s""s ST, ‘fo

zf“"” : YHWBEP3VTET Y HOBOM CA/lY
WDelle OAKYITET TEXHUYKMX HAYKA

&')n
lANT

3bOPHUK PAOOBA
®AKYNTETA TEXHUHKUX HAYKA

Ennnuja: Texuuuke Hayke — 300pHUIU
I'oguua: XL
bpoj: 12/2025

Hosu Can

3

Eouyuja: ,, Texnuuke nayke — 360opnuyu *
I'oouna: XL Cesecka: 12
H3z0asau: ©axyrimem mexnuukux nayka Hoeu Cao

Inasnu u o0eosopnu ypeounux Eouyuje: npogh. op bopuc [ymuuh, Oexan Daxyrmema
mexnuuxkux Hayka y Hogom Cady

Ypehueauku oooop
IIpog. op Mapxo Bexuh, enasnu ypeoHux

Capa Konpusuya, 3amenux 2nagnoe ypeoHuka

LImamnare 00oopuo: Caset 3a OnbnuoTeuky u u3aaBauky nenatrnoct @TH, npeacennuk, mpod.
np Cenena Camapuyuh l{BujanoBuh

HUImamna: ®TH — I'paghuuxu yenmap I'PU]], Tpe [Jocumeja Obpadosuha 6, Hosu Cao

CIP-Karanorusanuja y my0iaukanuju
bubnmorexa Marurie cpricke, Hosu Can

378.9(497.113)(082)
62

3B0PHHK panosa ®akyiarera TeXHHYKHX HAYKA / [IaBHU U OATOBOPHU YPEIHHUK
Bopuc Jymuuh. — 'on. 7, 6p. 9 (1974)-1990/1991, 6p.21/22 ; Ton. 23, 6p 1 (2008)-. — HoBu Can : ®akynter
TEeXHUYKHUX Hayka, 1974-1991; 2008-. — myctp. ; 30 oM. — (Equnumja: Texamuke HayKe — 300pHHAIIH)

Meceuno

ISSN 0350-428X

COBISS.SR-ID 58627591

HHPEAT'OBOP

IlomrroBanu yuTaouu,

[Ipen Bama je gecera OBOTOAMINIHLA CBECKA Yacomuca ,,300pHUK pajgoBa DaKkynrera TEXHHUKHX
HayKa“.

Yacomnuc je mokpeHyT naBHe 1960. roguHe, oaMax Mo OCHUBamby MaluHCKOr (akyiaTera y
HoBsom Cany, xao ,,300pHuK pamoBa MammuHcKor (akynrera®™, a mpBu Opoj je ommTammnaH
1965. rogune. Hakon ocam myOimkoBaHMX OpojeBa y LiecT roauHa, nparehu mpepactame
MammHckor dakynteta y @akysiTeT TEXHUUKHX HayKa, 4acONHC MEeHa Ha3MB Y ,,300pHHUK
panoBa @akynTera TEXHUUKUX HayKa* u 1974. ronune nznasu kao 6poj 9 (VII roquna). ¥ tom
MEPUOIy y YacOIUCy ce 00jaBJbyjy HAyYHH M CTPYYHH DPAJIOBU, PE3YITATH HCTPAKUBarbha
npodecopa, capannuka u cryaesata ®@TH-a, anu u ayropa Ban ®TH-a, Tako na yacomnmuc
[0CTaje 3HaYyajHO MECTO IpE3eHTAllMje HAajHOBUJUX HAyuyHUX pesynrata u jgocturayha. Of
Opoja 17 (1986. roz.), yaconuc NOYNbE JAa U3J1a31 UCKIbYUHBO Ha EHIJIECKOM jE3UKy U 100uja
noanacyoB Publications of the School of Engineering.

HacraBHo-HayuHo Behe ®@TH-a je ommyumno na ox HoBemOpa 2008. ro. y oOJuKy HHIOT
mpojexTa, a ox ¢pedpyapa 2009. ron. Kao CTaaHy aKTUBHOCT, YBEI€ TIPE3EHTAIIN]Y HAjBAXKHUJUX
pesyaTara cBUX MacTep pagosa ctyiaeHara @TH-a y oGnuky kpatkor paaa y ,,300pHUKY
panoBa daxynrera TEXHUUKHX HayKa‘.

[Topen crynenata mactep CTy/H]ja, YAaCOIUC j€ OTBOPEH U 3a CTYACHTE JOKTOPCKUX CTYIH]ja,
kao u 3a npuiore ayropa ca ®TH nin Ban ®TH-a.

300pHUK HM35a3u y JBa O0JNMKa — €JIEKTPOHCKOM Ha BeO-cTpaHuuu PDaxyirera TEXHHYKHX
Hayka (Www.ftn.uns.ac.rs) u mrammnanoM, Koju je mpeq Bama. O0e Bep3uje myOsInKyjy ce CBaku
Mecell, Y OKBHPY IPOMOIIYje JUIUIOMUPAHUX MacTepa.

W3Bectan Opoj kaHIUAaTa 00jaBUIIN Cy paioBe Ha HEKOj oJ1 foMahnx Hay4HHUX KOH(EpeHIHja
WU Y HEKOM 0] yaconuca. tbuxoBu pajjoBu HUCY mTaMiianu y 300pHuKY pagoBa @ TH-a.

VY cBeciu ca perHuM Opojem 12 00jaBIbeHU Cy paJioBU U3 00JACTH MAIIMHCKOT WHXKEHEPCTBA
U €JIEKTPOTEXHUYKOT U pauyHAPCKOT HHKEHEPCTBA.

Kontunyupanum pazom u yHanpehemeM KBaJUTeTa 4yacoluca, IIaH je J1a Yacomuc MOCTaHe
Mpeno3Hat/buB Mel)y ayropuma, unme he 3HaYajHO TONMPUHETH J1a ce ocTBapu MoTo dDakynrera
TeXHUYKUX HayKa:

»BHCOKO MeCTO y IpyIITBY HajOO/bUX*

YpeaHnumrBo

II

http://www.ftn.ns.ac.yu/

Canpuxaj
Mawiuncko unscerepcmeo

3opan [[BeTkoBHh

BE3BETHOCT U 3AIITUTA HA PAZLY CA MALLINHAMA 3A
BEPTUKAJIHU TPAHCIIOPT JIMLIA U TEPETA

Nemanja Radi¢

ZNACAJ RACUNARSKE GRAFIKE U AUTOMATIZOVANOM
PROJEKTOVANJU MASINA

Nina Ivanovi¢

RIZICI USLED PARKIRANJA VOZILA SA POGONOM NA
TECNI NAFTNI GAS U ZATVORENIM PROSTORIMA

Aleksa Milosevié¢

RAZLIKE IZMEPU DVOCEVNOG I CETVOROCEVNOG
SISTEMA GREJANJA I HLADPENJA POMOCU VENTILATOR-
KONVEKTORA

Milos Simovié

PRAKTICNA PRIMENA “DUAL DUCT” SISTEMA KLIMA
KOMORE SA REKUPERACIJOM VAZDUHA

Munom Byjkosuh

YTULHAJ CUCTEMA 3A KNIMMATU3ALIAJY HA
NOTPOILIBKBY 'OPUBA Y IYTHUYKOM AYTOMOBWJTY
Mapko 3aapuh bapnak

METOAE UHXXEHBEPCKE AHAJIM3E U CABEPEMEHHUX
TEXHUKA ITPOJEKTOBAIA HA IIPUMEPY PA3BOJA
HIACHUJE TPKAYKOTI BOJIUJIA

Hcunopa bypnuna

KOPUIIREE XTT'P HYKJIIEAPHUX PEAKTOPA Y OKBUPY
KOT'EHEPATUBHUX CUCTEMA 3A ITIPOU3BOABY
EHEPT'UJE

Eﬂekmpomexuulmo U pauynapcKo uH;icernepcmeo

Nikola Aleksié¢

SISTEM ZA PRIKUPLJANJE I PRETRAZIVANJE PODATAKA
O IGRACIMA EVROLIGE

Katarina Artukov

SISTEM ZA PRETRAGU SLIKA ZASNOVAN NA CLIP
MODELU I VEKTORSKIM BAZAMA

Petar Stamenkovié¢

FORMALNA VERIFIKACIJA DVOJEZGARNOG JEDNO-
CIKLUSNOG RISC-V PROCESORA I DELA MEMORIJSKOG
PODSISTEMA

Bosiljka Todi¢

OBRADA VELIKIH SKUPOVA PODATAKA KORISCENJEM
CLOUD TEHNOLOGIJA

Aleksandra Nedi¢

PLATFORMA ZA VIZUALIZACIJU DISTRIBUIRANIH
ALGORITAMA NA PRIMERU KLASE ALGORITAMA ZA
IZBOR LIDERA

III

1247-1250

1251-1254

1255-1258

1259-1262

1263-1266

1267-1270

1271-1274

1275-1278

1279-1282

1283-1286

1287-1291

1292-1295

1296-1299

Aleksa Bajat

MEDUREPREZENTACIJE IZVORNOG KODA RUSTC
KOMPAJLERA

Lazar Pavlovi¢

FAGL - JEZIK SPECIFICAN ZA DOMEN IMPLEMENTACIJE

VEB APLIKACIJA
Jelena Ubiparip

PRIMENA LINEARNOG PROGRAMIRANJA U OPTIMIZACIJI

PLANIRANJA I UPRAVLJANJA PROJEKTIMA

Ucunopa Kuexeruh

INPOIIUPEILE AJIATA AUTOPSY CA MOAYJIOM 3A
JETEKIINJY OBJEKATA HA ®OTOI'PA®UIJAMA

NataSa Vasic

RAZVOJ SAVREMENIH VEB APLIKACIJA U .NET
EKOSISTEMU PRIMENOM WEBASSEMBLY I BLAZOR
TEHNOLOGIJA

Ratko Ruzici¢

RAZVOJ INTERPETERA U PROGRAMSKOM JEZIKU GO
Munenko Maxkcuh

PJEILIABAIGE ITPOBJIEMA AYTOMATHU3AILIUJE
MNPEIJIEJABA VHDL 3AJJATAKA KPO3 UHTEI'PALIAJY
SYSTEM VERILOG U PYTHON AJIATA

Vukasin Pavkovié¢

PRIMENA VESTACKIH NEURONSKIH MREZA U
ESTIMACIJI UNUTRASNJE TELESNE TEMPERATURE
Halid Pasanovi¢

ANALIZA ARTEFAKTA KOLABORATIVNOG RAZVOJA
SOFTVERA PUTEM VELIKIH JEZICKIH MODELA ZA
UNAPREDENJE TIMSKOG RADA

Ivana Sekere$

RAZVOJ QGIS PLUGINA ZA VIZUALIZACIJU 1 ANALIZU
KRETANJA OBJEKTA U PROSTORU

Jelena Ninkovi¢

ORKES CONDUCTOR - POREDPENJE PERFORMANSI SA
APACHE KAFKA

Aleksa Popov

PLATFORMA ZA TRGOVINU ENERGIJOM SA
MIKROSERVISNOM ARHITEKTUROM I A1 ANALIZOM
TRZISTA

Ognjen Kuzmanovi¢

KOMPARATIVNA ANALIZA OSNOVNIH KARAKTERISTIKA

I PERFORMANSI BROKERA PORUKA NATS, RABBITMQ I
APACHE ROCKETMQ
Ivana Kasikovié

KOMPARATIVNA ANALIZA AGENTSKIH RAG PRISTUPA U
KONTEKSTU IZGRADNJE KONVERZACIONOG ASISTENTA

Aleksa Stoki¢
BEZBEDNOST PODATAKA U KONTEKSTU BIG DATA

1Y%

1300-1303

1304-1307

1308-1311

1312-1315

1316-1319

1320-1322

1323-1325

1326-1328

1329-1332

1333-1336

1337-1340

1341-1344

1345-1348

1349-1352

1353-1357

Mom¢éilo Maksimovié

PROJEKTOVANJE AUTOMATIKE KLIMA KOMORE
POSLOVNE ZGRADE I INTEGRACIJA SA BMS-OM
(BUILDING MANAGEMENT SYSTEM)

Marija Jankovi¢

SAVREMENI CRM SISTEMI: SALESFORCE PLATFORMA U
UNAPREDPENJU POSLOVNIH PROCESA

Jovan Zubovi¢

KORISCENJE TESTIRANJA NA CRNOJ KUTIJI ZA
POKRETANJE AUTOMATSKIH TESTOVA NA TV
PRIJEMNIKU

DusSan JanoSevié

JEZIK SPECIFICAN ZA DOMEN MAKROA ZA TASTATURE
Marko Bjelica

IZRADA KOMPAJLERA UPOTREBOM RASTEMO
BIBLIOTEKE

Ana Vulin

JEZIK ZA OPIS PRAVILA ZA IGRE SA KARTAMA

Jelena Petrié¢

METODE OTKLJUCAVANJA MOBILNIH TELEFONA
Radisa Stojkic¢

JEZIK SPECIFICAN ZA DOMEN VIZUALIZACIJE JEZIKA
Nada Kanjuh

OPTIMIZACIJA CETBOTA KORISCENJEM TRANSFORMER
MODELA

Dragana Trivunovié¢

SAMOOBNAVLJAJUCI KOD NA AWS PLATFORMI

Marija Nesi¢

RAZVOJ SOFTVERA NA RISC-V ARHITEKTURI SA
FOKUSOM NA RPC IMPLEMENTACIJU

Andrea Miskovié

UNAPREDENJE MODBUS SIMULATORA ZA REALISTICNU
SIMULACIJU UREPAJA U SISTEMIMA ZA UPRAVLJANJE
ENERGIJOM (EMS)

Teodora Rajnovi¢

MIGRACIJA MIKRO KLIJENTSKIH APLIKACIJA IZ VEB U
DESKTOP OKRUZENJE

1358-1361

1362-1365

1366-1368

1369-1372

1373-1376

1377-1380

1381-1384

1385-1388

1389-1392

1393-1396

1397-1400

1401-1405

1406-1409

Vi

360pHUK papoBa PakynTteTa TeXHUUKUX Hayka, Hoeu Cap

UDK: 621
DOI: https://doi.org/10.24867/33AMO01Cvetkovic

BE3BE/THOCT U 3AIITUTA HA PAJlY CA MAIIIMHAMA 3A BEPTUKAJIHU
TPAHCIIOPT JIMLIA U TEPETA

SAFETY AND PROTECTION AT WORK WITH MACHINES FOR THE VERTICAL
TRANSPORT OF PERSONS AND GOODS

3opan LBetkoBuh, @akyimem mexuuukux nayxa, Hoeu Cao

Obnact - MAIIMHCKO MHKEILEPCTBO

Kparak cagpxkaj — V pady je oam ucmopujcku npeaieo
AUPMO8A KAO MAWUHA 30 6EPMUKATHU MPAHCTIOPM TUYA U
mepema. [lam je onuc nugpmosa Ha enekmpuyHu NO2oH,
wUx08e npedHocmu U Hedocmayu |y OOHOCY HA
xuopaynuune. [am je npecned OCHOSHUX elemMeHamd
augma ca c8pxom u HAYUHOM paodd, Kao u Oe30eOHOCHe
KOMNnoHenme enekmpuunux Jaugmosa. Hasedene cy
Hajuewlie u Haj3HAUAHUje UHYUOEHMHe cumyayuje Koje ce
Mo2y nojagumu KOO —eKcnioamayuje augmosa ca
NOCMYNKOM 3a 1UXo8y npegeHyujy u omxiareare. Ha
Kpajy, npukazaum je Oemaman NOCMYNAK npe2ieoa u
npogepe elekmpuiHoe NYMHUYKOZ Audma ca uzoamum
H3zeewumajem.

Kmbyune peun: Enexkmpuunu augm, 6e30e0HocHe
KOMROHeHme, UHYUOEeHMHe cumyayuje, npe2ied u nposepa
augpma

Abstract — This thesis describes a historical overview of
elevators as machines for vertical transport of people and
cargo. There is a description of electrical elevators, their
advantages and disadvantages compared to hydraulic
ones. An overview of the basic elements of the elevator with
its purpose and mode of operation, as well as the safety
components of electrical elevators, is given. The most
common and most significant incident situations that can
occur during the operation of elevators are listed with the
procedure for their prevention and elimination. Finally, a
detailed procedure of inspection and verification of the
electrical passenger elevator with the issued Report is
shown.

Keywords: Electrical elevator, safety components,
incident situations, inspection and verification of the
elevator

1. YBOJ
JludpToBM cCy BepoBaTHO jelaH OJf HAjBAKHMjUX
IpoHaja3aka y MCTOPHjH YOBEYAHCTBA, a HHUXOBA

BEpTHKAJIHA KpeTama Ha eJIeKTPHUYHH II0TOH Cy Jyro Ommna
cacTaBHM Jile0 Yy cTBapamy rpaljeBUHCKMX mpuua
JOCTYITHUX U PaKTHYHUX 33 u3rpaamy. JIudr ce kao nuzym
MI0Ka3a0 Kao jellaH o/l HajKOPUCHHMJUX HM3yMa ca acleKTa
TpaHCIIOpPTa TEpEeTa Ha BEJIMKE BUCHHE, jep cKkpahyje Bpeme

HAIIOMEHA:
OBaj paj je mponcTeKao U3 MaTep paja Yuju MeHTOP je
ouo ap Pagomup Bokuh, Banp. mpod.

TpaHCHOPTa W HEMa alTepHATHBY Y TOM JIOMEHY.
OyHKIWja IMPTOBAa je TPAHCIOPT Tepera W JBYIH.
YobuuajeHo je na ce MM TOBH WK JTUPTOBCKE IIaTdhopme
kpehy y3 momoh emekTpomoTopa WM ToMohy
XAAPAYIHYIHE IIyMITE.

JludroBn mpencraribajy BPCTy MallMHA 3a MOJU3ABE U
CIyIITake JbYyIU W/HIN TepeTa Yy KaOHHH, IePUOAUIHIM
JIEjCTBOM, Tako INTO ce KabmHa Kpehe AyX KpyTHX,
MPaBOJIMHHU]CKUX BohHIa TapayeliHo yrpal)eHux, ca yriioMm
HarubOa mpemMa BepTukanu 10 15°. Ynmennna je na je mudt
jeoHO O HajBAXHHUjUX W HAJMACOBHHMjHX CPEICTaBa
IMYTHUYKOT TPAHCIIOPTa y BEJIUKHM rpanoBuMa. therosa
NMPUMEHa HENpPeKUJHO pacTe, IITO je HEeCYMEHBO Y
¢byHKIMjM ca O0jeKTMBHOM TEHJIEHLUjOM Ka mnoBehamwy
CHpaTHOCTH y TpaljeBUHH.

Csu ¢ ToBH ce Mory nmoaenutu [1]:
1) npema HameHH (YHKIHjN),
2) mpeMa BpCTH ITOTOHCKOT MeXaHH3Ma 3a JH3ame,

3) mpema KOHCTPYKIHjU TIPCHOCHOT MEXaHH3Ma 3a
KpeTame KabuHe,

4) npeMa HauMHY NpeHOca KabuHe,

5) mpema Op3uWHU KpeTama KaOuHe,

6) mpemMa [IeMH HaMOTaBamba ByYHHX yiKaJlH,

7) mpema 1ocTojamy MaIIMHCKE IPOCTOPH]E,

8) mpema IoJ10kajy MaIIMHCKe ITPOCTOpH]E,

9) npema HauYMHY MMOTOHEHA MOTOHCKOT 7000111,

10) mpema TagHOCTH 3ayCTaBJbamka KabnuHe TudTa.

2. JU®TOBHU HA EJIEKTPUYHHA /
XUJAPAYJIUYHH TOT'OH

2.1. Xuapayauunu Ju¢ToBU

XunpaynuuHe JTU(PTOBU KOPUCTE yJbe MOJ MPUTHCKOM H
XUAPOLMIMHPE Y3 4rjy TToMoh J071a3u 10 KpeTarmba TuTa.
IMocroje xmmpaynmuyan JUGTOBH KOJjU TOpeX
XHUAPAYIMYKOr MOTOHA KOPHCTE M JIOAaTHE yXKETHmhade U
YenmudHa Y)KaJ 3a TOKpeTame KabuwHe. HajBakauja
cneuu(pUIHOCT KOl XUAPAYJINUKUX JU(TOBA je TO MITO ce
00MYHO HE NpUMEbYje MPOTHBTET, Beh ce MOroH BpIIX
camo y jeZJHOM mpaBily (Ha rope) 0K ce y APYroM Mmpasily
KOPUCTH CHJIa 3€MJbUHE TEXE Y3 KOHTPOJY BEHTWIA 3a
KpeTame KOjUM Ce peryJiuiie Op3rHa Kperatba JTudra. AKo
nohe 0 KpUTHMUHE CHUTyaludje, Ha CIEHYy CTynajy
CUTYpHOCHM BEHTHJM Koju he ocurypatn 0e30enHO
Kopuiheme mudTa.

1247

https://doi.org/10.24867/33AM01Cvetkovic

JIudToBU ca XuApayJMYHUM IIOTOHOM IIPUMERY]Y ce 3a
BEPTUKAIHU TPAHCIOPT JIMLA M TepeTa JO0 MaKCUMallHe
BucuHe oA 30 m, 10K ce y MpaKkcH KOpUCTe qu3ama ox 20-
24 m.

Ogu yudToBu 00e36el)yjy Mupan paz, 6e3 Tp3aja u Oyke
Kao M BEJIMKY TAYHOCT MpHCTajama 0] +2 mm, Koja ce KOJl
JTU(TOBA ca BY4OM MPEKO y)Kaau He Moxe 00e30emutu. He
3aXTeBajy JOJATHH HPOCTOP HA BPXY KOHCTPYKUHje U
JEITHOCTaBHHU]E Ce CIYINITa]y KaOWHE TOKOM KBapa, a Takolhe
¥M je HEOCETaH I0JIa3aK Kao U Kodewe udTa. MaHa uM je
IITO C€ MOIYy KODHCTUTH caMO 3a O0jeKTe Mambe
CIpaTHOCTH, Maja Op3mHa (oko | m/s), a Takohe mmajy
mpobimeme 1ypema yika. HocuBoct mmdroBa Ha
XHUAPayJIHYHU IIOTOH MO>Ke OMTH BeoMa BeJlMKa U 110 7 t
(TepetHn NMU(TOBH HAa XHUIAPAyJIUYHH TOTOH 3a IH3ambe
MOTOPHHX BO3MJIA).

2.2. EnexTpuyHy audToBH

Enextprunn mudTOBM Cy Haj3acTYIUBCHHjH, a Op3uHA
kpetama uM je ox 0,2 m/s mo 17 m/s. Kako um je pyHkmmja
IIPEBO3 JbYH, MOTY Jia CE KOPHCTE U 3a NPEBO3 TEPETA IIe
uM je HOocmBocT m3Han 10.000 kg (10 t), HapaBHO, mpu
MambHM Op3uHama.

Pogonska masina
Pomoéna uZnica / |
O
Graniénik brzine ! | ——— Pegonskauzad
Uredaj za vodenje
P = ——— kabine sa hvataZkim
uredaiem
a I Vrata kabine
Ram kabine || s | == Kabina
|
- 1l
.
Konzole vodica |
= L [Viseéi kabal
A= H1
Vodica protivtega —Jl 4 Alarm
-
L f _, Upravljagka dugmad
Protivieg ——] - |~ Vrata voznog okna
-
Konzola kabine —
Odbojnik protiviega —__| Odbojnik kabine
Zateza€ uZeta |
graniénika brzine — |

Cnuka 1. Jlugpm ca eoproum nonodicajem mawuncke
npocmopuje

Kon enektpuunux nudroBa, kabuna je odemreHa Hocehum
Y)KETOM (YeIMYHOM CajlioM) OKO YKeTmade Koja je y
JMPEKTHO] BE3U ca MIOTOHCKUM JienioM. TexxunHa kabuHe je
OajaHcupaHa KOHTpAaTeroM, 4Mja je Maca jeJHaKa Mach
kabune u 50% ox mMakcuMmanHe H03BoJheHE Mace. CBpxa
KOHTparera je Jla oJp)kaBa TOTOBO KOHCTAaHTHOM YKYITHY
MTOTEHINjalTHy €HEePTHjy CHCTeMa, 1a 00e30e/11 TaKIIH pa
MOTOPHOT JIeJ1a ¥ eauMuHuie Tp3aje. O0prameM BpaTuia
MOTOpa, TOKpelie ce MOroHcKa yKeTmaua, a TPeHheM
y)KaJ¥ O BEHE)KJbeOOBE OCTBAPYje Ce KpeTame KaOUHE U
NPOTUBTEra MO HUXOBUM Bohuiama. CMEpOBH KpeTama
kabuHe W IpoTuBTera cy cynpotHu. Oprosapajyhum
yIpaBJbakbeM pasia MOTOHCKE MAIlMHE M OCTAJHMX JeJI0Ba
TU(TOBCKOr TOCTpOjema peainsyje ce KpeTame KaOuHe
n3Mel)y cBuX cTaHuna Koje JIUQT OICIyXKyje, OTBapame U
3aTBaparme Bparta JU(Ta, a THAME U TPAHCIIOPT ITyTHHKA U
Tepera.

2.3. Koncrpykuuja audra — ypebhaju, pacnopen u
AeoBame eleMeHara Judra

OCHOBHY KOHCTPYKLH]Y () Ta IPECTaB/hba MEXaHH3aM 32
JIN3ab€ Ha ENEKTPUYHH WIIM XHUIpAyJIM4HU [OrOH, ca
onrosapajyiiuM BUTIOM M CHCTEMOM HaMOTaBamba y)Kau
3a Byuy KaOHuHe.

KOHCprKTI/IBHI/I JCJIOBU:

Bohume, BO3HO OKHO, jamMa BO3HOT OKHA, MallWHCKA
MPOCTOpHja, MPOTHBTEr, XBaTaukw ypehaj, TpaHHMIHHK
Op3uHE, TMOTOHCKH MEXaHHW3aM, OJOOjHHUIA KaOWHE W
MPOTHUBTETa, BpaTa m@Ta, KabuHa udTa [2].

2.4. IIpeqHocTH U HEJOCTALM eJIeKTPUYHUX JU(TOBA Yy
OJHOCY HA XHIpayJIu4He JudpToBe

Enextpuunn nmudToBH JOHOCE HU3 IPEAHOCTH Y Iopehemy
ca JpyruM JU(TOBMMa, ald CBAaKako Ja IMOCTOje U
onpeleHn HemocTaIm.

IIpennoctu:

* bBpsuHa u HOcCHBOCT: OOWYHO TIpyXkajy Opxku u
e(uKacHUju TPaHCIIOPT y mopehemy ca XuApayITHIHIM
WIN IPYTHM BpcTaMa Ju(TOBa, IITO MOXKE OMTH KOPUCHO
y 3rpajama ca BeIUKAM OpojeM CIpaToBa WIIM BHCOKUM
¢dpexBennyjama kopunihemwa. Kao miro je Beh HaBeneHo y
Tauku 2.2, 6p3uHa Kperawa UM je ox 0,2 m/s o 17 m/s.
Kako uM je GpyHKIHja MpeBo3 JbYIH, MOTY C& KOPUCTHTH U
3a IpeBo3 TepeTa, rae HocusocT npernazu 10.000 kg (10 t),
HapaBHO, NIPH MambUM Op3uHaMa. XuapayJIudHH JTHU(TOBH
cy Takole mogecHH 3a MpeBo3 TepeTa U TPAHCIIOPT JbYAN Y
HIDKUM CTaMOEHHM 3rpajiama, a Op3uHa KpeTama UM je 011
0,25 m/s mo makcumamHOo 1 m/s. HocuBOCT TepeTHHX
XHIpayInYHUX JUPTOBa ce Kpehe o1 HEeKOIMKO CTOTHHA
KWJIOTpama Ji0 BHIIIE IECETHHA TOHA.

* [loy3nmaHocT: eNeKTpUYHU JU(PTOBH HMMajy BHCOKY
MOY3/1aHOCT M Mambe Cy TOAJIO0XKHU KBapOBHMa M TO HX
YMHU MOXEJFHUM M300pOM 3a KOMepIHjaiHe U craMOeHe
o0jekre.

* Hwucka mnoTpomma €HEpruje: MOJCPHH CICKTPUYHU
JUPTOBU Cy JHM3aJHAPAHU ca €(PUKACHUM MOTOpHMAa U
CHUCTEMHMa VIpaB/bathba CHEPrHjOM, IITO JONPHHOCH
CMamCHBY MOTPOIITHEC CHEPTH]e.

