnih uređaja

Brza evolucija mobilnih tehnologija i kratak ciklus

razvoja proizvoda doveli su do velikih razlika u hardveru,

softveru i strukturama čuvanja podataka između različitih

proizvođača i verzija operativnih sistema mobilnih

uređaja. Ova raznovrsnost, u kombinaciji sa sve

naprednijim bezbednosnim mehanizmima stvara ozbiljne

izazove prilikom prikupljanja dokaza u forenzičkim

istragama.

2.2. Proces forenzičke istrage

Forenzička istraga je proces koji obuhvata identifikaciju,

prikupljanje, čuvanje, pregled, analizu i prezentaciju

dokaza korišćenjem pravno i naučno prihvaćenih metoda i

alata.

2.3. Forenzički alati

U situacijama kada je telefon zaključan obično je

neophodna upotreba specijalizovanih tehnika ili alata za

zaobilaženje zaštitnih slojeva kako bi se na bezbedan i

legalan način došlo do traženih informacija. Forenzički

alati su softverske i hardverske tehnologije koje se koriste

u istrazi kao pomoćna sredstva prilikom pristupa, obrade i

ekstrakcije podataka sa različitih uređaja.

2.3. Jailbreaking i rooting

Najčešće korišćeni postupci za sticanje najvišeg nivoa

privilegija nad mobilnim operativnim sistemima uključuju

procese root-ovanja na Android platformama i jailbreak-a

na iOS uređajima. Primena ovih metoda nosi velike rizike

po integritet digitalnih dokaza i zahteva pažljivo

izvođenje i strogo poštovanje forenzičkih principa.

3. OPERATIVNI SISTEMI MOBILNIH TELEFONA

Zbog brojnih mehanizama zaštite koje implementiraju

savremene mobilne platforme, alati i metode koji su

efikasni na jednom sistemu često nisu primenljivi na

drugom zbog specifičnosti arhitekture i nivoa otvorenosti

platforme.

3.1. Tipovi operativnih sistema

Tehnike za zaobilaženje zaključanog ekrana često

uključuju složene procedure koje zavise od hardvera i

verzije operativnog sistema. Prema statistici [2] za mesec

avgust 2025. godine, trenutno tržištem mobilnih telefona

dominiraju dva operativna sistema, Android i iOS.

1381

https://doi.org/10.24867/33BE31Petric

3.2. Zaštitni mehanizmi

Zaštitni mehanizmi mobilnih telefona obuhvataju skup

mera i tehnologija dizajniranih da zaštite uređaj i

privatnost korisnika od krađe i drugih oblika zloupotrebe.

3.2.0. Mehanizmi zaključavanja ekrana

Mehanizmi poput PIN-a, lozinke, šablona i biometrijske

autentifikacije se razlikuju po kompleksnosti i nivou

bezbednosti koji mogu da pruže korisniku u zaštiti

podataka.

3.2.1. Zaštita naloga i enkripcija

Enkripcija podrazumeva pretvaranje svih podataka na

telefonu u nečitljiv format, koji se može dešifrovati jedino

putem odgovarajućeg kriptografskog ključa. Na starijim

modelima implementirana je full disk encryption (FDE),

dok se na novijim modelima koristi file-based encryption

(FBE).

3.2.2. Izolacija aplikacija

Sandbox predstavlja izolovano okruženje u kome

aplikacije mogu nesmetano da obavljaju svoje funkcije,

ali bez direktne interakcije sa drugim aplikacijama ili

kritičnim komponentama sistema.

3.3. iOS

Za razliku od otvorenijih platformi, iOS sistem

ograničava pristup resursima, čime se umanjuje

mogućnost neautorizovanog pristupa podacima. Postupak

za otključavanje ovih uređaja zahteva upotrebu naprednih

forenzičkih alata i tehnika, kao i detaljno poznavanje

arhitekture sistema. U pojedinim slučajevima, posebno

kod novijih modela, saradnja sa proizvođačem može biti

neophodna kako bi se osigurala forenzički prihvatljiva i

tehnički izvodljiva obrada digitalnih dokaza.

3.3.0. Arhitektura

Arhitektura je zasnovana na višeslojnom modelu koji

obuhvata četiri osnovna sloja: Cocoa Touch, Media, Core

Service i Core OS.

3.3.1. Bezbednost sistema

Apple je razvio bezbednosni model koji objedinjuje

hardverske i softverske komponente u cilju zaštite

korisničkih podataka i očuvanja integriteta operativnog

sistema. Ovaj nivo zaštite predstavlja značajan izazov u

forenzičkim istragama, posebno kada je uređaj zaključan i

nije jailbreak-ovan jer onemogućava pristup kritičnim

sistemskim podacima i aplikacijama bez odgovarajućih

autorizacija.

3.3.1.0. Sigurnosno pokretanje procesa

Potpisivanje koda je proces digitalnog potpisivanja

izvršnih fajlova ili softvera kako bi se verifikovala

autentičnost i integritet programa u cilju sprečavanja

instalacije neproverenih aplikacija.

3.3.1.1. Bezbedna enklava

Bezbedna enklava predstavlja izolovano okruženje unutar

iOS uređaja, koje funkcioniše nezavisno od glavnog

procesora i poseduje sopstevni memorijski kontroler i

kriptografske funkcije. Njen dizajn se zasniva na principu

separacije privilegija.

3.3.1.2. Zaštita podataka

Apple primenjuje enkripciju celog diska, kojom šifruje

kompletan sadržaj uređaja, uključujući sistemske i

korisničke podatke. Operativni sistem definiše dva

ključna stanja: before first unlock (BFU) i after first

unlock (AFU). Ključnu ulogu u sigurnosti igra jedinstveni

UID ključ, ugrađen u bezbednu enklavu.

3.4. Android

Zbog otvorene prirode Android platforme, uređaji mogu

biti podložni zloupotrebama, naročito ukoliko ne dobijaju

redovna bezbednosna aužuriranja. U takvim slučajevima,

zlonamerne aplikacije mogu iskoristiti poznate ranjivosti,

kompromitovati izolovano oktuženje i steknuti

neovlašćene privilegije, što dovodi do ugrožavanja

sigurnosti sistema.

3.4.0. Arhitektura

U osnovi arhitekture se nalazi Linux kernel, koji

predstavlja temelj čitavog sistema. Iznad njege nalaze se

Hardware Abstraction Layer, Android Runtime i

Application Framework.

3.4.1. Bezbednost sistema

Bezbednosna arhitektura u velikoj meri se oslanja na

Trusted Execution Environment ili Secure Element

okruženja. Savremene verzije Android-a podržavaju

ugrađenu enkripciju podataka za razliku od ranijih verzija

koje često nisu imale podrazumevano omogućeno

šifrovanje diska, niti su posedovale druge naprednije

bezbednosne mere zaštite.

3.4.1.0. Šifrovanje diska

FBE deli skladišni prostor uređaja na dva odvojena

kriptografska prostora: Credential Encrypted i Device

Encrypted prostor.

3.4.1.1. Trusted Execution Environment

Trusted Execution Environment predstavlja izolovano

hardevrsko okruženje dizajnirano za bezbedno čuvanje i

obradu osetljivih podataka, kao što su korisničke lozinke,

kriptografski ključevi i biometrijske informacije.

Kriptografski ključevi nikada ne napuštaju ovaj prostor u

nešifrovanom obliku.

3.4.1.2. Sigurnosni moduli

Samsung Knox predstavlja sveoubuhvatan bezbednosni

okvir integrisan u određene Android uređaje, koji

obezbeđuje zaštitu od hardverskog do aplikacionog sloja

sistema. U kontekstu otključavanja ekrana ima bitnu

ulogu u zaštiti biometrijskih i autentifikacionih podataka,

koji se čuvaju u izolovanim okruženjima kao što su Knox

Vault i TrustZone.

3.5. Prikupljanje dokaza

Tipovi metoda koje se koriste u istragama su ručna

ekstrakcija, logička ekstrakcija i fizička ekstrakcija,

prikupljanje iz oblaka i prikupljanje iz celularne mreže.

Svaka od ovih metoda ima svoje prednosti i ograničenja, a

izbor odgovarajuće tehnike uslovljen je nivoom pristupa

samom uređaju kao i tipom informacija koji je od interesa

za istragu.

1382

3.5.0. Forenzičke metode akvizicije podataka

Metoda ručnog prikupljanja je izvodljiva jedino ako je

uređaj funkcionalan i otključan. Logičko prikupljanje ne

zahteva dublju intervenciju sa hardverom ili operativnim

sistemom uređaja, ali je najčešće ograničena ukoliko nije

moguće dobiti autorizaciju za pristup. Fizička ekstrakcija

je najbolji izbor kada je potreban potpun pristup svim

podacima ali je za njeno izvođenje potrebna visoka

ekspertiza.

3.5.0.0. JTAG i Chip-off

Tehnike fizičke ekstrakcije poput JTAG i Chip-off mogu

se koristiti i za pokušaj zaobilaženja zaključanog ekrana.

JTAG se koristi za ekstrahovanje slike memorije,

uključujući i fajlove koji sadrže podatke o PIN-u, šablonu

ili enkripcionim ključevima

3.5.0.1. Android Debug Bridge

Android Debug Bridge (ADB) je alat koji omogućava

komunikaciju između računara i mobilnog uređaja putem

USB-a i pod specijalnim uslovima, može da se korsti za

otključavanje ekrana starijih Android modela kada šifra i

šablon nisu poznati.

3.5.1. Evolucija zaštitnih mehanizama

Evolucija zaštitnih mehanizama na mobilnim uređajima

značajno je ograničila forenzičke mogućnosti za

prikupljanje dokaza i tradicionalni pristupi postaju sve

manje efikasni u situacijama kada je uređaj zaključan i ne

postoji mogućnost saradnje sa korisnikom.

4. METODE OTKLJUČAVANJA TELEFONA

U ovom odeljku razmatrane su različite metode

otključavanja telefona koji koriste biometrijsku

autentifikaciju, šablon ili lozinku. Primeri uspešnih

slučajeva otključavanja, opisani u ovom delu rada,

preuzeti su iz stručne literature i naučnih radova.

4.1. Spoofing metode i biometrijska autentifikacija

Spoofing napad je napad tokom koga se lažira identitet

odnosno biometrijski parametar korisnika kako bi se

prevario sistem i dobio pristup uređaju. U cilju

sprečavananja ovih napada, savremeni operativni sistemi

se oslanjaju na različite tehnike detekcije živosti.

4.1.0. Vrste senzora za prepoznavanje otiska prsta

Postoje tri vrste senzora koji se ugrađuju u mobilne

uređaje i to su: optički, kapacitativni i ultrazvučni. Svaki

od ovih senzora ima različit stepen otpornosti na

prepoznavanje replika.

4.1.0.0. Metode kloniranja otisaka prstiju

Istraživači i forenzički stručnjaci pokazali su da je

moguće izraditi veštačke otiske prstiju korišćenjem

materijala kao što su silikon, lateks ili čak glina.

4.1.1. Tehnologija skeniranja lica

Postoje dve vrste skenera za prepoznavanje lica koji

koriste mobilni uređaji i to su 2D i 3D skeneri.

Najpoznatiji primer je Apple Face ID koji koristi 3D

tehnologiju skeniranja.

4.1.1.0. Metode replikacije facijalnih karakteristika

Spoofing napad nad ovim mehanizmom se može izvesti

upotrebom fotografija visoke rezolucije, videa ili čak

izradom kvalitetnih 3D maski.

4.1.2. Tehnologija skeniranja mrežnjače

Skeniranje mrežnjače koristi infracrvenu kameru za

skeniranje jedinstvenog obrasca šarenice oka korisnika.

Ova autentifikacija se pokazala manje praktična u

poređenju sa drugim oblicima autentifikacije zbog čega je

i slabo zastupljena kod komercijalnih telefona.

4.2. Brute-force metode oktljučavanja ekrana

PIN-ovi, lozinke i obrasci mogu biti podložni napadima

grubom silom koji se svode na sistematsko nagađanje i

isprobavanje svih mogućih kombinacija unosa.

Sprovođenje ove tehnike je skoro nemoguće na modernim

uređajima zbog mehanizama koji definišu dozvoljen broj

pokušaja i korišćenje vremenskog intervala za kašnjenje

između pogrešnih unosa.

4.2.0. Alati za automatizaciju procesa pogađanja

Kako bi se proces ručnog unosa kredencijala optimizovao

i kako bi se izbegle bezbednosne prepreke, u forenzičkim

istragama se koriste alati poput IP Box 3, Atiny85 i

GrayKey-a.

4.3. Zaobilaženje zaključanog ekrana Android uređaja

5.1 i starijih verzija

U ovom odeljku su opisane metode zaobilaženja

zaključanog ekrana koje se oslanjaju na iskorišćavanje

slabosti u korisničkom interfejsu starijih modela.

4.3.0. Postupak “rušenja“ ekrana

Ovaj napad zahteva fizički pristup uređaju i uključuje

unos dugog niza znakova u polje za lozinku putem

funkcije hitnog poziva, što dovodi do rušenja interfejsa i

omogućava pristup bez unosa ispravne lozinke.

4.3.1. Forgot pattern/password opcija

Na uređajima sa operativnim sistemom Android verzije

4.4, funkcija forgot password/pattern omogućavala je

korisniku da resetuje šablon za otključavanje pomoću

validnog email naloga.

4.4. Otključavanje mobilnih uređaja preko Cloud

naloga

Ovaj metod je koristan jer omogućava otključavanje

mobilnih uređaja direktno sa cloud naloga korisnika.

4.5. Metode socijalnog inženjeringa

Ova tehnika se ne oslanja na hardverske ili softverske

alate, već na manipulaciju ljudima kako bi se dobio

pristup osetljivim informacijama. Zastupljeni oblici ovog

napada su phishing, vishing, pretexting.

4.5.0. Shoulder surfing

Shoulder surfing je tehnika koja podrazumeva direktno ili

inderektno posmatranje korisnika dok unosi svoje podatke

za autentifikaciju kao što su pin kod, šifra ili obrazac.

5. DEMONSTRACIJA I DISKUSIJA

U ovom odeljku su demonstrirane odabrane metode

otključavanja ekrana na testnim uređajima.

1383

5.1. Izrada silikonskog otiska prsta

Proces kreiranja lažnog otiska se odvijao u nekoliko

iteracija, tokom kojih je izveden zaključak da je

najkvalitetnija replika u ovom eksperimentu dobijena

upotrebom silikona RTV i parafin voska. Na slici 1.

prikazan je krajnji rezultat replikacije koja iako verna

originalu, nije uspela da prevari sistem koji koristi

kapacitativni senzor.

Slika 1. Otisak prsta od silikona

Zagrejan vosak je prvo izliven u plitku metalnu posudu i

posle izvesnog vremena kada je podloga postala dovoljno

tvrda, na njoj se mogao utisnuti šablon pravog otiska.

Zatim je dodat tanak sloj jestivog skroba i silikona. Nakon

što se smesa stvrdnula, posuda je ubačena u ključalu vodu

kako bi se materijali prirodno razdvojili usled razlike u

temperaturi topljenja silikona i voska.

5.2. Otključavanje fotografijom lica

Testni uređaj Redmi 7A sa Android verzijom 9 koji

koristi 2D tehnologiju skeniranja lica, uspešno je

otključan sa slikom korisnika. Slika je bila visokog

kvaliteta i lice je jasno prikazano na fotografiji.

Rezultati studije [3] pokazali su veliki potencijal upotrebe

veštačke inteligencije i slika dostupnih na društvenim

mrežama korisnika kako bi se izradio virtuelni avatar koji

može da prevari sisteme sa naprednijim tehnologijama

skeniranja.

5.3. Rekonstrukcija šablona

Sprovedena anketa imala je za cilj da prikupi testni skup

šablona zaključavanja ekrana kako bi se uočile i uporedile

karakteristike najčešćih odgovora. Na slici 2. je prikazan

deo rezultata.

Slika 2. Deo rezultata ankete

Od 42 uzorka, 11 figura je bilo jedinstveno nad datim

skupom što dovodi do zaključka da je četvrtina ispitanika

koristila šablon koji se nije našao kao zaštita ekrana ni na

jednom uređaju ostalih korisnika. Trend koji je primećen

kod ovih podataka jeste da u približno 80% slučajeva

korisnici su izabrali početak crteža da bude u levom

gornjem uglu i da su oblici L i N bili učestal izbor.

5.4. Otključavanje preko ADB-a

Otključavanje ekrana Redmi 7A, ili bilo kog drugog

uređaja, preko ADB-a nije uvek izvodljivo jer zavisi od

više preduslova koji moraju biti ispunjeni pre nego što

dođe do zaključavanja. Na telefonu je potrebno omogućiti

režim za programere i uspostaviti komunikaciju radne

stanice i testnog uređaja putem verifikacije računara

prilikom povezivanja. Zatim ako je ovo ispunjeno,

potrebno je izvršiti set komandi za brisanje određenog

fajla koji bi omogućio pristup telefonu bez unosa lozinke.

Ovaj postupak je bio učinkovit na starijim verzijama

Android-a ali usled napredne zaštite sistema uvedene od

verzije 9 i kasnije, ovaj metod se pokazao neučinkovit na

testnom uređaju.

3. ZAKLJUČAK

Rad ukazuje da nema univerzalnog rešenja za

otključavanje mobilnih uređaja. Umesto toga, potrebno je

proceniti svaki slučaj ponaosob, uz izbor metode koja

balansira između efikasnosti, očuvanja dokaza, tehničkih

mogućnosti i pravne validnosti.

Predlozi za dalja istraživanja se odnose na primenu

saznanja i tehnologija iz oblasti mašinskog učenja i

veštačke inteligencije u predikciji biometrijskih šablona i

obrazaca korisničkog ponašanja, kao i u optimizaciji

napada grubom silom. Može se izdvojiti i orijentacija ka

razvoju naprednih softverskih alata za analizu ranjivosti u

operativnim sistemima, uključujući istraživanje procesa

Secure Boot-a i USB protokola, uz potencijalnu primenu

mašinskog učenja za automatizovano otkrivanje slabosti.

7. LITERATURA

[1] Prof. dr Stevan Gostojić, Fakultet tehničkih nauka,

Novi Sad, predmet Digitalna forenzika, Uvod u

digitalnu forenziku (predavanja 2023, lekcija 1)

[2] Mobile operating systems popularity statistics,

https://gs.statcounter.com/os-market

share/mobile/worldwide (pristupljeno u septembru

2025.)

[3] Yi Xu, True Price, Jan-Michael Frahm, Fabian

Monrose. Virtual U: Defeating Face Liveness

Detection by Building Virtual Models from Your

Public Photos, USENIX Security Symposium 2016.

Kratka biografija:

Jelena Petrić rođena je u Novom Sadu

2000. Diplomirala je na Fakultetu tehničkih

nauka 2023. godine. Master rad na

Fakultetu tehničkih nauka iz oblasti

Elektrotehnike i računarstva odbranila je

2025. godine

kontakt: jelena.petric@uns.ac.rs

1384

mailto:jelena.petric@uns.ac.rs

UDK: 004.42:004.738.12

DOI: https://doi.org/10.24867/33BE33Stojkic

ЈЕЗИК СПЕЦИФИЧАН ЗА ДОМЕН ВИЗУАЛИЗАЦИЈЕ ЈЕЗИКА

A DOMAIN-SPECIFIC LANGUAGE FOR THE VISUALIZATION OF LANGUAGES

Радиша Стојкић, Факултет техничких наука, Нови Сад

Област –ПРИМЕЊЕНЕ РАЧУНАРСКЕ НАУКЕ И

ИНФОРМАТИКА

Кратак садржај – У овом раду описан је текстуални

доменски језик намењен дефинисању визуализације

језика креираних помоћу библиотеке textX.

Представљене су употребљене технологије и

окружења, као и основни појмови везани за језике

специфичне за домен и графове. Дат је преглед

постојећих решења у овој области, као и кључни

делови имплементације самог viewX језика и

екстензије за Visual Studio Code. Рад садржи и

практичан пример употребе и визуалног приказа, а

завршава се освртом на постигнуте циљеве и

могућности даљег развоја решења.

Кључне речи: Језици специфични за домен,

екстензије за VS Code, граф, визуелизација

Abstract – This paper describes a textual domain-specific

language designed for defining the visualization of

languages created using the textX library. It presents the

technologies and environments used, as well as the basic

concepts related to domain-specific languages and graphs.

An overview of existing solutions in this field is provided,

along with key parts of the implementation of the viewX

language and the Visual Studio Code extension. The paper

also includes a practical usage example and a visual

representation, concluding with a review of the achieved

goals and possibilities for further development of the

solution.

Keywords: Domain-Specific Languages, VS code

extensions, graph, visualization

1. УВОД

Програми и модели писани са текстуалном синтаксом

су често непрегледни и тешко разумљиви. Додатни

проблем се јавља ако људи нису упознати са самим

појмовима и доменом проблема и језиком на којем је

писан програм. Тада је тешко утврдити све односе и

кључне детаље у програму и моделу. Један од начина

да се превазиђу потешкоће у представи модела и

програма јесте визуализација, помоћу које можемо

представити све кључне елементе и њихове међусобне

релације, што доприноси потпунијем и бољем

разумевању модела.

__

НАПОМЕНА

Овај рад проистекао је из мастер рада чији ментор

је био др Игор Дејановћ, ред. проф.

У зависности од мотива и потреба, разликују се

различите визуелне репрезентације. Неке од њих су

графикони, дијаграми, мреже, графови и многе друге.

Главни изазов код визуализације модела је како јасно

приказати структуре података у облику графа. Једно од

основних питања јесте генеричност решења, како би се

омогућило приказивање различитих модела писаних

на истом језику уз могућност да корисник манипулише

самим приказом датог модела.

Основни мотив овог рада јесте надоградња језика за

опис визуализације модела писаних на језицима који

су развијени помоћу textX библиотеке, као и

поједностављење перспективе самог модела.

Текстуални језик ViewX развијен је као одговор на

потребу за једноставнијом и јаснијом визуализацијом

доменских модела. Језик је реализован кроз мастер рад

на Факултету техничких наука у Новом Саду. ViewX

служи за директно дефинисање правила визуализације

елемената, а развијен је помоћу textX библиотеке.

Помоћу правила се могу описати особине, структура и

елементи графа, као и начин на који се они приказују.

Комплетно решење је остварено као екстензија за

Visual Studio Code едитор, потпомогнуто third-party

библиотекама, Python окружењем и употребом viewX

језика 0.

Једна од најважнијих предности решења описаног у

овом раду јесте концепт одвајања садржаја модела од

начина његове визуализације. Садржај чини саму

структуру и податке модела, док начин приказа

дефинише viewX модел, омогућавајући флексибилност

приказа. То значи да се један модел може приказати на

више различитих начина у зависности од потребе, док

се истовремено више различитих модела може

представити на исти начин. Овакав приступ обезбеђује

прилагодљивост и универзалност у визуализацији, што

је кључ за широку примену и лакшу интерпретацију

сложених система.

2. ТЕОРИЈСКЕ ОСНОВЕ

Језици специфични за домен (DSL) су програмски

језици дизајнирани за решавање проблема у јасно

дефинисаној области. Они нуде једноставнију

синтаксу и већу ефикасност унутар свог домена, али су

мање флексибилни од језика опште намене (GPL), који

су универзални и примењиви у различитим

контекстима.

Примери DSL језика су HTML (структура веб страница)

и SQL (рад са базама података), док су типични GPL

језици Python и Java. Предност DSL-а је у

прилагођености терминологији и потребама

Зборник радова Факултетa техничких наука, Нови Сад

1385

https://doi.org/10.24867/33BE33Stojkic

специфичне области, што убрзава развој и смањује

потребу за техничким знањем. Мана је мања могућност

поновне употребе и теже одржавање у односу на GPL

језике 0.

Граф је математичка структура G = (V, E) где је V скуп

чворова, а E скуп ивица. Може бити усмерен,

неусмерен или пондерисан. У рачунарству се користи

за моделовање односа, попут мрежних веза,

друштвених мрежа или структуре података.

Визуализација графова олакшава анализу, али изазови

укључују претрпаност приказа и распоред чворова,

што се решава филтрирањем, хијерархијским

приказима и алгоритмима за аутоматски распоред.

Репрезентација графова обично се остварује помоћу

матрице суседства (брза провера везе, већа потрошња

меморије), листе суседства (ефикасна за ретке графове)

или листе грана. Графови налазе примену у

рачунарству кроз оптимизацију мрежа, анализу

друштвених мрежа, базе података и алгоритме

претраге 0.

3. КОРИШЋЕНЕ СОФТВЕРСКЕ ТЕХНОЛОГИЈЕ

Visual Studio Code (VSC) је едитор кода који подржава

велики број програмских језика и екстензија. Уз

интегрисани терминал, Git подршку и аутоматско

довршавање кода, омогућава продуктиван рад на

различитим платформама (Windows, MacOS, Linux).

Marketplace нуди хиљаде екстензија, као што су

Prettier, ESLint и Python, које проширују

функционалност едитора 0.

Python је флексибилан и лак за учење програмски

језик, погодан за објектно-оријентисано,

функционално и процедурално програмирање.

Динамичка типизација и богата стандардна

библиотека, уз подршку за пакете попут NumPy, SciPy

и Pandas, чине Python погодним за научне апликације,

машинско учење и анализу података. Једноставност

синтаксе омогућава брзо развијање и тестирање

апликација.

textX је алат за креирање језика специфичних за домен

(DSL) у Python-у. Користи PEG граматику и Arpeggio

парсер за аутоматско генерисање парсера и мета-

модела. Омогућава модуларизацију граматика,

конфигурацију парсера, постпроцесирање модела и

визуализацију GraphViz-ом. Захваљујући

једноставности, textX је погодан за развој сложених

апликација и симулација са прилагођеним језицима.

Cytoscape.js је библиотека за визуализацију и

манипулацију графовима у веб окружењу. Подржава

усмерене, неусмерене и тежинске графове,

интерактивност, динамичке измене и WebGL/Canvas

рендеровање. Омогућава прилагођавање стила чворова

и ивица, као и проширење функционалности

додатцима за анализу мрежа и алгоритме.

Jinja2 је Python шаблонски механизам за генерисање

динамичког HTML-а и других текстуалних формата.

Подржава placeholder-е, петље, услове, филтере и

макрое, што олакшава одвојен приказ података од

логике апликације. Брзо рендерује сложене шаблоне и

интегрише се са веб оквирима као што су Flask и

Django.

4. ПРЕГЛЕД СТАЊА У ОБЛАСТИ

Савремени софтверски системи постају све сложенији,

што захтева напредне алате за визуализацију и

управљање њиховим компонентама. Алати за

визуализацију омогућавају боље разумевање података

и ефикасније управљање сложеним структурама. Од

графичких едитора до система за визуализацију

великих графова, они пружају креирање прилагођених

интерфејса, визуелизацију података у реалном времену

и интеракцију са елементима. У овом поглављу

представљени су Graphiti, Sirius, Gephi и Neo4j Bloom.

4.1. Graphiti

Graphiti је оквир за визуализацију графичких едитора

у Eclipse окружењу, омогућавајући лако креирање

графичких објеката као што су чворови и ивице.

Интеграција са EMF-ом омогућава трансформацију

текстуалних или табеларних података у интерактивне

графичке приказе. Примена је у UML дијаграмима,

BPMN процесима и визуализацији архитектуре

софтвера 0.

4.2. Sirius

Sirius омогућава креирање прилагођених графичких

модела специфичних за домен (DSL) у Eclipse

окружењу. Корисници могу дефинисати статичке и

динамичке моделе, као и интерактивне приказе у

реалном времену. Флексибилан је за рад у индустрији,

инжењерингу, финансијама и научним

истраживањима, уз интеграцију са EMF и GMF 0.

4.3. Gephi

Gephi је open - source алат за визуализацију и анализу

графова, посебно погодан за социјалне мреже,

биоинформатику и велике податке. Омогућава

интерактивну манипулацију графовима,

прилагођавање боја, величине и облика чворова и

анализа метрика као што су централност и

кластеризација. Ограничење је обрада веома великих

графова 0.

4.4. Neo4j Bloom

Neo4j Bloom визуелно приказује графове у Neo4j бази

података. Пружа динамичан и интерактиван приказ, са

могућношћу прилагођавања изгледа графова и

истраживања релација између чворова. Најпогоднији

је за податке већ у Neo4j, а за напредну аналитику

потребан је Cypher 0.

5. ИМПЛЕМЕНТАЦИЈА

Ово поглавље описује кључне делове имплементације

екстензије за Visual Studio Code, која омогућава

интерактивну визуализацију графова и управљање

моделима. Решење је реализовано у TypeScript-у,

интегрисано са Python модулима преко textX и Python-

shell, што омогућава креирање граматике viewX језика

за опис layout-а и елемената графа.

Архитектура решења комбинује више компоненти:

• BrowserSync – синхронизује измене у реалном

времену између више клијената, обезбеђујући

једноличан приказ.

1386

• Socket.io – омогућава двосмерну комуникацију,

при чему се клијенти региструју у собе и добијају

све поруке о стању графа, чиме се постиже слабо

спрегнута и флексибилна клијент-сервер

архитектура.

• Cytoscape.js – за приказ и интеракцију са

графовима, укључујући креирање подграфова

сложених чворова и прилагођене облике чворова.

Python скрипте користе Jinja2 шаблоне за генерисање

HTML-а и layout-а графова, а интеграција са

екстензијом омогућава њихово динамичко

извршавање. Решење је cross-platform (Windows и

Linux) са динамичким препознавањем ОС-а ради

активирања одговарајућег виртуелног окружења.

Кроз проширења viewX језика и интеракцију са

Cytoscape.js, екстензија омогућава оптимизован приказ

графова са скривањем и приказом потомака сложених

чворова, дефинисање облика чворова полигонима и

флексибилну визуелизацију која реагује на измене

модела у реалном времену. Ово омогућава дугорочну

функционалност и прилагодљивост решења

различитим сценаријима рада.

6. ДЕМОНСТРАЦИЈА

Проширења реализована у viewX екстензији

представљена кроз пример примене mini BPMN језик

за моделовање пословних процеса. BPMN (Business

Process Model and Notation) је стандардизован

графички нотацијски систем за опис пословних токова,

омогућавајући комуникацију између техничких и

пословних корисника. Циљ примера је демонстрирати

могућности екстензије за визуализацију модела

креираних помоћу библиотеке textX.

ViewX омогућава дефинисање облика чворова кроз

координате полигона, боју и величину. На пример,

ентитет Human може се описати као полигон са

дефинисаним тачкама, бојом и стрелицама ка другим

ентитетима (Слика 1):

view Human as polygon {

 shape-polygon-points: 0.04 -0.88, 0.09 -0.84, ..., -0.09 -0.88

 background: gray

 width: 400

 height: 400

 link {to: Human.action {arrow: black 2 triangle}}

}

Слика 1. Визуализација чвора Human као полигон

Екстензија омогућава дефинисање распореда

елемената графа. На пример, grid layout организује

елементе у мрежу (Слика 2):

layout {

 name: grid

 rows: 3

 cols: 5

 animate: true

 animationDuration: 300

 fit: true

 avoidOverlap: true

}

Слика 2. Grid layout графа

ViewX подржава приказ сложених чворова и њихових

потомака. Кључна реч show приказује све потомке

сложеног чвора, као што је приказано на слици 3.

view Student as diamond child of Professor show {

 label: Student.name {font: 15}

}

Слика 3. Сложени чворови са потомцима

Ради оптимизације, сложени чворови могу се

приказати без потомака (Слика 4), а подграф потомака

се генерише у посебном прозору испод главног графа

(Слика 5).

1387

Слика 4. Визуализација сложеног чвора без потомака

Слика 5. Визуализација подграфа сложеног чвора

7. ЗАКЉУЧАК

Да би се ово решење издвојило као универзално и

свеобухватно, неопходна је његова додатна

надоградња. Тренутно је визуализација реализована

као 2D просторна репрезентација. Као једно од

могућих унапређења издваја се увођење 3D просторне

репрезентације графа, која би омогућила интуитивније

разумевање и већи ниво детаља. На тај начин би се

превазишла ограничења која произилазе из

дводимензионалног приказа.

У оквиру овог рада реализовано је решење које се

издваја од постојећих тиме што нуди различите нивое

визуализације и степене детаљности графа. Омогућено

је оптимизовање приказа дефинисањем сложених

чворова и креирањем подграфова, што знатно смањује

количину информација у једном приказу и тиме

повећава прегледност. Посебан значај има увођење

механизама који кориснику омогућавају да самостално

управља приказом, било кроз приказ само сложених

чворова, било кроз њихово експлицитно развијање у

посебним подграфовима.

Креирање прилагођених облика чворова,

спецификација изгледа и анимација представљају

додатне функционалности које обогаћују решење. Ове

особине, у комбинацији са пажљивим избором новијих

и стабилнијих верзија компоненти, доприносе

дуговечности и поузданости решења. Оптимизација

приказа графа постигнута је не само кроз управљање

нивоом детаља, већ и кроз примену алгоритама

распоређивања елемената који омогућавају већу

читљивост и структурисаност визуализације.

Решење пружа висок степен прилагодљивости и

слободе у креирању и управљању визуализацијом. У

будућности, проширење функционалности кроз

графичку синтаксу и интеграцију више различитих

библиотека за приказ графова представљаће значајан

корак ка унапређењу.

Иако решење не подржава 3D форму, оно се истиче

флексибилношћу, стабилношћу и могућношћу

оптимизације, пружајући корисницима алат за дубље

разумевање сложених структура и њихових релација.

8. ЛИТЕРАТУРА

[1] Мастер рад – “Подршка визуализацији језика

креираних употребом textX библиотеке у оквиру

Visual Studio Code едитора”, Даниел Купчо,

Факултет техничких наука у Новом Саду, 2018

[2] Martin Fowler: “Domain-Specific Languages”,

Addison-Wesley Signature Series, 2010

[3] “Graph theory”, Wikipedia, слободна

енциклопедија,

https://en.wikipedia.org/wiki/Graph_theory,

(приступљено у децембру 2024.)

[4] https://en.wikipedia.org/wiki/Visual_Studio_Code,

(приступљено у децембру 2024.)

[5] https://eclipse.dev/graphiti/,

(приступљено у децембру 2024.)

[6] Sirius - https://www.eclipse.org/sirius/ (приступљено

у децембру 2024.)

[7] https://gephi.org/users/supported-graph-formats/,

(приступљено у децембру 2024.)

[8] https://neo4j.com/product/bloom/,

(пристуљено у децембру 2024.)

Кратка биографија:

Радиша Стојкић је рођен 24.01.2000.

године у Зворнику, Босна и

Херцеговина. Основну школу “Десанка

Максимовић” у Челопеку завршио је

2015. године. Исте године уписује

гимназију, општи смер, у ЈУ

Средњошколски центар “Петар Кочић”

Зворник. Године 2019. гимназију

завршава као носилац Вукове дипломе.