» Kako je Beh HaBemeHO y Tauku 2.2, KO CICKTPHUYHHX
mudroBa kabuHa je oOemieHa HocehMM YKETOM OKO
MOTOHCKE YXKETHAue Koja je y JMPEKTHOj BE3W ca
MMOTOHCKOM MaIlIMHOM. TeknHa kaOuHe je OanaHcupaHa
KOHTpPATETOM, YHja je Maca jeJJHaka Macu kabune 1 50% on
MaKCHUMaJHe J03BoJbeHe Mace. CBpxa KOHTpaTera je jaa
OJpXKaBa TOTOBO KOHCTAHTHOM YKYIHY TMOTCHIHjATHY
CHEPIrujy CHCTeMa, Ja 00e30edd JIaKIIU pax MOTOPHOT
Jena W eNMMHHUIIE Tp3aje. XUApayTudHd IJHU(PTOBH,
Takohe, WMajy KaOWMHYy, BO3HO OKHO M MAaIIHHCKY
npoctopujy. Oum Hemajy mpotuBTer. Kpehy ce mo
Bohuiama. [Torou ce peanusyje XuapayaudHuM GIIyHI0M
MOJI MPUTHUCKOM, KOra mokpehe eleKTpOMOTOp M MyMIa,
MOTOIJbEHA y pe3epBoap ca ysbeM. Ilopen HaBeneHor, y
ompeMy XuApayJIddHor JudTa CcHamajy ¥ KOMaHIHH
BCHTWJIK 3a NMOJAU3aKE U CITYIITAKC Ka6I/IHe, HCTIOBPATHU
BCHTHJI, BEHTWI CHTYPHOCTH, YeIMYHE LEBH M T'yMeHa
peBa.

1248

Crnuka 2. Ilpomuemez augpma npouszeohaua ,,OTIS “, mun
,,GeN2 Premier

Henocramu:

e [Torpeba 3a eJIEKTPUYIHOM EHEPTHjOM: OBH JHA()TOBH
3aXTEeBajy CTAHO CHAOIECBAIbE CNEKTPUYHOM EHEPIHjOM
Kako OW paiid, Ia KBap y Hamajarmby MOXKE JOBECTH 0
3acToja WK TyOonuTKa GYHKINOHATHOCTH.

e TpomkoBu WHCTananuje: WHCTANANMja MOXe OHTH
CKyIUba y mopehemy ca XUapayIudHUM WIH APYTHM
BpcTama I ToBa, a TOCEOHO Y CIy4ajy KOMIUICKCHHX HIIH
BHCOKHX MHCTaJAIHja.

¢ [ToTpeOHO ozp’kaBame: MAKO Cy EJIEKTPUYHU JTH(TOBU
OOMYHO IOY3[aHH, OHHM 3aXTEBajy PEIOBHO OJpPIKABAHE
Kako OH ce OCUTypajo Aa paje UCIPaBHO U 6e30eAHO, ITO
MOJK€e J0/IaTHO MoBehaTH TPOIIKOBE TOKOM BPEMEHa.

* [loteHuujan 3a KBapoBe EJNEKTPOHHKE: €JICKTPUYHU
TU(TOBH cap)ke KOMIUICKCHE €NEeKTPOHCKE KOMIIOHEHTE
Koje cy HOJJIOXKHE KBapoBMMa WM oluTehemuMa yclen
Pa3HHX eNEeKTPUYHUX MpodiemMa.

3. AHIUJIEHTHE CUTYAIIMJE KOJE CE MOI'Y
IIOJABUTHU KO INOPTOBA

JIudproBn cy craTMCTHUKK HajOe30enHHMje TPEBO3HO
cpeacTBO. YIPKOC CTpaxy OJf 3arjaB/bUBama WU
cnobonHor mama y mudTy, BoXKma IH(TOM je 3ampaBo
6e30enamja o1 BOXKE-e ayToMoomioM. IIpocedno 26 spyan
MIOTHHE CBaKe rofuHe y Hecpehama ca mmdToBHMA (M TO
YIIIaBHOM TEXHUYAPH KOjU pajie Ha IU(TY, a HE MyTHHIIN),
JOK 26 JbynIuM TOTMHE CBakor cara y caoOpahajHum
Hecpehama. JIudToBU ce KOpHUCTE Y XOTeNnUMa, TPKHUM
LEHTpUMa, CTaMOGHUM 3rpajama, KaHIeJapujama,
OoJiHHMIIaMa, aepOAPOMHUMa U MHOTHM JPYTHM JIOKalujama.
Brnacuunm 3rpana/objekara cy ay>kKHH Ja cBoje TH(TOBE
oIpkaBajy Ha Oe30emaH HAYMH W IIOCTAaBJbajy 3HAK
yIo3opema Kaja ce He cMejy KopucTuTH. OBH BIACHUIN
ce MOTY cMaTpaTi HeMapHUM KaJia He HCITyHe oBe obaBese
IpeMa cTaHapruMa, TOCTHMa U KymimMa [3].

Hexe on riiaBHUX cuTyanyja Kaja ce KpIId 0Ba JyKHOCT:
* [Ipukibenirema

Jenna o30mibHA MOBpena koxa audTa je 3aryiaBibUBAKBE Y
MIOKPETHUM JiesioBuMa win u3mehy mux. OBo Moxe OUTH
mmeljy Bpara imudra. AKo cy BpaTta Iu(Ta HEUCIPaBHa,
MOT'Y c€ OTBOPHTH WJIM 3aTBOPUTH M3HEHAa WM Mpedp30
1 3apoOuTH JbyIe KOjU TOKYIIaBajy na yhy wmm nzaly u3

mdra n3mely Bparta. Bpara Takohe mory na ce He oTBOpe
JI0 Kpaja i (T MOXKe Ja ToYHe Ja ce Kpehe JI0K je HEeKO
yxBaheH BpaTuma - 1 jeJIHO U JIpyro MOXe OMTH N3y3eTHO
oracHo. Mana zgena cy y noBehaHoM pH3MKy lla UM ce
pyke, munene win oxcha 3axBare y jmdroBmMa, and u
oneha oxpacnux Takohe Moxe OuTH 3apoOsbeHa. AKO ce
HEKH OCBHH IIPEIMET UIIaK YXBaTH, MOXe ce Op30 yByhn
HEBEPOBAaTHOM CHAaroM M CBaKe TOJUHE IOCTOje OpojHH
M3BEUITAjH O JeNH Koja cy m3ryOmia mpcTe Ha pykama H
Horama 300T OBHX HE3roja.

* bp3una

Axo ce mudt kpehe BenMKOM Op3UHOM, OJHOCHO
npeKopauee Op3uHe Kao NocIeauIa CI000HOr aja, TO
jé YecTo y3pOKOBaHO IPOTHBTETOM WM KOHTPOJIHHM
cucreMHuMa Koju He pyHKuuoHunry. JIugt ce Moxe Tp3aTu
rope-moie ¥ OalluTH I0jeANHIE Y 3UI0BE JTU(PTA U HA MOJ.

* [Tan y okHo nudra

JexHa o1 HajCMPTOHOCHM)UX BpcTa Hesroza y mudry je ona
Y K0joj KabmHa TudTa WK M0jeJIHAIl Y 0] IaJHe y OKHO.
Mosxe ce mojaBUTH y OpOjHAM CHTyalrjama, Kao IITo Cy:

» Kana ce nudrt 3aycrasu,

» Kapna ce Bpara nmudra oTBope m3Mel)y cripatoBa u
ocoba y mudry n3al)e U3 mera u majgHe y OKHO,

» Kapna Heko mokymia 1a He3aKOHUTO OTBOPH BpaTa
BO3HOT' OKHa,

» Kana HeoOy4eHo oco0Jbe MOKyIIIa Ja crace 0co0y
3apo0JpeHy Y TUQTY.

* OnIuTH KBapoBH

HeucnpaBan mudt Moxe OMTH y3pOK 030HIBHUX MOBpPEa,
ma 4ak u cMptd. KBapoBu ce mory maHudecTtoBatd Ha
MHOTO pa3IMYUTUX HAYMHA, YKJby4yyjylin W3HCHATHE
npoMeHe Op3uHe, HEeNpaBHUIIHA JIOMJbCHa HITH HEUCIIPaBHE
KOYHOHE cucTeMe. HemomrToBame opapenada MpaBHUX
akara KOjiMa je peryJIrcaHo MUTamke IPABIITHOT MpeTie/a,
OJlp>KaBama U Iompaske TudTa. JKpTBe MOTY J1a mpeTprie
TEIIIKE TEJIEeCHE TIOBPE/IC U MOBPEC Ca CMPTHUM HUCXOJIOM.

3.1. Hoctynak y ciaydajy cnamaBamba NYTHHKa U3
audra

1. OBnamrheno e Tpeda 1a KOMyHUIIMPA ca 0cO00M MITn
ocobama Koje cy 3arjlaBjbeHe yHyTap KaOuwHe mudra.
CazHaTy KOJIMKO 0c00a je yHyTap KaOHHE 1 yIyTUTH UX J1a
OCTaHy MUPHH H JIa ce yaajbe 0] BpaTa KaGuHe.

2. OsnamheHo NHIIE UCKJbY4Yyje €JIEKTPUYHH JIOBOJ Ha
TJIABHO] KOMAaH/HOj TaOJMM y MAaIIMHCKO] MPOCTOPHjH, 32
mudT y KojeM cy JuIa 3ariaaBibeHa.

3. OTBOpHUTH BpaTa BO3HOT OKHA Ca CIEIHja]THUM KJby4eM,
Ha CIpaTy UCIIOJ] WM U3HA MECTa I'/ie je TU(MT 3arIaB/beH.

4. Axo ce kxabwHa nudTa Hajda3W HA HUBOY BHIIE O]
+ 600 mm 10 HajOMMKE CTaHUIIE (CIpaTa), OH/A HE BaAUTH
myTtHuKe. Cracuiadke pamoBe Tpeba 1a BPIIH TEXHUIKO
(cTpy4HO) mMIle, jep IOCTOjU OMACHOCT Ja MOCTYIIIU
criacaBama MOTY JIOBECTH Yy PHU3MK Of (araiHe Hecpehe
3arjiaBJbeHe MyTHHUKE Y BUIY Majia Kpo3 OTBOP Y BO3HOM
OKHy. AKO kabuHa judTa HUje Yy HUBOY Ja O IyTHULN
0e30e/1HO M3allIM HAoJbe, OHJIA Ce ITOHEKaJl CaBeTyje Ja
ce BpaTa oTBope 3a 0ko 200 mm 11a Ou CBeX Ba3yX MOTao
na yhe y xkabuny u 1a 6u ce mytHUIM ocehanu ynoOHMje
JIOK 4ekajy crpydHo Jymne. CTpydHa juie cy oOydeHa 3a
py4YHO IOBoheme KabwHe nmdTa OO0 HAjOMIDKEr HHUBOA

1249

(cranuie), Tako MmTO jemaHa oco0a JaraHo OTITYIITA
KOYHMIy JudTa, a JApyra OKpeTameM 3amajua Ha
eNIEKTPOMOTOPY ~ CHYIUTa WJIM IOMIKEe KaOuHy, Vy
3aBucHocTH 1Ta je notpedHo. HAIIOMEHA: OBO JE
OIIEPALIMJA KOJY MOPA A VYPAJIU CAMO
OBYYEHO TEXHWYKO JIMLIE.

4. ITIPETJIEJ U ITPOBEPA JIM®TA

4.1. PenoBHu nperJen Jugra
Brnachuk nudra 06e36elyje penosan nperien mudTa.

PenoBan mpernen mudra ce obOaBjba HajMarme jETHOM
TOfUIIEbe, a 00aBjba ra MMeHOBaHO Teno 3a Hperieln
nudTa.

Jlmme xkoje 00aBiba TOCIOBE OJpXKaBama
MIPUCYCTBYj€ PEIOBHOM IIperieny audra.

mdra

VY mocTynky pefoBHOT Iperiesa tudra nposepasa ce:

* CTIpaBaH paji onpeme 3a 6€30eTHOCT U 3aIITUTY,

* MCIPaABHOCT JIpyre onpeme Koja OM Morja Aa yTuue Ha
6e30eIHOCT,

* Jla JI1 Cy HacTaje MPOMEHe Ha JIU(TY KOje MOTY a YTHIY
Ha 0e30eIHOCT,

* Jla JIU Cy HacTaje MPOMEHE y OKpYXemYy Koje MOry na
yTHay Ha 0e30emHoCT,

* 1 JIM OJIa3H J0 MPOMEHa KoJ yrnotpede udra koje Mory
Ja yTrdy Ha 6e30eTHOCT,

* 1a M ce Ha JIU(Ty Hala3e CBE O3HAKe M YIYTCTBA 3a
ynoTpeOy, oAp)kaBame U CHallaBame A u3 TUQTa,

* la JIM Cy Yy KIBUIY Ofp)KaBama TH(Ta yNHCaHEe CBE
NpOMeHe HacTajle OJ] MOCIEbEr PEIOBHOT Iperiea,

* JIa JIU Cy OJI TOCIEIHEr PEJOBHOT Nperieaa YKIOmhEH!
CBM HeJOoCTaM Koju cy ytBphenm y W3Bemrajy o
Tperieny.

Haxkon npernena MimeroBaHo Teno caunmasa V3Bemraj o
nperjieny, KOju CaapXH CBE €BEHTyasHe HEJOCTAaTKEe Ha
Ty, TOCTYIKE 32 OTKJIAkabhe U POK OTKIIAhamba.

Axo nmudT He 3a10BOJbaBa rOpe HABEACHE TAUKe TaKO 74 je
HapymieHa 0e30eqHOCT KOpMCHHKA, VIMEeHOBaHO Telo
CTaBJba NUQT BaH ymoTpede u oOaBemITaBa MHCIEKTOPA,
olp)kaBaolla M BiacHUKa Jdra. H3y3erHo, ako
0e30eHOCT KOpPHCHMKAa HHje OMTHO HapylleHa,
HIMeHOBaHO TEI0 MOYKE J1a JO3BOJIM €KCILTOaTaIujy gudra
y ompeheHOM BPEMEHCKOM IEPHOY, 3a KOje je BIACHHUK
nudTa qyKaH 1a OTKJIOHHU CBE JOKYMEHTOBAHE HETOCTATKE

[4].

NMPUMELOGE U HEOCTAL|A
- Y KMy OApHaBakka yNWcaTH noaTtke o ATy npema MNpasunHUky o Nperneauma NudiTosa y ynotpebu
1 BOAMTH EBUAEHLM]Y 0 NPerneauMa, CePEIMCMA, 3aMeHM Jenosa W 4p. (pok 1 mecely).
- HMiE 03Ha4YeHa HOCWBOCT MOHTEXHWX HOCA4Ya y BPXY BOZHOM OKHA. I'Iupen HOCA4a NOCTABUTH 03HAKY
HOCWMBOCTW 0 CTpaHe KOMNETEHTHe ocobe (pok 1 mecel).
- Mzmepena cuna koja je noTpebHa 3a cnpeuagawe 3aTeapaka AYTOMATCKUX BpaTa BOZHOT okHA W kabuHe
je 430 N npe Hero wTo ce ucta oTeope, WTo je Behe oa makcumanke gozsorkexe cune (150 N). Mogecutu
cuny Koja CNpeuyasa 3aTeapakse BpaTa Tako 4a Byde y 403B0MEHMM rpaHnLyama (pok 1 mecew).
- ¥ xabunmn nudta HegocTaje ynyTeTeo 3a BeabegHo kopuwhere nudra. MocTaguTi Takeo ynyTcTBo y
kabuny (pok 1 meceu).
- Ypefjaj 2a aeyyHo ynozoperse Ha kabuxu nugTa Huje y dyHkynju. osectw ra y dyHrumiy (pok 1 mecew)
SAKIBYYHAK
Kouwmponucawem (npeanedom) je ymepheno da NMPEOMETHW JTA®T 3A00BOJLABA
bumne saxmese 3a 3dpasrbe u besbednocm u3a lNpasuntuka o besbedHocmu nughmosa mako da
Huje 6umHo yapoxera besbedHocm KOPUCHUKA.
Pad nudbma ce doscorsasa y3 ominarake Hedocmamaka npema damum
poKosuMa.

Crnuka 2. Ilpumeobe, Hedocmayu u 3akwydaxk M3eewmaja
o0 npeznedy augma
4.2. Baupeanu nperJea gudra

Banpennu npernen nugra o6aBpa ViMeHOBaHO Tenmo 3a
mperyes Tudra.

Bracuux nudra nocrasba MeHOBaHOM Telly 3a Iperiie]
mudra cBy NOTpeOHY MOKYMEHTauujy, INpe Iperiena
mudra.

Banpeanun mpermen smdra Mopa ga 00aBH HCTO
HmeHoBano Teno 3a mperien judra Koje je HU3AAI0
HeratuBaH V3Bemitaj o mperieay.

BanpenHu nperiies CipoBOIH Ce Y CIIydajy:

* HACTAJIMX OCHOBHUX IIPOMEHA Ha JUQTY,

* cTaBJbama TUPTY y ynorpedy mocie He3roaa,
* 3aXTEB HAIJIEKHOT HHCIIEKTOpA.

HimeHOBaHO Teno 3a mperiien mudra caunmasa H3semraj o
nperyiefly W ymucyje y KBTIy ofp)kaBama TH(Ta JaTyMm
KaJga je mperiies; 00aBJbeH, Ka0 W pe3yiTare Iperiesa.
Takohe, Bomm eBumeHNHjy 00aBJbEHUX IIperiiena ca
HoaIMa KOj! Cy UCTOBETHH MOJaIMa KOjU Cy YIIHCaH!
y KUy ojpkaBama nudra. [Togamu ce mocraBibajy
MUHHCTApCTBY, OJTHOCHO MHCIIEKTOPY Ha -ETOB 3aXTeB [4].

5. 3AKJbYYAK

Kao u cBe Mmexanmuke mammee U ypehaju, n xox mudrosa
ce MOBpPEMEHO jaBjba MpeKua pama. JIupT koju HUje y
GyHKOHjH MOXKe OHWTH pe3ynTarT HECTaHKa CTpyje,
MEXaHHYKOI KBapa WIM CHI'YPHOCHOI CHCTeMa
JIM3aJHUPAHOT J1a 3ayCTaBU JH(T.

Jaxne, cTpyunu mpernen Jnudra je HEONXoxHa W
OJITOBOpPHA TIpaKca KOja nMa 3a LWJb OYyBamke KUBOTA U
30paBjba KOPHUCHUKA, OUYyBamke (PYHKIHOHAIHOCTH
MalliHa, Ka0 W IOIITOBAKkE 3aKOHCKUX IIPOIMHCA M
TEXHUYKUX HOPMH.

6. JUTEPATYPA

[1] C.b. Tomwmh, “Jlugpmosu”, Yuusep3urer y beorpany,
Mamuncku dakynrer, llentap 3a MexaHuzauwjy,
beorpan, 2004.

[2] ITpaBunauK 0 6e36eqHOCTH MU TOBA (,,CII. TIIACHUK
PC*, 6p. 15/2017 u 21/2020)

[3] A.B. Bophesuh, “Conmomnomniko ka3uBame o ATy (Y,
HCTpe, U3a M OKOJIO Hera — M3Bonu u3 a30ydHmKa”,
Coyuonowra Jlyya, Vol 13, Issue 2, pp. 46-69, 2019.

[4] [TpaBumHEK 0 iperenumMa tudToBa y ynotpedu (,,Ci.
rimacuuk PC*, 6p. 15/2017)

Kparka 6uorpaduja:
'\;“l‘——‘ 3opan IlBerkoBuh je pohen y
"‘ u HosoMm Cany 1986. ronune.
Jumiomupao je Ha Daxynarery
' TeXHMYKHX HAyKa Ha CMEpOBHUMA
WHXemepcTBO 3alITUTE KUBOTHE
cpenvHe 2012. TOJUHE u
WmwKkemepcTBO 3amITUTE Ha pagy
2023. ronmune. Macrep pan wu3
o6nacT ManmHCKOT HHKEHepCcTBa
onbpanwo je 2025. roauxe.
CyocruBau je mpemyseha HC
IpesenT 1.0.0. Cympyr u poauTess
3 nerera.
KOHTaKT: cvelisans@gmail.com

1250

https://openurl.ebsco.com/results?sid=ebsco:ocu:record&bquery=IS+1800-6167+AND+VI+13+AND+IP+2+AND+DT+2019&link_origin=www.google.com&searchDescription=Sociolo%C5%A1ka%20Lu%C4%8Da%2C%202019%2C%20Vol%2013%2C%20Issue%202

g?ﬁ Zbornik radova Fakulteta tehniékih nauka, Novi Sad

UDK: 621.316.925
DOI: https://doi.org/10.24867/33 AM02Radic

ZNACAJ RACUNARSKE GRAFIKE U AUTOMATIZOVANOM PROJEKTOVANJU
MASINA

THE IMPORTANCE OF COMPUTER GRAPHICS IN AUTOMATED MACHINE DESIGN
Nemanja Radi¢, Radomir Doki¢, Fakultet tehnickih nauka, Novi Sad

Oblast —- MASINSKO INZEWERSTVO

Kratak sadrzaj — U master radu su obradene tehnike i
metode koje su najcesce u primjeni u masinstvu i koje cine
osnovu automatizovanog projektovanja kao Sto su
zapreminsko modelovanje, parametarsko modelovanje i
dr. Dati su neki od mnogobrojnih primjera njihove
primjene u projektovanju i njihove prednosti i mane.
Takode, u ovom radu su opisane i nove metode koje su tek
u pocetnim fazama implementacije kao Sto su vjestacka
inteligencija, virtuelna i proSirena realnost i mogucnost
njihovog kombinovanja sa tradicionalnim metodama
automatizovanog projektovanja.

Kljuéne refi: Racunarska grafika, automatizovano

projektovanje masina

Abstract — In the master's thesis, the techniques and
methods most commonly used in mechanical engineering,
which form the basis of automated design, such as solid
modeling, parametric modeling, and others, were
analyzed. Several examples of their application in design,
along with their advantages and disadvantages, were
presented. Additionally, the thesis described new methods
that are still in the early stages of implementation, such as
artificial intelligence, virtual reality, and augmented
reality, as well as the possibility of combining them with
traditional automated design methods.

Keywords:
design

Computer graphics, Automated machine

1. UVOD

Racunarska grafika i kompjuterski podrzano projektovanje
(CAD) predstavljaju temelj savremenog maSinskog
inZenjerstva, mijenjajué¢i nacin na koji se mehanicki
elementi i sistemi zamiSljaju, vizualizuju i realizuju. Ovaj
rad bavi se razli¢itim aspektima inZenjerske grafike i CAD-
a, pruzaju¢i razumijevanje njihovog znacaja, tehnika i
primjena u masSinskom projektovanju. Tokom ovog
istrazivanja istaknut je razvoj inZenjerske grafike od
ru¢nog crtanja do digitalnog projektovanja, naglasavajuci
ulogu vizualizacije u efikasnoj komunikaciji u masinskom
projektovanju. Analizirani su osnovni koncepti
ortogonalnih projekcija, geometrijskog modeliranja,
parametarskog projektovanja, otkrivajuci kako ove tehnike
unapreduju efikasnost i tacnost projektovanja.

NAPOMENA:
Ovaj rad proistekao je iz master rada ¢iji mentor je bio
dr Radomir Pokié, vanr. prof.

1.1. Automatizovano projektovanje

Automatizovano projektovanje masSina predstavlja
primjenu racunarskih tehnologija i softvera u procesu
kreiranja, analize i optimizacije masSinskih konstrukcija.
Osnova automatizovanog projektovanja nalazi se u
softverskim alatima kao §to su CAD (Computer-Aided
Design) i CAE (Computer-Aided Engineering). Iako danas
postoje brojne razli¢ite tehnike automatizovanog
projektovanja, osnovu svih tih tehnika ¢ine geometrijski
modeli i operacije koje se vr§e nad njima, odnosno Boole-
ove operacije (unija, razlika i presjek). Postoje dva osnovna
tipa geometrijskih modela: dvodimenzionalni model koji
se koristi za tehnicko crtanje i trodimenzionalni model koji
se koristi za raCunarski potpomognuto projektovanje i
proizvodnju. U zavisnosti od reprezentacije objekata,
sistemi geometrijskog modelovanja mogu se klasifikovati
u tri kategorije, a to su zapreminsko modelovanje,
modelovanje povrsina i modelovanje zZicanog modela, slika
1, [1-2].

Slika 1. Zi¢ani model, povrsinski model i zapreminski
model (slijeva na desno) [1]

2. TEHNIKE AUTOMATIZOVANOG PROJEKTOVANJA

Tehnike projektovanja predstavljaju niz strategija i metoda
koje inzenjeri koriste kako bi najucinkovitije razvili nove
proizvode, strukture ili sisteme. Projektovanje ukljucuje
brojne korake: od pocetne ideje i istrazivanja, preko
modelovanja i simulacija, pa sve do izrade prototipa i
testiranja. Svrha ovih tehnika je da olakSaju kreiranje
rjeSenja koja su Sto bliza zahtjevima funkcionalnosti,
estetike, troSkova 1 trajnosti. Automatizovano
projektovanje podrazumijeva interaktivan rad izmedu
inZenjera i ra¢unara, gdje se spajaju kreativnost Covjeka i
obradna mo¢ softverskih alata. Tehnike projektovanja koje
danas imaju najSiru primjenu su:

1. Formiranje zicanog modela, 2. Povrsinsko modeliranje,
3. Zapreminsko modeliranje, 4. Parametarsko modeliranje,
5. Generativni dizajn, 6. Inverzno (reverzibilno)
inzenjerstvo i 7. tzv. ,,Kinematicko modeliranje. Svaka od
ovih tehnika ima posebnu ulogu i pruza specificne
mogucénosti koje unapreduju proces projektovanja.

1251

https://doi.org/10.24867/33AM02Radic

2.1. Formiranje Zicanog modela

Zitani model predstavlja jedan od najosnovnijih i
najstarijih oblika grafickog prikaza 3D objekata, koji se
Siroko koristi u masinstvu. Ova tehnika modeliranja
zasniva se na upotrebi linija, taaka i krivih za definisanje
geometrijskih odnosa i oblika objekata, bez potrebe za
definisanjem detalja kao $to su povrSina ili zapremina.
Tacke predstavljaju koordinate koje definiSu kljucne
dijelove objekta, dok linije i krive povezuju ove tacke i
formiraju ivice koje odreduju oblik objekta, kao Sto je to
prikazano na slici 2.

Vertex list

v, (0,0,0)

V2(1,0,0)
" v V,(0,1,0) Edge list
> g, V2(0,0,1) E<Vy, V>

E; <V, V>
Es<Vs, V>
x Ea<Vy, Vo>
E5<Vy, V>
Es Eg<V3, V>

Slika 2. Zicani model tetraedra [2]

Iako ne pruza potpunu predstavu o fizickim svojstvima
objekta, zi¢ani model ima vaznu ulogu u ranim fazama
dizajna i1 analize, posebno kada je potrebno istraziti
osnovne geometrijske odnose i strukturu objekta.

2.2. Modeliranje povrsina

Modeliranje povrsina definiSe komponentu sa vecim
matematickim integritetom, jer modelira povrsine kako bi
dalo preciznije prostorne granice dizajnu. Posebno je
korisno za modeliranje objekata koji se mogu modelirati
kao ljuske, kao §to su paneli karoserije automobila, trupovi
aviona ili lopatice ventilatora. Najosnovniji tip povrsina je
ravna povrsina, prikazana na slici 3(a), koja se moze
definisati izmedu dvije paralelne prave linije, kroz tri tacke
ili kroz liniju i tacku. Drugi tipovi povrsina koje se obi¢no
koriste u CAD-u su: tabelarni cilindar, slika 3(b), loft, slika
3(c), povrsina dobijena rotacijom, prikazana na slici 3(d),
sweep, slika 3(e), skulpturalna ili povr§ina sa mrezom
krivih, slika 3(f) i tzv. filet povrSina kao prelaz sa cilindra
na ravan, slika 3(g).

| Aector Curve |

(a) Plane (b) tabulated cylinder (c) ruled surface (d) surface of revolution

(f) curve mesh surface

(e) swept surface (g) fillet between plane and cylinder

Slika 3. Tipovi povrsina u CAD softverima [3]

Jedna od znacajnih prednosti povrsinskog modeliranja je u
tome $to omogucava inZenjerima da rade u interaktivnom
okruzenju. Kada se promijeni neka povrsina, modifikacije
se odmah odrazavaju na cjelokupnom modelu, §to olaksava
projektovanje i optimizaciju. Ova sposobnost da se brzo
prilagodi i izmijene modeli ¢ini povrSinsko modeliranje

izuzetno korisnim alatom u dinami¢nom okruzenju kao §to
je savremena industrija.