Факултет техничких наука, смер Рачунарство и аутоматика,

уписује 2019. године у Новом Саду, где 2023. године

завршава основне академске студије.

1388

https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Visual_Studio_Code
https://eclipse.dev/graphiti/
https://www.eclipse.org/sirius/
https://www.eclipse.org/sirius/
https://gephi.org/users/supported-graph-formats/
https://neo4j.com/product/bloom/

Зборник радова Факултета техничких наука, Нови Сад

UDK: 004.42:004.738.12

DOI: https://doi.org/10.24867/33BE34Kanjuh

ОПТИМИЗАЦИЈА ЧЕТБОТА КОРИШЋЕЊЕМ ТРАНСФОРМЕР МОДЕЛА

OPTIMIZATION OF A CHATBOT USING TRANSFORMER MODELS

Нађа Кањух, Факултет техничких наука, Нови Сад

Област – ЕЛЕКТРОТЕХНИКА И РАЧУНАРСТВО

Кратак садржај – Циљ рада је оптимизација

конверзацијског четбота за домен осигурања

коришћењем алгоритама природне обраде језика и

трансформер модела, конкретно BERT модела, ради

бољег разумевања језика и термина специфичних за

осигурање. У истраживању је четбот обучен и

тестиран у поређењу са LSTM моделом, при чему су

експериментални резултати показали да BERT модел

даје боље резултате због своје способности

разумевања ширег контекста у упитима корисника.

Ова способност омогућава четботу да прецизније

интерпретира сложене и контекстуално богате

упите, што је посебно важно за пружање тачних и

поузданих информација у домену осигурања.

Кључне речи: четбот, трансформер модели, BERT,

LSTM, природна обрада језика, велики језички модели

Abstract – The goal of this thesis is to optimize a

conversational chatbot for the insurance domain using

natural language processing algorithms and transformer

model, specifically the BERT model, to enhance

understanding of language and insurance-specific

terminology. In the research, the chatbot was trained and

tested in comparison with the LSTM model, with

experimental results showing that the BERT model

performs better due to its ability to understand broader

context in user queries. This capability allows the chatbot

to interpret complex and contextually rich queries more

accurately, which is especially important for providing

precise and reliable information in the insurance domain.

Keywords: chatbot, transformer models, BERT, LSTM,

natural language processing – NLP, large language

models

1. УВОД

Имплементација четбота доноси низ предности.

Првенствено, четботоби могу побољшати корисничко

искуство пружањем брзих и тачних одговора на

захтеве клијената, било да се ради о захтевима за

информацијама, обради одређених или пружању

подршке у реалном времену. Поред тога, они

омогућавају уштеду ресурса и времена,

аутоматизујући рутинске задатке и смањујући

потребу за директним људским ангажовањем.

__

НАПОМЕНА:

Овај рад проистекао је из мастер рада чији је

ментор био др Милан Сечујски, ред. професор.

С обзиром на то да LSTM, као врста рекурентних

неуронских мрежа, често није у стању да ухвати

довољно широк контекст, све је већи интерес за

њихову замену ради унапређења перформанси

конверзацијских система. У овом раду испитује се

побољшање конверзацијског система применом

трансформер модела, конкретно BERT модела. BERT

модел пружа напредне функције кодирања са

двосмерном пажњом, што омогућава боље

разумевање значења речи у контексту целе реченице.

Циљ овог рада је да покаже како се систем може

унапредити коришћењем савремених трансформер

модела, као и да упореди резултате LSTM и BERT

модела.

Иако савремени приступи попут Retrieval-Augmented

Generation – RAG омогућавају четботовима да

приступе обимним базама знања и генеришу ажурне

одговоре, њихова примена може бити ограничена

доступношћу квалитетно структуираних података и

прихватљивим временом одзива. Због тога је у овом

раду изабран приступ двостепеног одлучивања, који

комбинује модел високог одзива (енг. high recall

model) и модел високе прецизности (енг. high

precision model). Модел високог одзива је дизајниран

да идентификује што већи број релевантних

кандидата за одговор на упит из корпуса. Углавном се

за издвајање релевантних кандидата бирају

статистички модели због своје брзине и ефикасности.

Са друге стране, циљ модела високе прецизности

јесте да идентификује најадекватније питање од свих

издвојених најбољих кандидата и да се на тај начин

кориснику пружи одговарајући одговор. У овом

кораку често се користе архитектуре попут LSTM и

BERT модела. На слици 1 се налази блок дијаграм

двостепног одлучивања.

Слика 1. Блок дијаграм двостепеног одлучивања

2. ДЕФИНИЦИЈЕ

У овом сегменту је дато објашњење најбитнијих

теоријских појмова и алгоритама који се користе за

израду четбота.

1389

https://doi.org/10.24867/33BE34Kanjuh

2.1. Модел високог одзива

У наставку ће укратко бити описани основни кораци

за имплементацију модела високог одзива, обрада

текста и векторизација.

2.1.1. Стеминг

Стеминг (енг. Stemming) је процес обраде текста који

подразумева свођење рели на основни или коренски

облик. Циљ стеминга је поједностављивање речи

уклањањем префикса или суфикса, али уз задржавање

основног облика. Неке од предности стеминга су

смањење речника, побољшање претраге и брже

процесирање. Са друге стране неке од мана јесу

потенцијално прекомерно редуковање, затим изазови

стеминг методе за поједине језике, као свођење

различитих речи на исти корен што често може

довести до конфузије у задацима као што су

генерисање текста.

2.1.2. Лематизација

Лематизација (енг. Lemmatization) је процес свођења

речи на основни облик или облик из речника, познат

као лема. За разлику од стеминга који једноставно

уклања префиксе или суфиксе, лематизација узима у

обзир морфолошку анализу речи и има за циљ

одређивање њеног основног облика. Предности

коришћења лематизације јесу боље задржавање

семантичког значења, побољшање претраге и боље

разумевање језика. Са друге стране, лематизација

може бити поприлично сложена и захтева по питању

ресурса, а такође може доћи и до губитка одређених

морфолошких информација приликом свођења речи.

2.1.3. N-грами

N-грами представљају узастопне низове од n

елемената одређеног скупа, при чему елемент може

бити реч, карактер или чак фонема, у зависности од

конкретног проблема. У контексту обраде природног

језика, n-грами се најчешће односе на секвенце речи.

N-грами бележе локални заједнички контекст речи и

могу пружити корисне увиде у односе и обрасце

унутар текста. Један од недостатака јесте тај да

коришћење n-грама може довести до реткости

података, а због фиксне величине прозора ограничени

да ухвате шири контекст.

2.1.4. Учесталост термина

Учесталост термина (енг. Term frequency – TF),

представља један од најједноставнијих начина

векторизације текстуалних података. TF је основни

концепт у обради природног језика који мери

фреквенцију појављивања термина у документу. Када

се примењује TF као метода векторизације, сваки

документ се представља као вектор чија дужина

одговара броју јединствених термина у целокупном

корпусу. Сваки елемент вектора представља

фреквенцију одговарајућег термина унутар датог

документа. Овај начин векторизације је погодан због

своје једноставности и флексибилности у примени, а

такође је добар и за истицање значаја термина унутар

документа. Нека ограничења ове методе јесу та што

додељује веће тежине речима које се често појављују,

а такође не узима у обзир шири контекст, па може

доћи до губитка информација.

2.1.5. Учесталост термина – инверзна учесталост

на нивоу документа

Учесталост термина - инверзна учесталост на нивоу

документа (енг. Term Frequency – Inverse Document

Frequency, TF-IDF) је метода векторизације текста

која комбинује локалну фреквенцију термина (енг.

Term Frequency - TF) са глобалном значајношћу

термина у корпусу (енг. Inverse Document Frequency –

IDF). TF компонента наглашава значајне термине

унутар појединачног документа. Са друге стране, IDF

компонента има улогу да смањи важност честих

термина који се појављују у целом корпусу. Ова

метода може бити погодна за идентификацију

кључних речи у документу, а такође и смањује

важност неинформативних термина који се често

појављују у целом корпусу. Неки од недостатака ове

методе јесте не узимање у обзир редоследа речи у

документу, као и недостатак контекста и семантичког

разумевања. Ова метода не узима у обзир сложеније

језичке елементе попут синонима, вишезначности

речи итд.

2.1.6. Word2Vec

Основни циљ Word2Vec методе јесте извлачење

семантичких информација и других битних особина

из речи. Word2Vec користи контекстне информације

речи како би научио њихове векторске

репрезентације. Идеја је да сличне речи буду

представљене у векторском простору једна близу

друге. Word2Vec ради по сличном принципу као

аутокодери. Постоје два приступа рада са Word2Vec

методом. Први јесте коришћење претренираног

модела чиме се добија велики број речи, али

недостатак је што често модел није специјализован за

домен над којим се ради. Други приступ подразумева

тренирање модела, чиме добијамо модел који је

специјализован за одређени домен, али мана овог

приступа јесте недовољно речи. Коришћење

Word2Vec доводи до тога да вектори генерисани

помоћу овог алгоритма имају својство да задрже

семантичке односе између речи, такође омогућава

ефикасно рачунање сличности речи помоћу метрика

удаљености. Недостатак је тај што квалитет

векторских репрезентација зависти од величине и

квалитета корпуса, као и то што Word2Vec узима у

обзир само локални контекст око речи.

2.2. Модел високе прецизности

У наставку ће бити описана архитектура

трансформера, њихова предност у односу на

рекурентне неуронске мреже, а такође ће бити и

описан начин функционисања BERT модела.

2.2.1. Предности трансформера у односу на

рекурентне неуронске мреже

Трансформери (енг. Transformers) су један од

најсавременијих и најнапреднијих модела вештачке

интелигенције који омогућавају разумевање и

генерисање текста на начин сличан човеку. Пре њих,

рекурентне неуронске мреже су податке обрађивале

1390

секвенцијално и то је довело до проблема споре обуке

и губитка информација на дужим секвенцама.

Трансформери решавају ове проблеме користећи

механизам пажње, који омогућава моделу да

истовремено обрађује све делове текста и фокусира се

на кључне елементе без обзира на њихову удаљеност

[1].

2.2.2. Архитектура трансформера

Када је у питању архитектура трансформера, они се

састоје од два основна дела: кодера и декодера. Оба

поменута дела се састоје од неколицине других

слојева, а у наставку рада биће детаљно описан сваки

део заједно са његовим слојевима. На слици 2 је

приказана архитектура трансформер модела.

Слика 2. Архитектура трансформера

Један слој кодера (енг. encoder) се састоји од слоја

вишеглавне пажње, два слоја нормализације,

двослојне потпуно повезане мреже, а уз све то постоје

и резидуалне конекције. Оваквих слојева има N. Улаз

у кодер јесу векторисане речи са додатим позиционим

ембединзима који су неопходни како би модел имао

информацију о позицијама речи.

Механизам пажње (енг. attention mechanism) је главни

елемент трансформер архитектуре. Он омогућава

моделу да обради више пажње на део улазних

података који садржи значајније информације и да

посвети мање пажње остатку улаза [2]. У пракси,

обично се не добијају добри резултати коришћењем

једног слоја, па се из тог разлога обично израчунава

више слојева пажње у паралели и резултати се

конкатенирају. Вишеглавна пажња (енг. Multi-head

attention) представља механизам који служи за

поменуто паралелно израчунавање.

Слојеви нормализације помажу у одржавању

стабилности током тренинга, смањују проблем

нестајања или експлодирања градијента, помажу

бољој генерализацији модела, а такође помажу

моделу да се прилагоди различитим скалама улаза [2].

Резидуалне конекције имају кључну улогу у

побољшању ефикасности тренирања и смањењу

ризика од нестајања или експлодирања градијента у

дубоким моделима. Оне омогућавају да све

информације остану очуване током тренирања.

Потпуно повезана мрежа има за циљ да додатно

обради податке и научи комплксне и нелинеарне везе

између података. Она се углавном састоји од два

скривена слоја и ReLU активационе фунцкије.

Излаз из слоја кодера је скуп вектора, при чему сваки

представља улазни низ обогаћен контекстом. Овај

излаз се користи као улаз у декодер трансформера.

Декодер (енг. Decoder) је практично исти кодер, осим

што садржи додадни слој вишеглавне пажње која

ради над излазом кодера. Циљ декодера јесте да

комбинује излаз кодера са циљном секвенцоми прави

предвиђања, односно да предвиди следећи токен. Број

слојева декодера је углавном исти као и број слојева

кодера.

2.2.3. Велики језички модели

Велики језички модели (енг. Large language Models –

LLM) су револуционисали комуникацију са системима

машинског учења омогућавајући обављање задатака у

реалном времену на основу природног језика. Ови

модели, који садрже милијарде параметара,

тренирани су на огромним количинама текстуалних

података, чиме стичу широко разумевање света. За

обуку се користи самонадгледано учење (енг. self-

supervised learning), које омогућава рад са

неозначеним подацима и побољшава способност

генерисања текста [2]. Након почетког трениранја

модели могу решавати задатке користећи zero-shot и

few-shot техника, које им омогућавају да извршавају

задатке са мало или без примера. Инжењеринг упита

(енг. prompt engineering) и техника ланац мисли (енг.

chain of thought – CoT) омогућавају прецизније

одговоре и боље решавање сложенијих проблема. За

специфичне задатке у различитим областима, ови

модели захтевају додатно дообучавање на доменским

подацима.

2.2.4. BERT

BERT (енг. Biderectional Encoder Representations from

Transformer) је врста трансформера, где је кључна

иновација примена бидирекционог тренирања. Овај

приступ тренирања модела у оба смера доводи до

резултата који показују да језички модел на овај

начин може имати дубље разумевање контекста и

тока језика него модел трениран у једном смеру. За

разлику од основног модела трансформера, BERT

користи само кодер. Кодер BERT модела обрађује

читаву секвенцу речи одједном. Ова карактеристика

омогућава моделу да разуме реч у контексту свих

околних речи, како с лева, тако и с десна. BERT

користи две специфичне стратегије тренирања:

моделовања маскираног језика и предвиђање наредне

реченице [3].

Моделовање маскираног језика подразумева да се

15% речи у низу замени са [MASK] токеном, а модел

затим покушава да предвиди те речи на основу

контекста. Око 80% замењених речи је означено са

[MASK], 10% се замењује случајним речима, а

преосталих 10% остаје нетакнуто. Овај приступ

помаже моделу да научи контекст, не само

предвиђање маскираних речи, тако што га приморава

да разуме како се маскиране и немаскиране речи

повезују. Предвиђање се постиже додавањем

класификационог слоја и применом softmax функције

како би се израчунала вероватноћа за сваку реч. Ова

1391

метода омогућава моделу боље разумевање контекста,

иако тренирање може бити спорије. На слици 3 је

приказана описана стратегија тренирања.

Слика 3. Стратегија тренирања помоћу моделовања

маскираног језика

Стартегија предвиђања следеће реченице у BERT

моделу користи парове реченица како би модел

научио да одреди да ли друга реченица у пару следи

прву у оригиналном тексту. У половини случајева,

друга реченица је заиста следећа, док у осталих 50%

случајева друга реченица је насумично изабрана и

обично није повезана с првом. За обраду ових парова,

[CLS] токен се додаје на почетак, [SEP] на крај сваке

реченице, и сваком токену се додаје ембединг који

означава његов положај и реченицу којој припада.

Ова стратегија помаже BERT моделу да боље разуме

контекст и односе између реченица. На слици 4

приказана је обрада улаза за описану стратегију.

Слика 4. Обрада улаза за стратегију предвиђања

следеће реченице

Да би BERT утврдио да ли је друга реченица повезана

са првом, цео низ пролази кроз трансформер, при

чему се излаз [CLS] токена трансформише у вектор за

класификацију. Softmax затим израчунава вероватноћу

повезаности реченица. Моделовање маскираног

језика и предвиђање следеће реченице тренирају се

истовремено како би се минимизовала заједничка

функција губитка. Овакво удружено тренирање

омогућава BERT моделу боље разумевање контекста и

структуре језика.

Како би BERT био успешан при решавању различитих

језичких задатака, углавном је довољно додати мали

слој на основни модел.

3. КОРИШЋЕНИ СКУПОВИ ПОДАТАКА

За потребу тестирања различитих модела у

комуникацији са корисницима, коришћен је скуп

података који се састоји од питања и одговора

везаних за осигурање. Овај скуп података добијен је

уз допуштење клијента. За дотрениравање BERT

модела искоришћен је Semantic Textual Similarity

Benchmark скуп података [4], који је уједно и један од

најчешће коришћених скупова за проналажење

сличних питања.

4. РЕЗУЛТАТИ И ДИСКУСИЈА

Најбољи резултати при тестирању модела високог

одзива добијени су коришћењем претренираног

Word2Vec модела уз сумирање вектора речи и

еуклидску удаљеност за мерење сличности.

За модел високе прецизности, чије је унапређење

уједно и циљ овог истраживања, спроведено је и

квантитативно и квалитативно тестирање

перформанси сијамског LSTM и BERT модела на

истом тест скупу који је споменут у претходном

поглављу. Квантитативна анализа је показала да

LSTM често није успевао да обухвати све кључне

аспекте корисничког упита, што је доводило до

враћања делимично релевантних или потпуно

нетачних питања, до је BERT постигао значајно боље

метрике прецизности и тачности. Квалитативно

посматрано, BERT је, захваљујући бољем разумевању

контекста, доследно проналазио семантички

најприближнија питања, што је резултирало знатно

адекватнијим и поузданијим одговорима у реалним

сценаријима.

5. ЗАКЉУЧАК

Имплементација трансформер модела за четбота у

домену осигурања значајно побољшава тачност,

брзину и укупно корисничко искуство у односу на

претходно имплементирани LSTM приступ.

Трансформери омогућавају бољу обраду комплексних

и дугих упита, што је од великог значаја како у

осигурању, тако и у другим областима. У циљу даље

применљивости у реалним условима и даљем

унапређењу система могуће је интегрисати RAG

методологију, а такође и применити различите

механизме заштите података како би се добило још

напредније, флексибилније и безбедније решење

којим би се додатно унапредило корисничко

искуство.

6. ЛИТЕРАТУРА

[1] Ferrer, J. (2024) How transformers work: A

detailed exploration of Transformer

architecture, DataCamp.

[2] Nyandwi, J. (2023) Ai Research Blog - The

Transformer Blueprint: A holistic guide to the

transformer neural network architecture, Deep

Learning Revision

[3] Horev, R. (2018) Bert explained: State of the

art language model for NLP, Medium.

[4] https://paperswithcode.com/dataset/sts-

benchmark

Кратка биографија:

Нађа Кањух рођена је у Врбасу 2000.

године. Мастер рад на Факултету

техничких наука из области

Електротехнике и рачунарства одбранила

је 2025. године.

контакт: nadjakanjuh00@gmail.com

1392

mailto:nadjakanjuh00@gmail.com

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.4

DOI: https://doi.org/10.24867/33BE35Trivunovic

 SAMOOBNAVLJAJUĆI KOD NA AWS PLATFORMI

SELF HEALING CODE ON AWS PLATFORM

Dragana Trivunović, Fakultet tehničkih nauka, Novi Sad

Oblast – ELEKTROTEHNIKA I RAČUNARSTVO

Kratak sadržaj – Ovaj rad istražuje mogućnost rešenja

samoobnavljajućeg koda koji koristi AWS platformu i

generativnu veštačku inteligenciju. Mogućnosti koje

otvara složeno rešenje koda koji se samoobnavlja se

ogleda u smanjivanju utrošenog vremena razvojnog

inženjera i brzom detektovanju greške u softveru i njenom

otklanjanju. Glavni servis koji je centar arhitekture ovog

rešenja je servis generativne veštačke inteligencije koji se

koristi za sugestiju, dopunu, ispravku, pojašnjenje,

optimizaciju, transformaciju i poboljšanje softverskog

rešenja.
Ključne reči: Cloud, AWS, Generativni AI

Abstract – This paper explores the feasibility of a self-

healing code solution utilizing the AWS platform and

generative artificial intelligence. The potential of a

complex self-healing code solution lies in reducing the

time spent by software engineers, enabling quick error

detection in the software, and facilitating error

correction. The core service at the heart of this

architecture is a generative AI service, used for

suggesting, completing, correcting, clarifying, optimizing,

transforming, and enhancing the software solution.

Keywords: Cloud, AWS, Generative AI

1. UVOD

Era naprednog razvitka veštačke inteligencije dovela je

do, nekad nezamislivih, tehničkih rešenja. Primena

ovakvih rešenja je u velikoj meri olakšala niz zadataka u

razvoju softvera. Optimizacija i automatizacija su ključni

faktori koji izdvajaju rešenja sa primenom veštačke

inteligencije smanjujući cenu realizacije, utrošeno vreme i

potrebne resurse za razvoj softvera. Pomoć koju veštačka

inteligencija pruža prilikom razvoja i održavanja

softverskih rešenja omogućila je smanjenje vremena koje

je potrebno da se pronađe i popravi greška (engl. bug). U

trci za napredna rešenja veštačke inteligencije i

mašinskog učenja, sa svojim inovativnim pristupom,

ističe se AWS (Amazon Web Services) kompanija. Načini

korišćenja veštačke inteligencije unutar njihovih

proizvoda dovode do poboljšanog iskustva korisnika,

povećane produktivnosti zaposlenih, kreativnijeg

marketinga i optimizovanih procesa unutar kompanije.

Ovaj rad istražuje AWS Self healing kod, analizirajući

njegovu arhitekturu, funkcionalnosti i praktičnu primenu.

NAPOMENA:

Ovaj rad proistekao je iz master rada čiji mentor je

bio dr Srđan Vukmirović, red. prof.

Na AWS platformi se mogu koristiti već istrenirani

modeli veštačke inteligencije i infrastruktura napravljenih

servisa. Osim fokusa na veštačku inteligenciju koji čini

samo jedan deo ponuđenih rešenja, na AWS platformi

postoji čitav niz softverskih rešenja koji čine

infrastrukturu AWS-ovog „oblaka“ (engl. Cloud). Usluge

koje se pružaju su skladištenje i arhiviranje podataka,

procesuiranje podataka, izgradnja API interfejsa, privatni

VPN, elastično balansiranje opterećenja nadolazećeg

saobraćaja na veb sajtu, razne analitike i metrike podataka

korišćenjem Big Data tehnologija, implementiranja

politike sigurnosti, identiteta i saglasnosti, itd.

U ovom radu će biti obrađeni neki od servisa koji su

iskorišćeni u stvaranju rešenja za kod koji ima mogućnost

samoobnavljanja, detekcije grešaka i podizanja ispravaka

koda u izvorni kod.

2. AMAZON WEB SERVICES

U poređenju sa klasičnim računarstvom, AWS kao pionir

ideje računarstva u oblaku 2000-ih godina, donosi novosti

koje su zauvek izmenile računarstvo. Najveći benefiti se

ogledaju u skalabilnosti, gde manje firme imaju

mogućnost da plaćaju samo onoliko koliko im u datom

trenutku treba, te sa povećanjem obima posla povećaju i

obim AWS-ovih usluga. U prošlosti su firme koristile

privatne centre podataka sa privatnim hardverom i

serverima, koji su u poređenju sa servisima na „oblaku“

bile izuzetno skuplje. Skaliranje na AWS-u može da bude

i automatizovano i brzo, te je ovakav vid poslovanja

mnogo pogodniji. U današnje vreme sve modernizovane

firme i kompanije koriste rešenja računarstva u oblaku

[5].

2.1. AWS servisi

AWS takođe nudi svojim korisnicima razvijeni sistem za

implementiranje politike sigurnosti, saglasnosti i

identiteta. Postoje servisi za nadzor sistema koji

povećavaju sigurnost. Štiti svoje korisnike od ispada

sistema stavljajući akcenat na pouzdanost svojih usluga.

AWS garantuje dostupnost korisničkih aplikacija

pružanjem usluga na 80 zona dostupnosti i više od 25

globalnih regija, što ga čini odličnim izborom za

kompanije koje posluju globalno. Pruža razvojne alate za

softver koji su laki za korišćenje i omogućava brzo

podizanje korisničkih aplikacija i veb sajtova. Postoje

nekoliko tipova razvojih modela računarstva u oblaku [3].

U modelu infrastrukture kao servisa, korisniku je

omogućeno korišćenje računarske

1393

https://doi.org/10.24867/33BE35Trivunovic

infrastrukture u vidu virtuelne platforme kao što su

virtuelne mašine i serveri zaskladištenje i upravljanje

podacima. Primeri modela infrastrukture kao servisa u

AWS-u su servisi poput Elastic Computing 2, Simple

Storage Service – S3, Relational Database Service – RDS.

Softver kao servis je model koji se fokusira na

dostavljanje aplikacije korisniku preko interneta. AWS ne

pruža gotova Softver kao servis rešenja, ali pruža

mogućnost svojim korisnicima da naprave svoje

samostalne aplikacije bazirane na ovom modelu.

Platforma kao servis je model koji pruža platformu, alate i

razvojna okruženja softverskim inženjerima za razvoj

softverskih rešenja. Primer je Content Delivery Network –

CDN servis koji predstavlja mrežu povezanih servera koji

ubrzavaju učitavanje veb stranica za aplikacije koje su

orijentisane na podatke. Takav jedan servis je AWS-ov

CloudFront. Platforma kao servis je implementirana kao

model u servisima za balansiranje protoka podataka.

Elastic Load Balancing – ELB je servis koji omogućava

distribuciju opterećenja aplikacije na serverima zarad

poboljšanja skalabilnosti aplikacije. Još jedan primer

ovog modela se nalazi u Amazon CloudWatch servisu

koji služi za monitoring podataka i aplikacije, preko

konstrukcije log datoteka i raznih metrika.

Back-end kao servis je model koji pomaže razvojnim

inženjerima da se fokusiraju na front-end deo aplikacije.

U ovom modelu je serverski deo aplikacije već napravljen

i umesto korisnika upravlja bazom podataka,

skladištenjem podataka, autentikacijom korisnika,

notifikacija na aplikaciji, veb-hostinga, itd. Primer ovog

modela na AWS-u je AWS Amplify. Ovaj model

omogućava front-end inženjerima da konstruišu full-stack

aplikacije.

Funkcija kao servis je model računarstva u oblaku gde je

fokus stavljen na pokretanje funkcija kao odgovor na neki

događaj, bez potrebe da se konfiguriše kompleksna

infrastruktura virtuelnih mašina i upravljanje operativnim

sistemima i procesima održavanja veb servera. Sa ovim

modelom, veb server se može podeliti na funkcionalnosti

koje se mogu automatski skalirati. Sa ovim modelom,

plaća se samo kada se funkcionalnost iskoristi, a ne po

satu ili količinskom najmu kao kod ostalih modela.

Primer ovog modela je AWS Lambda servis. Ovaj servis

izvršava kod na visoko dostupnoj infrastrukturi za obradu

podataka i vrši administraciju svih resursa za obradu,

uključujući i administraciju operativnog sistema i servera.

Takođe, ovaj servis automatski skalira i potražuje

potrebne resurse za obradu podataka.

3. AWS SELF HEALING CODE

Pod pritiskom brzog razvoja, programeri i menadžeri su

često suočeni sa izborom trošenja vremena na popravke

grešaka koda koji je već u produkciji, ili ostavljanjem

greške i problema u „back log“-u gde se gomila kao

tehnički dug. Prvi izbor znači više utrošenog vremena i

novca, a drugi izbor dovodi do nezadovoljnih klijenata i

lošeg korisničkog iskustva.

Rešenje do kojeg su došli inženjeri iz Amazon AWS

kompanije je kod koji ima mogućnost introspekcije na

osnovu prijavljenih grešaka na aplikaciji, mogućnost

ispravke koda i podizanja te ispravke na izvorni kod.

Кljučni deo ovog rešenja je generativni model veštačke

inteligencije koji nadopunjuje i ispravlja kod.

3.1. ARHITEKTURA REŠENJA

Ovo rešenje je napravljeno kombinovanjem Amazon

CloudWatch-a, AWS Lambda i Amazon Bedrock servisa

kako bi kreirali sveobuhvatan sistem koji automatski

otkriva i popravlja greške radi poboljšavanja pouzdanosti

aplikacije i celokupnog korisničkog iskustva. U ovom

sistemu, ispravljač grešaka se povezuje sa CloudWatch

evidencijom zapisa grešaka aplikacije preko Lambda

pretplate. Svi zapisnici koji sadrže greške aplikacije šalju

se na obradu, gde Lambda funkcija kreira prompt,

uključujući praćenje steka (engl. „stack“) i relevantne

datoteke koda, a zatim ga šalje u Amazon Bedrock

(Claude v1 model) da generiše ispravke koda. Izmenjeni

kod se zatim šalje u kontrolu izvora (Git) i kreira zahtev

za povlačenje za pregled i primenu [6].

Ovakvo rešenje pruža niz funkcionalnosti: Automatsko

otkrivanje praćenja steka (greške): Implementira pretplate

na CloudWatch evidencije za automatsko filtriranje i

otkrivanje tragova steka; Praćenje grešaka: Automatski

prati stanje obrade grešaka u Amazon DynamoDB;

Deduplikacija: Deduplikuje tragove steka da bi se izbegla

suvišna obrada; Кreiranje zahteva za povlačenje: Integriše

se sa sistemima kontrole izvora za automatsko kreiranje

zahteva za povlačenje, koji uključuju ispravke grešaka

Postoji nekoliko servisa koji se koriste u ovom rešenju a

koji su spomenuti u prethodnim poglavljima. Amazon

CloudWatch Core servis pruža podatke evidencije grešaka

za problematičan izvorni kod. AWS Lambda Core servis

implementira automatizaciju za brzo generisanje i

interakciju sa BedRock-om. Amazon Bedrock Core servis

pruža širok skup mogućnosti za izgradnju generativnih AI

aplikacija koje analiziraju, popravljaju i vraćaju izmenjeni

problematičan izvorni kod. Amazon Simple Queue

Service (Amazon SQS) servis pruža grupnu obradu i

kontrolu istovremenosti za Lambda funkciju. Amazon

DynamoDB Core servis čuva trag steka koda sa

evidencijama grešaka i prenosi podatke. Pomoćni servis

Amazon Systems Manager čuva tajne parametre u

skladištu [12].

3.1.1. Amazon CloudWatch

Amazon CloudWatch je servis koji nadgleda aplikacije,

reaguje na promene u performansama, optimizuje

korišćenje resursa i pruža uvid u operativno zdravlje.

Prikupljanjem podataka preko AWS resursa, CloudWatch

daje uvid u performanse celog sistema i omogućava

korisnicima da podese alarme, automatski reaguju na

promene i steknu jedinstven pogled na operativno

zdravlje. CloudWatch je kao servis napravljen po modelu

Platforma kao servis.

CloudWatch funkcioniše tako što akumulira metriku i

evidenciju iz AWS resursa, analizira te podatke i pruža

vizuelne prikaze i upozorenja. Sastoji se od 3 glavne

komponente: deo za praćenje i prikupljanje metrike koji

prikuplja podatke iz resursa, dugoročno skladištenje tih

podataka u CloudWatch-u, kao i vizuelizacije i alarme na

osnovu uskladištenih podataka.

1394

3.1.2. AWS Lambda

Moguće je koristiti AWS Lambda za pokretanje koda bez

obezbeđivanja ili upravljanja serverima.

Lambda pokreće kod na računarskoj infrastrukturi visoke

dostupnosti i obavlja svu administraciju računarskih

resursa, uključujući održavanje servera i operativnog

sistema, obezbeđivanje kapaciteta i automatsko skaliranje

i evidentiranje. Sa Lambda-om, sve što treba da uradite je

da unesete svoj kod u jednom od jezika izvođenja koje

Lambda podržava [1].

Кod se organizuje u Lambda funkcije. Lambda usluga

pokreće funkciju samo kada je to potrebno i automatski se

podešava. Plaća se samo vreme koje je utrošeno na

pokretanje i izvršavanje funkcije — nema naknade kada

kod nije pokrenut.

Lambda je idealna računarska usluga za scenarije

aplikacija koje treba brzo da se povećaju i smanje na nulu

kada nisu tražene.

Кada se koristi Lambda, odgovornost je na inženjeru

samo za njegov kod. Lambda upravlja računarskom

flotom koja nudi balans memorije, CPU-a, mreže i drugih

resursa za pokretanje vašeg koda. Pošto Lambda upravlja

ovim resursima, nije moguće prijaviti se da bi se

izračunale instance ili prilagodili operativni sistem na

predviđenim vremenima izvođenja. Lambda obavlja

operativne i administrativne aktivnosti u korisničko ime,

uključujući upravljanje kapacitetom, praćenje i

evidentiranje korisničkih Lambda funkcija [2].

3.1.3. Amazon DynamoDB

DynamoDB je bez-serverska, NoSQL, potpuno

upravljana baza podataka sa jednocifrenim milisekundnim

performansama na bilo kojoj skali. Кao baza podataka bez

servera, plaća se samo ono što se iskoristi. DynamoDB

skalira na nulu, nema hladnih pokretanja, nema

nadogradnje verzije, nema prozora za održavanje, nema

zastoja održavanja. Ova baza podataka nudi širok skup

bezbednosnih kontrola i standarda usklađenosti. Za

globalno distribuirane aplikacije, DynamoDB globalne

tabele su multi-regionalna, multiaktivna baza podataka sa

SLA dostupnošću od 99,999% i povećanom otpornošću.

Pouzdanost DynamoDB-a je podržana upravljanim

rezervnim kopijama i oporavkom u trenutku. Sa

DynamoDB tokovima, moguća je izgradnja aplikacija

vođenih događajima bez servera [4] [9].

3.1.4. Amazon SQS

Amazon Simple Queue servis (Amazon SQS) nudi

siguran, izdržljiv i dostupan red podataka koji omogućava

integraciju i odvojanje distribuiranih softverskih sistema i

komponenti. Amazon SQS nudi uobičajene konstrukcije

kao što su redovi za „mrtve“ poruke i oznake za alokaciju

troškova. Pruža generički API za veb usluge kojima se

može pristupiti koristeći bilo koji programski jezik koji

podržava AWS SDК [10].

Amazon SQS razdvaja i skalira distribuirane softverske

sisteme i komponente kao uslugu čekanja. Obično

obrađuje poruke preko jednog pretplatnika, što je idealno

za tokove posla gde su prevencija narudžbine i gubitka

kritični. Za širu distribuciju, integracija Amazon SQS-a sa

Amazon SNS-om omogućava razgranati obrazac za

razmenu poruka, efektivno prosleđujući poruke većem

broju pretplatnika odjednom [8].