2.3. Zapreminsko modeliranje

Zapreminsko modeliranje je jedna od osnovnih tehnika u
inzenjerskom projektovanju koja se koristi za stvaranje
trodimenzionalnih zapreminskih modela. Ova metoda
omogucava inZenjerima da kreiraju realisticne predstave
fizickih objekata, ukljuCuju¢i njihova stvarna fizicka
svojstva kao $to su masa, zapremina, centar gravitacije i
moment inercije. Ove informacije su od sustinskog znacaja
za analizu i optimizaciju dizajna, posebno u sloZenim
projektima. Seme predstavljanja 3D modela mogu se
podijeliti u Sest opstih klasa, a to su Cista primitivna
instanca, generalizovano izvlaCenje, prebrojavanje
prostorne okupacije, ¢elijska dekompozicija, sastavljanje
modela iz 3D primitiva (CSG) - model gomerijske
konstrukcije i definisanje granica objekta (B-rep) - model
graniéne prezentacije. Seme predstavljanja koje se
najcesce koriste u komercijalnim modelima su CSG i B-
rep. Kada je u pitanju graficka dokumentacija,
zapreminsko modeliranje u specijalizovanim softverima,
kao S§to su Autodesk Inventor i CATIA VS5, olakSava
kreiranje tehnickih crteza i specifikaciju delova. Inzenjeri
mogu automatski generisati 2D crteze iz 3D zapreminskih
modela, ¢cime se ubrzava proces kreiranja dokumentacije i
smanjuju moguénosti gresaka.

2.4. Parametarsko modeliranje

Parametarsko modeliranje predstavlja kljucnu tehniku u
automatizovanom projektovanju. Ova tehnika omogucava
inZzenjerima da na efikasan nacin definiSu i upravljaju
osnovnim dimenzijama i karakteristikama geometrijskih
modela. Parametarsko modeliranje odnosi se na kreiranje
3D CAD modela u kojima je geometrija definisana i
ograniCena parametrima. Ovi parametri mogu biti
dimenzije, matematicki odnosi, osobine materijala i drugo.
Kljuéna stvar je da se, kada se promijene vrednosti
parametara, geometrija automatski azurira prema unapred
definisanim pravilima. Ovaj pristup omogucava nevidenu
fleksibilnost i1 automatizaciju u procesu dizajniranja.
Zahvaljuju¢i moguénosti brzih izmena kompletne
geometrije promenom parametara, inZenjeri mogu brzo
raditi na varijantama dizajna, optimizovati komponente i
standardizovati sklopove.

2.5. Generativni dizajn

Generativni dizajn je tehnika koja transformiSe nacin na
koji inzenjeri i dizajneri pristupaju razvoju proizvoda. Ovaj
proces omogucéava inZenjerima da, na osnovu definisanih
ulaznih parametara (kao Sto su materijali, opterecenja,
ogranicenja prostora i troskovi), generiSu veliki broj
mogucih resenja za odredeni problem. Ova tehnika je
posebno znafajna u sektorima gde je smanjenje tezine
kljuéno, kao §to su avijacija i raketna industrija, gde svako
smanjenje mase moze dovesti do znacajnih usteda u gorivu
i poboljsanja u performansama. U pogledu troskova,
generativni dizajn moze dovesti do usteda od 10% do 30%
u poredenju sa tradicionalnim metodama, [4].

2.6. Reverzibilno inZenjerstvo

Reverzibilno inzenjerstvo predstavlja metodologiju koja
podrazumeva analizu i dekonstukciju gotovog proizvoda s
ciljem sticanja dubljeg razumevanja njegove strukture,

1252

funkcionalnosti i principa rada. Ova tehnika se ¢esto koristi
u inZenjerstvu za razvoj novih proizvoda, reinZenjering
postoje¢ih reSenja, kao 1 za wusavrSavanje procesa
proizvodnje. Proces reverzibilnog inZenjeringa zapocinje
fizickim proizvodom, gde inZenjeri razgraduju
komponente, analiziraju ih, a zatim koriste te podatke za
stvaranje novog dizajna (varijanti) ili za poboljSanje
postojecih. Tako reverzibilno inZenjerstvo donosi brojne
prednosti, kao §to su smanjenje troSkova, brza proizvodnja
i unapredenje postojecih tehnologija, ono sa sobom nosi i
odredene izazove. Jedan od njih su pravna pitanja koja se
odnose na intelektualnu svojinu, jer kopiranje dizajna bez
odobrenja moze dovesti do pravnih komplikacija.

2.7. ,,Kinemati¢ko* modeliranje

»Kinemati¢ko“ modeliranje je tehnika koja se koristi za
analizu kretanja komponenti u sistemu, §to je od sustinskog
znacaja u projektovanju mehanizama. Ova metoda
omogucava inZenjerima da proucavaju kretanje dijelova u
mehaniCkom sistemu, §to je kljuéno za optimizaciju
performansi i funkcionalnosti dizajna. Shvatanje kretanja
komponenti pomaze inzenjerima da identifikuju oblasti u
kojima mogu do¢i do neusaglasenosti ili nezeljenih
dejstava tokom rada. Na primjer, u razvoju robota ili
automobila, ,kinematicko® modeliranje moze pomoci u
analizi kako razliciti dijelovi uticu na rad mehanizma, ¢ime
se osigurava da sve komponente rade sinhronizovano i bez
problema.

3.INOVACIJE I BUDUCNOST AUTOMATIZOVANOG
PROJEKTOVANJA

Automatizovano projektovanje maSina predstavlja
dinami¢nu 1 inovativhu oblast inZenjerstva koja se
neprestano razvija, a nove tehnologije i metode znacajno
uticu na nacin na koji inzenjeri pristupaju dizajnu i razvoju
mehanickih sistema. Napredak u tehnologiji, narocito u
oblasti vjestacke inteligencije (AI) i masSinskog ucenja,
dovodi do transformacije tradicionalnih metoda
projektovanja, omogucavaju¢i inZenjerima da istrazuju
nove dizajnerske koncepte i optimizuju postojeca rjesenja.
Koriste¢i algoritme vjestacke inteligencije i modelovanje
podataka, inZenjeri mogu analizirati velike koliCine
informacija, identifikovati obrasce i predvidjeti ponaSanje
sistema.

Buduc¢nost automatizovanog projektovanja obecava da ¢e
biti obiljezena naprednom integracijom tehnologija,
poveCanom saradnjom medu timovima i vetom
sposobnos¢u inzenjera da brzo reaguju na promjene u
zahtjevima trziSta, ¢ime se poboljSavaju kvalitet i
efikasnost proizvoda. Neke od novih metoda koje su
obradene u ovom radu su vjestacka inteligencija i masinsko
ucenje, 3D Stampanje i aditivna proizvodnja, oblak i
kolaborativne platforme, virtuelna stvarnost i prosirena
stvarnost.

3.1. Vjestacka inteligencija i maSinsko ucenje

Oblast vjestacke inteligencije (Al) dobija veliku paznju
zbog sposobnosti da efikasno analizira i djeluje na
ogromnu koli¢inu prikupljenih podataka. Nagli porast
interesovanja se uglavnom pripisuje napretku ostvarenim u
podoblasti masinskog ucenja (ML), kao i prate¢im
faktorima, kao Sto su skladiStenje podataka i racunarske
snage. Sistemi ove tehnologije postaju mo¢ni alati koji se

mogu Kkoristiti i mogu dovesti do brzeg, racionalnijeg
donosenja odluka, kao i efikasnijeg rada. Vjestacka
inteligencija (Al) je oblast racunarskih nauka koja se moze
koristiti za razvoj inteligentnih racunara koji mogu
djelovati, razmiSljati i donositi odluke sli¢no ljudima.
Vjestacka inteligencija je pokazana kada maSina ima
sposobnosti sli¢ne ljudskim, kao §to su ucenje, razmisljanje
i rjeSavanje problema. S druge strane, masinsko ucenje
(ML) je oblast vjestacke inteligencije (AI) i racunarskih
nauka koja se fokusira na kori$¢enje podataka i algoritama
kako bi se imitirao nacin na koji ljudi uce i postepeno
poboljsala preciznost.

Nauka o podacima je rastuca disciplina, a masinsko ucenje
predstavlja njen kljuéni segment. U inicijativama za
rudarenje podataka, algoritmi za klasifikaciju i predvidanje
se obucavaju koris¢enjem statistickih metoda, pruzajuci
vazne uvide. Ove informacije zatim olakSavaju donosenje
odluka unutar aplikacija i1 organizacija, sa idealnim
uticajem na klju¢ne mjere rasta. Vjestacka inteligencija i
masinsko ucéenje predstavljaju kljuéne elemente u
buduénosti automatizovanog projektovanja. Ove
tehnologije ne samo da poboljSavaju kvalitet i efikasnost
dizajna, ve¢ i otvaraju nove mogucénosti za inovacije.

3.2. 3D Stampanje i aditivna proizvodnja

3D stampanje i aditivna proizvodnja su postali kljucni alati
u oblasti automatizovanog projektovanja, doprinoseci
znacajnom unapredenju u nacinu na koji inzenjeri razvijaju
i proizvode slozene komponente i sisteme. Ove tehnologije
ne samo da omogucavaju brzu izradu prototipa, vec i
unapreduju mogucnosti dizajna, ¢ime se smanjuju troskovi
i vreme potrebno za razvoj. 3D Stampanje je proces koji
podrazumeva stvaranje fizickog objekta iz digitalnog
modela. Ovaj proces se izvodi sloj po sloj, gde se materijali
dodaju jedan na drugi sve dok se ne postigne Zeljeni oblik.
Aditivna proizvodnja omogucava proizvodnju komponenti
slozenih oblika koje bi bilo tesko ili nemoguce napraviti
tradicionalnim metodama obrade. Na primer, inzenjeri
mogu stvoriti detaljne geometrije, unutra$nje Supljine i
strukturne obrasce koji poboljsavaju funkcionalnost
komponenti. Nove tehnike, kao §to su 4D Stampanje, koje
podrazumeva proizvodnju objekata koji se mogu
prilagodavati promenljivim uslovima, otvaraju nove
moguénosti za inovaciju. Takode, integracija sa
tehnologijama kao $to su vesStacka inteligencija moze
dovesti do jos slozenijih i pametnijih sistema.

3.3. Oblak (Cloud) i kolaborativne platforme

U danasnjem globalizovanom svijetu, gdje fizicke granice
postaju sve manje vazne, oblak tehnologije i kolaborativne
platforme igraju klju¢nu ulogu u automatizovanom
projektovanju. Ove tehnologije omogucéavaju inZenjerima
da rade na projektima iz razliitih geografskih lokacija,
¢ime se podsti¢e inovacija i unapreduje efikasnost u
projektovanju mehanickih sistema. Oblak tehnologije
podrazumijevaju koriS¢enje interneta za skladistenje,
upravljanje i obradu podataka, umjesto lokalnih servera ili
racunarskih sistema. Ova tehnologija omogucava
inZenjerima i dizajnerima da pristupe potrebnim resursima
i alatima u bilo kom trenutku, sa bilo kog mjesta.
Kolaborativne platforme, kao Sto su Autodesk Fusion 360,
SolidWorks 3DExperience i Microsoft Teams, integriSu
funkcionalnosti oblaka s alatima za timsku saradnju, ¢ime

1253

se poboljsava komunikacija i razmjena informacija u timu.
Oblak tehnologije i kolaborativne platforme predstavljaju
znac¢ajan napredak u automatizovanom projektovanju. One
omogucavaju inzenjerima da saraduju u realnom vremenu,
dele podatke 1 optimizuju proces projektovanja.
Uspostavljanjem efikasne komunikacije i smanjenjem
greSaka, ove tehnologije poboljsavaju kvalitet proizvoda i
ubrzavaju razvoj. Kako se tehnologija razvija,
kolaborativne platforme ¢e nastaviti da igraju kljucnu
ulogu u buduénosti automatizovanog projektovanja,
otvaraju¢i nove mogucnosti za inovaciju i efikasnost, [5].

3.4. Virtualna stvarnost i prosirena stvarnost

Virtuelna stvarnost (VR) i proSirena stvarnost (AR) su
inovacije koje znaCajno mijenjaju nacin na koji inzenjeri i
dizajneri pristupaju projektovanju i razvoju mehanickih
sistema. Ove tehnologije ne samo da poboljsavaju
vizualizaciju i analizu dizajna, ve¢ i unapreduju saradnju i
komunikaciju u timu, $to dovodi do efikasnijeg i
inovativnijeg procesa projektovanja. Virtuelna stvarnost
podrazumijeva stvaranje potpuno digitalnog okruzenja u
kojem korisnici mogu interaktivno ucestvovati.
Koris¢enjem VR tehnologije, inzenjeri mogu da projektuju
i testiraju slozene sisteme u simuliranoj sredini, $to im
omogucéava da istraze razliCite dizajnerske opcije bez
potrebe za fizickim prototipima. ProSirena stvarnost
kombinuje digitalne elemente sa stvarnim svijetom,
stvaraju¢i interaktivno iskustvo koje omogucéava
inZzenjerima da na realne objekte projektuju digitalne
informacije. Ova tehnologija predstavlja znacajan
napredak u procesima montaze, odrzavanja i obuke. U
poredenju sa statickim 3D modelima ili tradicionalnim 2D
crtezima, tehnologija proSirene stvarnosti nudi tro-
dimenzionalnu perspektivu koja je znacajno intuitivnija i
informativnija, $to poboljSava prostorno razmatranje.

4. ZAKLJUCAK

Racunarska grafika i kompjuterski podrzano projektovanje
(CAD) predstavljaju temelj savremenog masSinskog
inZenjeringa, menjaju¢i nacin na koji se mehanicki
elementi i sistemi zamiSljaju, vizualizuju i realizuju. Ovaj
rad bavi se razli¢itim aspektima inZenjerske grafike i CAD-
a, pruzaju¢i razumevanje njihovog znacaja, principa,
tehnika i primena u masinskom projektovanju. Tokom
ovog istrazivanja istaknut je razvoj inzenjerske grafike od
ruénog crtanja do digitalnog projektovanja, naglaSavajuci
kljuénu ulogu vizualizacije u efikasnoj komunikaciji u
masinskom projektovanju. Analizirani su osnovni koncepti
ortogonalnih projekcija, geometrijskog modeliranja,
parametarskog projektovanja i crtanja, otkrivajuci kako
ove tehnike unapreduju efikasnost, tacnost i svestranost
projektovanja. Istrazivanjem spektra CAD softvera i alata,
prikazano je kako inzenjeri koriste digitalne platforme za
kreiranje slozenih 3D modela, simulaciju mehani¢kog
ponasanja i besprekornu saradnju izmedu timova koji se
nalaze na razli¢itim geografskim lokacijama.

Integracija parametarskog projektovanja, 3D modeliranja i
principa sklopova omogucava inZenjerima brzu iteraciju,
optimizaciju projekata i virtuelnu validaciju performansi
pre fizicke realizacije. Pored toga, vaznost tehnickog
crtanja i dokumentacije ne sme se potceniti, jer tacni
tehnicki crtezi, liste materijala (BOM) 1 prateca

dokumentacija predstavljaju osnovu komunikacije u
projektovanju, obezbeduju¢i uspeSan prenos zamisli u
opipljive proizvode.

Kako masinski inzenjeri nastavljaju da prihvataju moé
racunarske grafike i CAD-a, sti¢u sposobnost da inoviraju,
unapreduju procese projektovanja i realizuju nove ideje.
Bilo da je rec o kreiranju slozenih 3D modela, simulaciji
kompleksnih mehanic¢kih sistema ili komunikaciji
tehnickih specifikacija, ovladavanje ovim principima i
tehnikama vodi masSinski inZenjering u eru nevidene
kreativnosti i efikasnosti.

5. LITERATURA

[1] A. Dag, A. Ozdemir, “A Comparative Study for 3D
Surface Modeling of Coal Deposit by Spatial
Interpolation Approaches”, Resource Geology, 63 (4),
pp- 394-403, 2013.

[2] Z. Jeli¢, B. Popkonstantinovié, M. Stojicevi¢, “Usage
of 3D Computer Modelling in Learning Engineering
Graphics”,2016.

[3] Anonim., “Surface modeling ”, ITU - Transport
Teknigi Grubu, Istanbul, 2009.

[4] M. Fenooh, O. Alquabeh, M.M. Nisar, S. Zia,
“Generative Design of a Mechanical Pedal”,
International Journal of Engineering and
Management Sciences, (6), pp. 48-56, 2021.

[5] V. Gharibvand, M.K. Kolamroudi, Q. Zeeshan et al.,
“Cloud based manufacturing: A review of recent
developments in architectures, technologies,
infrastructures, platforms and associated challenges”,
The International Journal of Advanced Manufacturing
Technology, (131), pp. 93-123, 2024.

Kratka biografija:

Nemanja Radi¢ roden je u Bijeljini 1997.
god. Master rad na Fakultetu tehnic¢kih
nauka iz oblasti Masinskog inzenjerstva —
Mehanizacija i konstrukciono masinstvo
odbranio je 2025. god.

kontakt: nemanja.radic997@gmail.com

Radomir Pokié,vanredni profesor na
Fakultetu tehnickih nauka u Novom Sadu.
Doktorirao je na Fakultetu tehnickih nauka
2016. god. Oblast interesovanja su
projektovanje mobilnih masina i
konstrukeija.

1254

Zbornik radova Fakulteta tehnickih nauka, Novi Sad

UDK: 621.7/.9
DOI: https://doi.org/10.24867/33AMO031vanovic

RIZICI USLED PARKIRANJA VOZILA SA POGONOM NA TECNI NAFTNI GAS U
ZATVORENIM PROSTORIMA

RISKS POSED BY PARKING LIQUEFIED PETROLEUM GAS POWERED VEHICLES
IN ENCLOSED SPACES
Nina Ivanovié, Fakultet tehnickih nauka, Novi Sad

Oblast - MASINSTVO

Kratak sadrzaj — Ovaj rad analizira fizicko-hemijske
karakteristike tecnog naftnog gasa i njegovu primenu kao
pogonskog goriva, sa posebnim fokusom na rizike usled
parkiranja vozila na TNG u zatvorenim garazama.
Istrazeni su fenomeni VCE i BLEVE, mehanizmi
akumulacije gasa, rizici od eksplozije, kao i uticaj
ventilacije i detekcije na bezbednost. Obradeni su efekti
kontakta TNG-a sa ljudskim tkivom i predloZzene mere
zastite, uz osvrt na vazece propise i neophodnost
integracije tehnickih i organizacionih reSenja u
upravljanju rizicima povezanim sa primenom TNG-a u
zatvorenim prostorima.

Kljuéne reci: Tecni nafini gas, zatvorene garaze,
ventilacija i detekcija, BLEVE, bezbednost i zdravlje
Abstract — This paper analyzes the physicochemical
characteristics of liquefied petroleum gas and its use as a
fuel, with emphasis on the risks associated with parking
LPG-powered vehicles in enclosed garages. The study
explores the phenomena of VCE and BLEVE, mechanisms
of gas accumulation, explosion hazards, and the impact of
ventilation and detection systems on safety. It also
addresses the effects of LPG contact with human tissue and
proposes protective measures, with reference to relevant
regulations and the necessity of integrating technical and
organizational solutions in risk management related to
LPG use in confined spaces.

Keywords: Liguefied petroleum gas, enclosed garages,
ventilation and detection, BLEVE, safety and health

1. UVOD

Vozila na teéni naftni gas (TNG) poznata su po ekoloskoj
prihvatljivosti, ali njihovo prisustvo u zatvorenim
garazama nosi rizike stvaranja eksplozivnih koncentracija
gasa. Oslobadanje TNG-a mozZe izazvati ozbiljne incidente
poput fenomena BLEVE i VCE, sa potencijalno teskim
posledicama po ljude i imovinu. Cak i male koli¢ine u
neprovetravanom prostoru mogu izazvati eksploziju u
prisustvu izvora paljenja. Zato su mere zastite, kao Sto su
ventilacija i sistemi detekcije gasa, kao i sigurnosni uredaji
na vozilima, neophodni za sigurnost u urbanim garazama.

2. TECNI NAFTNI GAS

TNG je meSavina propana i butana, poznata i kao propan-
butan gas. Oko 60% se dobija iz prirodnog gasa, a ostatak
iz nafte. Sastav varira zavisno od klimatskih uslova:

NAPOMENA:
Ovaj rad proistekao je iz master rada ¢iji mentor je bio
dr Nebojsa Nikoli¢, van. prof.

u hladnijim krajevima je veé¢i udeo propana zbog bolje
isparljivosti, dok se u toplijim viSe koristi butan. U Srbiji
je odnos priblizno jednak [1].

2.1. Fizicke i hemijske karakteristike

Tecni naftni gas je bezbojan, visoko zapaljiv i eksplozivan,
ali bez mirisa. Za lakSu detekciju, komercijalnom TNG-u
dodaje se etil-merkaptan, organsko jedinjenje sa
sumporom, Sto omogucava otkrivanje cak i pri niskim
koncentracijama. TNG ima gotovo dvostruko veéu gustinu
od vazduha, zbog cega se smatra zagusljiveem Kkoji
istiskuje kiseonik. Slabo je rastvorljiv u vodi, S§to olaksava
skladiStenje i transport jer se ne meSa s vodom. Iako nije
toksican, pri visokim koncentracijama moze delovati kao
anestetik 1 izazvati guSenje zbog nedostatka kiseonika.
Kontakt s kozom moze izazvati promrzline zbog
intenzivnog isparavanja, dok je TNG agresivan prema
materijalima kao $to su guma i plastika [1].

Granica zapaljivosti odreduje koncentraciju zapaljive
materije u meSavini koja moze izazvati eksploziju. Za
smesu propan-butana u odnosu 35:65, donja granica
zapaljivosti je 2%, a gornja 9% zapreminskog udela u
vazduhu. Sagorevanjem TNG oslobada toplotu i proizvodi
ugljen-dioksid i vodenu paru, s temperaturom plamena do
1900°C. TNG karakteriSe i visoki napon zasi¢enih para.
Kod butana, pritisak pare iznosi 0,005 bara na 0°C i 0,8
bara na 15°C, a kod propana — 4 bara na 0°C i 5-6 bara na
15°C. Temperatura kljucanja propana je -43°C, dok je za
butan -0,5°C [1].

2.2. Upotreba u vozilima

TNG predstavlja izuzetno pogodno gorivo za motore sa
unutrasnjim sagorevanjem zbog brojnih prednosti koje
pruza. Jedna od klju¢nih karakteristika TNG-a je njegova
sposobnost da se brzo i ravnomerno mesa sa vazduhom,
¢ime formira homogenu smesu za sagorevanje. Tokom
procesa sagorevanja, TNG ne proizvodi dim niti taloge, ¢ak
ni u uslovima promenljivog rada motora, §to doprinosi
njegovoj pouzdanosti i efikasnosti. Pored toga, TNG se
izdvaja 1 po svojoj ekoloskoj prihvatljivosti. Udeo
vodonika u molekulima jedinjenja koja ¢ine TNG je visok,
te u produktima sagorevanja dominira vodena para, dok je
emisija ugljen-dioksida smanjena. Emisija oksida azota je
takode snizena, a gasovi iz sagorevanja ne sadrze olovna i
sumporna jedinjenja. Kao gas, TNG ne stvara kondenzat,
¢ime se smanjuje rizik od razredivanja ulja i dodatno
produzava vek trajanja motora. Za razliku od benzinskih
rezervoara koji mogu eksplodirati na visokim
temperaturama, rezervoari za TNG izradeni su od celika
debljine 3 do 4 mm, anatomski su oblikovani i otporni na

1255

https://doi.org/10.24867/33AM03Ivanovic

deformacije pri sudarima. Uz to, ekonomska isplativost
TNG-a omoguéava brz povracaj ulaganja u gasni sistem,
Sto ga ¢ini atraktivnim izborom za korisnike, ali postoje
nedostaci kao $to su manja snaga motora, dodatna masa
vozila 1 potreba za posebnim uslovima skladiStenja i
rukovanja [1].

3. INSTALACIJA TNG SISTEMA U VOZILIMA

Instalacije za napajanje TNG-om obi¢no predstavljaju
alternativne sisteme goriva za motore koji rade na benzin
ili dizel gorivo, koji blisko saraduju sa originalnim
sistemom napajanja gorivom [2]. Razli€iti tipovi gasnih
instalacija obi¢no koriste isti osnovni skup komponenti,
koji je prikazan na Slici 1.

BIRAC GORIVA

PRIKUUCAK ZA
PUNIENIE

FILTER ZA GAS.

BRIZGACI

ECU ZA BENZIN

Slika 1 Osnovne komponente instalacije za TNG [3]

TNG se pod pritiskom u tecnom stanju od rezervoara
transportuje do isparivaca, koji funkcionise i kao reduktor.
Ispariva¢ je povezan sa sistemom za hladenje motora,
omogucavajuci toploj te¢nosti iz motora da zagreje tecni
gas koji u tom procesu isparava. Na taj nacin, isparivac
omogucava prelazak TNG-a u gasovito stanje, njegovo
zagrevanje na odgovarajuu temperaturu, i smanjuje
pritisak gasa na oko 0,8 bara, $to je potrebno za napajanje
motora [1].

Gasni sistemi novije generacije koriste se kod vozila sa
ubrizgavanjem goriva u viSe taaka (multi-point injection).
Kod ovakvih sistema, gas se brizgava u usisne kanale, Sto
blize usisnim ventilima, a zatim se, zajedno sa vazduhom,
odvodi u radne cilindre. Na taj nacin, kod ove vrste
instalacije nema potrebe za mesacem. Jedna od klju¢nih
karakteristika ovog sistema je njegova visoka brzina rada
[4].

Radni pritisak u rezervoaru za TNG iznosi izmedu 6 i 10
bara. Rezervoari koji se ugraduju u vozila moraju biti u
skladu sa trenutno vazeéim standardom, SRPS EN
12805:2011, cime se osigurava bezbednost sistema na
TNG [1].

Svi prikljuéci rezervoara smesteni su u gasno nepropusnom
kuéistu povezanom sa ventilacionim kanalima. Kada dode
do curenja, gas izlazi u spoljasnu sredinu kroz ventilacioni
sistem, ¢ime se minimizira rizik od ulaska gasa u putnicki
prostor vozila [2].

Ventil za ograni¢avanje punjenja na 80% odgovoran je za
prekidanje dovoda gasa kada nivo goriva dostigne 80%
geometrijske zapremine rezervoara. Ova funkcija
omogucava zadrzavanje slobodnog prostora unutar
rezervoara, ¢ime se omogucava prilagodavanje zapremine
TNG-a u zavisnosti od temperature okoline. Prepunjavanje
rezervoara iznad 80% zapremine, usled visoke temperature

okoline, moze dovesti do porasta pritiska u rezervoaru i
aktivacije sigurnosnog ventila [2].

Sigurnosni ventil za oslobadanje pritiska je sigurnosni
uredaj namenjen ograniCavanju maksimalnog pritiska
unutar rezervoara na 27 + 1 bar, i u slucaju prekomernog
pritiska, omogucava ispustanje TNG-a iz rezervoara u
gasovitoj fazi. Gas iz ovog ventila ne sme biti usmeren ka
izduvnoj cevi, u putnic¢ki prostor, u prostor za smestaj
motora, kao i u pravcu potencijalnog elektri¢nog
varniCenja. Pri brzom porastu temperature, delovanje
sigurnosnog ventila mozda nece biti dovoljno da pritisak
svede na bezbedan nivo [2].

Protivpozarni ventil je sigurnosni uredaj opremljen termo-
osigura¢em koji se topi na unapred odredenoj temperaturi
od 120 °C £ 10 °C, ¢ime se smanjuje pritisak kako bi se
izbegla nekontrolisana deformacija ili curenje iz
rezervoara. U slucaju poZzara, osigurac se topi i otvara otvor
za brzo ispustanje TNG-a iz rezervoara, ¢ime se sprecava
rizik od eksplozije [2].

4. RIZICI PRI SKLADISTENJU VOZILA SA
POGONOM NA TNG

Rizik od isticanja TNG-a ogranic¢ava §iru primenu vozila
na ovaj pogon. Jedan od ciljeva istrazivanja je prikaz
metode kvantitativne analize rizika (QRA — Quantitative
Risk Analysis) za upotrebu vozila na TNG u zatvorenim
garazama. Metoda omogucéava procenu rizika i dizajn
ventilacionih i detekcionih sistema. Treba naglasiti vaznost
integracije CFD simulacija u QRA, ¢ime se precizno
procenjuje rizik od povreda ili smrtnog ishoda u
incidentima s TNG-om [5].

4.1 Tehnika QRA

Sustina kvantitativne procene rizika lezi u odgovoru na tri
kljuéna pitanja: Sta moZe poéi po zlu? Kolika je
verovatnoc¢a za to? Koje su posledice? QRA je metod
procene rizika koji se sprovodi odozgo ka dole i ukljucuje:
definisanje nezeljenih krajnjih stanja, identifikaciju
pocetnih dogadaja koji mogu do njih dovesti, koris¢enje
dijagrama dogadaja i gresaka za razvoj scenarija nesreca,
procenu verovatnofe svakog scenarija na osnovu
dostupnih podataka i iskustava, kao i njihovo rangiranje
prema ucestalosti radi dobijanja pregleda rizika. Ovaj
pristup omogucava strukturalno i detaljno razmatranje
mogucih rizika i njihovih posledica [6].

4.2 CFD simulacije

CFD (Computational Fluid Dynamics) podrazumeva
softversku simulaciju koja se moze primeniti pri razlic¢itim
uslovima, ali zahteva znacajan nivo znanja i iskustva. CFD
simulacije su posebno korisne u istrazivanjima akcidenata,
a verifikacija simulacionih rezultata se obi¢no sprovodi
eksperimentalnim putem kako bi se osigurala tacnost i
pouzdanost predvidanja [7].

Primena CFD simulacija na problematiku isticanja TNG-a

u neki prostor moze se podeliti u tri kategorije [5]:

1. Analiza nenamernog curenja TNG-a i formiranja
oblaka pare, ukljucujuéi njegovu veli¢inu i vreme
detekcije.

2. Istrazivanje razblazivanja oblaka pare putem
ventilacije do koncentracije ispod donje granice
zapaljivosti.

1256

3. Procena posledica eksplozije zapaljivog oblaka,
ukljucujuci obim bljeska i nastali natpritisak.

4. REZULTATI I DISKUSIJA

Isparenja tecnog naftnog gasa mogu pre¢i znacajne
udaljenosti od mesta ispustanja do izvora zapaljenja, gde
mogu izazvati pozar, povratni plamen ili eksploziju. Pored
toga, rezervoari u vozilima mogu oslabiti i pu¢i ukoliko su
izlozeni visokim temperaturama [8].

Najveéa opasnost po zivot dolazi od lete¢ih fragmenata
koji se mogu odbijati od zidova prostorije, krecuci se
nepredvidivim putanjama i stvarajuci rizik od povreda.
Takode, udarni talas moze izazvati ozbiljna oStecenja sluha
i destabilizovati strukturu zgrade, $to dodatno povecava
rizik od kolapsa ili drugih strukturalnih oStecenja [9].

U istrazivanju [5], 7 od 26 analiziranih scenarija
identifikovani su kao visokorizi¢ni usled akcidenta koji
ukljucuje isticanje gasa ili eksploziju rezervoara za TNG.
Najverovatniji medu njima je pozar vozila pracen mlaznim
pozarom usled otvaranja sigurnosnog ventila. Ako dode do
prepunjavanja rezervoara za TNG i porasta temperature,
moze do¢i do otvaranja sigurnosnog ventila i formiranja
mlaza goriva koji, ukoliko se zapali, izaziva mlazni pozar.
U slucaju da sigurnosni ventil zakaze, pritisak u rezervoaru
moze dovesti do njegovog pucanja i BLEVE eksplozije,
Cesto pracene vatrenim bljeskom, vatrenom loptom ili
eksplozijom oblaka pare. Spontano otvaranje ventila
takode moze dovesti do mlaznog pozara ili, ako se mlaz ne
zapali odmah, do stvaranja oblaka pare koji predstavlja
rizik od vatrenog bljeska. Ovi scenariji predstavljaju
potencijalne opasnosti u slucaju neispravnog
funkcionisanja sigurnosnih uredaja ili uslova koji mogu
dovesti do eksplozivnih dogadaja ili pozara.

Ocigledno je da su pozar ili eksplozija najgori moguci
scenariji, i mogu se ocekivati u dva slucaja — kada postoji
izvor paljenja, ali samo u situacijama kada nema sistema
za detekciju i ventilaciju. Ako oba sistema rade kako treba,
moze se ocekivati samo ogranicen pozar ili rasprostiranje
gasa [8]. Ovo ukazuje na vaznost primene odgovarajucih
sigurnosnih sistema, kao i adekvatno odrzavanje vozila
kako bi se smanjila verovatnoéa prepunjavanja i spontanog
otvaranja sigurnosnih ventila [5].

U dosadasnjim istrazivanjima istaknuta su dva osnovna
tipa ventilacionih sistema koji se koriste u ovakvim
prostorima: tradicionalni sistemi sa ventilacionim
kanalima i sistemi mlaznih ventilatora. Prema [8],
tradicionalni ventilacioni sistemi sa kanalima rasporeduju
odvod vazduha tako da se 50 % ukupne izduvne zapremine
odvodi blizu poda, dok se preostalih 50 % odvodi ispod
plafona garaze. Nasuprot tome, sistem mlaznih ventilatora
koristi aktivne uredaje za usmeravanje vazduha, sa ciljem
razbijanja i razblazivanja oblaka gasa. Eksperimentalni
rezultati pokazuju znacajne razlike u performansama ova
dva sistema.

Tokom kontinuiranog rada tradicionalnog kanalskog
sistema, oblak gasovitog TNG-a se zadrzava pri podu, a
uticaj ventilacije na njegovo uklanjanje je minimalan. S
druge strane, ukljuéivanjem sistema mlaznih ventilatora,
primecuje se brzo razbijanje oblaka i njegovo ravnomerno
rasprostiranje kroz prostor garaze. Nakon nekoliko minuta
kontinuiranog rada, gas se razblazuje i stvara se ujednacena

gustina u celom prostoru (Slika 2), §to znacajno smanjuje
opasnost od lokalizovanih visokih koncentracija gasa [8].

Vreme Ventilacija radi Ventilacija ne radi Skala

20s

= - —m'—rh 50

50s ‘ 5

| R -—

70s w0

P |) PR . - S— o

110s om
<« SR - i~ S—

Slika 2 Koncentracija TNG-a u slucaju sa i bez aktivne
ventilacije (4*107 kg/m’ na skali odgovara 10 % donje
granice eksplozivnosti) [8]

Istrazivanje naglasava da je u sluCaju nenamernog
ispustanja TNG-a najverovatnija kratkotrajna pojava
eksplozivne atmosfere, u trajanju od 10 do 30 sekundi.
Takode, koncentracija TNG-a je znatno veca na visini od
10 cm u odnosu na 30 cm, §to ukazuje na vaznost
postavljanja gasnih detektora §to blize podu i blizu izvora
emisije za pravovremenu detekciju. Utvrdeno je da je
detekcija TNG-a na visini od 10 cm u proseku 40 %
verovatnija nego na visini od 30 cm [8].

Zakljuceno je da detektori TNG-a moraju biti postavljeni
§to blize podu, a ventilacioni sistemi treba da efikasno
ventiliraju donje delove garaza. Rezultati testova pokazuju
da sistemi mlaznih ventilatora koji se pale po potrebi i
sistemi sa vazdu$nim kanalima cesto nisu dovoljni za ovaj
zadatak, ve¢ je potreban kontinuiran rad ventilacije kako bi
se obezbedila pravovremena reakcija [8].

Sprovedena je kvantitativna analiza rizika u garazi
dimenzija 30x30 metara sa kapacitetom od 40 parking
mesta, koriste¢i CFD simulacije [5]. Simulacija je
omogucila prora¢un formiranja zapaljivog oblaka pare i
njegovog razblazivanja, kao 1 procenu natpritisaka
izazvanih eksplozijom. Pretpostavlja se da zapaljiv oblak
pare, ukoliko se formira, ostaje prisutan u garazi dva
minuta. To znaci da, u sluc¢aju da ventilacioni sistem ne radi
neprekidno, oblak zapaljivih para mora biti detektovan
putem sistema za detekciju gasa i zatim razblazen
ventilacijom u roku od dva minuta. Stoga, trajanje
prisustva zapaljivog oblaka para predstavlja jedan od
kljuénih parametara u dizajnu sistema za detekciju gasa i
ventilaciju.

Vertikalno oslobadanje TNG-a brzinom od 0,55 kg/s moze
dovesti do stvaranja stehiometrijskih oblaka pare preko
100 m® u roku od 50 sekundi, $to priblizno odgovara
vremenu potrebnom za praznjenje rezervoara goriva
zapremine 70 1. Oblak pare ove veli¢ine moze imati
znacajne posledice. Dok za isti vremenski period,
ispustanje gasa brzinom od 0,21 kg/s dovodi do stvaranja
oblaka od oko samo 5 m?, koji nefe imati znacajne
posledice ¢ak i ako dode do zapaljenja jer ¢e natpritisak biti
manji od 0,02 bara. Prilikom ovakvih akcidenata,
natpritisak od 0,02 bara moze izazvati povrede ljudi, dok
natpritisak od 0,1 bar moze prouzrokovati i smrtne
povrede. Takode je primeceno da vertikalno oslobadanje,
koje se suoCava sa preprekama poput plafona, vozila i
zidova, rezultira znatno ve¢im oblacima pare u odnosu na
horizontalno

1257

Pored toga, simulacije su ukazale da eksploziivne sile
izazvane velikim oblakom gasa mogu biti veoma opasne.
Eksplozija oblaka od 200 m*® moze generisati natpritiske
vece od 0,3 bara u garazi povrsine oko 900 m?, §to moze
ozbiljno ugroziti stabilnost gradevine i sigurnost prisutnih
osoba [5].

Tokom simulacije, veliki oblak je razblazen na
koncentraciju ispod donje granice zapaljivosti unutar 60
sekundi. Detektori gasa postavljeni na visini od 15 cm
iznad poda mogli su da otkriju prisustvo zapaljivog oblaka
pare za manje od minut nakon oslobadanja, §to opravdava
pretpostavku da zapaljivi oblak moze biti prisutan u garazi
maksimalno 2 minuta [5].

Vazan zakljucak iz simulacija odnosi se na efikasnost
ventilacionih sistema u razblazivanju opasnih oblaka.
ventilacioni protok od 200.000 m*h znaCajno smanjuje
koncentraciju gasa i brzo razblazuje oblak pare unutar
prvih 20 sekundi rada. Nasuprot tome, manji protok od
50.000 m*/h nije bio dovoljan da spreci Sirenje oblaka po
celoj podnoj povrSini garaze, Sto povecava rizik od
eksplozije. Prema tome, preporucuje se minimalni protok
ventilacije od priblizno 0,06 m3/s po kvadratnom metru
povrsine garaze kako bi se efikasno razblazili veliki oblaci
nastali usled brzog ispustanja TNG-a [5]. Smanjenje ovog
protoka produzava prisustvo opasnih oblaka i rizik od
nesreca.

U zakljucku, istrazivanja [5, 8] potvrduju da su efikasni
ventilacioni sistemi i pravilno postavljeni detektori klju¢ni
za minimizaciju rizika od eksplozije u garazama sa TNG
vozilima. Kontinuirani rad ventilacije i pravovremena
detekcija mogu znacajno smanjiti opasnost od pozara i
povreda, ¢ime se obezbeduje veéa bezbednost kako ljudi
tako i objekata.

6. UTICAJ NA LJUDE

Kontakt TNG-a sa kozom ili ofima moze izazvati
promrzline i iritacije, posebno pri curenju gasa tokom
dopune goriva ili zbog neispravne konverzije vozila. Zbog
visokog pritiska 1 niske temperature skladistenja,
neophodno je koristiti zastitne mere pri radu sa vozilima sa
TNG sistemima. Edukacija korisnika o opasnostima i
pravilnoj upotrebi kljuéna je za prevenciju povreda.
Pravilna dijagnostika i pravovremena prva pomo¢ mogu
znacajno poboljsati ishod povreda izazvanih kontaktom sa
TNG-om.

Klinic¢ka slika povreda uzrokovanih direktnim kontaktom
sa te€nim naftnim gasom moze se kretati od povrsinskih
ostecenja do nekroze i amputacija. Vreme izloZenosti
TNG-u je kljuéni faktor koji odreduje raznolikost klini¢kih
manifestacija [10].

Pocetna procena hladne opekotine na osnovu izgleda
gornjih slojeva koze nije uvek pouzdana, jer se dublje,
degenerativne nekroze tkiva mogu pojaviti kasnije, zato
pacijente sa ovim povredama treba pazljivo nadzirati od
prvog dana. Najveéi problem kod ovakvih trauma je
ograniceno klini¢ko iskustvo medicinskog osoblja u vezi
sa dijagnostikom i tretmanom. Da bi se smanjila stopa
morbiditeta kod promrzlina izazvanih TNG-om ili slicnim
uzrocima, vazno je da pacijenti blagovremeno potraze
medicinsku pomo¢, a da zdravstveni radnici budu svesni
razli¢itih stepena ovih povreda. [10].

U slucaju promrzline preporucuju se osnovne mere prve
pomoc¢i, koje ukljucuju pranje zahvacenog mesta sapunom
i vodom i ispiranje koze u vodi blizu telesne temperature,
do 40°C, u trajanju od 15 do 30 minuta. Ova metoda
pomaze u minimalizaciji gubitka tkiva i1 bilo kakve
hemijske iritacije. Umotavanje povredenog mesta toplim
oblogom mozZe doprineti postepenom zagrevanju
povredene oblasti i smanjenju rizika od dodatnog
ostecenja. [11].

7. LITERATURA

[17 S. Raki¢, "Analiza primene te¢nog naftnog gasa kao
pogonskog energenta motora SUS," Vojnotehnicki
glasnik, vol. 56, br. 1, str. 90-107, 2008.

[2] J. Chojnowski, "Safety in the use of car gas fuel

installations," Combustion Engines, vol. 61, 2022.

[3] https://www.cartoq.com/understanding-and-installing-
Ipg-kits-for/. (pristupljeno u decembru 2024.)

[4] K. Lejda i E. Zielinska, "Gas installations requirements

for cars and automobile repair shops offering LPG

services," Teka Komisji Motoryzacji i Energetyki

Rolnictwa, vol. 15, br. 1, str. 37-42, 2015.

[5] F. Van den Schoor, P. Middha i E. Van den Bulck,
"Risk analysis of LPG (liquefied petroleum gas)
vehicles in enclosed car parks," Fire Safety Journal,
vol. 57, str. 58-68, 2013.

[6] G. E. Apostolakis, "How useful is quantitative risk
assessment?," Risk Analysis: An International Journal,
vol. 24, br. 3, str. 515-520, 2004.

[71 G. Tepi¢, Razvoj metodoloskog koncepta za

upravljanje rizikom u sistemu opasnih materija, Novi Sad:

Fakultet tehnickih nauka, 2019.

[8] D. Brzezinska, M. Dziubinski i A. S. Markowski,
"Analyses of LPG dispersion during its accidental
release in enclosed car parks," Ecological Chemistry
and Engineering S, vol. 24, br. 2, str. 249-261, 2017.

[9] J. Stawczyk, "Experimental evaluation of LPG tank
explosion hazards," Journal of Hazardous Materials,
vol. 96, br. 2-3, str. 189-200, 2003.

[10] E. Kap1 i dr., "An unusual etiology in cold injury:

liquefied petroleum gas," Ulusal Travma ve Acil Cerrahi

Dergisi, vol. 23, br. 3, 2017.

[11] B. Scarr i dr., "Liquefied petroleum gas cold burn
sustained while refueling a car," Emergency Medicine
Australasia, vol. 22, br. 1, str. 82-84, 2010.

Kratka biografija:

Nina Ivanovi¢ rodena je u Subotici
2000. god. Osnovne studije
InZenjerstva zastite na radu zavrsila je
na Fakultetu tehnickih nauka u Novom
Sadu 2023. godine, a iste godine
upisuje i master studije, smer
Bezbednost i zastita na radu sa
transportnim i gradevinskim masinama
i motornim vozilima.

kontakt: nina.ivanovic.ace@gmail.com

1258

g?ﬁ Zbornik radova Fakulteta tehniékih nauka, Novi Sad

UDK: 662.7:662.61
DOI: https://doi.org/10.24867/33 AM04Milosevic

RAZLIKE IZMEPU DVOCEVNOG I CETVOROCEVNOG SISTEMA GREJANJA I
HLADPENJA POMOCU VENTILATOR-KONVEKTORA

DIFFERENCE BETWEEN A TWO-PIPE AND A FOUR-PIPE HEATING AND COOLING
SYSTEMS USING A FAN-COIL UNIT
Aleksa MiloSevi¢, Fakultet tehnickih nauka, Novi Sad

Masinstvo —- ENERGETIKA I PROCESNA
TEHNIKA

Kratak sadrzaj — U okviru ovog rada dat je kratak opis i
razlika izmedu dvocevnih i cetvorocevnih sistema grejanja
i hladenja. Poseban akcenat stavijen je na ventilator-
konvektore pomocu kojih se greju/hlade sistemi, izvrsena
Jje njihova podela i objasnjen princip rada.

Kljuéne reli: ventilator-konvektori, grejanje, hladenje

Abstract — In this paper, a brief description and a
difference between two-pipe and four-pipe heating and
cooling systems is given. The main topic was placed on fan-
coils, which are used to heat/cool systems, their division
was made and the basic principles of their operation was
explained.

Keywords: fan-coil units, heating, cooling

1. UVOD

Upotreba sistema za klimatizaciju je postala stalan i
neizostavan deo naSe svakodnevnice, polazeéi od
domacinstava, zagrevanja zimi, hladenja leti, kao i
obezbedivanje zZeljenog kvaliteta vazduha, pa do
obezbedivanja raznih industrijskih potreba, kao §to su, na
primer, prostorije sa odgovaraju¢om niskom ili visokom
temperaturom, vlaznosti vazduha i slicno. Svaki objekat
zahteva sistem za klimatizaciju. SloZenost sistema za
klimatizaciju zavisi od slozenosti samog objekta. Sistem za
klimatizaciju je ozbiljan energetski potroSac, i iziskuje
troskove koji nisu zanemarljivi. Iz ovih razloga potrebno je
konstatno raditi na unapredivanju efikasnosti sistema za
klimatizaciju i izvlaciti maksimalnu ekonomicnost i
efikasnost iz njega [1]. U ovom radu opisani su dvocevni i
Cetvorocevni sistemi grejanja i hladenja pomocu ventilator
konvektora, kao i razlika izmedu ova dva sistema.

2. DVOCEVNI SISTEMI

Karakteristika dvocevnih sistema (slika 1.) jeste da tokom
cele godine kroz cevnu mrezu struji hladna ili topla voda,
dok se temperatura primarnog vazduha podeSava prema
uslovima spoljne temperature.

NAPOMENA:
Ovaj rad proistekao je iz master rada ¢iji mentor je bila
dr Masa Bukurov Nikoli¢, red. prof.

U toplijim krajevima u kojima viSe variraju letnja toplotna

optere¢enja (toplota od sunca, ljudi, uredaja...), nego
zimski toplotni gubici, kao §to je slu¢aj kod npr. savremene
kancelarije sa puno opreme, uvek se koristi hladna voda u
“sekundarnoj mrezi”. Pri najnizim spoljnim
temperaturama, npr. ako zimi ipak treba zagrevanje, to se
postiZe grejanjem vazduha u centralnoj klima-komori (a ne
vodom). U letnjem rezimu i vazduh i voda oduzimaju
toplotu prostoriji, jer su oba fluida na nizim temperaturama
od temperature prostorije. Hladan primarni vazduh
neutraliSe stalne i vremenski malo promenljive dobitke
toplote (transmisioni oblici), dok je kapacitet razmenjivaca
toplote (ispunjenog vodom) podeSen prema trenutnim
dobicima (suncevo zracenje, osvetljenje, ljudi). Primarni
fluid dvocevnog sistema se priprema kao u klasi¢nim
vazdusnim sistemima, pri ¢emu se vodi racuna da se
vazduh leti hladi u hladnjaku komore sa nizom
temperaturom vode, kako bi se jo§ tu dovoljno osusio. U
tom slucaju se za hladenje sekundarnog vazduha moze
koristiti viSa temperatura vode i tako postic¢i hladenje bez
izdvajanja vlage. U zimskom rezimu, kada je spoljna
temperatura ispod temperature povrSine hladnjaka,
hladnjak se moze koristiti i za pripremu vode razmenjivaca
toplote indukcionog aparata. Indukcioni uredaji
funkcionisu tako $to se vazduh iz prostorije indukuje kroz
reSetku na indukcionom uredaju, prolazi kroz izmenjivac
toplote, gde se prema potrebi greje ili hladi, a potom u
plenumskoj kutiji meSa sa pripremljenim svezim
vazduhom i zatim kroz linijske otvore koji se nalaze na dve
ili na sve Cetiri strane uredaja ubacuje u prostoriju [2].
Takav rezim rada je ekonomican, jer je priprema vode bez
potrosnje energije, a spoljni vazduh se u izvesnom stepenu
zagreva, §to smanjuje potrebno odavanje toplote grejaca u
klima komori [3].

3. CETVOROCEVNI SISTEMI

Cetvorocevni sistemi (slika 1.) spadaju u tzv. viSecevne
vazdusno vodene sisteme. Odlikuju se sa dve razvodne
cevne mreze za sekundarnu vodu, pa u svakom trenutku
postoji moguénost propustanja kroz indukcioni aparat, bilo
hladne ili tople vode. Prema tome, iako nemaju formalno
prebacivanje sa jednog rezima na drugi, po temperaturama
vazduha i vode potpuno odgovaraju dvocevnim sistemima.
Indukcioni aparat cCetvorocevnog sistema u svakom
trenutku moze da greje/hladi, ili hladi i greje istovremeno.
Indukcioni aparat c{etvorocevnog sistema ima dva
prikljucka za dovod i odvod tople vode, i dva za odvod i
dovod hladne vode. Pri tome indukcioni aparat moze da
poseduje jedan zajednicki razmenjivac za grejanje odnosno

1259

https://doi.org/10.24867/33AM04Milosevic

hladenje, ili, §to je najceséi slucaj, dva razmenjivada —
grejac i hladnjak. Ovakav sistem je svakako najpovoljniji
klimatizacioni sistem sa mogu¢nosc¢u trenutnog prelaska sa
hladenja na zagrevanje vazduha i obrnuto, Sto uti¢e na
potrebna visoka ulaganja. Cetvorocevni sistem je posebno
pogodan za zgradu sa prostorijama ¢iji se toplotni zahtevi
nesrazmerno menjaju i ne mogu da se grupisu u zone [4].

Kowtponia cofa Yyyrpawses npoctopwja Kostpanmacoba YHYTPawnea npocTopwja

H = m O

22°C 22°C

22°C
21°C
22°C
23°C
Slika 1. Dvocevni i Cetvorocevni sistem grejanja i
hladenja [5]

4. VENTILATOR-KONVEKTORI

Ventilator-konvektor (,,FCU”) je jednostavan izmenjivac
toplote koji koristi ventilator i zavojnicu za hladenje ili
zagrevanje vazduha u prostoriji bez upotrebe kanala.
,,FCU?” je jedan od komponenta ,,HVAC” sistema koji se
koriste u stambenim, komercijalnim i industrijskim
zgradama. Ventilator-konvektor obezbeduje brojne
prednosti u odnosu na konvencionalni sistem grejanja i
hladenja ukljucujuéi: poboljsanje kvaliteta vazduha,
beSuman rad, manje troSkove instalacije kao i bolju
energetsku efikasnost. Osigurava preciznu kontrolu
temperature u prostoriji i moze se koristiti za grejanje kao
i za hladenje [6].

Konstrukcija ventilator-konvektora

Struktura ventilator-konvektora (slika 2.) je u obliku kutije
poput peéi, a njegova unutrasnjost podseta na sace.
Ventilator-konvektor ima niz unutra$njih komponenti kao
$to su redovi spiralnih cevi, ventilator za dovod vazduha,
motor, filter, kondenzat posuda za odvod, kontrolni ventil
itd. Za poboljsanje kvaliteta vazduha u zatvorenom
prostoru, kao i za smanjenje troSkova odrZavanja veéina
ventilator-konvektora je opremljena filterom za vazduh.
Rashladno sredstvo, ohladena voda ili vruc¢a voda cirkulisu
kroz zavojnicu da ohlade ili zagreju vazduh. Neke jedinice
su opremljene elektricnim trakama za grejanje. Ventilator
izduvava klimatizovani vazduh iz sistema i nazad u
unutrasnji prostor. Ventilator-konvektori dolaze u tri
osnovne konfiguracije: horizontalni, vertikalni (vodeni
viSe u zidu) i grejaci jedinica nisko uzduz zida. Ventilator-
konvektor nudi kompaktan opseg od prve do Cetvrte brzine
izduvavanja ventilatora. Tipicna veli¢ina ventilator-
konvektora je 500 mm do 800 mm duzine, 500 mm do 2000
mm $§irine i 160 mm do 400 mm dubine [7].

miep pejarve/Xnahere
17 cnupane
Zills —
o —
N
A I
>4
Yeue "/ -
ceexer NN - —_
Basayxa D] —
181 18 B
e |
Q1]
5 KonTpone BptnoxkHu gudysop
Ol
I|||I I|T\|
o

Slika 2. Ventilator-konvektor [8]

Princip rada ventilator-konvektora

Ventilator duva preko redova spiralnih cevi kroz koje
prolazi rashladno sredstvo, rashladena voda ili topla voda.
U toj kombinaciji ventilator i spiralne cevi zajedno deluju
kao izmenjiva¢ toplote. Postoji prenos toplote izmedu
vazduha kome je vrela tecnost odala svoju toplotu na
rashladno sredstvo ili hladnu vodu koja deluje kao hladna
teCnost. Tokom hladenja vazduha toplota se prenosi sa
vazduha u rashladno sredstvo ili ohladenu vodu. Tokom
zagrevanja vazduha u prostoru topla voda koja te¢e unutar
spiralnih cevi ¢e delovati kao topla tecnost i prenositi
toplotu na vazduh koji je u tom slucaju hladan fluid, kada
recirkulacija zagreva prostor ili prostoriju. Hladenje ili
grejanje vazduha zavisi od Zeljene temperature u sobi.
Vazduh u prostoru iznova cirkuliSe za postizanje zeljenog
temperaturnog stanja prostorije. Motor instaliran u
ventilator-konvektor pokreée lopatice ventilatora da se
rotiraju, stvara dovoljnu zapreminu vazduha i prelazi preko
zavojnice gde teCe ohladena voda, po istom principu u
zimskoj sezoni topla voda teCe unutar spiralnih cevi
ventilator-konvektora i omoguéava prenos toplote iz
spiralnih cevi sa toplom vodom u vazduh koji struji preko
njih pa onda u samu prostoriju, i samim tim se prostorija
zagreva. U zavisnosti od zahtevane temperature prostora,
da 1i je potrebno hladenje ili grejanje, ohladena ili topla
voda automatski teCe kroz spiralne cevi ventilator-
konvektora. Termostat kontroliSe temperaturu prostorije ili
prostora i pokrece ventilator-konvektor za rad u rezimu
grejanja ili hladenja kontrolisanjem brzine ventilatora i
protoka tecnosti kroz spiralne cevi [9].

Tipovi ventilator-konvektora

Ventilator-konvektor je podeljen na osnovu instalacije i
rasporeda cevovoda.

Postoje razliéite vrste ,,FCU” zasnovane na instalaciji:
1. horizontalni ventilator-konvektor;

2. Vertikalni ventilator-konvektor;

3. Podni ventilator-konvektori;

4. Ventilator-konvektori montirani na zid.

Sva cetiri tipa ventilator-konvektora pruzaju isti nivo
performansi 1 isporuuju samo grejanje/hladenje ili
grejanje i hladenje.

Na osnovu rasporeda cevovoda ventilator-konvektor moze
biti podeljen na dva tipa:

1. Dvocevni ventilator-konvektor;

1260

2. Cetvorocevni ventilator-konvektor. [7]

Dvocevni ventilator-konvektor

Dvocevni ventilator-konvektor (s/ika 3.) je jedna zatvorena
petlja za napajanje i povrat sistema za distribuciju vode
koji opsluzuje svaku prostoriju u kojoj zgrada ima samo
jednu vodenu petlju. Time je grejanje ili hladenje dostupno
u zavisnosti od sezone. Dvocevni ventilator-konvektor
ima jedan kalem povezan sa dve cevi. Jedna cev je za potis
vode, a druga za povrat vode. Rashladena ili topla voda
protice kroz kalem, u zavisnosti od toga da li je potrebno
hladenje ili grejanje u zgradi. Protok kroz zavojnicu
kontrolise ventil na jednoj od cevi. Ventil se otvara i
zatvara u zavisnosti od potrebe za grejanjem ili hladenjem
u prostoru.

Glavna prednost upotrebe dvocevnih ventilator-
konvektora u ,,HVAC” sistemu je S§to su jeftinije za
instalaciju, potrebno je manje truda i materijala (cevi,
fitinzi, ventili, itd.) za ugradnju dvocevnog ventilator-
konvektora u poredenju sa cetvorocevnim ventilator-
konvektorom. [10]

Kanem 3a
xnahetve/rpejare BeHTUNATOP

e

BeHTun 3a xnagHy/Tonny CeHsop Temnepatype
Boay npebayusarba

Dduntep 3a Basgyx

_ [osop Basayxa

Ycuc Basayxa us VnROCTOnAlY

npocropuje

MNotucHe/nospatHe uesu
Tonne/xnaaHe soae

Slika 3. Dvocevni ventilator-konvektor [10]

Cetvorocevni ventilator-konvektor

Cetvorocevni ventilator-konvektor, (slika 4.) sastoji se od
dva odvojena kalema za grejanje za hladenje. Svaki kalem
ima svoje namenske setove cevi ukljucujuéi potisne i
povratne cevi i ventile. Ova vrsta ventilator-konvektora
moze istovremeno hladiti i grejati u zavisnosti od zahteva
stanova i lokala zgrade. Ventilator-konvektor sa Cetiri cevi
ima dva namotaja - zavojnicu za hladenje i zavojnicu za
grejanje. Svaki kalem je povezan sa dve cevi: jednom za
potis vode i drugom za povrat vode. I rashladni i grejni
kalemovi imaju svoje pojedinacne ventile, tako da postoje
odvojeni ventili za hladenje i grejanje. Ventil za hladenje
se otvara ako je potrebno hladenje u prostoru. Ventil za
grejanje se otvara ako je potrebno grejanje u prostoru.