3.1.5. Amazon Bedrock

Amazon Bedrock je servis koji omogućava da dostupnost

osnovnih modela veštačke inteligencije visokih

performansi (engl. Foundation Model) iz vodećih startapa

veštačke inteligencije i Amazon za korisničku upotrebu

putem objedinjenog API-ja. Moguće je birati između

širokog spektra osnovnih modela veštačke inteligencije

kako bi se pronašao model koji je najprikladniji za

korisnikov slučaj upotrebe. Amazon Bedrock takođe nudi

širok skup mogućnosti za izgradnju generativnih AI

aplikacija sa bezbednošću, privatnošću i odgovornom

veštačkom inteligencijom. Кoristeći Amazon Bedrock,

moguće je da se lako eksperimentiše nad i procenjuju

osnovni modeli za korisničke slučajeve upotrebe, privatno

da se prilagođavaju korisničkim podacima koristeći

tehnike kao što su fino podešavanje i proširena generacija

preuzimanja (RAG) i prave agenti koji izvršavaju zadatke

koristeći sisteme korisnikovog preduzeća i izvore

podataka.

Amazon Bedrock je rešenje bez servera, gde je moguće

privatno prilagoditi osnovne modele sopstvenim

podacima i lako i bezbedno ih integrisati i primeniti u

aplikacije koristeći AWS alate bez potrebe za

upravljanjem infrastrukturom i njenom izmenom [11].

4. PRINCIPI ARHITEKTURE

SAMOOBNAVLJAJUĆEG KODA

AWS-ovi inženjeri su pioniri sistema za kod koji se sam

obnavlja, pronalazi greške (engl. bag) i sam podiže

zahteve za ispravku originalnog koda.

Arhitektura ovog rešenja pomaže softverskim

kompanijama da postave sistem za otkrivanje i

evidentiranje grešaka, generisanje ispravki grešaka i

kreiranje zahteva za promenom koda. Svaka kompanija

koja kreira softver neizbežno mora da uravnoteži

rešavanje grešaka, a istovremeno se takmiči sa pritiskom

razvoja proizvoda i funkcionalnosti. Greške mogu

odvratiti pažnju programera, pogoršati korisničko

iskustvo i uzrokovati pogrešne pokazatelje. Ovo idejno

rešenje pomaže softverskim kompanijama da

implementiraju automatizovani sistem koji otkriva i

ispravlja greške kako bi poboljšao pouzdanost aplikacija i

poboljšao celokupno korisničko iskustvo.

Rešenje za kod koji se sam popravlja je zasnovano na 6

osnovnih stubova najboljih arhitektonskih praksi za

dizajniranje sistema u oblaku.

AWS Well-Architected Framework opisuje ključne

koncepte, principe dizajna i najbolje arhitektonske prakse

za projektovanje i pokretanje radnih opterećenja u oblaku.

Ovi principi i koncepti su opisani detaljnije u radu [7].

8. ZAKLJUČAK

Inovativan pristup inženjera iz kompanije Amazon nam je

donelo rešenje koje će, ukoliko se dobro podesi i iskoristi,

dovesti do smanjivanja tehničkog duga i do olakšavanja i

ubrzavanja toka razvoja aplikacije. Način na koji je

iskorišćen generativni model veštačke inteligencije je

1395

doveo do automatizacije velikog dela posla programera, a

to je pronalaženje i ispravak grešaka u kodu.

Ovo rešenje smanjuje troškove razvoja softverskih

rešenja, poboljšava produktivnost timova, obezbeđuje

visok nivo sigurnosti i pouzdanosti,

Potrebno je imati u vidu da je ovo rešenje dostupno samo

u određenim AWS regionima i da se troškovi mogu

značajno razlikovati u zavisnosti od obima upotrebe i

konkretnih potreba korisnika. Pažljivo planiranje i

praćenje troškova, uz korišćenje AWS alata kao što je

Cost Explorer, omogućava korisnicima da maksimiziraju

koristi od ovog sistema uz minimalne finansijske rizike

Na kraju, ovakve vrste rešenja predstavljaju budućnost

razvoja softvera, gde automatizacija i veštačka

inteligencija igraju ključnu ulogu u poboljšanju kvaliteta

softverskih rešenja i korisničkog iskustva. Ovakve

tehnologije su već krenule da transformišu način na koji

timovi softverskih inženjera rade, smanjujući tehnički dug

i omogućavajući brže i efikasnije rešavanje problema.

9. LITERATURA

[1] Funkcija kao servis [na mreži]. Dostupno na:

https://www.ibm.com/topics/faas (Pristupljeno u junu

2024. godine)

[2] Lambda Servis [na mreži]. Dostupno na:

https://docs.aws.amazon.com/lambda/latest/dg/welcome.h

tml (Pristupljeno u junu 2024. godine)

[3] Proizvodi AWS-a [na mreži]. Dostupno na:

https://aws.amazon.com/products/ (Pristupljeno u junu

2024. godine)

[4] AWS načini skladištenja podataka [na mreži].

Dostupno na:

https://www.educba.com/aws-storage-services/

(Pristupljeno u junu 2024. godine)

[5] O bazama podatala [na mreži]. Dostupno na:

https://docs.aws.amazon.com/whitepapers/latest/aws-

overview/database.html (Pristupljeno u junu 2024.

godine)

[6] Self healing code uputstvo [na mreži]. Dostupno na:

https://aws.amazon.com/solutions/guidance/self-healing-

code-on-aws/ (Pristupljeno u junu 2024. godine)

[7] Principi arhitekture na AWS-u [na mreži]. Dostupno

na:

https://aws.amazon.com/architecture/well-

architected/?wa-lens-whitepapers.sort-

by=item.additionalFields.sortDate&wa-lens-

whitepapers.sort-order=desc&wa-guidance-

whitepapers.sort-by=item.additionalFields.sortDate&wa-

guidance-whitepapers.sort-order=desc (Pristupljeno u

junu 2024. godine)

[8] Cloudwatch [na mreži]. Dostupno na:

https://aws.amazon.com/cloudwatch/ (Pristupljeno u junu

2024. godine)

[9] DynamoDB [na mreži]. Dostupno na:

https://aws.amazon.com/dynamodb/ (Pristupljeno u junu

2024. godine)

[10] Simple Queue Service [na mreži]. Dostupno na:

https://docs.aws.amazon.com/AWSSimpleQueueService/

(Pristupljeno u junu 2024. godine)

[11] Bedrock [na mreži]. Dostupno na:

https://docs.aws.amazon.com/bedrock/ (Pristupljeno u

junu 2024. godine)

[12] Self healing code [na mreži]. Dostupno na:

https://aws-solutions-library-samples.github.io/ai-ml/self-

healing-code-on-aws.html (Pristupljeno u junu 2024.

godine)

Kratka biografija:

Dragana Trivunović

rođena je 21. oktobra

1998. godine u Sremskoj

Mitrovici. Osnovnu školu

"Čaki Lajoš" završila je u

Bačkoj Topoli, a

gimnaziju, opšti smer, je

završila u srednjoj školi

"Dositej Obradović" u

Bačkoj Topoli. Školske

2017/2018 godine upisuje

Fakultet tehničkih nauka u Novom Sadu, na studijski

program Primenjeno softversko inženjerstvo. Osnovne

akademske studije završila je školske 2022/2023, posle

kojih upisuje master studije, takođe, na studijskom

programu Primenjeno softversko inženjerstvo.

1396

https://www.ibm.com/topics/faas
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://aws.amazon.com/products/
https://www.educba.com/aws-storage-services/
https://docs.aws.amazon.com/whitepapers/latest/aws-overview/database.html
https://docs.aws.amazon.com/whitepapers/latest/aws-overview/database.html
https://aws.amazon.com/solutions/guidance/self-healing-code-on-aws/
https://aws.amazon.com/solutions/guidance/self-healing-code-on-aws/
https://aws.amazon.com/architecture/well-architected/?wa-lens-whitepapers.sort-by=item.additionalFields.sortDate&wa-lens-whitepapers.sort-order=desc&wa-guidance-whitepapers.sort-by=item.additionalFields.sortDate&wa-guidance-whitepapers.sort-order=desc
https://aws.amazon.com/architecture/well-architected/?wa-lens-whitepapers.sort-by=item.additionalFields.sortDate&wa-lens-whitepapers.sort-order=desc&wa-guidance-whitepapers.sort-by=item.additionalFields.sortDate&wa-guidance-whitepapers.sort-order=desc
https://aws.amazon.com/architecture/well-architected/?wa-lens-whitepapers.sort-by=item.additionalFields.sortDate&wa-lens-whitepapers.sort-order=desc&wa-guidance-whitepapers.sort-by=item.additionalFields.sortDate&wa-guidance-whitepapers.sort-order=desc
https://aws.amazon.com/architecture/well-architected/?wa-lens-whitepapers.sort-by=item.additionalFields.sortDate&wa-lens-whitepapers.sort-order=desc&wa-guidance-whitepapers.sort-by=item.additionalFields.sortDate&wa-guidance-whitepapers.sort-order=desc
https://aws.amazon.com/architecture/well-architected/?wa-lens-whitepapers.sort-by=item.additionalFields.sortDate&wa-lens-whitepapers.sort-order=desc&wa-guidance-whitepapers.sort-by=item.additionalFields.sortDate&wa-guidance-whitepapers.sort-order=desc
https://aws.amazon.com/architecture/well-architected/?wa-lens-whitepapers.sort-by=item.additionalFields.sortDate&wa-lens-whitepapers.sort-order=desc&wa-guidance-whitepapers.sort-by=item.additionalFields.sortDate&wa-guidance-whitepapers.sort-order=desc
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/dynamodb/
https://docs.aws.amazon.com/AWSSimpleQueueService/
https://docs.aws.amazon.com/bedrock/
https://aws-solutions-library-samples.github.io/ai-ml/self-healing-code-on-aws.html
https://aws-solutions-library-samples.github.io/ai-ml/self-healing-code-on-aws.html

Зборник радова Факултета техничких наука, Нови Сад

UDK: 621.3

DOI: https://doi.org/10.24867/33BE36Nesic

РАЗВОЈ COФТВЕРА НА RISC-V АРХИТЕКТУРИ СА ФОКУСОМ НА RPC

ИМПЛЕМЕНТАЦИЈУ

RISC-V SOFTWARE DEVELOPMENT WITH FOCUS ON RPC IMPLEMENTATION

Марија Нешић, Факултет техничких наука, Нови Сад

Област – ЕЛЕКТРОТЕХНИКA И РАЧУНАРСТВО

Кратак садржај – Овај рад представља детаљан

опис софтверске архитектуре и имплементације

механизма удаљених позива процедура (Remote

Procedure Call – RPC) у оквиру уграђеног система

заснованог на RISC-V архитектури. Рад документује

комплетан процес подизања софтвера на новом чипу,

од првобитне иницијализације хардвера до

успостављања функционалне комуникације са

спољашњим системима.

Кључне речи: Развој софтверског окружења, RISC-

V, FreeRTOS, RPC

Abstract – This thesis presents a detailed description of

the software architecture and implementation of the

Remote Procedure Call (RPC) mechanism within an

embedded system based on the RISC-V architecture. It

documents the complete process of bringing up software

on a new chip, from the initial hardware initialization to

establishing functional communication with external

systems.

Keywords: Software Bring-Up, RISC-V, FreeRTOS,

RPC

1. УВОД

Идеја удаљеног позива процедуре (RPC), коју су први

пут увели Birrell и Nelson 1984. године, представљала

је велики корак напред у дистрибуираној обради. Она

омогућава да се процедуре у процесима на удаљеним

рачунарима позивају као да су процедуре у локалном

адресном простору. RPC систем управља основним

механизмима — кодирањем и декодирањем података,

слањем порука и обезбеђивањем да се позив понаша

као регуларан позив функције [1].

RPC модел комуникације изабран је као основни

механизам интеракције између host-а и Wi-Fi HaLow

чипа заснованог на SweRV EH1 архитектури.

__

НАПОМЕНА:

Овај рад проистекао је из мастер рада чији ментор

је био др Предраг Теодоровић, ванр. проф.

 Основна мотивација за овај избор лежи у потреби да

се сложене операције са стране host-а иницирају

једноставним функцијским позивима, а да се при томе

изолују детаљи low-level комуникације,

синхронизације и управљања

меморијом.Имплементирани RPC механизам припада

категорији Hardware-Level RPC (Chip-to-Chip, On-

Board), конкретно SPI/I2C RPC типу. Иако чип

интерно користи AXI протокол, класификација се

одређује према спољашњем интерфејсу и

комуникационим карактеристикама. Из перспективе

спољашњег host-та, комуникација се реализује кроз

стандардне SPI трансакције где host (master) шаље

команде које функционишу као удаљени позиви

процедура ка Wi-Fi HaLow чипу (slave). Што се тиче

комуникационог модела нуди комбинацију синхроне

и асинхроне комуникације.

Циљ рада је приказ конкретног решења развијеног у

индустријском контексту за Wi-Fi HaLow чип, које

омогућава комуникацију између чипа и спољашњег

host уређаја.

Главни проблеми решавани у оквиру овог пројекта

обухватају иницијализацију и bring-up софтвера на

SweRV EH1 процесору заснованом на RISC-V

архитектури, портовање оперативног система

FreeRTOS на циљну платформу, развој RPC

механизма за транспарентну комуникацију између

уграђеног чипа и екстерног host-а, имплементацију

SPI комуникационог слоја са синхронизацијом и

управљањем прекидима, развој host стране RPC

комуникације, као и оптимизацију ресурса и

меморијских захтева система.

2. СОФТВЕРСКА И ХАРДВЕРСКА ПЛАТФОРМА

Цео систем се састоји из два процесора, од којих је

један HaLow modem процесор који нуди Wi-Fi

функционалности. Да би та функционалност остала

изолована, остале функционалности су део интерног

host процесора, SweRV EH1. У овом раду је описан

његов развој. Чип представља специјализовану Wi-Fi

HaLow станицу која прима команде од спољашњих

host-ова преко SPI интерфејса.

1397

https://doi.org/10.24867/33BE36Nesic

Слика 1. Дијаграм система

На слици 1 је приказан цео систем заједно са

процесором.

Слика 2. Архитектура SweRV EH1 Core Complex-а

Као што је приказано на слици Слика 2, SweRV EH1

Core Complex садржи RV32IMC језгро са пратећим

компонентама као што су DCCM, ICCM, I-Cache, PIC

и Debug интерфејс, као и више AXI4/AHB-Lite

интерфејса за спољашње конекције.

Систем осим интерног host и HaLow modem процесора

садржи још и SPI-to-AXI, UART и QSPI модуле.

Комуникација од екстерног host-a до чипа се одвија

преко SPI-to-AXI модула који омогућава

комуникацију тако што SPI сигнали од спољашњег

контролера (нпр. STM32) бивају конвертовани у AXI

протокол, прослеђени на AXI магистралу, а затим

преко DMA порта приступају DCCM меморији за

размену података. Комуникација од чипа ка

екстерном host-у функционише у супротном смеру -

сигнал који процесор емитује преко LSU BUS-a се

рутира кроз AXI магистралу и појављује се на GPIO

портовима за даље прослеђивање екстерном host-у.

FreeRTOS је изабран као оперативни систем за Wi-Fi

HaLow чип, што представља логичан избор за ову

врсту уграђених апликација. У питању је оперативни

систем у реалном времену отвореног кода, дизајниран

посебно за микроконтролере и уграђене процесоре са

ограниченим хардверским ресурсима.

Избор шеме heap_4 заснован је на њеном идеалном

односу између детерминисаног понашања,

отпорности на фрагментацију и компатибилности са

RISC-V (SweRV EH1) окружењем.

Подешавање окружења укључује инсталацију RISC-V

GNU Toolchain-а. RISC-V GNU Toolchain представља

комплетно окружење за развој, које обухвата GCC

компајлер, Binutils, GDB debugger и Newlib C

стандардну библиотеку [2]. За подршку SweRV EH1

језгру, алат је конфигурисан са rv32imc архитектуром

и ilp32 ABI-јем.

Приликом успешног компајлирања генеришу се

следећи изворни фајлови firmware.elf, firmware.disasm

и firmware.map. За дебаговање кода коришћен је J-

Link адаптер преко JTAG интерфејса.

3. ПОРТОВАЊЕ FREERTOS-A НА SWERV EH1

Портовање оперативног система FreeRTOS на

процесор SweRV EH1 архитектуре RISC-V обухвата

адаптацију његових основних механизама, као што су

замена контекста, руковање прекидима и

конфигурација системског тајмера, у складу са

специфичностима циљне хардверске платформе.

Портовање FreeRTOS-а на SweRV EH1 почиње

укључивањем изворних фајлова који садрже основне

RTOS функционалности и специфичног RISC-V

адаптационог слоја. Затим се конфигурише trap

handler, иницијализује се систем прекида и ради се

интеграција екстерних прекида.

FreeRTOS кернел се ослања на периодичне прекиде

тајмера (RTOS tick) за пребацивање контекста између

task-ова, праћење временских интервала и управљање

timeout механизмима.

У функцији vPortSetupTimerInterrupt() се врши

конфигурација тајмера. У портовању FreeRTOS-а за

SweRV EH1 језгро, vPortSetupTimerInterrupt() користи

Low Power Controller (LPC) као извор системског

тајмера. LPC има сопствени интерни тајмер који је у

овом случају конфигурисан да активира прекид на

сваких 1000 микросекунди.

Такође се у linker скрипти дефинише IRQ stack који се

користи за управљање прекидима.

Након успешно извршене иницијализације система,

конфигурације прекидне логике и покретања

scheduler-а, извршена је провера рада FreeRTOS

окружења кроз креирање и извршавање више task-ова

са различитим приоритетима и функционалностима.

Главна функција апликације иницијализује основни

апликативни task и покреће task за комуникацију,

након чега се позива vTaskStartScheduler(), чиме се

управљање системом предаје RTOS-у.

4. RPC ДИЗАЈН

Дијаграм система који видимо на слици 1 je Wi-Fi

HaLow са слике 3. Он преставља Wi-Fi HaLow

станицу. Затим је направљена подршка да се станица

преко SPI протокола може користити преко STM

микроконтролера или преко RPi Compute модула.

Слика 3 приказује чип повезан са STM

микроконтролером. Wi-Fi HaLow приступна тачка је

постављена поред њих. Слика 4 приказује чип повезан

са RPi Compute Module 4 IO плочом.

Систем користи посвећен меморијски регион који

служи као дељена меморија између host процесора и

локалног микроконтролера. Кључни аспект система је

хардверска транслација адреса. Екстерни host увек

пише на адресе почевши од 0x00000000 из своје

перспективе, али SPI slave контролер аутоматски

транслира те адресе у стварне физичке адресе локалне

меморије. Ово омогућава host процесору да види

1398

дељену меморију као континуиран блок почевши од

нуле, док се заправо приступа било ком меморијском

региону микроконтролера.

Слика 3. Kонфигурација са STM микроконтролером

Слика 4. Конфигурација са Raspberry Pi Compute

Module

На слици 5 приказан је поједностављен RPC

механизам система.

Слика 5. Поједностављен дијаграм RPC механизма

Комуникациони протокол користи флексибилан

механизам паковања података. На слици 6 се види

формат пакета.

Слика 6. Формат пакета

При упису података од стране host процесора

аутоматски се генерише прекид који обавештава

локални систем о пристиглим подацима.

По пријему прекида, систем врши анализу садржаја

RX buffer-а, идентификује врсту захтева и позива

одговарајући механизам обраде. Након обраде,

резултати се уписују у TX buffer или async TX buffer.

Затим се у interrupt_status структури бележи да је

резултат доступан за читање и сетује се бит GPIO

регистра да сигнализира да је податак спреман за

читање.

Да би комуникација између екстерног host-а и RISC-V

чипа била поуздана и ефикасна, неопходан је

механизам синхронизације који обе стране

информише када су подаци спремни за пријем или

обраду. Овај систем користи комбинацију

хардверског SPI прекида, FreeRTOS нотификација,

GPIO сигнала и семафора на страни host-а.

Слика 7. Дијаграм тока података

RPC систем на чипу реализован је кроз два FreeRTOS

task-а:

• RPC task, који је одговоран за пријем

података преко SPI интерфејса, парсирање

улазне поруке и прослеђивање података ка

апликационом слоју

• APP task, који је посвећен извршавању логике

на основу примљене команде

Овакво раздвајање одговорности осигурава да је RPC

task увек спреман да реагује на нови прекид. Након

што прими податке и упакује их у структуру

data_packet_t, он их прослеђује APP task-у преко

message queue-а. Обрада команде се врши независно,

омогућавајући паралелну комуникацију и

извршавање.

1399

На страни екстерног host-а такође постоје 2 task-а. CLI

интерфејс омогућава корисницима да иницирају RPC

позиве преко командне линије. Ове функције шаљу

податке ка чипу и затим чекају резултат. У исто време

други task чека одговор од стране чипа. Функције се

након слања блокирају семафором док не стигне

одговор након чега се исти прочита. Свака функција

има свој семафор.

5. РАЗВОЈ НА HOST СТРАНИ

Први део развоја система обухватао је креирање SPI

Linux драјвера. Ово је омогућило директну и

ефикасну контролу над SPI комуникацијом. RPC

систем је први пут имплементиран на Raspberry Pi

Compute Module 4 IO Board-у, због подршке за spidev

интерфејс у Linux окружењу, што је значајно

поједноставило имплементацију прототипа.

Због AXI протокола, адресе на које се шаљу или

читају подаци морају бити умножак 4. А због тога

како је имплементиран SPI, број података који се

шаље мора бити дељив са 4, због тога се додаје

padding. У cmd_parser модулу може се видети да је

потребно потпуно 32-битно писање за све

трансакције, као и да се строго захтева поравнање

адреса на 4 бајта [3,4].

Као сигнал за завршетак трансцакције имплеметиран

је interrupt механизам на Raspberry Pi страни, где

сетовање бита GPIO регистра означава крај обраде

података.

6. УНАКРСНА ПЛАТФОРМА И ПРОШИРЕЊА

Иако обе платформе користе исти SPI протокол,

имплементације на STM32 и на Linux-у се суштински

разликују у погледу начина организације и руковања

SPI трансакцијама.

У имплементацији Linux SPI драјвера користе се

кернел сервиси. Синхронизација између позива

функција и одговора хардвера се управља кроз

completion mechanism. Док се за STM32 платформу

користе RTOS кернел сервиси. Конкретно

синхронизациони механизми које он нуди.

У оквиру развоја RPC система, успостављена је Host

библиотека реализована као Git submodule, која

омогућава апстраховање заједничких RPC

функционалности и њихово лако дељење између

различитих пројеката и платформи. Овај механизам

омогућава да се у више независних пројеката користи

исти интерфејс, док се платформи специфичне

имплементације могу прилагодити или заменити без

утицаја на остатак система.

7. ИСКОРИШЋЕЊЕ РЕСУРСА

За анализу искоришћења меморије примењени су

алати riscv64-unknown-elf-nm и elf-size-analyze, који

омогућавају идентификацију највећих потрошача

меморије и прецизно профилисање ELF фајла.

Утврђено је да секција rodata заузима значајан део

DCCM-а, што је узроковало прекорачење

расположиве меморије током компилације.

Проблем је решен релокацијом rodata секције у

ICCM, што је подржано архитектуром SweRV EH1, и

смањењем величине stack-а у складу са реалним

потребама.

Овим оптимизацијама постигнуто је ефикасније

коришћење ресурса и очувана је стабилност система.

8. ЗАКЉУЧАК

У овом раду успешно је реализован RPC систем који

омогућава стабилну комуникацију између уграђеног

Wi-Fi HaLow уређаја и спољашњег host-a, уз поуздано

функционисање у реалном времену. Систем је

прилагођен ограничењима уграђених окружења и

подржава проширивост на више хардверских

платформи.

Иако безбедност није била приоритет у овој фази,

потенцијал за даље унапређење постоји увођењем

механизама за аутентикацију и енкрипцију података.

Уколико будуће апликације буду захтевале поуздану

заштиту комуникације, систем се лако може

проширити тим функционалностима. RPC може бити

проширен механизмима за аутентикацију и

шифровање, чиме може испунити критеријуме за

SESIP Level 3, што се често захтева у индустријским

апликацијама [5].

 9. ЛИТЕРАТУРА

[1] “Distributed Systems : Concepts and Design ”, by

George Coulouris, Jean Dollimore, Tim Kindberg,

Gordon Blair.

[2] https://github.com/riscv-collab/riscv-gnu-toolchain

(приступљено у априлу 2025.)

[3] https://github.com/pulp-

platform/axi_spi_slave/blob/master/spi_slave_regs.sv

(приступљено у априлу 2025.)

[4] https://github.com/pulp-

platform/axi_spi_slave/blob/master/spi_slave_cmd_pa

rser.sv(приступљено у априлу 2025.)

[5] https://globalplatform.org/sesip/ (приступљено у јулу

2025.)

Кратка биографија:

Марија Нешић рођена је у Кикинди 1999. год. Дипломски

рад на Факултету техничких наука из области

Електротехнике и рачунарства – Ембедед системи и

алгоритми одбранила је 2022. године.

контакт: nesicmarija123@gmail.com

1400

https://github.com/riscv-collab/riscv-gnu-toolchain
https://github.com/pulp-platform/axi_spi_slave/blob/master/spi_slave_regs.sv
https://github.com/pulp-platform/axi_spi_slave/blob/master/spi_slave_regs.sv
https://github.com/pulp-platform/axi_spi_slave/blob/master/spi_slave_cmd_parser.sv
https://github.com/pulp-platform/axi_spi_slave/blob/master/spi_slave_cmd_parser.sv
https://github.com/pulp-platform/axi_spi_slave/blob/master/spi_slave_cmd_parser.sv
https://globalplatform.org/sesip/

Зборник радова Факултета техничких наука, Нови Сад

УДК: 4.3

ДОИ: https://doi.org/10.24867/33BE37Miskovic

УНАПРЕЂЕЊЕ MODBUS СИМУЛАТОРА ЗА РЕАЛИСТИЧНУ СИМУЛАЦИЈУ

УРЕЂАЈА У СИСТЕМИМА ЗА УПРАВЉАЊЕ ЕНЕРГИЈОМ (EMS)

ENHANCEMENT OF A MODBUS SIMULATOR FOR REALISTIC SIMULATION OF

DEVICES IN ENERGY MANAGEMENT SYSTEMS (EMS)

Андреа Мишковић, Факултет техничких наука, Нови Сад

Студијски програм – РАЧУНАРСКА ТЕХНИКА И

РАЧУНАРСКЕ КОМУНИКАЦИЈЕ

Кратак садржај – Тема овог рада јесте унапређење

Modbus симулатора, развијеног у циљу тестирања

система за управљање енергијом. Унапређење се

огледа у могућности симулације рада уређаја који

учествују у системима управљања енергијом,

користећи статичке и динамичке симулације.

Развијено решење омогућава тестирање

функционалности и перформанси система без

потребе за физичким уређајима.

Кључне речи: Симулатор, Modbus, системи

управљања енергијом, симулације

Abstract – The topic of this thesis is the improvement of a

Modbus simulator, developed for testing energy

management systems. The improvement is reflected in the

ability to simulate the operation of devices involved in EMS

systems, using both static and dynamic simulations. The

developed solution enables functionality and performance

testing without the need for physical devices.

Keywords: Simulator, Modbus, energy management

systems (EMS), simulations

1. УВОД

Концепт симулатора представља кључан алат у развоју

и тестирању различитих система. Главни разлог јесте

јер омогућава прецизно моделовање и анализу

понашања уређаја у контролисаним условима и

намерно изазваним околностима. У савременим

системима управљања енергијом, рад са уређајима чије

је понашање предвидиво представља изазов, имајући у

виду ограничену доступност или високу цену [2]. Као

одговор на овај изазов, развијен је Modbus симулатор

који опонаша реалистична понашања уређаја у

систему управљања енергијом. Симулатор омогућава

истовремено тестирање великог броја уређаја и пружа

могућност испитивања различитих сценарија, без

потребе за физичким уређајима. У овом раду описан је

развој и унапређење наведеног симулатора, чијом

имплементацијом је омогућено детаљније праћење и

валидација понашања мерних уређаја у системима

управљања енергијом.

__

НАПОМЕНА:

Овај рад проистекао је из мастер рада чији ментор

је била др Јелена Ковачевић, ред. проф.

2. ТЕОРИЈСКЕ ОСНОВЕ

На самом почетку, потребно је упознати се са

основним теоријским принципима, у циљу бољег

разумевања рада.

2.1. Систем управљања енергијом (EMS)

Energy Management System (EMS) је систем дизајниран

за праћење, контролу и оптимизацију производње и

потрошње енергије у различитим објектима, мрежама

или индустријским постројењима [1]. EMS интегрише

хардверске и софтверске компоненте како би омогућио

ефикасно управљање енергијом и смањење трошкова,

док истовремено повећава поузданост и сигурност

енергетских система.

Главне функције EMS система укључују:

1. Праћење и прикупљање података

2. Анализа и визуелизација

3. Контрола и аутоматизација

4. Оптимизација и предиктивно управљање

EMS функционише тако што прикупља податке са

различитих уређаја (нпр. сензори, паметна бројила),

обрађује их како би идентификовао обрасце потрошње

и неефикасности, визуализује информације кроз

графиконе и дашборде, омогућава аутоматско или

полуавтоматско управљање уређајима ради смањења

непотребне потрошње и користи алгоритме за

предиктивно управљање како би оптимизовао рад

система и балансирао коришћење различитих извора

енергије.

Примена EMS-а се јавља у индустрији, комерцијалним

зградама, паметним кућама и електродистрибуцији.

Предности се огледају у смањењу трошкова енергије,

повећању енергетске ефикасности, смањењу емисије

штетних гасова и повећању поузданости система, као

и могућности интеграције обновљивих извора енергије

са постојећим системом [1,3].

2.2. Уређаји у EMS

EMS интегрише различите уређаје који омогућавају

праћење, контролу и оптимизацију енергије [5, 6]:

1. Уређаји за мерење и прикупљање података

2. Комуникациони уређаји

3. Уређаји за складиштење података

4. Управљачки уређаји

5. Кориснички интерфејси

6. Уређаји за заштиту и безбедност

1401

Уређаји за мерење и прикупљање података бележе

потрошњу и производњу енергије, као и кључне

електричне параметре попут напона, струје и

фреквенције, пружајући основу за детаљну анализу

система [6]. Комуникациони уређаји омогућавају

поуздану размену информација између сензора,

актуатора и софтверског дела EMS-а, користећи

стандардизоване протоколе и мрежне технологије.

Уређаји за складиштење података чувају историјске

информације, што омогућава анализу трендова,

праћење перформанси и доношење одлука заснованих

на дугорочним обрасцима. Управљачки уређаји

омогућавају аутоматско и полуавтоматско управљање

потрошачима енергије, ради оптимизације потрошње и

повећања ефикасности. Кориснички интерфејси

пружају оператерима преглед стања система кроз

визуализације, олакшавајући праћење и контролу у

реалном времену. На крају, уређаји за заштиту и

безбедност штите EMS и осигуравају заштиту података

и стабилност инфраструктуре, штите комуникацију од

сајбер претњи и омогућавају шифровану

комуникацију.

2.3. Modbus протокол

Modbus је комуникациони протокол који се широко

користи у индустрији за повезивање електронских

уређаја и сензора, посебно у системима за

аутоматизацију и управљање енергијом. Протокол

омогућава различитим уређајима као што су

контролери, сензори и мерни уређаји, да размењују

податке на једноставан и стандардан начин.

Modbus функционише по принципу клијент-сервер

(раније познатом као master-slave) архитектуре.

Клијент је обично уређај или софтверска апликација

која иницира комуникацију, док је сервер уређај који

прима захтеве и враћа одговоре, и то су уређаји као што

су паметно бројило, сензор и слични [4].

Постоји више варијанти Modbus протокола, а у оквиру

овог рада коришћене су:

1. Modbus RTU – користи серијску комуникацију

и погодан је за индустријска окружења због

једноставности, поузданости и ниских

трошкова. Идеалан је за повезивање великог

броја уређаја.

2. Modbus TCP/IP – ради преко мрежа

заснованих на Ethernet протоколу, омогућава

бржу и лакшу интеграцију у савремене

мрежне системе.

Modbus протокол је једноставан, поуздан и лак за

имплементацију, што је довело до тога да данас буде

један од најчешће коришћених протокола за

повезивање индустријских уређаја. Омогућава EMS

системима да прецизно и стабилно прикупљају

податке о потрошњи, производњи и другим

параметрима, што је кључно за праћење и

оптимизацију система.

2.3.1. Modbus поруке

Свака Modbus порука има унапред дефинисану

структуру. Пример структуре у RTU формату:

• Адреса уређаја

• Функцијски код

• Подаци

• Контрола интегритета података (CRC или

LRC)

У Modbus TCP формату, структура поруке укључује

MBAP (eng. Modbus Application Protocol) заглавље:

• Transaction ID

• Protocol ID

• Length

• Unit ID

Слика 1 - Структура Мodbus порука

3. ОПИС РЕШЕЊА

У оквиру овог рада фокус је био на унапређењу

симулатора, имплементираног да буде главни алат

приликом тестирања система за управљање енергијом.

Главни циљ унапређења јесте могућност тестирања

понашања читавог система у реалним условима без

потребе за физичким уређајима.

3.1. Архитектура система

Слика 2. Архитектура система

На слици је приказана архитектура система који се

састоји из четири основне компоненте:

1. Централна компонента – представља

кључни елемент архитектуре система и делује

као посредник између свих осталих

компоненти. Њена улога је да у реалном

времену прима и обрађује телеметријске

податке, врши њихову валидацију и упис, као

и да прослеђује одређене захтеве.

2. База података

3. Мобилна/веб апликација – представља

директну везу корисника са системом. Служи

као визуелни и контролни слој који омогућава

надзор, анализу и управљање уређајима.

1402

Корисници имају јасно представљен преглед

потрошње и производње у реалном времену,

као и историјске податке у виду графикона и

табела.

4. Симулатор уређаја – опонаша рад реалних

уређаја (паметна бројила, PV инвертери,

батеријски системи, EV пуњачи и други) и

тако омогућава реалистично тестирање

система без потребе за физичким уређајима [7,

8]. Имплементиран је у програмском језику

Python, коришћењем Pymodbus библиотеке.

3.2. Pymodbus библиотека

Pymodbus je open-source Python библиотека која

представља имплементацију Modbus протокола [13].

Потпуно је написана у Python-у и омогућава

једноставно креирање Modbus клијента и сервера, што

је чини погодном за развој симулатора и тестирање

индустријских система.

У оквиру овог рада коришћена је за:

1. Имплементацију Modbus сервера у

симулатору који емитује податке који потичу

од стварних уређаја

2. Дефинисање регистара у којима се чувају

симулиране вредности

3. Обраду захтева клијента

3.3. Симулације

Симулације представљају контролисано, намерно и

поновљиво извођење сценарија рада уређаја у циљу

тестирања, мерења, оптимизације и верификације

њиховог понашања. У оквиру овог рада, проширење

симулатора је извршено додавањем симулација

понашања стварних уређаја током 24 сата. Симулације

могу бити статичке или динамичке, у зависности од

начина генерисања мерних података.