Glavna prednost kori§¢enja cetvorocevnih ventilator-
konvektora u ,,HVAC” sistemu je to Sto su kalemovi za
hladenje 1 grejanje odvojeni jedan od drugog, Sto
omogucéava istovremeno grejanje 1 hladenje razlicitih
prostorija i lokala u celoj zgradi. [10]

Kanem3a Kanem 3a
xnahewe rpejare BeHTMNaTOp

Ycuc Basayxa us
npocrtopuje ¢ 4
BeHTun 3a xnagHy BeHTtun 3a
Boay Tonay sogy

Notuc/Nospar 3a
Tonny soay

®duntep 3a Basayx

JNosop Basayxa y
npocTtopujy

MNotuc/Nospar 3a
_ xnaany soay
Slika 4. Cetvorocevni ventilator-konvektor [10]

5. ZAKLJUCAK

Tema ovog rada je bila sumiranje prednosti, mana i
osnovnih razlika izmedju dvocevnog i cEetvorocevnog
sistema grejanja i hladjenja pomocu ventilator konvketora.
Glavna mana cetvorocevnog sistema su znatno skuplji
troSkovi u odnosu na dvocevni, ne zbog same cene
ventilator-konvektora jer ta razlika nije velika, nego zbog
same koli¢ine cevi kroz koje struji medijum od toplotne
pumpe pa do ventilator-konvektora. Glavna prednost
Cetvorocevnog sistema je komfor, jer je moguce
istovremeno grejanje i hladenje razli¢itih prostorija u
objektu, dok kod dvocevnog sistema postoji samo rezim
hladenja ili rezim grejanja. Iz ovoga vidimo da su ova dva
sistema gledano iz tehnickog apsekta potpuno ista, a da je
osnovna razlika u komforu koji nudi ¢etvorocevni sistem,
i u manjoj ceni dvocevnog sistema.

6. LITERATURA

[1] Vasi¢, Aleksandar, Seminarski rad GREJANIJE I
VENTILACIJA na temu SISTEMI ZA
KLIMATIZACIJU 1 VENTILACIJU, Kosovska
Mitrovica, 2017

[2]https://www.gradjevinarstvo.rs/tekstovi/9875/820/indu
kcioni-uredjaji-stede-energiju-i-obezbedjuju-komfor
[3] Tomoposuh, bpanucnas, Knumartuszanmja, Case3s
MAIIMHCKUX U €JIEKTPOTEXHUUKHUX HHKemepa Cpouje,
Beorpan, 1998. [5] Catherine Rivet, Hyewong Lee,
Alison Hirsch, Sharon Hamilton, Hang Lu,
Microfluidics for medical diagnostics and biosensors,

Elsiver Ltd., 2010.

[4] Kreider, J. A. Rabl — Hill, Heating and Cooling of
Buildings, McGraw ,New York, 1994.

[5] Maccarini, A. (2017). A two-pipe system for
simultaneous heating and cooling of office buildings:
Transferringheat among building rooms through a
room-temperature water loop. Aalborg
Universitetsforlag. Ph.d.-serien forDet Ingenier- og
Naturvidenskabelige Fakultet, Aalborg Universitet [8]
Gaozhe Cai, Li Xue, Huilin Zhang, Jianhan Lin, A
Review on Micromixers, Micromachines, 8, 2021.

[6] Saravanan D, A Study on Fan — Coil Unit, its types and
maintenance in HVAC System, Valivalam Desikar
Polytechnic Collage Nagapattinam, International
Research Journal of Engineering and Technology
(IRJET), 2019.

[7] Price, Mike, Fan — Coil Units, Charted Institution of
Building Services Engineers, 2008. [11] Clement
Kleinstreuer, Microfluidics and Nanofluidics: Theory
and Selected Applications, Wiley, 2013.

[8] https://www.cranefs.com/systems/fan-coil-units/

1261

https://www.gradjevinarstvo.rs/tekstovi/9875/820/indukcioni-uredjaji-stede-energiju-i-obezbedjuju-komfor
https://www.gradjevinarstvo.rs/tekstovi/9875/820/indukcioni-uredjaji-stede-energiju-i-obezbedjuju-komfor
https://www.cranefs.com/systems/fan-coil-units/

[9] Yunus, A. Cengel, Heat and mass transfer, 3rd edition
Tata Mcgraw — hill publishing company limited, New
Delhi.

[10] https://hvactrainingshop.com/how-a-fan-coil-unit-
works/

Kratka biografija:

Aleksa MiloSevi¢ roden je u Novom Sadu
= ! 2000. god. Diplomski rad na Fakultetu
tehnickih nauka iz oblasti Energetike i
procesne tehnike — Primer rekonstrukcije

| vrelovoda odbranio je 2023.god.
4 kontakt: acimilosevic@gmail.com

1262

https://hvactrainingshop.com/how-a-fan-coil-unit-works/
https://hvactrainingshop.com/how-a-fan-coil-unit-works/

Ei%%j Zbornik radova Fakulteta tehnickih nauka, Novi Sad

UDK: 697.1
DOI: https://doi.org/10.24867/33 AM05Simovic

PRAKTICNA PRIMENA “DUAL DUCT” SISTEMA KLIMA KOMORE SA
REKUPERACIJOM VAZDUHA

PRACTICAL APPLICATION OF THE ,,DUAL DUCT*“ AIR HANDLING UNIT
SYSTEM WITH AIR HEAT RECOVERY

Milos Simovié, Fakultet tehnickih nauka, Novi Sad

Oblast - MASINSTVO

Kratak sadrzaj — U radu je prikazana analiza sistema
klimatizacije, grejanja i hladenja administrativnog
prostora u sklopu poslovnog objekta. Sistem je baziran na
primeni toplotne pumpe i klima komore sa dvokanalnom
(Dual Duct) distribucijom vazduha. Uradeni su proracuni
toplotnih gubitaka i dobitaka i odredene potrebne kolicine
svezeg i recirkulisanog vazduha. Analizirani su uticaji
razlicitih parametara (odnos svezeg i recirkulisanog
vazduha, odnos vazduha iz toplog i hladnog vazdusnog
kanala) na rad sistema, kao i energetska efikasnost i
komfor korisnika.

Kljuéne re€i: grejanje, klimatizacija, administrativni
prostor, proracun.

Abstract — The paper presents an analysis of the air —
conditioning, heating and cooling system of an
administrative space within a comercial building. The
system is based on the application of a heat pump and an
air — handling unit with dual — duct air distribution. Design
calculations of heat losses and gains were carried out, and
the required amounts of fresh and recirculated air were
determined. The impacts of various parameters (the ratio
of fresh to recirculated air and the ratio of warm to cold
air streams) on system operation, as well as energy
efficiency and user comfort, were analyzed.

Key words: heating, air conditioning, administrative
space, design calculation..

1. UVOD

Savremeni sistemi klimatizacije, grejanja i hladenja moraju
istovremeno da obezbede funkionalnost, energetsku
efikasnost i visok nivo komfora. Jedno od resenja koja
omogucavaju takvu ravnotezu je primena toplotne pumpe
u kombinaciji sa klima komorom i Dual Duct distribucijom
vazduha. Dual Duct koncept obezbeduje vecu fleksibilnost
u regulisanju parametara unutra$njeg vazduha, $to je
posebno znaéajno u prostorijama razli¢itih namena. Cilj
ovog rada je da se prikaze praktiCna primena takvog
sistema u konkretnom objektu. Rad obuhvata analizu
proracunskih parametara, kao 1 ocenu energetske
efikasnosti i nivoa komfora koji ovaj sistem obezbeduje.

NAPOMENA:
Ovaj rad proistekao je iz master rada ¢iji mentor je bio
dr Aleksandar Andelkovi¢, vanred. prof.

b WenycHa knanka

””h” Knanra nosparror

) = - | easaya

= aana I Kanansaxnana

‘ eP'ﬂl Ay
|| > [Fpejua Han 33

[6arep nao Basayx

Knanwa cnomatireer

Ba3Ayxa Pervnampn

= J Aosoprin u;Ayx I

: Cenzopu
fewajyha kytuja
npuTHCKa
ABOKAHANHOT CHCTEMa

WS Mosparn sasgyx |

Slika 1. Sema “Dual Duct” sistema [1]

2. TEHNICKI OPIS SISTEMA

Sistem klimatizacije, grejanja i hladenja administrativnog
prostora zasnovan je na primeni 4-cevne toplotne pumpe
kao primarnog izvora energije i klima komore sa
dvokanalnim (Dual Duct) razvodenjem vazduha. Na strani
rashladnog 1 grejnog medijuma, za transport toplotne
energije koriste se cirkulacione pumpe, dok se distribucija
u prostoru realizuje preko vrtloznih difuzora. Klima
komora je projektovana kao centralni element sistema, sa
modulom za meSanje svezeg i recirkulisanog vazduha, kao
i sa toplim i hladnim kanalom. U letnjem rezimu, komora
obezbeduje hladenje i odvlazivanje vazduha, dok je u
zimskom rezimu zaduzena za grejanje i ovlazivanje. Da bi
se obezbedilo fino podesavanje temperature, svaka
prostorija ima lokalnu kontrolu i merenja unutrasnje
temperature. VAV kutija dalje otvara ili zatvara klapne na
toplom ili hladnom vazduhu i tako reguliSe temperaturu
smese.

Tabela 1. Bilans instalisanih toplotnih kapaciteta

lzvor Grejanje(- | Hladenje
5°C) (kW) | (kW)

4-cevna toplotna | 73,6 102,8

pumpa

vazduh/voda

1263

https://doi.org/10.24867/33AM05Simovic

3. NUMERICKA DOKUMENTACIJA

Proracunom toplotnih gubitaka dobijena je vrednost od
oko 30kW, dok su toplotni dobici u letnjem periodu iznosili
oko 50kW. Ove vrednosti su bile osnova za
dimenzionisanje opreme, posebno toplotne pumpe i klima
komore. Na osnovu toplotnih opterec¢enja odredene su i

Tabela 4. Proracun vazdusnog kanala do najudaljenijeg
difuzora

PRORACUN VAZDUSNOG KANALA DO NAIUDALIENUEG DIFUZORA

Gubitak pritiska
Deonica | Kolicina vazduha anal tzkpr Gubitak pritska usled mesnih otpora
used treja Bz
L \ \ a b D Dh F v R Rl I3 1
m | mh | mys |om | om | om | mm | m | mfs | pefm | Pe opis Tooj[72 | 7

112 3 4 5 6 7 § El 10 11 1 13 [) 15 16
KANALIZA UBACIVANJE VAZDUHA

VN v . . . 1[14.00 | 9980 277 [1250 | 600 - 811 {0750 | 370 | 016 | 221 - 00 221
potrebne koli¢ine svezeg 1 remrkuhsanog vazduha. 2[310 | 9640 | 268 |1250 | 600 - |81 |0750 | 357 | 045 | 046 - 00 | 046
. . . r 31064 | 9120 253 [1250 | 600 - 811 {0750 | 338 | 013 | 009 - 0.0 0.09
USVO.] eni parametrl Omogucavaju Stabllan rad SIStema 1u 41180 | 8120 226 (1250 | 600 - 811 10750 | 301 [041 | 020 - 00 020
uSlOVIma pI‘Ofl’lCHlleOg Optereéenja 51390 | 1460 041 {350 | 300 - 323 0105 | 386 | 051 [72 racva ubod 060 | 55 126
" 6600 | 920 026 | 250 | 250 250 {0063 | 409 | 078 | 47 kolenosredukcija 090 | 92 138
. .. 71100 [450 | 013 - [0 | - Joows [260 [o35 | o3 raéva 120 50 [53
Tabela 2. Kolicine vazduha po prostorijama W
— - Bp=LIxERAZ= 382
Kolig¢ine vazduha po prostorijama PV ventilresetia 50
Koli¢ina vazduha 2PPklapne 100
Ihp= 532
CBex Bazayx
E Proratun Tzabrano " Prora¢unom cevne mreze smo takode dobili i padove
g T .. v
Prostarifa : 2 B pritisaka u rezimima grejanja i hladenja u cevovodima
& g = = 3 £ v
f 8 |5 |§ | ¢ : izmedu toplotne pumpe i klima komore, koji za rezim
8 - N I - : grejanja sa uzetom rezervom iznose 50kPa, dok za rezim
] K| L
—_— T T ety o hladenja iznose 60kPa.
Tabela 5. Proracun cirkulacione pumpe u reZimu grejanja
1 611 KANCELARIJA - 95 800 240 30 40 324 740
2 | 610 KANCELARIA— 96 5440 1950 | 35 a0 | 2192 5000 Instalisana snaga: Qvlz 83.000,0 [W]
3 612 SALA ZA SASTANKE - 97 920 300 33 40 364 840 ’
a4 491 STEPENISTE — 98
5 HODNIK — 93
6 | 445 SVLACIONICA — 100 540 240 44 40 220 420* Temperatu rau
7 | 445eTUS—101 60* t= 55,0 [OC]
5 | aseTU3-102 ast polaznom vodu:
9 | 4450 TUS-103 A5*
10 | 445a TOALET — 104 580*
11 | 443 SASTANCI — 105 580 270 46 40 236 580
12 | 613 SALA ZA SASTANKE — 106 420 270 64 40 168 420 Temperatura u —- o
13 | 615 TIM ZA PRODAIU — 107 520 270 53 40 204 470 tl’_ 49/0 [C]
14 | 613 SALA ZA SASTANKE — 108 170 50 35 20 o8 150 povratnom vodu:
15 615 SALA 7A SASTANKE — 109 170 60 35 40 68 150
16 | 616 IT SKLADISTE— 110 60
17 | 617 SKLADISTE KASE — 111 H . (o}
18 | 618 SALA ZA OPUSTANJE — 112 420 210 57 40 148 420 Srednja temperatura . tSI'_ 5210 [C]
9930 3810 3992 9930
Proracunima cevne i kanalske mreze dobili smo potrebne Specifi¢na toplota = | 4177 | [ki/keK]
dimenzije cevovoda koje prenose toplotnu energije od vode: ’
toplotne pumpe i toplotne podstanice do klima komore i
dimenzije kanala kojim se distribuira vazduh iz klima Gustina vode: rs= 999 9 [kg/m?]
.. * 7
komore do prostorija.

Tabela 3. Proracun cevne mreze od toplotne pumpe do
klima komore u rezimu grejanja

PRORACUN CEVNE MREZE - TOPLOTNA PUMPA - KLIMA KOMORA GREJANJE §-12
ITemperatura u polaznom vodu t= 550)
ITemperatura u povratnom vodu: t= 40 rc)
ISpecificna gustina vode cpi= 4181 [k/kgK]
Gustina vode: n= 9682 [kg/m’|
Kinematska viskoznost: n= 365607 [m?s)
Hrapavost cev e= 00450 [mm]
1z plana mreze
8 |Kolicina | Maseni %? Dutina | Precnik P&:é“;“k 32:;": 8 Rejnolds | Jediniéni pod K‘Z:’ Lokalni |,
§ | foplote | protok | '§ % |deonice |deonice geonice |strujonia ov broj prifiska PR ora | 0P | ortiska
g Q G | 58| 1! D o Re R s 1
o 2e du v 1€
5
w kg/h mm m mm m m/s Pa/m Pa Pa Pa
Strujni krug naj ijeg grejnog fela
Cirkulacioni krug najudaljenijeg grejnog tela
1 [83000 [12301.14] 53.8692] 13 [DN&s [00703] 088 | 1.50 [169639[109219 [14198 20 [751087] 89307
8930.71
1 ‘Pud prifiska U VENTILIMA 6000.0
2 \Pudpriﬁskunaumenjivuéuk(30000.0
34000.00
Naa npvmeka: [o) | a0

G\,]:M: 11,92m/h3 (1)
¢, 1000- (1,1

Za rezim grejanja odredili smo protok vode od G, =
11,92 m/h3

Na osnovu protoka vode i izraCunatog pada pritiska
dimenzioniSemo cirkulacionu pumpu za rezim grejanja i
usvajamo pumpu MAGNA3 40 — 120 F sa slede¢im
karakteristikama:

— Protok: 11,92 m*h
— Napor: 50 kPa
— Frekvencija: 50 Hz
— Napon: 230V

1264

Dijagram usvojene cirkulacione pumpe [2] je dat na slici
ispod.

\ VA W1, U £ | 9

IR EEEEE]

EEEIEEE IR

1 mctorsfa comveter| = 2 W

Istim postupkom smo dimenzionisali i cirkulacionu pumpu
za rezim hladenja i usvojili pumpu MAGNA3 50 — 120 F.

4. GRAFICKA DOKUMENTACIJA

1000 | 1000

8 &
= Eizmpiy

8 | T2 micety %:,,E,?‘

B

~ i R4 ;
[5= = = s===ili=:T[- 1

< [7 [ik [E1] ©

— 2 e =

| u E 1 1 g [] r‘ﬂﬁ:Jé

s s s o b
feemturced ot il g ———
—I I e T e I I

Slika 3. Administrativni deo sa projektovanim KGH
sistemom — 2. deo

|
- ‘
omzl) —
N = =
I | o1) -a \.. n J e
i P0Z 09 |
u L =
] LD @ =]| i
50 mih) ;%h L
m BPQZ09 3475
u = v]
B s =
- . ;
BB wona | —{—| 0o |- 8
u = 2
i N g o 45{}
- f03) | il
b Y ~ o
s . 53 - E
n ! i ?:i;ﬁgg e
ke ==:)
ey !
[T T | [foekd ‘ T\ T
=1 7z,
= pe - =
B i — -
| TS i .
— f S -
F ! . e
q, T s
- B [5-12 supply ol !
= - = ptd N wred
5 11] o e ”
ZF i = o Dl
AN ERNT 5
T M — e
R e 4 = T
57 =
— ol ‘l 4 1000 1000 @
it o — T 5 E,
ool | F P ol & ol
s g 8 X L eed
| 36 =1 g o s
T 1400 L8
e o
c@onrn
i 8l gl 4
: TZapE]
1736 1964 -2} oo -
e g g o HEE (g
i o &
b POZ 1 3 ‘ =
T _J@ E=
1 K|
T =
by a
i
e H
@ o
..ﬁq I
1 i 1
\ \

Slika 2. Administrativni deo sa projektovanim KGH
sistemom — 1. deo

Slika 4. Administrativni deo sa projektovanim KGH
sistemom — 3. deo

5. ANALIZA ODNOSA SVEZEG I
RECIRKULISANOG VAZDUHA

Analizirani su sledeci scenariji:

e Scenario A: 30% OA (spoljasnji vazduh) / 70%
PA (recirkulisani vazduh)

e Scenario B: 40% OA / 60% PA (projekat)

e Scenario C: 60% OA /40% PA.

1265

Temperatura mesavine:

— Moa*Toa+MRrA*TRA (2)

T .
mix
moa + MRy

e Scenario A:

_0334+0,7+26

— o
Tix = YT 28,4°C
e Scenario B:
_ 04+34+06226 _ o
Tonix = Toatos 29,2°C
e Scenario C:
_ 0634404026 _ o
Tix = Tostor 30,8°C
Opterecenje hladnjaka:
Rashladno opterecenje proporcionalno raste sa

povecanjem T,,;,. U odnosu na scenario B (projektni),
scenario A smanjuje opterecenje za oko 7.5%, dok scenario
C povecava opterecenje za oko 15%.

Koncentracija COz:

G

= Cour + —
out QDA

3)

CZOTLE

Pretpostavljeno: spoljasnji CO2 = 420 ppm, broj ljudi = 50,
emisija G = 18 I/h po osobi — ukupno G =900 1/h.

e Scenario A:

Crone = 420 + 106 ~ 720 ppm

2.994.000

e Scenario B:

Crone = 420 + *10°% =~ 645 ppm

3.992.000
e Scenario C:
900
Crone = 420+ o 10° ~ 570 ppm

Rezultati pokazuju tipican kompromis izmedu energetske
efikasnosti i1 kvaliteta unutrasnjeg vazduha. Kod odnosa
30% OA energetsko opterecenje je znacajno smanjeno, ali
kvalitet vazduha nije na zavidnom nivou. Kod 60% OA
kvalitet vazduha je odlican (ispod 600 ppm), ali
opterecenje rashladnog sistema raste za oko 15%.
Optimalan odnos za posmatrani objekat je oko 40% OA,
¢ime se postize balans izmedu energetske efikasnosti i
kvaliteta unutrasnjeg vazduha.

Dijagram relativne promene rashladnog opterecenja u
zavisnosti od udela sveZeg vazduha

-
]

"
=)

w

=)

Promena rashladnog opterecenja [%]
|
i

30 35 40 45 50 55 60
Udeo sveZeg vazduha [%]

Dijagram koncentracije CO, u zavisnosti od udela svezeg
vazduha

Koncentracija CO: [ppm]
[-3J o o o
o) N b o
© © © ©

v
@
=]

30 35 40 45 50 55 5766k
Udeo spoljadnjeg vazduha [%)]

6. ZAKLJUCAK

Na osnovu izvrSene analize moze se zakljuCiti da
predlozeno reSenje predstavlja pouzdan, energetski
efikasan i komforan sistem klimatizacije, koji odgovara
savremenim standardima i propisima. Rad pokazuje da je
integracija toplotne pumpe sa dvokanalnom klima
komorom dobro reSenje za objekte sa promenljivim
optere¢enjima, a dobijeni rezultati mogu posluziti kao
osnova za dalje unapredenje i primenu sli¢nih sistema u
praksi.

7. LITERATURA

[1] MEPAcademy - dostupno na:
https://mepacademy.com/dual-duct-system/

[2] Grundfos.com -
https://www.grundfos.com/rs

dostupno na:

Kratka biografija:

Milos Simovié, roden je u Subotici
2001. godine. Zavrsio je gimnaziju u
Backoj Topoli, nakon ¢ega 2019.
god. upisuje Fakultet tehnickih nauka
u oblasti Masinstvo — Energetika i
procesna tehnika. Bachelor rad
odbranio je 2023. god.

Kontakt:
milossimovic2001@gmail.com

1266

https://mepacademy.com/dual-duct-system/
https://www.grundfos.com/rs

HIE

4

36o0pHUuK papoBa PakynTteTa TeXHUUKMX Hayka, Hoeu Cap

YIK: 629
DOI: https://doi.org/10.24867/33AMO06Vujkovic

YTUIAJ CUCTEMA 3A KIMMATU3ALIAJY HA ITIOTPOLIBY I'OPUBA Y
IIYTHUYKOM AYTOMOBNJ1Y

THE IMPACT OF THE AIR CONDITIONING SYSTEM ON FUEL CONSUMPTION IN A
PASSENGER CAR

Munowr Byjkosuh, paran Pyxuh, @akyrmem mexuuuxux nayka, Hoeu Cao

Oogact — MAILIMHCTBO

Kpartak caap:kaj: [ToTpourma eHepruje/ropusa je 00act
Ko0ja ce yHarpeljyje oIl Kako Cy ce 1ojaBuia Bo3uia, O1io
na je ped o Boswiuma ca MotopoM CYC, XHOpHIHUM KK
€JIEKTPUYHUM BO3WIMMa. Y OBOM pajy Ouhe mpukazaH
yTUILIAj paga CUcTeMa 3a KIMMATH3alHjy Ha MOTPOIIY
ropuBa u mopelerme MOTPOIIkEe TrOpuBa y [Ba pajHa
pexrMa Ha BO3WIY KOje je y eKCIUIoaTalldju AyKH HH3
TO/IMHA.

Kibyune peumn:
MHKPOKJIIMA

KmuMa-ypehaj, moTpormmma TopuBa,

Abstract: Energy/fuel consumption is an area that has
been continuously improved since the advent of vehicles,
whether they are powered by internal combustion engines,
hybrids, or electric drivetrains. This paper will present the
impact of air conditioning system operation on fuel
consumption, as well as a comparison of fuel consumption
in two operating modes on a vehicle that has been in use
for an extended period of time.

Key words: Air-conditioning system, fuel consumption,
microclimate

1. YBOJ

Kmuma-ypehaj je meo cucrema BI'X (BenTmmammja,
rpejame, xmahjeme), KOjH MPBEHCTBEHO CIYXH Ja
HOPMaJIi3yje MUKPOKIMMATCKE YCIIOBE y JICTHHbHM JaHHMa,
Tj. Aa pacxyiaau kabuHy Bo3wia. O] Kako je moveo aa ce
yrpahyje y Bo3mia, KiuMma-ypehaj u reHepaHO CUCTEM 3a
BeHTUIAIM]y, Tpejatbe u xiahewe (BI'X) ce cramHo
yHanpehyje y Uupy NO0OJBIIAEka MUKPOKITUMATCKHAX
yCJIOBa y KaOWHU BO3IJIA M CMAbEHbY MOTPOIIELE CHEPTHje
Ha paj cucrteMma. [lo3HaTo je 1a je kmma-ypehaj jeman of
HajBehux eKCTepHHMX NOTpollaya eHepruje (ropusa) y
ayTomobOmiy. IIponemyje ce na je moTpolimka ropuBa y
ciry4ajy Kaja je knuma-ypehaj ykibydeH, Beha 3a oko 20%
HETO y Clly4ajy KaJa je HCKIJbY4eH.

VY nHacraBky he OMTH mprKa3aHa CTBapHA pa3liMKa W KOjU
pPagHU PEXKHM je MOBOJBHUJH ca aclieKTa IIOTPOLIEbE
TOpUBa.

HAITIOMEHA: OBaj paj je npoucTekao u3 Mmacrep
pana unju MeHTOp je 6uo ap JAparan Pyxuh, penroBan

npodgecop.

2. TEOPHJCKE OCHOBE

OTnopu kperama Urpajy KJbydHy YIOTY Y Y3Iy>KHOj
JIMHAMHIIM BO3MJIA, jep BO3WIIO MOXe Ja ce kpehe camo ako
je cuna Ha ToukoBuMa Beha on ykymHor otmnopa. ITocroje
Pa3IMuUTH TUIIOBH OTIOpa (KOTpJbama, YCIIOHA, Ba3lyxa,
WHEpIHje, OTIOP MPUKJBYYHOr BO3WiA), a Koju he ce
y3UMaTH y 003up 3aBHCH OJ YCJIOBA BOXIbE. Y IIPUMEpPY U3
OBOT pajia, aHAIW3Mpa CE KpEeTame BO3MWIA MO PABHOM
acganty, KOHCTAaHTHOM Op3WHOM M 0€3 TPHUKIBYIHOT
BO3MIIA, 1A C€ HE pa3MaTpajy OTIIOPH YCIIOHA, HHEPLHje U
MPUKJBYIHOT Bo3mia [1].

IMoTpomma ropuBa 3aBHUCH 0] CHare IoTpedHe 1a BO3MIIO
caBIaja OTIOPE KpeTama pH oapehenoj Op3unan. Ta cHara
ce moOuja U3 eHepruje ropuBa, Koja ce y MOTOpY IpeTBapa
y MexaHu4Ky eHeprujy. [loTporima 3aBHCH 0]l yKyIHE
eHepruje MNOoTpeOHEe 3a KpeTame, ald M OX OpOjHUX
KOHCTPYKTHUBHHX, €KCIUIOATAIIMOHUX (paKTOpa M T0JaTHUX
norpomaya (momyt kimma-ypehaja). 300r cBUX THX
yTHIaja, MOTPOLIBY j€ TEIIKO HPENU3HO OAPEIUTH U
JIOOWTH NCTE BPETHOCTH TPH OHOBJLEHUM MepemnmMa. [1,
5].

MuKpoKIuMa y YHYTPAIllbOCTH BO3WIIA 3HAYAJHO yTHYE
Ha yZOOHOCT, paiHy CIIOCOOHOCT M 3[IpaBJbe IyTHHKA,
noceOHO Bo3ada. HeNmoBOJBHM YCIOBH MOTY CMamHTH
KOHIICHTPALjy W HW3a3BaTH e(eKTe CIMIHEe YyMOpPY HWIH
ynoTpebu ankoxomna. CUCTEMHU 32 BEHTHJIALIH]Y, TPejambe U
xnahemwe (BI'X) Tpolie 3HauajHy KOJMYHHY €HEPTHje, IITO
noceOHO yTHYe Ha JIOMET EJCKTPUYHUX BO3WIIA, jep ce
SHEpruja P TUPEKTHO U3 OaTepuje. 300r Tora je BaXKHO
cTayHO yHanpelhuBaTu oBe cucteme. [2, 3, 4].