3.3.1. Статичке симулације

Статичке симулације се заснивају на низу унапред

дефинисаних података, који су прикупљени са

стварног уређаја током 24 сата. Мерне вредности су

снимане сваке секунде како би се обезбедила висока

временска резолуција података. Приликом симулације,

снимљени подаци се шаљу у истом редоследу

централној компоненти система, чиме се обезбеђује

верна репродукција рада уређаја у реалним условима.

Предност овог приступа јесте веродостојност

генерисаних вредности, док је ограничење у томе што

сценарио остаје непромењив и не може подржати нове

или неочекиване услове рада. Због тога се статичке

симулације често користе за тестирање рада уређаја у

идеалним условима, што је корисно за верификацију

основних функционалности система.

3.3.2. Динамичке симулације

Динамичке симулације представљају напреднији

приступ у тестирању и верификацији рада уређаја и

EMS система, јер омогућавају генерисање података у

складу са дефинисаним сценаријима и условима рада,

а не само репродукцију већ постојећих података.

Основна идеја динамичке симулације је да се користи

конфигурациона датотека у JSON формату, у којој су

прецизно дефинисани временски интервали и

одговарајуће вредности активне снаге (P) за сваки

интервал током једног дана. Овај JSON фајл служи као

улаз за симулатор, који затим, на основу вредности

активне снаге у датом интервалу, применом

одговарајућих физичких формула израчунава остале

релевантне величине као што су: напон (U), струја (I),

реактивна снага (Q), привидна снага (S), фреквенција

(f), укупно утрошена или произведена енергија (E).

Пример формуле за израчунавање напона:

𝑈𝑡+1 = {
𝑈𝑡 + ∆+, 𝑎𝑘𝑜 𝑗𝑒 𝑑𝑡 = 1

𝑈𝑡 − ∆−, 𝑎𝑘𝑜 𝑗𝑒 𝑑𝑡 = −1

(1)

𝑑𝑡 = {
−1, 𝑎𝑘𝑜 𝑈𝑡+1 ≥ 240𝑉

1, 𝑎𝑘𝑜 𝑈𝑡+1 ≤ 228𝑉

Где је:

• Ut – вредност напона у тренутном кораку t

• dt – правац промене

• ∆+ – корак повећања који износи 0,2V

• ∆- – корак смањења који износи 0,15V

Пример формуле за израчунавање струје:

𝐼𝑡 =
𝑃𝑡

𝑈𝑡 ∙ cos 𝜑
 (2)

Где је:

• Pt – активна снага у тренутку t

• Ut – напон у тренутку t

• cos 𝜑 – фактор снаге (варира између 0,92 и

0,95 у зависности од доба дана)

Слика 3. Пример симулације током 24 сата

Слика 4. Пример симулације током 24 сата

1403

4. ТЕСТИРАЊЕ

Тестирање је спроведено са циљем да се провери

тачност, поузданост и скалабилност развијеног

симулатора. За анализу су коришћени унапред

дефинисани сценарији који обухватају нормалан рад,

рад при повећаном оптерећењу, као и услове у којима

долази до поремећаја у комуникацији. Тестирање је

подељено у две групе – функционално и тестирање

перформанси.

Табела 1 - Функционални тестови

Тест случај Очекивани

резултат

Статус

Генерисање

динамичких

података

Подаци прате

дефинисани

JSON сценарио



Генерисање

статичких

података

Подаци

одговарају

снимљеним

вредностима



Читање

података из

регистра

Исправно

очитане

вредности



Писање

вредности у

регистар

Исправно

уписана

вредност



Симулација

прекида рада

уређаја

Систем

пријављује

грешку и не

емитује

податке



Брзо мењање

вредности

регистара

Систем

успешно

бележи све

промене без

губитака

података



Табела 2. Тестови перформанси

Број

уређаја

Просечно

време

одзива

[ms]

Максимална

латенција

[ms]

CPU

оптерећење

[%]

10 15 40 12

50 28 75 27

100 45 120 46

200 92 210 78

Спроведени тестови потврђују да развијени симулатор

испуњава циљеве постављене у раду. Он омогућава

верну репродукцију рада уређаја, стабилан пренос

података, скалабилност већег броја уређаја и

отпорност на грешке.

5. ЗАКЉУЧАК

У овом раду представљен је развој и унапређење

Modbus симулатора са могућношћу реалистичног

опонашања рада уређаја у оквиру система за

управљање енергијом (EMS). Развијени симулатор

успешно омогућава тестирање и валидацију

функционалности без употребе физичких уређаја,

чиме се значајно смањују трошкови, убрзава развој и

повећава безбедност тестирања.

Имплементација је заснована на програмском језику

Python и Pymodbus библиотеци, што је омогућило

флексибилну конфигурацију понашања симулираних

уређаја и подршку за велики број паралелних

инстанци. Унапређење се огледа у два могућа типа

рада симулатора – статичке и динамичке симулације.

Статичке симулације омогућавају репродукцију

унапред дефинисаних скупова података, прикупљених

са реалних уређаја, погодних за тестирање у идеалним

условима. Динамичке симулације нуде већу

флексибилност, јер омогућавају конфигурисање

сценарија у JSON формату и динамичко израчунавање

релевантних електроенергетских параметара према

физичким формулама, што је посебно корисно за

тестирање система у променљивим или екстремним

условима.

Резултати имплементације показују да овако развијен

симулатор може верно да опонаша рад великог броја

уређаја, генерише реалистичне податке и омогући

тестирање кључних EMS функционалности.

4. ЛИТЕРАТУРА

[1] A. R. Al-Ali, I. A. Zualkernan, M. Rashid, R. Gupta,

and M. AliKarar, “A Smart Home Energy Management

System Using IoT and Big Data Analytics Approach,”

IEEE Transactions on Consumer Electronics, vol. 63,

no. 4, pp. 426–434, Nov. 2017.

[2] Magnusson, P. S., Christensson, M., Eskilson, J.,

Forsgren, D., Hallberg, G., Hogberg, J., Larsson F.,

Moestedt A., Werner, B. Simics: A full system

simulation platform. Computer, 2002: 35(2), 50–58.

[3] V. K. Barai, S. R. Mohanty, and N. Kishor, “A review

on modeling and simulation of energy management

systems,” International Journal of Energy Research,

vol. 39, no. 10, pp. 1311–1323, Aug. 2015.

[4] "Modbus Application Protocol Specification V1.1b3,"

Modbus Organization, 2012. [Online]. Available:

https://modbus.org/docs/Modbus_Application_Protoc

ol_V1_1b3.pdf

[5] F. C. Schweppe, Energy Management Systems for

Electric Utilities. Springer, 2013.

[6] A. S. Bouhouras, P. M. Georgilakis, and D. P. Labridis,

“A comprehensive review of energy management

systems for microgrids,” Electric Power Systems

Research, vol. 122, pp. 159–168, May 2015.

[7] Park, S., Kim, H., Moon, H., Heo, J., and Yoon, S.

Concurrent simulation platform for energy-aware

smart metering systems. IEEE Transactions on

Consumer Electronics, 2010: 56(3), 1918–1926.

[8] Cen, Z. Modeling and Simulation for an 8 kW Three-

Phase Grid-Connected Photo-Voltaic Power

System. Open Physics, 2017: 15(1), 603–612

[9] Jovanović, B., Filipović, J., & Bakić, V. (2017). Energy

management system implementation in Serbian

manufacturing – Plan–Do–Check–Act cycle approach.

Journal of Cleaner Production, 162, 1144–1156.

[10] Alahakoon, D., & Yu, X. (2016). Smart electricity

meter data intelligence for future energy systems: A

survey. IEEE Transactions on Industrial Informatics,

12(1), 425–436.

1404

https://modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
https://modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf

[11] S. K. Rathor and D. Saxena, “Energy management

system for smart grid: An overview and key issues,”

Int. J. Energy Res., vol. 44, no. 6, pp. 4067–4109, 2020.

[12] S. K. Khaitan and J. D. McCalley, “Design

Techniques and Applications of Cyber-Physical

Systems: A Survey,” IEEE Systems Journal, vol. 9, no.

2, pp. 350–365, Jun. 2015.

[13] GitHub – Pymodbus Documentation. Available:

https://github.com/pymodbus-dev/pymodbus

Кратка биографија:

Андреа Мишковић рођена је у

Шапцу 1999. године. Основне

студије завршила је на

Факултету техничких наука

2022. године. Мастер рад на тему

„Унапређење Modbus симулатора

за реалистичну симулацију

уређаја у системима за

управљање енергијом“

одбранила је 2025. године.

1405

https://github.com/pymodbus-dev/pymodbus

Zbornik radova Fakulteta tehničkih nauka, Novi Sad

UDK: 4.41

DOI: https://doi.org/10.24867/33BE38Rajnovic

MIGRACIJA MIKRO KLIJENTSKIH APLIKACIJA IZ VEB U DESKTOP OKRUŽENJE

MIGRATION OF MICRO-FRONTEND APPLICATIONS FROM WEB TO DESKTOP

ENVIRONMENT

Teodora Rajnović, Fakultet tehničkih nauka, Novi Sad

Oblast – SOFTVERSKO INŽENJERSTVO I

INFORMACIONE TEHNOLOGIJE

Kratak sadržaj – U radu je predstavljena arhitektura

mikro klijentskih aplikacija (eng. micro-frontend) i

prednosti koje ovaj pristup donosi u razvoju veb aplikacija.

Opisani su savremeni pristupi u razvoju desktop

aplikacija, pri čemu je Electron identifikovan kao

najprikladnije rešenje za migraciju postojeće mikro

klijentske aplikacije u desktop okruženje. Prikazana je

softverska arhitektura konkretne veb aplikacije i proces

njene transformacije u desktop aplikaciju, uz očuvanje

modularnosti, internet konekcije i postojećeg koda.

Ključne reči: Mikro klijentska arhitektura, Desktop

aplikacije, Electron radni okvir

Abstract – The paper presents the architecture of micro-

frontend applications and the advantages that this

approach brings in the development of web applications.

Modern approaches in desktop application development

are described, with Electron identified as the most suitable

solution for migrating an existing micro-frontend

application to a desktop environment. The software

architecture of a specific web application and the process

of its transformation into a desktop application are

presented, while preserving modularity, internet

connection and existing code.

Keywords: Micro-frontend architecture, Desktop

applications, Electron framework

1. UVOD

Micro-frontend arhitektura postaje sve popularniji pristup

u razvoju modernih i savremenih veb aplikacija. Ovaj

pristup omogućava podelu velikih monolitnih klijentskih

aplikacija na manje, nezavisne module, što doprinosi

lakšem održavanju, unapređenju i timskom radu. Micro-

frontend koncept koristi principe mikro-servisne

arhitekture, ali se primenjuje na frontend deo aplikacije [1].

Iako su veb aplikacije danas dominantne zbog svoje

dostupnosti preko veb pregledača, korisnici informacionih

sistema često preferiraju desktop aplikacije zbog boljih

performansi, integracije sa operativnim sistemom i veće

kontrole nad bezbednosti i privatnosti podataka.

U slučajevima kada su veb aplikacije realizovane kroz

upotrebu micro-frontend tehnologije, mogu se uočiti

značajni benefiti u kontekstu velikih sistema koji obrađuju

velike količine informacija i vrše komunikaciju između

različitih komponenti. Ipak, zbog specifičnih zahteva

korisnika, kao što su brzina, rad van mreže i direktan

pristup hardveru, javlja se potreba za migracijom u desktop

okruženje.

Migracija micro-frontend veb aplikacije prikazana je na

primeru DevAdmin aplikacije, čija je namena

konfiguracija, dijagnostika i analiza hardverskih uređaja.

DevAdmin je razvijena kao Angular aplikacija sa

modularnom arhitekturom, koja omogućava efikasno

upravljanje komponentama i funkcionalnostima.

Korisnicima je omogućeno da podešavaju mrežne i

bezbednosne parametre, upravljaju licencama i pristupaju

statusnim izveštajima radi rešavanja tehničkih problema.

Ovaj rad istražuje tehnološke aspekte te migracije, uz

očuvanje modularne arhitekture i postojećeg koda, kao i

prednosti koje se postižu u pogledu performansi,

bezbednosti i korisničkog iskustva.

2. TEHNOLOŠKE OSNOVE

Primer migracije micro-frontend aplikacije u desktop

aplikaciju predstavljen je na primeru Angular [2]

aplikacije, uz primenu micro-frontend arhitekture

zasnovane na Module Federation konceptu. U svrhu

odabira najpogodnijeg rešenja za migraciju iz micro-

frontend u desktop okruženje, dat je sažet prikaz

savremenih pristupa u razvoju desktop aplikacija.

2.1. Angular

Angular [2] je TypeScript [3] radni okvir koji omogućava

izgradnju dinamičkih, single-page aplikacija kroz upotrebu

komponenti, šablona i reaktivnog programiranja.

Komponente definišu izgled i ponašanje aplikacije, dok

servisi omogućavaju deljenje logike i podataka. Pruža

podršku za reaktivno programiranje putem signala,

odloženo učitavanje komponenti radi poboljšanja

performansi, kao i sistem za rutiranja za navigaciju bez

ponovnog učitavanja stranice. Angular CLI (Command-

line interface) olakšava razvoj aplikacija kroz brzo

generisanje elemenata, a njegova arhitektura obezbeđuje

strukturiran i održiv razvoj modernih aplikacija.

2.2. JavaScript

JavaScript je interpretirani programski jezik visokog nivoa,

uveden 1995. godine, koji omogućava manipulaciju

korisničkog interfejsa u veb pregledačima [4]. JavaScript

podržava više programskih paradigmi, uključujući i

objektno i funkcionalno programiranje, i poseduje

ugrađene API (Application Programing Interface)

interfejse, za rad sa tekstom, datumima i DOM (Document

Object Model) objektima. Iako direktno ne podržava

ulazno/izlazne operacije, okruženja poput Node.js

proširuju njegovu primenu van pregledača. ECMAScript

1406

https://doi.org/10.24867/33BE38Rajnovic

standard je nastao kao posledica potrebe za proširenjem,

unapređenjem konzistentnosti i standardizacijom

JavaScript programskog jezika u različitim okruženjima.

2.3. Micro-frontend aplikacije

Micro-frontend arhitektura predstavlja savremeni pristup

razvoju veb aplikacija, koji omogućava podelu klijentske

aplikacije na manje, nezavisne i lako upravljive module

[5]. Za razliku od tradicionalne arhitekture klijentskih

aplikacija, gde je aplikacija monolitnog karaktera i zahteva

visok njivo koordinacije među članovima tima, micro-

frontend omogućava timovima da samostalno razvijaju,

testiraju i primenjuju funkcionalnosti, što značajno

unapređuje skalabilnost i brzinu isporuke novih

funkcionalnosti. Ovaj pristup je inspirisan mikro-servisima

na serverskoj strani i omogućava veću fleksibilnost,

nezavisnu primenu i lakše održavanje aplikacija. Velike

kompanije poput Spotify, Ikea i Zalando već uspešno

primenjuju micro-frontend arhitekturu za razvoj

kompleksnih sistema [6].

Za implementaciju micro-frontend aplikacija koriste se

alati poput Webpack, Module Federation, Single-SPA i

Angular Elements. Module Federation omogućava

učitavanje nezavisnih modula, kao što bi na primeru veb

aplikacija za kupovinu to bile korisničke korpe za

kupovinu ili sistem za plaćanje. Ovakvom arhitekturom

izbegava se dupliranje koda i omogućava se deljenje UI

(User Interface) komponenti između više aplikacija.

Ukoliko se ispoštuju konvencije imenovanja i izoluje kod

radi izbegavanja konflikata, ova arhitektura podstiče

timsku autonomiju, jer svaki tim može da radi na svom

modulu bez potrebe za koordinacijom sa drugim timovima.

Micro-frontend arhitektura se može organizovati kroz dve

podele: horizontalna i vertikalna. Horizontalna podela

podrazumeva više modula na istoj stranici, gde se timovi

fokusiraju na tehničke aspekte poput UI komponenti ili

API integracije. Ovaj model je pogodan za velike timove i

poslovne poddomene, ali zahteva veću koordinaciju.

Vertikalna podela organizuje aplikaciju oko poslovnih

funkcionalnosti, gde svaki micro-frontend predstavlja

jednu celinu koju razvija jedan tim. Shell aplikacija

upravlja učitavanjem ovih modula i obezbeđuje da se, u

datom trenutku, prikazuje samo jedan micro-frontend, što

je posebno korisno kod SPA aplikacija.

Kompozicija micro-frontend aplikacija omogućava

integraciju nezavisnih modula u jedan korisnički interfejs,

uz podršku radnih okvira kao što su Angular, React i

Vue.js. Web Components omogućavaju kreiranje

inkapsuliranih HTML (Hyper Text Markup Language)

elemenata, čime se postiže modularnost i lakša saradnja

među timovima.

Postoje tri strategije kompozicije micro-frontend

aplikacija:

• kompozicija na strani servera – server sastavlja

micro-frontend module pre nego što pošalje konačni

HTML klijentu, čime se ubrzava učitavanje i smanjuje

opterećenje na pregledaču. Idealna je za visoko

indeksirane ili kritične veb stranice, ali zahteva tesnu

integraciju sa serverom, što ograničava nezavisnost

modula.