Enextponcko mnpahame paga cucremMa Ha BO3WIY:
AyTOI1jarHOCTHUKHN CUCTEM KOjH Ce KOPUCTH y OBE CBpPXE
je OBD — On Board Diagnostics. On 90-ux romuHa
npouutor Beka 1o je OBD-II, npyra, HanpeaHuja Bep3nja
cucTeMa 3a npaliese paja, MpoBepy CTaTyca TPEIlKH U
BHUXO0BO OTKJIamambe. 38 KOMyHHUKALH]y A eJIEKTPOHCKHM
CHCTEMOM BO3MJIa KOPUCTE CE€ CTIOJbHE jeAUHHULIE (CKEHEPH,
J1jarHOCTHYKH CHCTEMH). OyHKIMOHAIHOCT
JIjarHocTHUkor ypehaja 3aBucu on mpuiaroheHocTH
MapKy W THITy BO3WJIA, PACIOJIOKMBOCTH oJrosapajyhux
NPOTOKOJIa Kao M O] aXypupaHocTh codrBepa u 0Oaze

1267

https://doi.org/10.24867/33AM06Vujkovic

noxaraka. Ilopact Opoja eNEKTPUYHHX YHPaBbAYKUX
JEAMHHIIA CTBOPHO je MOTpedy 32 MPEKHHUM CHCTEMOM Y
MOTOPHHAM BO3WJIMMa KOju he MMaru IOBOJFHO BEJIHKH
KarmauuTeT W Op3MHYy, CHOCOOHOCT paja y pealHoM
BpEMEHY, Kao M BUCOKY moy3maHoct. CAN — Controler
Area Network je ceprjcKu KOMYHUKAIIOHH IIPOTOKOJ KOjH
j€ TIPOjeKTOBAaH 3a MPUMEHY Y ayTOMOOWICKO] HHIYCTPH]jH,
W JaHac je JOMHHAHTaH MPOTOKON Y ayTOMOOWJIICKUM
MpEKHUM cuctemuma [2, 6, 7, 8].

3.IIOCTYHAK OJJPEBUBABA U PE3YJITATH
IMOTPOILIBLE 'OPUBA

Excniepumenr je Bpuien y okonuan Hosor Cana, TagHmje
Ha MpmoBaukoMm myTy (Pyror-Pymenka), Ha 1Be 1eoHUIIE,
nana 03.07.2025., ca nouetkom y 10:21 4. IlpBa neonuna
je ca HepaBHMM ac(anaToMm, JOK je Ipyra paBaH acgalir.
Mepeme je BpieHo y 00a cMepa Kako Ou ce MUHUMH3UPA0
yTHIaj BeTpa M Haruba MmyTa YKOJHKO Ioctoju. Bosmio
Peugeot 307 1.6HDi 80kW ce xpehe koHCTaHTHOM
op3unom ox 70 km/h y 4. u 5. cTeneHy MpeHOca Membayva,
ca YKJbYYCHHUM U UCKJbYUYCHHM KITHMa-ypehjajem.

Ompema Koja ce KOPUCTHIA 32 Mepeme H OeleKemne
nmapamerapa ox wWHTepeca je Bosch KTS 590
ayTOIUjarHOCTHYKH ypehaj Koju je Omo MoBe3aH IMPEKo
USB xabna Ha manron paudyHap. [lapameTpu on nHTepeca
cy: Opoj oOpraja moropa, Op3mHa KpeTama BO3WIIA,
KOJIMYMHA YOpU3raHor TropHBa, NpUTHCAK (iayuaa y
kiuMa-ypehajy, 10k cy 3a oapelhuBambe NOTPOIIkHE ropruBa
koputithene cieaehe Gopmyie:

- Yacorna notpomrma ropusa (1):

g [2] = el matmaracon

30-106 @
rae je
mgy[mg] = V,[mm3]-107%-p [k—g] - 106 - Maca
g g m3
yOpu3raHor ropusa.
- Tpenyrna norpomma ropusa (2):
. 4 ®
100km v[km/h]

ol -4

rie je
p = 820 [k—g] — T'yCTHHA IU3ell TOpUBa
m3

Pesynraru Mepema y 4. cTerieHy MpeHoca Cy MpUKa3aHu y
Tabenn 1 v Ha cimu 1:

Tabena 1. [lompowrea copusa y 4. cmeneny nperoca

4.00
E
S 3.50
=)
3,.3.00 s
o
2.50
0 10 20 30 40 50 60 70 80
Broj uzorka
———g_AC_ON g_AC_OFF

Cnuxka 1. Jujazpam mpenymne nompowrse 2opuea y 4.
cmeneny npeHoca

IToTpomma ropusa y 5. cTeneHy NnpeHoca, ca yKjby4eHUM
U MCKJbYYeHUM KinMa-ypehajem rprkasana je y tabemu 2
U Ha CIIHLH 2.

Tabena 2. [Tompowra copusa y 5. cmeneny nperHoca

g AC ON | g AC OFF Ag
[L/100km] | [L/100km] | [L/100km]
MIN 2,699 2,233 0,059
MAX 3,425 3,051 0,927
AVG 3,062 2,642 0,493
34
— 3.2
£30 ’_/f
<28 -
=
o 2.6
2.4
2.2
0 10 20 30 40 50 60 70 80
Broj uzorka
~———g_AC_ON g_AC_OFF

Crnuka 2. [{ujacpam mpenymue nompouirbe 20puea y 5.
cmeneny npeHoca

Crneneha Tabema (tabena 3) u cnuka 3 MOKa3yjy pa3iuKy
MoTpoIIke TopruBa u3Mely 4. u 5. cTerneHa npeHoca mpu
WCTOj OP3WHH KpeTama ca yKIbYUeHUM KinMa-ypehajem.

Tabena 3. [lompowirea 2opusa y 4. u 5. cmeneny nperoca

g 4 AC ON | g 5 AC ON | Ag AC ON
[L/100km] | [L/100km] [L/100km]
MIN 2,941 2,699 0,063
MAX 3,717 3,425 0,890
AVG 3,329 3,062 0,476

g AC_ON g AC_OFF Ag

[L/100kom] | [L/100kom] | [L/100kom]
MIN 2,941 2,565 0,039
MAX 3,717 3,508 0,922
AVG 3,329 3,036 0,368

1268

3.8
3.6
3.4
3.2
3.0
2.8
2.6
24

g [L/100km]

0 10 20 30 40 50 60

Broj uzorka

70 80

——g ACON 4 ——g AC_ON5

Cnuxka 3. [Jujacpam mpenymue nompoutrbe 2opusa y 4. u
5. cmeneny npenoca

O063mpoM Ja ce MPEHOCHH OJHOC KAWIITHOT IPEHOCHHKA
usMel)y koseHacror Bpartwia motopa CYC u Bparmia
KoMIIpecopa Kiuma-ypehaja Moke OXpPEeIUTH MPOCTHM
MepemeM KauIIHUKa, MOXKE Ce, Ha OCHOBH Opoja oOpTaja
KOJICHACTOT BpPaTHJIa ¥ IPEHOCHOT OJTHOCA, OJIPEITUTH OpOj
oOpraja KoMmIpecopa, a CaMHM THM U CIOJballlba
KapaKTepPUCTHUKa KOMITpecopa Ha JaTOM PEXUMY, ciuka 4
us.

[IpeyHnK KaWIIHUKA KOJIEHACTOT BpaTwia je 158 mm, mox
je TIpeyHuK KaummHuKa Komrpecopa 120 mm. Ha ocHOBY
OBHX NPEYHUKA, 1031 CE 10 MPEHOCHOT OAHOCA KaHIITHOT
npeHocHuKa (3):

o 120

[= kom = T 0,759 3)

ikol 15

Tab6ena 4. Padnu pescum komnpecopa

na n AC 4 n5 nAC5 | pIVAC | pVAC
[min] [min] [min™] [min™] [bar] [bar]
1767 2327 1413 1860 12,58 11,64
.y
e g M
b :
| 280 /., speci2
y ./ o 25
80 |
C.OP.
| 2.0
= AT
% 60
& 15
2 50 @
5 S
g &)
] Rashladna
540t snaga
3 4 1.0
& 28 F /
20 |
405
Utroena
+ snaga
0.0 L L L . a 0.0
1000 2000 2327 3000
Brzina kompresora [obrt/min]

Cnuka 4. Homunanna paosa mauxa y 4. cmeneny
npexoca

SD6C12

25

80 |
C.0.P.

18

60 |

Rashladna
41 snaga

Rashladna i utroSena snaga [kW]

UtroSena
F snaga

oo M 00
1000 1860 3000

Brzina kompresora [obr/min]

Cnuka 5. Homunanna paona mauxka y 5. cmenemy
npexoca

3.3AK/bYYAK

VY cnyuajy kopumhema kiuMa-ypehaja, moTporrma ropusa
ce nosehasa y npoceky oko 0,5 L na npehennx 100 km, 6e3
0031pa Ha TO Y KOjeM CTEIIeHY IPeHOca Ce Halla3d MEHad.
3a UCTH CTEMeH MPEeHOCca pasiinKa, y MPOIICHTHMA H3HOCH
8 — 18% kana ce riiena Mepeme ca u 0e3 kiuma-ypehaja.
To je ca acrmekTa eKOHOMHYHOCTH M JOMETa BO3WIA je
HETaTHUBHO, aJld Ca acCleKTa epProHOMHUje, Tj. TOILIOTHOT
koMmdopa y KaOMHU BO3UIIa j& HEOTIXO/IHO.

Crame ac¢ainTa, 0HOCHO ITyTa IO KojeM ce Kpehe Bo3uiio,
3Ha4YajHO yTHYE Ha MOTPOIIKY TopuBa, 6e3 003mpa na im
je xkimmMa-ypehaj ykspyden wim He. Ha HepaBHOj (Tp6aBoj)
MOAJIO3H, ¥Ma ciydajeBa Ja Cy HOTpOIIEka TOpHBa ca
YKJbYUYCHHM M HCK/byYCHMM KiuMa-ypehajem Beoma
OJsUcKe, YaK y HEKOJHMKO HaBpara IOTpPOIIkha ropuBa ca
UCKJby4eHHM KiuMa-ypehajem je Beha on motpouime ca
YKJbYUCHHM KiuMa-ypehajem.

IMpu Op3unm ox 70 km/h, eKOHOMHUYHMja BOXHa Ce
MOCTHXKE NPU KpeTamwy y 5. CTeNeHy npeHoca, Tj. Kajaa
motop CYC pamu Ha HWwkuM OpojeBnma obpraja (y 4.
CTeneHy MpeHoca Tpowu ce oko 21% Bulie ropusa y
omHocy Ha 5. cremeH). Ha ocCHOBY KapakTepHuCTHKE
KOMIIpecopa 3akJbydyje ce J1a Mamke CHepPrhje TPOIIN TPH
HIKM obprajuma (1413 obrt/min 'y omnocy Ha 1767
obrt/min KoIeHACTOT BpaTHIIa).

4. JUTEPATYPA

[1] Crojuh b.: ,Teopuja kperama APYMCKHX
Bo3mia®, @akynrter TexHUUKUX Hayka, HoBu Cax, 2014.
[2] Hymam A.: ,Teopujcke OCHOBE CHHUMAamba
Op3uHCKe KapaKTepUCTUKE MoOTOpa nomohy
qujarHoctHukor ypehaja“, murutomckn pazn, Pakynrer
TexHuukux Hayka, Hosu Can, 2014.

[3] Pyxuh /I.: ,EproHomuja mMoTOpHHX BO3WIA®,
®daxynrer TexHHUKUX Hayka, HoBu Cax, 2020.

[4] Pyxuh J[I.: ,,Ompema MOTOpHHX BO3WIA -
ckpunra“, @akynreT TexHUIKUX Hayka, Hosu Can, 2023.

1269

[5] https://x-engineer.org/real-world-fuel-

consumption/ (mpuctymbseHo aBryct 2025.)

[6] https://x-engineer.org/obd-system/
(mpuctymbeHo asryct 2025.)
[7] https://x-engineer.org/on-board-diagnostics-

obd-modes-operation-diagnostic-services/

(mpuctymbeHo aBryct 2025.)
[8] https://x-engineer.org/automotive-diagnostic-

standards/ (mpuctymbeHo aBryct 2025.)

Kpatka Ouorpaduja:

=\

Munomr Byjkosuh polen y
Manmy, 2000. ronuxe.
OcHoBHe aKasieMcKe
crynmje, 3aBpmmo 2023.
roguHe, Ha @DakynTery
TEXHHYKUX HayKa, I7e je
2025. rommHe ombOpaHHO
Mactep pax Hu3 o0iacTtd
MotopHa BO3WIa, CMEp
AyTOMOOHIICKO

UHKEHEPCTBO.

Hparan Pyxuh (1973)

JOKTOpHUPAo je Ha
®akynrery TEXHUYKUX
HayKa u3 obmactn

TOIUIOTHE €EpProOHOMHje Y
MOTOpHUM Bo3uianma 2013.
rog. 3amocieH je Ha
dakynrery TEeXHUYKHX
Hayka o 2000. rox., a ox
2024. rom. je y 3Bamy
penoBHOr mpodecopa Ha
Karenpu 3a wmortope u
BO3MJIA.

1270

https://x-engineer.org/real-world-fuel-consumption/
https://x-engineer.org/real-world-fuel-consumption/
https://x-engineer.org/obd-system/
https://x-engineer.org/on-board-diagnostics-obd-modes-operation-diagnostic-services/
https://x-engineer.org/on-board-diagnostics-obd-modes-operation-diagnostic-services/
https://x-engineer.org/automotive-diagnostic-standards/
https://x-engineer.org/automotive-diagnostic-standards/

/@qﬂﬂ“
2l

1

360pHUK papoBa Pakynrterta TeXHUUKUX Hayka, Hoeu Cap

UDK: 621.7
DOI: https://doi.org/10.24867/33AM07Zadric

METOIAE HH)XEILbEPCKE AHAJIM3E U CABEPEMEHUX TEXHHUKA
IMPOJEKTOBAIbLA HA ITPUMEPY PA3BOJA IIACUJE TPKAUYKOTI' BOJIMJA

METHODS OF ENGINEERING ANALYSIS AND MODERN DESIGNING TECHNIQUES
IN DEVELOPMENT OF A RACE CAR CHASSIS

Mapxko 3aapuh bapnaxk, [paran Xusauuh, @axyrimem mexnuuxux nayka, Hosu Cao

Ooaact - MAIIKHCTBO

Kparaxk cagpkaj — Unoicervepcka ananusa u cagpemene
mexHuKe Npojexmosarba npeocmasbajy enemMeHmapHe
aname Kojuma ce UHIICersepu MooepHe UHOYcmpuje
cnyoce y C6AKOOHEGHOM Npojexmosarsy. Y osom paody
buhe onucana meopujcka OCHO8A NOMEHYMUX Memood,
maxohe he Oumu nNpPUKA3AHA NPAKMUYHA NAPUMEHA
Memooa Ha npumepy paszeoja, NPojeKmosarsa U aHauuze
wacuje mpkauxkoe boauoa.

KibyuHe peum: npojexmosarve, undcerepcka ananusd,
paseoj, MKE

Abstract — Engineering analysis and modern designing
techniques represent essential tools that are used
everyday by engineers in the modern industry. This paper
will describe the theorethical basis of the mentioned
methods, it will also present the practical usage of the
methods on the example of development, designing and
analysis of a race car chassis.

Keywords: Design, engineering analysis, development,
FEA

1. YBOJ

HNuxewepcka aHajiuM3a Yy MalIMHCTBY IPEICTaBIba
(yHIAMEHTAHU anar 3a pa3yMeBame, MPOjeKTOBAkE U
ONTHMHU3AIM]y MeXaHW4YKHX cucrema. HHxkemepcka
aHaM3a nojpasymeBa CHUCTEMAaTCKH NPUCTYTI
MoJieTioBaby (M3MUKKMX TojaBa mnomMohy Kkopuiihema
CaBpEeMEHHNX HyMEPHUYKHX METO/a M CO(PTBEPCKUX ajara.
Ananuza omoryhaBa WHXemepuMa Ja [pEABHIC
MOHAIIalhe KOMIIOHEHTH M CHUCTEMa YCIEA PazIMYMTHX
ycioBa onrtepehema, Temmeparype W pexuma pajma. Y
OBOM pajy obpaljeHH Cy TEOPHjCKH OCHOBH MHXCH-EPCKE
aHaiM3e, BHEHE KJbyYyHEe METoJie Kao IITO Cy MeToja
koHaynux enemenara (MKE), wmeroma KoHayHHX
sanpemuHa (MK3) u ocramm anamutwaku npuctynu [1].
Takole, nerasbHO Cy pa3MOTpeHe MPUMEHE WHIKCH-EPCKE
aHaJM3e Y KOHCTPYKIMjaMa, IPEHOCY TOILIOTEe, TUHAMHIIN
cucTeMa W TPOTOKY (ayuaa, y3 CTyadje cCiydaja u3
mpakce.

HAIIOMEHA:
Ogaj paa je npoucrekao U3 MacTep paja 4uju MEHTOP
je 6mo np Aparan ’KuBanuh, penoBuu nmpodgecop.

2. TEOPUJCKE OCHOBE

OCHOBHHM KOHIENT METOJe KOHAuHHMX eJieMeHaTa ce
3aCHHMBa Ha MPETHOCTABLY JIa CE CJI0XEH KOHTYUHYaJIHU
CHUCTEM MOXXE aIlpPOKCUMHPATH AUCKPETHUM CKYIIOM
KOHAYHUX eJIeMeHaTa Koju cy MelycoOHO moBe3aHu y
ypopoBe [2]. CBaku e€JeMEHT ce TOoHala IpeMa
JneuHICaHNM 3aKOHMMa, Ha TpHMEp IpeMa XyKOBOM
3aKOHY 3a JIMHEapHO ejacTHyHe Matepujane. OcHoBa
MaTeMaTH4Ke (opMyIalHje moja3u o IugepeHIjaTHe
jeqHaYMHE pPAaBHOTEXE W NpUMEHYje C€ MPUHIHI
BUPTYENHOT paja WIM BAapHjallHOHM MPUCTYIIL
Huckpermzanmjom ce mobuja CHCTEM JHHEAPHUX MU
HEJIMHEapHUX are0apCKuX jeHAYMHA:

(K] {u} = {F} (1)
I'nme cy:
[K] — matpuna xpyTocTy;
{u} — BexTOp MOMepama;

{F} — BeKTOp cITOJbAIIBHX CHIIA.

Hup craTuyke aHadu3e je H3payyHABaWkE HaIOHA
uaeopmarija yHyTap KOHCTPYKIMOHOT — €JIeMEHTA.
YHyTpaurs HallOHU C€ Pa3BHjajy y TeNy HA HAYMH KOjU
00e30ehyje paBHOTEXXY YHyTap CBaKOT JAejia 3alpeMuHe,
TaKO Ja C€ MOXKC MPUMCHUTHU IMPUHIUIT PaBHOTEKE, KaKO
O0M ce W3padyHajc OBE BEJIHYMHE, OAHOCHO Ia je cyma
CBUX CHJIa KOje JIeNlyjy Ha OrpaHWueHy 3alpeMHHY Tela
jennaka wynau. OBakaB mpuHIOMI paaa omoryhyje Op3o
peleme Ha MpHUMepy jeAHOCTaBHE Ipele — y3 ToMoh
paBHOTeXXe cuima Moryhe je wW3paduyHaTH MOMEHT
CaBHjama M CHIIy CMHIama, a U3 Tora Jajbe M3pavyyHaTH
HOpMajlHEe M TaHTCHLMjalHe HamoHe. [IpuMeHOM
paBHOTe)ke Ha 2D obnmke padyH mocraje Texu, a 3a 3D
TeJa jOII CIOKCHHU]H.

MeTona KOHAYHHX eJieMeHATa MPHCTYIa pEIlaBamby
OBAaKBOM CJIO)KEHOM MpOOJIEMY TakKO MITO TEJO JIeNH Ha
Behu Opoj Manmx eleMeHata Koju cy MmehycoOHo
noBe3aHu 4BopoBuMa. OBakaB Tpolec ce Ha3uBa
JIMCKpETH3alMja, a CKyIl eJleMeHaTa 1 YBOpOBa ce Ha3MBa
Mpexka (mesh). Jluckpernsanyja je KOPHUCHA jep Y TOM
cilyuajy npolec pauyHa M3 3aKOHa paBHOTEXe Mopa OUTh
3aJI0BOJbCH CAMO HAJ KOHAYHUM OpojeM THCKPETHUX
elieMeHaTa, YMECTO HaJa LelnuM TeloM. Pesynrar
JOUCKpeTH3alldje je MOpPOCTOPHA MpeXa KOHAYHUX
eneMeHata y OOJHKy TeOMETpHje 3agaTor Moewa.
Kopucuuky je omoryheHo nma mpou3BOJBHO m3abepe

1271

https://doi.org/10.24867/33AM07Zadric

TYCTHHY MpeXe KOHAauHUX eJieMeHaTa Koja IMPEKTHO
3aBUCH OJ1 BEJIMUMHE KOHAYHOI' eJieMeHTa. bpoj koHauHuxX
eJleMeHaTa 3HAaTHO yTWYe Ha 3axTeBe NephopMaHcH
padyHapa ra Tako M Ha MOTpedaH BPEMEHCKH IEepPHO.
KOji padyHap H3HCKyje Kako OM JOIIao 10 pelrema
aHammze. Takolhe, ITO Cy KOHAYHH €JIEMEHTH Mamd U
BHUXO0Ba KONWYMHA Beha, To he BpemHOCTH pesyirara
aHanmu3e OWTH MPEeUN3HUjHU.

3. IOCTYHNAK MOJEJ/IMPAIbA U NPUIIPEME
MOJEJIA 3A AHAJIN3Y

Pauynapcku MOJP>KAHO MPOjEeKTOBAHE (CAD)
NPe/ICTaBJba MHXKEHEPCKU IMPOIEC Y KOMe ce MpodiIeMu
ca KojuMa ce HHXEmhepH cycpehy y peasrHoM cBery,
npeacraBibajy momohy rpaduukux H 3alPEMHHCKUX
TPOJMMEH3MOHATIHUX MOJieJla KOjH Cy NOOWjeHH IIyTeM
pauyHapa. [JoMeHyTHM MOCTYIIKOM Ce Kpeupa AUTHUTAIHH
OJM3aHal] MPOM3BOJA Yy pPavuyHAPCKOM OKpYXKEHwy Ha
KojeM je wmoryhe BpmmuTH Op3e H3MEHE, aHAH3e W
IpopadyHe, Ka0 M KpeHpame TeXHHYKE JOKyMEHTaluje.
[Ipormec reoMeTpujcKOr MOJENOBakba MIacHje 3armodeT je
nepuHUCAaeM KOOPAMHATHOT IIOYeTKa, duja X oca
IpeacTaB/ba HOAYKHY OCy, HOK Y 0ca MpeACTaBba Ocy
Opelme OCOBHMHE TpKaukor Oomuma. 3atuMm ce
neduHKMCcana paBaH Koja MpoJia3d KpPO3 MOMEHYTY OCy,
QM ¥ KpO3 BEPTUKAIHY Z OCy YMMe ce Jo0mia paBaH
Koja je kopumrheHa Kao HyJTa paBaH Mojena. HoBe paBan
Cy KpeupaHe MmoMohy KOMaHIE KOjoM ce Jc(HHUIIEe
OJICTOjarse OJ HYJITE paBHH, TIE Ce 3a IIOMEHYTY MEpHY
BEJIMYMHY yBEO TMapaMerap pagd JakKlie KacHHje
MIPOMEHE.

Crnenehn xopak y mapamMeTapcKOM MOJEIOBamy je OHio
nepuHHCae W TOBE3WBamke JAe(PUHUCAHMX TMapameTapa
ca MCPHUM BCIIMYMHAMa Kao HITO Cy AYKHWHE U YIJIOBH.
Hosu YBEACHU mNapaMeTpu, Cy 3aTuM MaTeMaTUYKOM
(dbopMysioM H3jeJJHAYEHH, a MOTOM Cy MM Je(hHUHHUCAHU
Ha3uBU mapameTapa. Ha ocHOBY kpeupaHe pedepeHTHE
MIPOCTOPHE TEOMETpPHUje, YBEIEHH Cy LEBHU NPOQHIN
CTaHJapIHUX BenuuuHa nomohy anmara Frame generator
[4] unme ce nmoOuja M3rien KOHAYHOT TPOIUMEH3HOHOT
MoJierna aHaJIM3UPAHOT TPOU3BO/A.

I'enepucame Mpexe OIHOCHO JIMCKpETH3aIMja
TPOAMMEH3MOHOT MOJella IIacHje Ha KOHA4YHH Opoj
eleMeHata u3BpmieHa je myteM wMonyida NASTRAN,
moMohy kojer je oMoryhieHO KOPHCHHKY J1a TIPOW3BOJEHO
uzabepe BEIMUMHY KOHAYHOT €JIeMEeHTa, KOoja JUPEKTHO
yTH4e Ha TMPEeUU3HOCT pe3ysTara CHMYyJaluje W
BPEMEHCKO Tpajame pauyHapcKe aHaiuse. 3aTuM Ccy
JneduHICaHN TPaHWYHU YCIIOBH y CKJIaJy ca CICHapHujeM
ontepehema. IlotTom cy Ha ocHoBy anamu3e Beh
mocrojehe wHayune unuteparype [5, 8-13] yBenmena
onrepehema. Bpennoctu onrepehema nodujena cy myrem
IpopadyHa KOjU KOPHCTH €JIEeMEHTapHE MEXaHWYKe
NPUHIHIIE jeHAYNHA PaBHOTEXKE.

[Ipopauyn je obyxBatmo cimy4ajeBe onTepehema koju ce
NOMHBY y TEXHHYKOM MPaBHJIHUKY CTYISHTCKOT
TakMuuewma Formula student [6]. AHamm3upaHu cy
cllyyajeBd MoOIyT onrepehema Iacuje TOP3HOHUM
MOMEHTOM Y TPEHYTKy Hamjacka TpKadkor Ooiauga Ha
U3004YMHY WK PyIy Yy MOMIO03U; ciydaj omnrepehema
MOMEHTOM CaBHjama yCJEJ CONCTBEHE CHJIE TEeXKHHE U

TEXMHE KOMOIIOHEHAaTa M CHCTeMa Ha BO3MIY, CIy4aj
yaapHor ontepehema mpelnmer Kpaja Oonuna; Ciydaj
yaapHor onrtepehema 6ouHe crpane 6onnaa.

[lomMeHnyTH cueHapuju cy wu3a0paHH 3a KpPHTHYHE
ClIy4ajeBe aHAM3e Ha OCHOBY CMEpHHUIA JePUHUCAHIM
TEXHWYKAM TPABHIHHUKOM TaKMHYCHa. Y TEXHUYKOM
MIPABUJIHHUKY HAjCTPOXHje Cy AcPHUHUCAHH 0e30eTHOCHH
YCIIOBH TpKadkor Oommma. CHTYPHOCT KOHCTPYKIHjE
JOKa3yje ce aHaJM30M BPEAHOCTH MaKCHMAaJHUX HalloHa
macuje y ciydajeBEMa yaapHOr ontepehema mpemmer
Kpaja Oonmaa W ynapHor onrepehema Oo4yHe cTpaHe
oomuma. Jlatw ciydajeBd onrepeliela HajTauyHH|e
npeasubajy MoryhHoOCcT IojaBe OTKa3a KOHCTPYKIIH]je
NPWINKOM CyJapa, IITO yrpoxkasa 0e30eTHOCT Bo3auda
oomuma. CnydajeBu onrtepehema IIacuje TOP3HOHHM
MOMEHTOM M MOMEHTOM CaBHjama YCJeI COICTBCHE
TEKMHE W TEKHHE KOMIIOHEHaTa BO3WIa, W3abpaHu Cy
Kako OW ce IpenBHIeNe TpKadke meppopMaHce BO3HIIA.
AHamm3oM [Ba TIIOMEHyTa ciy4aja omoryhaBa ce
U3padyHaBambe BPEJHOCTH YraoHe KpPYTOCTH Iacuje.
W3pagyHara BeJMYMHA JUPEKTHO yTHYE HA BEPTHKAIHY
KOMITOHEHTY CHJIE KOja ce I0jaBJbyje Ha TI0jeTUHAYHOM
TOYKY. MHOXEHEM BEpTHKaJHE KOMIIOHEHTE CHIe ca
KoeuIjeHTOM Tpema, Moryhe je u3pauyHaTH BPEIHOCT
npuamama naeymaruka. [loroM ce u3padyHare BeTHUUHE
KOpHUCTE y NpopadyHy Op3MHCKE KapaKTEpPHUCTHKE BO3MIIA
Koja npeasuha meppopmMaHce BO3WIA Y CIYYajy CKpeTamba
U Kouema, 6e3 moTpede a ce O0oNu TeCTHpa Ha CTas!.