• kompozicija na strani ivice (edge) – slična je

serverskoj kompoziciji, ali se izvršava bliže korisniku,

konkretno preko CDN (Content Delivery Network)

infrastrukture. Omogućava brzu isporuku sadržaja, ali

unosi dodatnu složenost zbog različitih CDN

implementacija i ograničenog broja alata za podršku.

• kompozicija na strani klijenta – moduli se

učitavaju i sklapaju direktno pomoću shell aplikacije. Ovaj

pristup omogućava dinamičko upravljanje, veću

autonomiju timova i bolje korisničko iskustvo, bez potrebe

za ponovnim učitavanjem cele stranice.

Strategije kompozicije micro-frontend arhitekture

prikazane su na slici 1.

Slika 1. Metode kombinacije micro-frontend arhitektura

[6]

Module Federation je tehnologija koja je uvedena u

Webpack verziji 5 i koja omogućava deljenje koda i

zavisnosti između više aplikacija [7]. Aplikacije se dele na

nezavisno razvijene, testirane i primenjene micro-frontend

module (remotes), koji mogu biti ili “proizvođači”

(remotes) i “potrošači” (hosts) ili imati obije uloge.

Proizvođači izlažu svoje module, a potrošači su aplikacije

koje koriste te module. Ovaj pristup smanjuje dupliranje

koda, poboljšava performanse i omogućava skalabilan

razvoj nezavisnih micro-frontend modula.

2.4. Savremeni pristup u razvoju desktop aplikacija

Desktop aplikacije se izvršavaju lokalno na korisnikovom

uređaju, bez potrebe za internet konekcijom, što im

omogućava bolje performanse, veću kontrolu nad

resursima i veću bezbednost. Iako imaju prednosti u

stabilnosti i brzini, zahtevaju instalaciju, redovno

ažuriranje i često su vezane za određeni operativni sistem

[8].

Razvoj desktop aplikacija uključuje različite tehnologije,

zavisno od potreba samog projekta. Pri odabiru tehnologije

za realizaciju migracije micro-frontend aplikacije u

desktop aplikaciju razmatrani su aspekti poput stepena

izmene koda, podrške za složenim funkcionalnostima i

multiplatformske podrške. U svrhu migracije i prema

datim kriterijumima razmatrane su sledeće tehnologije:

• WPF (.NET) – nudi bogat skup UI elemenata,

ali je vezan za Windows. Zahteva potpun prelaz na C# i

visok stepen refaktorizacije.

• JavaFX – omogućava razvoj u Java

programskom jeziku; slaba integracija sa modernim veb

stekom. Zahteva potpunu refaktorizaciju.

• PyQT – dobar GUI alat u Python programskom

jeziku, ali zahteva napuštanje postojećeg koda i ima

ograničenja u sistemskoj integraciji.

• Flutter – namenjen prvenstveno za mobilne

aplikacije, koristi programski jezik Dart. Veliki stepen

1407

refaktorizacije i nije pogodan za kompleksne desktop

sisteme.

• Tauri – moderan i lagan okvir sa dobrim

performansama, ali manje zreo za složene aplikacije i

zahteva prelaz na Rust programski jezik.

• PWA (Progressive Web Apps) – nizak stepen

refaktorizacije, ali ne zadovoljava uslove za offline rad sa

hardverom.

• Electron – srednji stepen refaktorizacije,

omogućava ponovnu upotrebu Angular koda. Podržava

multiplatformski razvoj, bogate sistemske funkcionalnosti,

ali ima veće memorijsko opterećenje.

Za migraciju postojeće veb aplikacije u desktop okruženje,

izabran je Electron radni okvir. Electron omogućava

ponovnu upotrebu postojećeg Angular koda, podržava više

operativnih sistema i nudi stabilnost i funkcionalnost

potrebnu za kompleksne aplikacije. Uprkos većem

memorijskom opterećenju, njegova zrelost i široka

primena čine ga pouzdanim izborom.

2.5. Electron

Electron je multiplatformski radni okvir koji omogućava

razvoj desktop aplikacija koristeći veb tehnologije kao što

su HTML, CSS i JavaScript [9]. Izgrađen je na Chromium

i Node.js projektima, što mu omogućava pristup

sistemskim resursima i funkcionalnostima kao što su

dijalozi, obaveštenja i automatska ažuriranja. Podržava

Windows, macOS i Linux, čime obezbeđuje konzistentno

korisničko iskustvo na više platformi.

Electron aplikacije su sačinjene od dva procesa:

• glavni proces - upravlja logikom aplikacije,

prozorima, sistemskim funkcijama i životnim ciklusom

aplikacije.

• proces prikazivanja – upravlja veb sadržajem

svakog prozora.

Komunikacija između ovih proces se vrši preko IPC (Inter-

Process Communication) mehanizma, što omogućava

stabilnost i izolaciju procesa. Glavni proces koristi module

kao što su BrowserWindow modul za kreiranje prozora i

app modul za upravljanje životnim ciklusom aplikacije.

Procesi prikazivanja koriste HTML, CSS i JavaScript za

prikaz sadržaja, ali, iz bezbednosnih razloga, nemaju

direktan pristupa Node.js API interfejsima. Slika 2

prikazuje arhitekturu Electron aplikacije, kao i odnos

između glavnog i procesa prikazivanja.

Slika 2. Arhitektura Electron aplikacije [10]

Da bi se omogućila bezbedna interakcija između proces,

Electron koristi preload skripte koje se izvršavaju pre

učitavanja veb sadržaja. Preload skripte imaju pristup

Node.js API interfejsima i preko contextBridge modula

mogu bezbedno izložiti funkcionalnosti procesu

prikazivanja. Pored toga, Electron podržava kreiranje

uslužnih procesa preko UtilityProcess API interfejsa, koji

se koriste za izvršavanje zahtevnih ili nepouzdanih

zadataka. Procesi prikazivanja komuniciraju sa uslužnim

procesima preko MessagePort kanala.

3. MIGRACIJA ANGULAR VEB APLIKACIJE U

STANDALONE ELECTRON APLIKACIJU

Migracija Angular veb aplikacije u standalone Electron

okruženje prikazana je kroz primer DevAdmin aplikacije.

DevAdmin je alat za korisničku podršku i analizu

hardverskih uređaja. Aplikacija omogućava pregled

sistemskih informacija, upravljanje podešavanjima,

generisanje izveštaja o statusu i greškama, kao i direktnu

interakciju sa uređajima preko lokalne mreže. Zahvaljujući

micro-frontend arhitekturi i intuitivnom interfejsu (slika

3.), DevAdmin pruža fleksibilno i efikasno rešenje za

tehnički podršku, a njena migracija u Electron aplikaciju

omogućava stabilniji i nezavisniji rad u desktop okruženju.

Slika 3. Pregled interfejsa DevAdmin aplikacije

DevAdmin aplikacija predstavlja konkretan primer

primene micro-frontend arhitekture uz korišćenje Module

Federation koncepta u okviru Angualr radnog okvira.

Aplikacija je organizovana kao modularna klijentska veb

aplikacije, sa dve shell aplikacije koje dinamički učitavaju

više nezavisnih remote modula. Ovaj pristup omogućava

timovima da razvijaju funkcionalnosti izolovano, uz bolju

skalabilnost i održivost koda. Migracija DevAdmin

aplikacije koristeći Electron omogućila bi korišćenje

postojećeg veb koda za multiplatformsku distribuciju.

Kompozicija micro-frontend modula u DevAdmin

aplikaciji realizovana je na strani klijenta, gde shell

aplikacija dinamički integriše remote module tokom

izvršavanja. Module Federation omogućava da se ovi

moduli učitaju na zahtev, čime se postiže fleksibilna i

prilagodljiva arhitektura. Da bi se konfigurisao Module

Federation potrebno je definisati webpack.config.js,

module-federation.config.json i default-module-

federation-config.js fajlovi, u kojima se definišu remote

aplikacije i deljeni Angular moduli. Ovaj sistem

omogućava optimizaciju učitavanja i izbegavanje konflikta

u zavisnostima, čime se unapređuju performanse i

stabilnost aplikacije.

1408

Migrirana DevAdmin Electron aplikacija sačinjena je od

prozora za prijavu korisnika (slika 4) i glavnog prozora

(slika 5). Shell i remote aplikacije se mogu učitati bilo

putem udaljene veb adrese ili direktno sa lokalnog diska.

Korišćenjem Module Federation koncepta, omogućena je

dinamička integracija nezavisnih modula, dok Electron

omogućava njihovo prikazivanje u odvojenim karticama ili

prozorima.

Slika 4. Stranica za prijavu korisnika

Slika 5. Glavni ekran sa učitanom remote aplikacijom

Učitavanje aplikacija realizovano je kroz dve metode:

preko loadURL metode za učitavanje sa lokalnog servera

ili preko loadFile metode za učitavanje kompajliranih

HTML fajlova. U drugom slučaju, micro-frontend

aplikacije se učitavaju unutar jednog dashboard.html fajla

putem <iframe> elementa, čime se simulira ponašanje shell

aplikacije. Ovaj pristup omogućava bolju izolovanost

komponenti, poboljšava performanse i bezbednost, ali

zahteva ručnu izgradnju aplikacije nakon svake izmene.

Da bi se izbegli problemi sa apsolutnim putanjama unutar

<iframe> aplikacija, implementirano je preusmeravanje

HTTP i WebSocket zahteva na nivou Electron sesije,

koristeći webRequests.onBeforeRequest metode. Ovo

omogućava da aplikacije zadrže originalnu logiku

komunikacije sa serverom, bez izmene koda. Pored toga,

upravljanje životnim ciklusom prozora i korisničkom

sesijom realizovano je kroz IPC mehanizam i localStorage,

čime se obezbeđuje nezavisnost i izolovanost svake remote

aplikacije.

Celokupno rešenje omogućava da se postojeća veb

arhitektura lako migrira u desktop okruženje, uz minimalne

izmene u kodu i zadržavanje osnovnih principa micro-

frontend arhitekture. Ovakva kombinacija tehnologija

pruža fleksibilnost, stabilnost i mogućnost daljeg

proširenja aplikacije u različitim razvojnim i produkcionim

scenarijima.

4. ZAKLJUČAK

U ovom radu je uspešno istražena i demonstrirana

migracija Angular micro-frontend veb aplikacija u desktop

okruženje uz korišćenje Electron radnog okvira. Zbog

svoje zrelosti, podrške za naprednim funkcionalnostima i

mogućnosti duboke integracije sa operativnim sistemom,

Electron je odabran kao najprikladnije rešenje za

migraciju, dok su alternative poput Tauri i PWA odbačene

zbog nezrelosti tehnologije, podrške za offline rad i slabe

integracije sa operativnim sistemom. Migracija je

realizovana bez drastičnih izmena u postojećem kodu, uz

očuvanje modularnosti i principa koje propisuje micro-

frontend arhitektura.

Tehničke strategije uključuju učitavanje remote aplikacija,

upravljanje zavisnostima, preusmeravanje HTTP i

WebSocket zahteva i komunikacije preko IPC mehanizma.

Electron aplikacija preuzima ulogu nove shell aplikacije,

omogućujući postepenu i kontrolisanu migraciju. Iako ovaj

pristup donosi određene izazove, kao što su povećana

potrošnja resursa i bezbednosni rizici, uz primenu

preporučenih praksi, moguće je obezbediti stabilno i

bezbedno okruženje.

Rezultati pokazuju da je predloženo rešenje efikasno i

održivo za prelazak kompleksne veb aplikacije u desktop

okruženje, uz zadržavanje fleksibilnosti, skalabilnosti i

agilnog razvoja. Ovakva arhitektura omogućava de se

micro-frontend aplikacije pokreću nezavisno, čime se

zadržavaju sve prednosti originalnog veb pristupa u

kontekstu desktop aplikacija.

5. LITERATURA

[1] Prajwal, Y., Parekh, J. V., & Shettar, R. (2021). A brief

review of micro-frontends. United International Journal for

Research and Technology, 2(8), 18.

[2] https://angular.dev (pristupljeno u septembru 2025.)

[3] https://www.typescriptlang.org (pristupljeno u

septembru 2025.)

[4] Haverbeke, M. (2018). Eloquent javascript: A modern

introduction to programming. No Starch Press.

[5] https://martinfowler.com/articles/micro-frontends.html

(pristupljeno u septembru 2025.)

[6] Peltonen, S., Mezzalira, L., & Taibi, D. (2021).

Motivations, benefits, and issues for adopting micro-

frontends: A multivocal literature review. Information and

Software Technology, 136, 106571.

[7] https://module-federation.io (pristupljeno u novembru

2025.)

[8] https://www.geeksforgeeks.org/what-is-standalone-

application (pristupljeno u novembru 2025.)

[9] https://www.electronjs.org (pristupljeno u novembru

2025.)

[10] Alymkulov, D. (2019). Desktop Application

Development Using Electron Framework: Native vs.

Cross-Platform. [Bachelor’s Thesis]. South-Eastern

Finland University of Applied Sciences.

Kratka biografija:

Teodora Rajnović rođena je 1. avgusta

1999. godine u Zvorniku. Osnovnu

školu „Stefan Mitrov Ljubiša“ završila

je u Budvi, 2014. godine. U istom gradu

je i završila srednju školu „Danilo Kiš“,

smer turistički tehničar 2018. godine.

Kasnije te godine, upisuje Fakultet

tehničkih nauka u Novom Sadu, smer

Softversko inženjerstvo i informacione

tehnologije. Studije završava u roku,

2022. godine.

1409

https://angular.dev/

У реализацији Зборника радова Факултета техничких наука у току 2025. године
учествовали су следећи рецензенти:

Ацо Антић

Александар

Анђелковић

Александар

Ковачевић

Александар

Купусинац

Александар Селаков

Александар

Станисављевић

Александра

Радуловић

Анка Старчев-Ћурчин

Андрија Рашета

Атила Зелић

Богдан Павковић

Бојан Батинић

Бојан Матић

Бојан Тепавчевић

Бојан Јовановић

Борис Агарски

Борис Стојић

Бранко Бркљач

Бранко

Милосављевић

Дамир Ђаковић

Данијела Ћирић

Данијела Грачанин

Данијела Лалић

Дарко Чапко

Дарко Стефановић

Дејан Ецет

Дејан Рељић

Дејан Моврин

Дејан Убавин

Дејана Недучин

Драган Адамовић

Драган Дину

Драган Ивановић

Драган Иветић

Драган Јовановић

Драган Пејић

Драган Ружић

Драгана

Константиновић

Драгољуб Шевић

Драго Жарковић

Дуња Врбашки

Ђорђе Ћелић

Ђорђе Вукелић

Ђорђије Дупљанин

Горан Јефтенић

Горан Маринковић

Горан Савић

Горан Сладић

Горан Стојановић

Горан Тепић

Гордан Стојић

Гордана Остојић

Гордана

Милосављевић

Игор Дејановић

Игор Мараш

Игор Пешко

Илија Башићевић

Исидора Ђурић

Иштван Пап

Ива Шиђанин

Иван Мезеи

Иван Прокић

Ивана Јурич

Ивана Михајловић

Ивана Томић

Ивана Васиљевић

Ивана Катић

Ивана Мараш

Ивана Мишкељин

Јелена Атанацковић

Јеличић

Јелена Бороцки

Јелена Иветић

Јелена Радић

Јелена Радонић

Јелена Сливка

Јелена Спајић

Калман Бабковић

Лазар Ковачевић

Лидија Крстановић

Љиљана Поповић

Љубица Дуђак

Љубомир Будински

Магдолна Пал

Маја Турк Секулић

Маја Петровић

Марија Силађи

Маринко Масларић

Марко Марковић

Марко Тодоров

Марко Векић

Маша Букуров

Мијодраг Милошевић

Милан Челиковић

Милан Делић

Милан Гаврић

Милан Маринковић

Милан Мирковић

Милан Рапајић

Милан Рацков

Милан Сегединац

Милан Тривунић

Милан Видаковић

Милена Кркљеш

Милица Врачарић

Милица Миличић

Милица Кисић

Милош Симић

Милош Шешлија

Милован Лазаревић

Миља Симеуновић

Миљана Прица

Миљана Зековић

Миодраг Милутинов

Миодраг Жигић

Мирослав

Драмићанин

Мирослав Зарић

Мирко Раковић

Миро Говедарица

Мирослав Кљајић

Мирослав Зарић

Младен Томић

Младен Радишић

Наташа

Милосављевић

Небојша Бркљач

Небојша Пјевалица

Небојша Радовић

Небојша Ралевић

Неда Милић

Керестеш

Немања Кашиковић

Немања Сремчев

Немања Тасић

Ненад Рушкић

Ненад Симеуновић

Никола Лубурић

Никола Војновић

Платон Совиљ

Предраг Теодоровић

Радивоје Динуловић

Радомир Којић

Романа Бошковић-

Живановић

Сандра Дедијер

Саша Медић

Савка Адамовић

Слађана Милићевић

Славица Митровић

Слободан Морача

Слободан Шупић

Слободан Табаковић

Срђан Милићевић

Срђан Попов

Срђан Вукмировић

Стеван Гостојић

Стеван

Милисављевић

Стеван Станковски

Сузана Драганић

Светлана Бачкалић

Светлана Николичић

Тамара Шкорић

Татјана Ковачевић

Татјана Кочетов-

Мишулић

Теодора Вучковић

Весна Стојаковић

Вијолета Врховац

Вишња Жугић

Владимир Ђаковић

Владимир Илић

Владимир Мученски

Војин Илић

Вук Богдановић

Вук Врањковиц

Зоран Брујић

Зоран Чепић

Зоран Јеличић

Жељко Јакшић

Жељко Кановић

Жељко Вуковић

Живко Павловић