4. PE3YJITATH AHAJIM3E
KOHAYHUX EJIEMEHATA

METO/IOM

3a moTtpebe mpopadyHa OBOT pajia YCBOjCH j€ MaTepHja
25CrMo4/1.728, mpoxpoMOBaHU YEIHK KOjU TOceayje
cieniehe MexaHHUKe KapaKTEPUCTHKE:

p=7860 kg/m? - rycruna,
6,=560 MPa - 3are3na uspcroha;

6y=450 MPa - HanoH Teuewa (MaKCHMaJIHH J03BOJECHU
HAIlOH OJHOCHO BPEJHOCT HANOHA TPH KO0jOj MaTepHjal
MOJIeXKE IUTACTUIHO] JeOpMAaITijm).

HaxoH u3BplIeHOT pauyHapCKOT MpopadyHa 3a MOMEHYTe
cnyuajese onrepeherma, Moryhe je aHanu3oMm pesynrara y
BUAY NpHUKasuBakba BPECAHOCTU MAKCHUMaJIHUX HaroHa U
nedopmanyja, 1ohu 10 NpeTUMHUHAPHHUX Ca3Hamba y BE3U
JIOKAIMje KOHIICHTPAIKje HAloHa Y KOHCTPYKIUju. Jla Ou
ce MOTBPJIMJIA TAYHOCT pe3yiTaTta, MOTPeOHO je moctuhin
KOHBEpreHINjy MaKCHMAaJIHHX HarmoHa. KoHBepreHuuja
NIpeACTaBba CIy4aj Yy KOME C€ pe3yJTaTd BpEIHOCTH
HallOHa JIBE Y3acTONHE WTepaldje CHMyJanuje He
pasnukyjy 3a Bume ox 5%. 300r HaBeAEHHX pa3Jora,
padyHapCcKe cHUMyJandje TOMEHyTHX omTepehema cy
MOHOBJbEHE Ca KOHAYHUM EIIEMEHTHMA Marhe BEINUUHE.

[Mpukasanu cy npumMepu ciydaja onrepehema MOMEHTOM
TOp3Wje U Cilydyaja yIapHoOr onrepeherma mpenmer Kpaja
macuje Tpkaykor oonuza. JloOujeHa BPeIHOCT HAIMOHA y
npBoj wurepauuju cumynanuje je 320.8 MPa, mox
u3padyHarta BpeIHOCT UCTE y Jpyroj HTepanuju
cumynanyje uzHocu 331.5 MPa. U3pauyHate BpeqHOCTH
KoHBeprupajy 1.65%, umme ce IoKasyje TayHOCT
cuUMyJlalyje, Te HeMa morpede 3a JajbiM yMarmbHBambEM
BEIMYMHE KOHAYHUX €JIeMEHaTa.

1272

Tabena 1: Bpeonocmu pesynmama cumynayuje

onmepehersa wacuje mop3uoHUM MOMEHMOM

Tabena 2: Bpeonocmu pesynmama cumynayuje yoapHoe

onmepeherba npedree Kpaja uiacuje

dusnyka BeJIMYNHA

Hanon

Hedopmanuja

dusnuyka BeJIMUNHA

Hanon

Hedopmanuja

[TpBa urepanuja

320.8 MPa

27.369 mm

[IpBa urepanuja

121.8 MPa

4.192 mm

Hpyra urepanuja

331.5 MPa

27.369 mm

Hpyra urepanuja

120.3 MPa

4.192 mm

3.35%

0%

1.23%

0%

KonBeprenmuja

Koneprenmnmja

o
s
B
|
B 20526
18.246
15965 /
s

wam —~—

12,54

< Min0.0

11408

oom CONTOUR: DISPLACEMENT (mem) (TOTAL)

i DEFORMED TOTAL: (MIN=0, MAX=27.3685)
OUTPUT SET: SUBCASE |

ANALYSIS: Analyss 1

Crnuka 1. Bpeonocmu depopmayuje opyze umepayuje
onmepelierva wacuje mop3uoHUM MOMEHMOM

Taxohe ce Moxe 3aK/byuuTH, Ha OCHOBY Hopehema
BPEHOCTH MAaKCHMaJHOT HaloHa KOjU C€ jaBjba Kao
pesyirar y ApYroj WTepaudju CHUMYyJaluje TOP3HOHOT
ornrepehema, a je CTENEH CHUTYpHOCTH 3alI0BOJBEH.
CreneH CHUTYpHOCTH 3a CIy4aj TOP3HOHOT omrepehema
H3HOCH:

c _ 460 MPa 138 @)
TeMeH CUTYPHOCTH = oooea e = 1.
JoOujena BpeAHOCT HaloOHAa Yy TIPBOj UTEpalUju

cUMyJalije yaapHor onrepehema nmpeamer kpaja oonuaa
je 121.8 MPa, ok je u3pauyHata BPpeIHOCT UCTE Y IPYTroj
utepaunju cumyianuje 120.3 MPa. U3pauynarte
BpeqHOCTH KOoHBeprupajy 1.23%, umme ce nokasyje
TAQuYHOCT CHUMyJIallMje, Te HeMa MoTpede 3a IajbuM
YMambHBakHEM BEJIMUMHE KOHAUHUX €JIeMEHATa.

@

wsa

16

e

w6611

w15
|
B o

56304

o122

st

nom

esom

s

s T
o \\’* > T
B s e N L

r Llel ey

30.460

25304

B 2007
1520
10153
so77
oo

Crnmka 2. Bpeonocmu nanona opyee umepayuje y0apHoz
onmepehersa npeorbe2 Kpaja

o SUBCASE 1
ANALYSIS: Anslyss 1

Hakon apyre umrepaunuje W moTBplleHE KOHBEpIeHIIH]e,
BpemHOCT HamoHa je ybadeHa y ¢opMydy 3a
u3padyHaBame CTeleHa CUTYpHOCTH TIpH YAapHOM
onrtepehemy npeamer Kpaja:

460 MPa

= — =3, 3
CTelneH CUTYPHOCTH 1503 MPa 3.8 3)

Hakxon aHanm3e HaBelleHUX CITydyajeBa 3aKJbYUEHO je Ja Cy
HajMame BpPEJHOCTH CTEIeHa CHI'YPHOCTH, KOjH HM3HOCE
1.22 u 1.38. To je youeHo kox ymapHor onrepchema
Ooune crtpaHe Oommma u omnrepehema TOP3HOHUM
MOMEHTOM. [10TOM je HM3BplIeHa ONTUMH3ALHWja AW3ajHA
macuje y cMepy oOjadaBarba KOHCTPYKIIHjE 32 HaBEICHE
cinydajeBe. Jlogati ¢y TOTHOPHH IEBHU MPOGUIA MamkbUX
IUMEH3Hja TOMPEYHOr Ipeceka, y BHIY IHjarOHATHHUX
ykpyhewa [7] wu3mely mocrojehux mpoduna y
KOHCTPYKIIH]jH.

ITlotom je padyyHapcka CHMyJanuja IIOHOBJbEHa ca
ONTHUMHU30BaHUM JIM33jHOM IlAcHje 3a CIly4aj YAapHOT
onrtepehema OouHe cTpaHe ImacHje TpKadkor OOIHIA.
JloObujena BpeaHOCT HallOHA Yy TIPBOj HTEpaluju
cumynanyje je 298.8 MPa, 1ok je u3pauyHara BpEeIHOCT
ucre y JIpyroj wurepanmju cumynanmje 316.6 MPa.
W3zpadynare BpeqHOCTH KOHBEpPTUpajy 5.95%, unme Huje
JTOKa3aHa Ta4yHOCT CHMYyJIaIlfje, Te MOCTOjH TOoTpeda 3a
JaJbM YMabHBabeM BEJIMUMHE KOHAUHHX eJIeMEeHATa.

= { A
e =7k
| DAY D
|

Cnuka 3. Bpeonocmu nanona mpehe umepayuje yoaproe
onmepehera boune cmpane wacuje

Jlobujena BpegHOCT HAmoHA Yy JpYyroj HTEpanuju
cumynanyje je 316.6 MPa, 1ok je u3pauyHara BpeIHOCT
ucre y tpehoj wrepammjm cumymnanuje 321.6 MPa.
W3pauynare BpeqHOCTH KOHBEprupajy 1.57%, nokasyjyhn
TaYHOCT CHUMyJanWje, Te HeMa NoTpede 3a JajbuM
yMambHBamkbeM BEeIMYMHE KOHAYHMX eJeMeHara. Hakon
tpehe utepaiyje U noTBpheHe KOHBEPreHIrje, BPeJHOCT
HAIlOHA Ce MOXE yOoauuTH y (GopMyiy 3a H3padyHaBambe

1273

CTeleHa CUTYPHOCTH TP YAapHOM onrtepehemy npeamer
Kpaja TpKadkor OoJuja:

C _ 460MPa o
TeMeH CUrypHOCTH = oo = 1.

Tabena 3: Bpeonocmu pesynmama cumynayuje yoapHoe
onmepeherna 60uHe cmpatre wiacuje

duznyka BeIUYuHA Harmon Hedopmanuja
[IpBa utepanmja 298.8 MPa 3.452 mm
Hpyra urepanmja 316.6 MPa 3.452 mm
Kongeprenuuja 5.95% 0%
Tpeha utepanuja 321.6 MPa 3.452 mm
Kongseprennuja 1.57% 0%
5. 3AKJbYYAK

3aKJbydeHo je J1a T0OMjeHH CTENeH CUTYPHOCTH 3a CIIy4aj
ymapHor onrtepehema Oo0dHEe CTpaHe ONTHMH30BAHE
macuje u3HOcH 1.43, umMe je CTemeH CHUTypHOCTH
moBehan 1o HuBoa 3ajoBosbaBajyhe BpemHocTH. Ha
OCHOBY JIOOMjEHHX pe3yJiTaTra, MOXKe Ce 3aKJbYUUTH Ja je
miacvja TPKayKor OONuAa ONTUMU30BaHA HA HCIPaBaH
HauuH. BpemHOCT MakcHManHOT HalloHa KOjU C€ jaBiba
Kao pe3yiTaT CHMYyJalje ce cMammia 3a 55.2 MPa, nok
ce BPEIHOCT CTereHa curypHocty rnosehaia 3a 14.5%.

Bepudukanmjy TauHocTH pesynrata Moryhe je
TIOTBPJUTH IyTEM HM3BOlEHha €KCIIEPUMEHTAIIHE aHAIIN3E.
HaxoHn mpojextoBama, NpONU3BOMbE, CIEIH MOCTABIbabE
MEpHHUX HMHCTpyMEHaTa y BHIY MEpHHX Tpaka. MepHe
Tpake TPEACTaBJbajy eNeMEHTEe KOjU Ha OCHOBY
MMAE30€TeKTPUIHOT eeKTa NeTeKTyjy IpPOMEHY
BPEIHOCTH OTIIOPHOCTH mpoBoaHuKa. [lotrom Ou ce
miacvja ONTepeTH/ia H3padyyHaTUM CcuiiamMa Koje Ccy
Jno0ujeHe Kpo3 MpopadyH. BpemHoCTH MakCHMalTHUX
HallOHa KOjM C€ I0jaBJbyjy Yy KOHCTpPyKIHju, moryhe je
M3padyHaTH Ha OCHOBY BPEAHOCTH M3MEPEHHX MoMepama
U TO3HaBamkba MOJyJa EJIacTHYHOCTH Marepujaja.
Honatan BuJ BepUdHKaIMje TAaYHOCTH JTOOMjEHUX
pesyJnraTa oriesia ce y MOoHaBJbakby HHKEHEPCKE aHAIHN3e
kopuinhemeM paznuauTux codreepa. KoHauna mposepa
HCIIPAaBHOCTH IIpaBla pa3Boja apXHTEKType BO3MIA
M3BpIIMIa OW ce TMOHABJbAKEM KOMITjyTEpPCKE aHaH3e U
MOCTYTKa MEpeha KOHCTPYKIIHje, KOja je Mpou3BeacHa 0O/
Japyror Martepujana. TakBUM HCTPaXHMBamEM JI0NIa3H ce
J0 mopehema BpETHOCTH MaKCUMallHUX HaloHa U
MEXaHMYKHX KapaKTePHCTHKA Pa3IMuUTHX Marepujaia y
3aBHCHOCTH OJ1 YKYITHE Mace KOHCTPYKIIHje.

[Ipumep pa3Boja W onTHUMHU3AIMjE MIACH]€ TPKAUYKOT
Oosmma TOKasyje TNpPHMEHY CaBPEMEHHMX TEXHHKA
MpojekToBama. To cy IapaMeTpu3alyja U MHXEHEepcKa
ananuza. [lomeHyTe JBE TEXHHKE Y MHOTOME KOpHCTE U
JONPHHOCE y TPOLECY pa3Boja IPOM3BONA, Y BHIY
yMamema IMOTpeOHOT BpeMeHa 3a pa3Boj W
AMIUIEMEHTAljy TpoMeHa y am3ajHy. Owmoryheno je
npensuhame MOHAIIAkba KOHCTPYKLMjEe IPHIMKOM
peaTHHX CiTy4ajeBa y eKCIUIOATALMjH, YUMe ce TOJa3H 10
BpeIHHUX HH(]OpMaLIKja U ca3Hamba.

6. JUTEPATYPA

[1] Joseph Edward Shigley, “Mechanical Engineering
Design®, 2020, ISBN 978-0-07-339821-1.

[2] Panomup Boxkuh, “Umxemepcka ananmusza“, 2021,
ckpurra, @akynrer Texumukux Hayka, Hou Can

[3] Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z., “The
Finite Element Method: Its Basis and Fundamentals ,
2013, Butterworth-Heinemann, ISBN 0-7506-6320-0.

[4] Hukona MnankoBuh, “CaBpeMeHe TeXHHUKE
MIPOjeKTOBamka TPAHCIIOPTHHUX crucTema™, 2023,
ckpunra, Pakynrer Texunukux Hayka, HoBu Can

[5] William B. Riley and Albert R. George, Cornell
University, “Design, Analysis and Testing of a
Formula SAE Car Chassis®, 2002, ISSN 0148-7191.

[6] Formula Society of Automotive Engineers, FSAE,
“Formula Student Rulebook®, 2025, Institution of
Mechanical Engineers.

[7] Carroll Smith, SAE/PT-90, Society of Automotive
Engineers, “Racing Chassis and Suspension Design®,
2004, ISBN 0-7680-1120-5.

[8] Krunal Kania, Aditya Verma, Rushang Babariya,
Jayendra Vasani, /RJET, “Design & Development of
Formula Student Chassis®, 2023, Vol. 10, ISSN:
2395-0056.

[9] Mohammed Tazeem Khan, /RJET, “Design &
Manufacturing of FSAE Chassis®, 2021, Vol. 3, e-
ISSN: 2582-5208.

[10] Felix Dionisius, Imam Nur Arif, Tito Endramawan,
Agus Sifa Badruzzama, “Material Selection and
Analysis of Torsional Rigidity in Formula Student
SAE regulation®, 2022, Vol 22., ISSN: 2549 — 9815.

[11] Sayed Zameer, Sayyed Affan Ali, Tambe Salman,
Kharbe Mohammad, /RJET, “Static Structural
Analysis of Chassis in Compliance with International
Rules of a Prototype Formula Styled Vehicle®, 2022,
Vol 9, e-ISSN: 2395-0056.

DOI: https://doi.org/10.24867/33AMO07Zadric

DOI: https://doi.org/10.24867/33AMO07Zadric

Kparka Onorpaduja:

Mapko 3anpuh Bapnak, poher y Cyb6otunn,
2000. roguae. OCHOBHE akageMCKe CTy/auje
3appmno 2023. roxune, Ha @akynrery
TeXHUYKHX Hayka, rae je 2025. roaune
on0paHMO MacTep pajg Ha KaTeApH 3a
KOHCTpYKIIMOHO MAIIMHCTBO, TPAHCIIOPTHE
CHCTEME U JIOTUCTHKY.

Jparan JKusammh pohern y Cpemckoj
Murposunn, 1972. Tomure. Jlokropupao je
Ha @akynTery TeXHMYKMX Hayka 2012.
lopuue. 3anocnen Ha ¢akyarety ox 1997.
lonune, wu3abpaH y 3Bambe BaHPEIHOT
npodpecopa 2019, a y 3Bame peIOBHOT
npoecopa uzadpas je 2024. I'ogune.

1274

https://doi.org/10.24867/33AM07Zadric
https://doi.org/10.24867/33AM07Zadric

%@1@ 360pHUK papoBa chakynTeTa TeXHUYKMX Hayka, Hoeu Cap

UDK: 621
DOI: https://doi.org/10.24867/33AM08Burlica

KOPUIT'REILE XTI'P HYKJIEAPHUX PEAKTOPA Y OKBUPY KOI'EHEPATUBHUX
CUCTEMA 3A TIPOU3BOABY EHEPI'NJE

UTILIZATION OF HTGR NUCLEAR REACTORS WITHIN COGENERATION
ENERGY SYSTEMS

Ucunopa bypnuna, @axyrmem mexnuukux nayka, Hosu Cao

O6aact - MAIIIMHCTBO

Kparak cagpxkaj — Macmep pao ce cacmoju uz mpu
BeNUKe Yelune: onuimez Y800a y HYKIeapHy eHepaujy u
HYKIieapHe peakmope, ynosnagarea ca X11'P peakmopuma
U FUXOBUM NPUHYUNOM Paod U NPUMEHU 08e MeXHOI02uje
y KO2eHepamusHumM mnocmpojerouma. Y npeoj yenunu
objawirbene cy HyKleapHe peakyuje, 0esl08U peakmopa, d
3amumM U Pe208 NPUHYUN paod U nooeid HyKleapHux
enexmpana. Jpyeu oeo ooyxeama onuc TPHUCO zopusa u
npunyun paoa XTI'P peaxmopa, ca noceOHum HA2n1ackom
Ha Oe3bedHOCm, Kako je mo jeOHa 00 e208UX
HajoumHnujux kapaxmepucmuka. Ilocnedrwa yeruna paoa
muue ce uumeepayuje XITI'P-a y KoceHepamusHe
eHepeemcKe cucmeme, y3 KpAmaxk 0C8pm HA eKOHOMCKe
acnekme 0ge mexHoozuje.

Kibyune peum: nykieapna enepruja, XTI'P peakrop,
KoreHepaTuBHa 1noctpojema, TPYCO ropuso.

Abstract — The Master’s thesis is structured into three
main sections: a general introduction to nuclear energy
and nuclear reactors, an overview of HTGR reactors and
their operating principles, and the application of this
technology in cogeneration plants. The first section
explains nuclear reactions, the components of a reactor, as
well as its operating principle and the classification of
nuclear power plants. The second section covers the
description of TRISO fuel and the operating principle of
HTGR reactors, with particular emphasis on safety, as it
represents one of their most important characteristics. The
final section of the thesis concerns the integration of
HTGRs into cogeneration energy systems, including a brief
consideration of the economic aspects of this technology.

Keywords: nuclear energy, HTGR reactor, cogenerative
plants, TRISO fuel

1. YBOJ

lacoBu craxiieHe OamiTe CBe BHINE YTPOXKAaBajy HAIITy
IIIaHeTy W 37[paBibe. Y IWJBY OrpPaHWYCHA MOpacra
riiobanne remnepatype Ha 1,5°C 1o Kpaja Beka, OJprKaH je
[Mapucku cnopazym, Mel)yHapoaHU YTOBOpP O KIIMMATCKHM
npoMeHama. Bepyje ce na HykJieapHa eHepruja Moxe

HATIOMEHA: OBaj paa npoucTeKao je u3 macrep
pana 4yuju je mentop 6uo Ap DBophuje donep, Baup.
npod.

UTPaTH BEJUKY YJIOTY Y HOCTH3aky OBOTI LHJba, 003UPOM
Ha BCHY NOY3HaHOCT M PaclpOCTPAmEHOCT TOPHUBA.
[Mocebny mnaxmy je 3amoomo XTI'P peakrop, koju
3axBaJbyjyhu BUCOKHM TeMmepaTypaMa pagHOT MeAHjyMa
Ha Kpajy Ipoleca, MOXe KOT€HEPAaTHBHO Jja Ce HICKOPHUCTH
3a jOII HEKW HWHAYCTPHUJCKH IMpoIleC, MOpea MpUMapHe
MIPOMU3BO/ILE EIEKTPUYHE EHEPTHje.

2. HYKJIEAPHA ®U3UKA

OcHOBHE HyKJeapHE peakiyje y Npupoau cy Qysuja u
¢ducuja. Dy3ujoMm ce JTaKIIa aTOMCKa je3rpa crajajy y jeaIHo
Texe Tpu demy ociobahajy eHeprujy, IOk je Qucuja
npolec Ienama HECTaOWIHOT je3rpa Ha [Ba, YUME ce
ocmobahla eHepruja Koja ce KOPUCTH Yy JaHAIIBAM
KOMEPITHjaTHUM PEaKTOpHUMa.

2.1. HykJsieapHu peakTop

HyxkeapHu peakTop je mocy/a moji MpUTUCKOM y K0joj ce
OJIBMja KOHTpOJIMCaHA JlaHYaHa peaknuja ¢ucuje [3].
HberoBu nenoBu cy TOPHBO, MOJAEpPATOp, YIpPaBJbauke
LIUMKe, cucTeM 3a xnaheme, peieKTop W 3allTHTHU
CHCTEM, a IPUKA3aHK Cy Ha cauyu 1:

>

KOHTDOIHE [IHIKe
. OHosIOIKa 3aImTHTA

3. szamTHTa

. MOJepaTop HeyTPOHa
5. HYKJIeapHO rOpHEO
NPEeEOoJHIAIl TOILIOTE

e p——
[+ w
O L da L) N

‘ ‘

Cauka 1. [Jenosu nyxneapnoz peaxmopa [1]

T

I'opuBo Mosxe na ce Halje y OOIMKY TOPHBHX IIUTIKH U Ka0
IUBYHKOBUTO TOpuBO. KoHTponHe mmmke omoryhaBajy
perynucame JaH4aHe peaknuje y BUAY ToBehama MiIu
cMamema crore ducuje. MogepaTope KOpUCTUMO Kako Ou
ycnopunu Op3e HeyTpoHe. Pedumekrop cimyxn na BpaTu
HEYTpOHE Ha3aJ y CpEOUIITe peakTopa M Tako Ja
uckopuctumo 1mro Behu Opoj HeyTpona. Rashladno
CPEACTBO, Tj. pagHu QIyua je MeIujyM KOjHu IpEeHOCH

1275

https://doi.org/10.24867/33AM08Burlica

TOILUIOTY M3 je3rpa peakropa Jo TypOuHe, a Takohe caMmum
THUM U XJIaJu peaktop. CBe OBE KOMIIOHEHTE Cy CMEIIITeHE
y PEaKTOPCKO]j MOCY/IH MO IPUTHCKOM.

[puHuuMn paga HyKiIeapHe elekTpane je cieaehu: y jearpy
ce onsuja mporec ¢ucuje. Kpo3 peakTop IUpKyIHUIIS
MEJIMjyM KOjH NPEHOCH TOILIOTY HACTAJTy LIeNameM je3rpa
atroma. PacxmasHO CpelncTBo y H3MEHHBady TOILUIOTE
WHIMPEKTHO 3arpeBa BOJy M IpeTBapa je y napy, 30or yera
ce OHO XJIaJ¥ M HACTaBJba Jia LUPKYJIHIIE KPO3 CHCTEM.
Hacrana Boziena nmapa ce 1oBosu 0 TypOuHe Kojy okpehe,
yuMe ce okpehie reHepaTop Koju MPOU3BOH eNEKTPUIHY
SHeprHjy.

[ocTroje weTnpu reHepanuje HyKJI€apHHX pEaKTopa, 01
KOjHX je cBaka HalpegHHja ol cBoje mperxonHe, a XTI'P
cmaga y uerBpry. Peaktopm ce Takohe Mory
KIIaCH(PHUKOBATH IIpeMa CHEPTHji HEYTPOHA KOjU N3a3HUBajy
¢ucnjy, rashladnom cpeacrsy, ynorpedu u dazu ropusa.

[MpusmatnyHn 1u3ajH W JAW33jH ca IIJbYHKOBUTHM
JISKUIITEM, Ce BUE Ha cauyu 2:

lopuBa wwnka TpaduTHM 6nok

TPNCO
Yectuya

lfopwsun nenet

peakTopu

LU/byHKOBMTO rOpUBC

Cauxa 2. Ilpusmamuunu Ousaju u ousaju ca
wwvynKosumum nexcuwmem [5]

3. XTI'P PEAKTOPH

Bucoko TemmnepaTypHu racom
xnahenn peakrop (XTIP) je
TEXHOJIOTHja HYKJIEapHOT
¢ucuoHOr peakTopa KOjU
KOPHCTH XeNUjyM 3a xiahewme u
rpagur 3a Monepaumjy [2].
lopuBo oBHX peakTopa je
cvemrreHo 'y TPUCO wectune
KOje ce cacToje ofn jesrpa
ypaHWjyMa, YIJbCHHKa U
KHCEOHHKa, a obijora ox Tpu
cloja Marepujaja Ha 0asu
KepaMuKe crpeuaBa
ocnobahame pagMoOaKTHBHHUX
mpousBona (ucuje BaH OBHX
rpanuna [2]. Omuc XTI'P
TexHoyoruje he ce ycBojutu on
mocrojeher XTP-10 xuHEcKor
peakropa (ciuka 3).

Jesrpo ce cactoju om 27.000
TOPUBHX eneMeHaTa u
OKpyXeHo je rpaduTHUM
pednexropuma (rope, noie 1 604HO) [2].

Cauka 3. XTP-10 [2]

Kananu 3a xJaaH XeNnujyMm Cy IMPOjEKTOBAHH YHYTap
OouHoOr pediexropa 1 Kpo3 BHUX Tac IyTyje Harope HakOH
mro yhe y mocyay moa MpUTHCKOM, a 3aTUM MY CE€ TOK
obOphe Ha BpXy jesrpa peakropa Kako OM CKpeHyoO Ka
JNEKUMTY OX Kyrimna (ropuBy). Hakon mto ce 3arpeje u
nolhe o momer Jena peakTopa, Ty yIIa3d y 1IeB 3a Bpyh rac
1 HOM TIyTYje 10 H3MemkHBada Toriore [2].

2.2 Be3oeanoct XTI'P-a

Hykneapue necpehe yrmaBHOM Hacrajy — 300r
3a0CTajie/oCTaTHe TOILIOTE paclafama IITO JOBOAU IO
TOIJBCHA je3rpa. Y KOHBEHIMOHAJTHUM pEaKTOpHMa,
onBoleme TOIIOTE Ce OJBHMja aKTMBHUM CHCTEMHMA 32
xnaljeme Kao IITO Cy MyMIle, JOK je pacxXiagHu (iIyua
BOJIa, KOjU HE MO>KE J1a BPIIH CBOjy yJIOTY YKOJIHKO Johe
J10 IPOMEHE WeHOT arperaTHor crama. Y XTI'P peakropy,
ocTaTHa TOILIOTa C€ OJBOIM IyTeM raca—Hajuemihe
Xenujyma, TJe 4ak M IIpU OTKa3y KOMIIpecopa, Xiaheme
peakropa he ce HacraBuTHM 3axBajbyjyhu NpHPOAHO]
KOHBEKLMjH. XeIMjyM He MOXKe Jla pearyje ca OpyruM
XEMHUJjCKHM elIeMEHTHMa, HHje 3alaJbuB M HE MOXe
MOCTAaTH PaJoaKTHBaH.

Tormmseme jesrpa Huje moryhe [3].
HajBuina remnepartypa Koja MOXe 11a ce TIOCTHTHE y je3rpy
peakropa (1600°C y eKCTpeMHHM YCIOBHMA) j€ HCIIOX

Omimo Koje Temmeparype TpH Kojoj OM ce TOpHBO
omreTnio, 3axBajsyjyhn TPMICO nu3ajay ropusa [3].

Yak 1 ako KOHTpOJIHE IIUTKe, arcopOyjyhe Kyriume nim
XeNHjyM OTKaxy, peakrtop he NpuUpOTHO 3ayCTaBUTH
¢ucujy n oxmamgmhe ce cam on cebe 300r HEraTHBHOT
TEMITepaTypHOT Koe(HIIjeHTa peaKTUBHOCTH [3].

Benuku je ogHOC MOBPIIMHE CY/a Y OJJHOCY Ha 3alIPEMHHY,
LITO 3HAYM /Ia j€ TOIUIOTA KOja ce U3ryOH IPEKO MOBPIIUHE
jesrpa Beha oy OHe Koja ce cTBapa pacraJoM IopHBa y
jesrpy [3].

YpKoc CBUM KOHTPOBEp3HjaMa y CBETY, JIOKa3aHo je /a je
HyKJICapHa C€Hepruja Oe30ciHMja OO CHEpruje U3
¢documHux ropusa. McrpaxuBama cy nokasaia Jia je yrab
yempruo 100 myTa BuIe Jbyau OJ HyKJIeapHE eHepruje,
YIJIaBHOM Kao IOCJIeAnIIa 3araljerba Ba3ayxa, a OTKaJl CBET
KOpHUCTH eHeprujy (ucuje, u3padyHaTo je Aa je cauyBaHO
1,84 munmona xwuBota uzmely roxuna 1971. n 2009. Yax
ce Tporewyje aa Cy eHeprija 6momace, cojgapHa, XHIPO U
BETPO CHEPTHja OJIHEINE BUILE)KUBOTA O] HyKiIeapHe [3].

4. THTET'PAIIMJA XTI'P-A Y KOTEHEPATUBHE
CUCTEME

HyxneapHa KoreHepaiuja MpeAcTaB/ba HCTOBPEMEHY
NPOU3BO/KY E€JIEKTPUYHE EHEPruje M TOIUIOTEe WIH
Ipou3BOAa JOOUjeHUX U3 TOINIOTE Y TOKY pajia HyKjIeapHe
enextpane. XTT'P TexHonoruja je ujeanHa 3a OBy CBPXY,
003upoM Ha TO Ja Cy TeMIeparype XelHjyma Ha Kpajy
IIporeca BUCOKE M Kao TaKBe YITIAaBHOM CE CaMo IyIITajy Yy
atMoc¢epy u rybe CBOj IOTEHIHjall a ce IMpeycMepe Kao
M3BOp TOILIOTE Ha joml Hekw mporec. OmmTu mporec
KOTEHepalije u3 HyKIeapHe CHepruje je NpuKazaH Ha
cauyu 4.

1276

CekyHaapHu
xenujym

lopuso CHabpeBatbe napom 3a

Mpacut lacHa TypbuHa

Wamer-usay Tonnore,

MpumapHun
xenujym

[arbuHcko rpejatse,
AecanuHusaumja

! a enekTpusHe
eHepruje

Cauka 3. [llema xocenepamusnoz XTI'P nocmpojerva [5]

Cexynnapaa Tortora u3 XTI'P-a ce Moke HCKOPUCTHTH Yy
IpolecuMa 3a JaJbHHCKO Tpejame, JeCTWIAIH]y,
MPOIIECHY TOIUIOTY 32 HMHAYCTPHjCKE CUCTEME,
eKcIutoaTanjy HadTe M KaTpaHCKUX IIECKOBA, Ipepany
cupoBe HadTe, yTeumaBame U TacH(DUKAIU]y YIJba,
MIPOM3BOAKY aMOHHjaKa, METaHOJIa, TEIIKHX MeTala U
BOJIOHHKA.

4.1 CucreM JaJbHHCKOT Ipejamba

[pumena cucteMa JajbUHCKOT TPEjarba 3aBUCH O KIIUME
¥ MOTYRHOCTH J1a c€ Y TOj KeJbEHO] peruju 00e30e11 HUBO
koMbopa y rpejamy. [TTaBHE H3BOpPH €HEpruje KOju ce
JaHac KOPHUCTE 3a NPOU3BOAY TOILIOTE 3a goMahHHCTBA
Cy yraJb 1 rac, IOK je IIpolleHaT HyKJIeapHe TOIUIOTE y OBE
CBpXE 3aHEMAapJbUB.

Onmry TNpHHUWI paja KOreHepalyje TOIUIOTe 3a
IasbMHCKO Tpejame 3 XTI'P-a moumme ca nmemom mape
KOja M37a3u U3 U3MEHkUBava TOIUIOTE U KOja ce yecMepaBa
Ka TmoceOHOj TypOWMHHM HHCKOT TPUTHCKA. Tako
eKCIIaHNpaHa mapa ce 3aTHM KOHJICH3Yje Y H3MCHHBATY
TOILIOTE, MpeAajyhu TOIUIOTY y IEBOBOJ 3a JaJbHHCKO
rpejame. Momubukaimje eleKTpaHe paaud yBohema OBOT
cHCTEeMa Cy MPUIMYHO YMEPEHE U MOTY CE pPealn30BaTH
0e3 oMeTama yoOu4ajeHoT pajia ocTpojema [4].

4.2 lecanMHu3anuja

Kako ce cBe Behu Opoj mMecTa cyodaBa ca HECTAIIMIIOM
BOJIC, Aecanuuu3aiyja hie mocraTu KJbydHa TEXHOJIOTH]a 32
pemaBame oBor npodieMa. OBo uje y Npuiior HyKJIeapHOj
€Hepruju, 3a Kojy ce ovekyje na he mocratu onpikuBa
OINI[Mja 32 BEJIMKE CUCTEME JIeCATMHHI3alHje IHUPOM CBETa
[4].

Jecanunuzanujy Bojie MOKEMO Jja BPIIMMO OMOhy BuIiie
texHuka: PO (oOpuyte ocmoze), MCD (BuuiecreneHa
¢memr pmectmnammja) wim MEJl (BumeedexTHa
nectuinandja) texuuka. Mako ce MCO mokasama Kao
HAajjeTHOCTABHUJU U HAJIIOY3IaHUjU O] TIABHUX TIpoIieca,
CH 3HauajaH HEAOCTaTaK je Beha moTpomma eHepruje y
onnocy Ha MEJ] u PO. Meljytum, perieme Moxe aa JIexxu
ynpaBo y XTI'P peakropuma, koju Ou eduxacHo
TTOHYAWJIA CBOjY OTHAIHY TOIUIOTY 3a OBaj IPOIIeC.

[Ipumeny oBor ciyuaja Mmoxxemo Hahu Ha jananckom XTI'P
peaxtopy I'XPI'P3000.

4.3 IIpouecHa TONJI0TA 32 MHAYCTPHjCKe CHCTeMe

VY 3aBHCHOCTH OJI TeMIeEpaTypHOr olicera, morpede 3a
TOILIOTOM Y OKBHPY ojpel)eHOT HMHIYCTPHjCKOT Iporeca

MOTY C€ 3aJI0BOJBHUTH IpuiarohaBameM KOHQGUTYpAIlHje

KOTE€HEepaTUBHOI cucTeMa oxarosapajyhem tumy
HyKJIeapHOT peakrtopa [4].
Ilopen mnpousBoAme €IEKTPUYHE CEHEPrHje, BHCOKA

n3JIa3Ha TemIeparypa ¢uiynaa Moxe ce KOPUCTUTH 32 HU3
HHAYCTPHjCKUX TpoOIleca KOjH 3axTeBajy TOIUIOTY Y
pacniony o 650°C o 950°C. Heke on mpumepa cy:

e eKcIUioaTanuja HadTe M KaTpaHCKUX ITECKOBa
e mpepajaa cupoBe HadTe

® yTcumaBamke U racudukanyja yripa

® NIPOM3BO[Hba AMOHHjaKa

® TPOM3BOJHA METAHOJIA

° IIPOU3BOAKA TEHIKUX METajla

4.1 ITpon3Boamka BOTOHUKA

Hekn cekropu ¢y KOMIUIMKOBaHUjH Y TOCTH3ambY
nexkapOoHHM3aIHje, Kao Ha IpUMep aBHjannja i KAMHOHCKH
TpaHCHOpPT. JelaH 01 HaUMHA HUXOBOT JIeKapOOHH30Baba
MoOJKe OUTH yroTpeba BOZOHMKA Ka0 TOPHBA, aJH J1a 01 11e0
cucreM 6uo CO2 HeyTpajaH, Taj BOJOHHK MOpaMoO 1a
Jo0MjeMo U3 HEKOT YHCTOT u3Bopa. Taxa Hactymajy XTITP
PEaKTOPH, Kao HCATHO pelliehe, YHja je 0TI Ha TOIIOTa
JIOBOJbHA Jla TPOHU3BEIC H3BOpP CHEpruje MmoTpedaH 3a
MOKpETahe pPeaKiyje eIeKTPOIIu3e.

Enextponmsa je mporiec y KojeM ce MoMohy eleKkTpuyHe
€Hepruje BoJa pa3yiake Ha BOZOHUK M KHCEOHHK, JJOK ce
CBe TO OfIBHja y ypehajy 3BaHOM eIeKTpOIH3ep.

Bo/oHHK ce MOXe KOreHepucaTH y3 MOMOh HykiieapHe
TOIUIOTE €JIEKTPOJIN30M BOJAE WJIM T1ape, XEMHjCKHM
pedopmuHTOM (OCWIHHX TOpHMBa W OWomace WU
TEPMOXEMHJCKHUM TPOLIECUMa Pa3rpaiibe mape.

[puniun pana je ciaenehu: npuMapHu XeaujyM, 3arpejan
JI0 BHCOKE TeMIepaTrype y peakTopy, Ipenaje CBOjy
TOIUIOTY CEKYyHIAPHOM XEIHjyMy Y HHTEPMEIHjapHOM
U3MEHUBadYy TOIUIOTE YHyTap 3TpaJe peakTopa.
CekyHIapHH XeIHjyM, KOjH je TOTIYHO YHCT H 0e3
PanOaKTUBHOCTH, U3J1a31 U3 3aIITUTHOT CHCTEMA U TIPEKO
MOCe0HOT IEBOBOAA MPEHOCH TOIUIOTY JI0 MOCTPOjerha 3a
MPOU3BOAKY BOJOHMKA (HIp. pedopmepa wim
TEPMOXEMHJCKOT IIUKIyca). Y TOM MpoIecy ce, y3 momMoh
JIOBEJICHE TOIUIOTE, OJIBUja KOHBEp3HMja CHPOBUHE Y
BOJIOHUK. HakoH mITO je mpenao TOIUIOTY W OXJIAIHUO Ce,
CEKYH/IapHU XeNUjyM ce NOoMohy HMpKYyJalMOHE IyMIie
Bpaha y MHTEpMeIujapHH W3MEHUBA4 TOIUIOTE, YAME Ce
LUKJIyC 3aTBapa.

5. EKOHOMCKHU ACIIEKTHN

TpowKkoBH M3rpambe HyKIeapHUX eJISKTpaHa JpaMaTHIHO
Cy TOpaciy y TOCIEOHHUX HEeKOIMKo roxmHa: ca 2.500
€/kW mBanmecerux rogamaa Ha Butre o 6.000 €/kW, mro je
jenan o Behux mpobiema 3a BHXOB pa3Boj. Hykiieaphe
eJIeKTpaHe Cy BEJMKH MPOJEeKTH YHja M3rpajiba 3axTeBa
HEKOJIMKO XWJbaJa paJHUKAa M YHUTaBy JELEHUjy
rpaljeBuHCKHUX pagoBa. CUTyallMja je joll HeMmOBOJbHHU]A 3a
XTI'P peakrope, Kako je HHHXOBa TEXHOJOIHja jOII
KOMILUIEKCHH]a U Malhe KOMEPIIHjaTHa.

VY ueny XTI'P-a yOpajajy ce TpOIIKOBH U3IPajibe, FOpUBa
U TPOLIKOBH pajia ¥ OJpiKaBamba.

1277

Kanma je y muTamy HpOM3BO/Hba BOIOHHKA, OOHOBJHHBH
M3BOPH HyJIE HajHIKHU TPOILIAK, HOCEOHO BETPOEIEKTpaHe,
ca tenom ox 2,05 $/kg BomoHMKA, IITO je HEIITO HUXKE Y
OJIHOCY Ha COJIapHE eJIeKTpaHe 4uja LeHa usnocu 2,24 $/kg
[6]. [Ipu mopehermy HampemHHX peakTopa ca BOAOM IOJ
nputuckoM u XTI'P peaxkrtopa, cBakako pa XTIP
OCTBapyje HIKH TPOIIAK IPOU3BOIEH-C BOJIOHHKA [6].

3HauajHy YJIOTY Yy CMamely TPOIIKa BOJOHHKA HIpa
moBehame o0MMa TmoOCTpojerba (CHare ¥ MOJAYJA).
MHore cTynuje ciy4aja Mmoka3syjy Ja HyKJIeapHO JaJbHHCKO
rpejame MOKe OWTH LEHOBHO KOHKYPEHTHO YaK U Y
OJTHOCY Ha TIPHPOIHU T'aC, IIITO j€ jOIII JIAKIIIE OCTBAPUBO Y3
MIpUMEHY Mope3a Ha yIJbeHHK [4].

[IpousBoama amoHHMjaka y3 Kopumheme HyKIeapHe
€Hepruje ¥MMa HajHIDKE OIepaTHBHE TPOIIKOBE, alu
HajBUILE KAIIUTAIHE.

Hajumxu Tpomiak mpou3BOIKE BOJOHHKA MOCTHTHYT j€
KopuIiiemheM eJICKTPUYHE EHEepruje M3 BeTpa, a oaMax
3aTUM M M3 COJapHUX (OTOHANOHCKUX cucteMa. OBe
BpEAHOCTH cy 3a oko 1,3 $/kg Hinke ox onux u3 XTI'P [6].

Pesyntartu cy npukasanu Ha cauyu 6:

USD/kg-H,

Conapxa
eHepruja

Mpexa Betpoexepruja

Ill HykneapHa enekTpata MocTpojetse 3a NPOU3BOAKY BOAOHMKA

CknaguwTe BOAOHUKA TpaHcnopT BOAOHWKa

Cauxa 4. [lopeherve mpouikoga npouzeo0re 6000HUKA U3
paznudumux useopa enepeuje [6]

MeljyTum,0Be aHamu3e YECTO HE Y3MMajy y 003up
HEIOCTYIHCT OOHOBJBUBUX M3BOPA Y 3aBUCHOCTH O] 1002
JlaHa UPEMEHCKe ITPOTHO3¢E, ITO HaM HE /1aje 3arapaHToaHy
MIPOM3BOAY KaJla HaM je rorpedHa. To 6u moapazymeBaiio
JIOZIATHH TPOILAK y BUY CKJIAIUILITA CHEPIUje U J0/aTHE
eMHCHje TIpH Ipou3BoImbH ucte. Takohe ce He y3uma y
003Up 4YHMICHHIA Ja HyKJIeapHa eJeKTpaHa 3ay3uMa
3HAaTHO Mame IPOCTOpa OJf COJNAPHUX eNeKTpaHa u
BETPONAapKOBa, IITO OTBapa MOTYRHOCT Ka UCKOpHUIINEHY
TOT 3eMJBMINTA 32 jOII HEIITO IITO OM MOTJIo OWUTH
npoduTabunHo. [[pyrum pedrma, cama 1ieHa Mpou3BeIeHe
CHPOBHHE HEMa yBEK INIaBHY YJIOTY Yy O[a0Hpy HauMHA U3
Kojer fie BOJIOHUK 1a ce MPOU3BE/IC.

Ykommko OM ce OBa TEXHOJOTHja KOMEpIHjalnn3oBana 1
mouena Ja ce MPOW3BOIAM MAacOBHHjE, FHEHA IICHAa OH
CBaKaKko 3Ha4yajHo oraya. HaxanocT, OBae BHILIE yIOTYy HE
urpajy camo uudpe, Beh u jbyacka ocehamwa koja cy uecto
HeraTHBHA KaJia je y UTamky HyKJIeapHa TEXHOJIOTH]a.

6. 3AK/bYYAK

XTI'P peakTopu IpencTaBibajy 3peily TEXHOIOTH)y Koja
MOXe I1a 00e30enu cTaOmiIHO cHAaOIeBamkbe TOIUIOTHOM U
eNeKTpraHOM eHeprujoM. [ToceOHO ce OmITHKYjy BUCOKHM

HUBOOM 0e30eqHOCTH KOju omoryhaBajy HampeaHu
CUTYPHOCHHU CHUCTEMH.

Tomnora mpousBeaena y3 nmomoh XTI'P-a moxe ma ce
UCKOPHCTH, TIOpe]] IIPOU3BObE SINEKTPUIHE EHepruje, u
3a IMUPOK CIEKTap JOJATHHX MPOU3BOJA KOjH MOTY Ja
Oyoy €0 Ma/bUHCKOI Trpejama U Xiahema, MpoIecHe
TOIUTOTE, [eCANMHU3ANN]e, MPOU3BOJKE BOJOHHKA W
JPYTO.

0O063upoM Ha HEMOBEPEHE KOje Cy Jby U H3TPaIIIN IIpeMa
HykieapHoj eHepruju, XII'P peaktopm cy Moxaa
MoCIIeilba IIaHca J1a ce TO HOBEepeme BpaTH, ako Ou ce
CTpydYHa JIMIIa aHTaXOBala Ja M3HECY CBE UHIHCHHIC U
Tojallllbeba O BUCOKO] 0e30eTHOCTH M e(hUKaCHOCTH OBE
TEXHOJIOTH]E.

7. JUTEPATYPA

[1] Nuklearni reaktori. Fizis.rs — ®u3nka—aToMcKoT je3rpa.
https://fizis.rs/rumMHa3mja/iv-pazpen/pu3nka-aTOMCKOr-
jesrpa/nuklearni-reaktori/ [I[Ipucrym 10.06.2025].

[2] Advanced Nuclear Materials in HTGR. In: High
Temperature Reactor Technology Workshop ICTP; 19 - 30
2008; Trieste, Italy.

[3] PBMR’s Safety Features. U.S. Nuclear Regulatory
Commission.

https:// www.nrc.gov/docs/ML0310/ML031000208.pdf
[MIpuctyn 20.06.2025].

[4] Guidance on Nuclear Energy Cogeneration. IAEA
Nuclear Energy Series No. NP-T-1.17. Vienna:
International Atomic Energy Agency; 2019.

[5] Tachibana Y. "Current Status of JAEA’s Research and
Development on HTGR". Presentation at Nuclear
Innovation Workshop; 2022 Mar 1; Tokyo, Japan.
https://nicp.ne.titech.ac.jp/jp/nicc/2022/220301/JAEA H

TGR.pdf [Mpucryn 09.07.2025]

[6]Alabbadi AA, Smith RL, Brown P, et al. "A
comparative economic study of hydrogen production using
several nuclear reactors integrated with -electrolysis
hydrogen production methods". International Journal of
Hydrogen Energy. 2024; 49(38):12688-12704.

doi:10.1016/j.ijhydene.2023.04.2787.

Ucunopa bBypmuma je
pohera y Cpemckoj
MurtpoBuiu 1999.
roguHe. Macrep paj Ha
Qdakynrery — TEXHUUKUX
HayKa u3 oOnactu
MaiuuHcTBa 010paHuia je
2025. TO/INHE.
KonTakr:

isidoraburlica@gmail.com

1278

https://fizis.rs/гимназија/iv-разред/физика-атомског-језгра/nuklearni-reaktori/
https://fizis.rs/гимназија/iv-разред/физика-атомског-језгра/nuklearni-reaktori/
https://www.nrc.gov/docs/ML0310/ML031000208.pdf
https://nicp.ne.titech.ac.jp/jp/nicc/2022/220301/JAEA_HTGR.pdf
https://nicp.ne.titech.ac.jp/jp/nicc/2022/220301/JAEA_HTGR.pdf

Zbornik radova Fakulteta tehnickih nauka, Novi Sad

UDK: 4.9
DOI: https://doi.org/10.24867/33BE01Aleksic

SISTEM ZA PRIKUPLJANJE I PRETRAZIVANJE PODATAKA O
IGRACIMA EVROLIGE

SYSTEM FOR COLLECTING AND SEARCHING DATA ABOUT
EUROLEAGUE BASKETBALL PLAYERS

Nikola Aleksi¢, Fakultet tehnickih nauka, Novi Sad

Oblast - ELEKTROTEHNIKA I RACUNARSTVO

Kratak sadrzaj — U ovom radu predstavijen je sistem u
obliku veb aplikacije koja na jednom mestu objedinuje
statisticke podatke o igracima Evrolige, omogucéavajuci
njihovo poredenje, sortiranje i intuitivnu pretragu. Cilj
aplikacije je reSavanje problema fragmentacije
informacija o kosarkasima, nudec¢i korisnicima
centralizovan pristup statistickim podacima, biografijama,
vestima i zanimljivostima. Sistem je implementiran kroz tri
funkcionalne celine: korisnicki interfejs razvijen uz pomoc¢
TypeScript-a i React-a, serverski deo baziran na Javi i
Spring Boot-u, te webcrawler komponente izradene u
Python-u koriste¢i biblioteke Selenium, BeautifulSoup i
newspaperdk. Rad obuhvata proces prikupljanja i
agregacije podataka sa razlicitih izvora, kao i njihovu
prezentaciju kroz intuitivni graficki korisnicki interfejs.
Implementirana aplikacija omogucava efikasnu pretragu i
analizu podataka, znacajno unapredujuci iskustvo
korisniuka pri pristupu informacijama iz sveta kosarke.

Kljuéne redi: Web, SpringBoot, React, Webcrawler, AWS,
Evroliga

Abstract — This paper presents a system in the form of a
web application that consolidates statistical data on
EuroLeague players, enabling their comparison, sorting,
and intuitive search. The goal of the application is to
address the issue of fragmented basketball information,
providing users with centralized access to statistical data,
biographies, news, and highlights. The system is
implemented through three functional components: a user
interface developed using TypeScript and React, a server-
side application based on Java and Spring Boot, and a web
crawler component built in Python utilizing libraries such
as Selenium, BeautifulSoup, and newspaperdk. The paper
covers the process of data collection and aggregation from
various sources, as well as their presentation through an
intuitive graphical user interface. The implemented
application facilitates efficient data search and analysis,
significantly enhancing the user experience in accessing
basketball-related information.

Keywords: Web, SpringBoot, React, Webcrawler, AWS,
Euroleague

NAPOMENA: Ovaj rad proistekao je iz master rada
¢iji mentor je bio dr Branko Markoski, red. prof.

1. UVOD

Porast popularnosti kosarkaskih takmicenja, posebno na
evropskom tlu, pra¢ena znac¢ajnim tehnoloskim razvojem u
oblasti digitalnih tehnologija, dovela je do naglog
povecanja koli¢ine i dostupnosti informacija iz sveta
kosarke. Kako za prosecne ljubitelje sporta, tako i za
kosarkaske stru¢njake, pristup informacijama o igrac¢ima,
timovima, statistici, izveStajima sa utakmica i vestima
postao je omogucen kroz §irok spektar digitalnih medija,
ukljuujuéi 1 specijalizovane veb sajtove, aplikacije i
drustvene mreze.

Medutim, fragmentacija ovih informacija predstavlja
veliki izazov pri njihovom pretrazivanju. Korisnici, u
potrazi za detaljnim podacima o koSarkaSima, Cesto su
primorani da posete veliki broj razlicitih specijalizovanih
sajtova. Tokom cCega nailaze na probleme poput
prenatrpanosti nerelevantnim informacijama, reklamama i
iskac¢ucim prozorima, koji zna¢ajno otezavaju i usporavaju
proces prikupljanja potrebnih informacija. Ovakav naéin
pretrage, iako daje rezultate, ¢esto je veoma vremenski
zahtevan i neefikasan.

Cilj ovog rada je da ponudi reSenje navedenog problema
kroz razvoj veb aplikacije koja na jednom mestu objedinuje
statisticke podatke o igra¢ima Evrolige, omogucava
njihovo poredenje, sortiranje, kao i intuitivnu pretragu.
Pored statistike, sistem takode omoguc¢ava korisnicima
pristup relevantnim Clancima o igracima, njihovim
biografijama, karijerama i zanimljivostima, olakSavajuci
korisniku pretragu isticanjem klju¢nih delova relevantnih
za njihov upit u okviru grafickog korisni¢kog interejsa.
Aplikativno resenje se sastoji iz 3 funkcionalne celine.
Korisnickog interfejsa implementiranog uz pomoé
programskog jezika Javascript [1] odnosno njegove
tipizirane varijacije Typscript i radnog okvira React [2].
Centralnog serverskog dela aplikacije zaduzenog za
agregaciju i perzistenciju podataka, kao i za akviziciju
inicijalnog seta statistickih podataka 1 orkestraciju
celokoupnog sistema, implementiranog u programskom
jeziku Java [3] 1 radnom okviru Spring Boot [4].
Webcrawler celine implementirane u programskom jeziku
Python [5] uz pomoc¢ biblioteka Selenium, BeautifulSoap i
newspaperdk i radnog okvira Flask [6], koja na osnovu
orkestriranih zahteva prikuplja relevantne informacije sa
svetske internet mreze.

1279

https://doi.org/10.24867/33BE01Aleksic

2. PREGLED SLICNIH SISTEMA

U ovom poglavlju navedeni su neki od najrelevenatnijih
sli¢nih sistema aktuelnih u trenutku pisanja rada.

Euroleaguebasketball.net [7] je veb aplikacija posvecena
evropskoj koSarkaskoj ligi, koja pruza sveobuhvatne
informacije o timovima, igraima i utakmicama.
Korisnicima omoguéava pregled statistickih podataka o
igraCima za poslednje 24 sezone, ukljucujuéi biografske
podatke, znacajna dostignuca i fotografije. Pored toga,
aplikacija nudi istorijski pregled ¢lanaka, video sadrzaja i
rasporeda timova, kao i moguénost kupovine karata za
utakmice. lako funkcionalna i bogata sadrzajem, aplikacija
ima slozen korisnicki interfejs i ograniCenu tekstualnu
pretragu, S§to otezava brzo pronalazenje Zeljenih
informacija.

Eurohoops.net [8] je veb aplikacija specijalizovana za
praéenje aktuelnosti u evropskoj kosarci. Fokusirana je na
vesti, analize utakmica, transfera igrata i tabele
takmicenja, ali pruza i istorijski pregled klju¢nih trenutaka
u evropskoj kosarci. Aplikacija sadrzi intervjue, video
sadrzaje 1 kolumne koSarkaskih analiti¢ara. Njena najveca
prednost je intuitivan dizajn koji omogucava jednostavnu
navigaciju 1 pretragu, dok je najve¢i nedostatak
nepouzdana tekstualna pretraga, koja cCesto ne daje
relevantne rezultate i1 otezava lociranje specificnih
informacija.

Proballers.com [9] je aplikacija koja pokriva statisticke
podatke iz brojnih profesionalnih koSarkaskih liga,
Omogucava pregled statistike igraca i timova po
sezonama, sa Sirokim opsegom liga koje obuhvata,
ukljucujuéi ¢ak i manje poznate takmicarske nivoe kao §to
su druge lige Portugala, Svajcarske i Norveske. Medutim,
njen glavni nedostatak je izostanak slobodne tekstualne
pretrage — korisnici mogu birati samo unapred definisane
opcije, $to granicava fleksibilnost pretrage.

3. KORISCENE SOFTVERSKE TEHNOLOGIJE

U ovom poglavlju navedene su tehnologije kori§¢ene pri
implementaciji ovog rada, a to su:
e Java — objektno orijentisani jezik viSeg nivoa
pogodan za implementaciju serverskih delova
e Spring — radni okvir za razvoj u programskom
jeziku Java, nudi bogat opus modula pogodnih za
brz i robustan razvoj. Neki od korisé¢enih modula
u ovom resenju: Spring Boot, Spring Data JPA,
Spring Data ElasticSearch...
e Docker — alat koji omoguéava automatizaciju
razvoja koris¢enjem tehnologije kontejnera
e LocalStack — softverski alat koji omogucava
emulaciju AWS Cloud-a (specifiéno u ovom

reSenju AWS SOS-a)
e ElasticSearch — distribuirani pretraziva¢ i
analiticki sistem optimizovan za brzinu i

relevantnost pri tekstualnoj pretrazi

e PostgreSQL — besplatan sistem otvorenog koda za
upravljanje relacionim bazama podataka

e Flyway — alat otvorenog koda za upravljanje
migracijama baze podataka

e Python — interpretirani, objektno orijentisani jezik
viSeg nivoa pogodan za implementaciju
serverskog dela sistema

e Flask — radni okvir za razvoj u programskom
jeziku Python

e Selenium - alat za automatizovanje veb
pretrazivaca, pogodan pri eZe testiranju i u ovom
reSenju koriS¢enom webscraping-u

e BeautifulSoap — Python biblioteka za parsiranje
HTML 1 XML dokumenata

e Newspaperdk — Python biblioteka namenjena
prikupljanju i ekstrakciji sadrzaja onlajn ¢lanaka

e JavaScript — programski jezik visokog nivoa
pogodan za implementaciju klijentskih 1
serverskih delova sistema

e React — biblioteka otvorenog koda za razvoj u
programskom jeziku JavaScript, pogodna za
implementaciju klijentskog dela sistema

e Tanstack Query — alat za rad u React aplikacijama
koji pojednostavljuje = komunikaciju sa
serverskom stranom sistema

e MaterialUl — biblioteka gotovih komponenti
otvorenog koda za React

e TailwindCSS — radni okvir otvorenog koda koji
omogucava brzo 1 efikasno stilizovanje
korisnickih interfejsa

4. SPECIFIKACIJA

4.1. Specifikacija zahteva

Zadatak obuhvata izradu sistema u obliku veb aplikacije
koja na jednom mestu obuhvata statisticke podatke o
igratima Evrolige, omogucavajué¢i njihovo poredenje,
sortiranje 1 sazetu intuitivnu pretragu. Cilj aplikacije je
reSavanje problema fragmentacije informacija o
kosarkasima, nude¢i korisnicima centralizovan pristup
statistickim podacima, biografijama, vestima i
zanimljivostima. U ovom poglavlju dat je opis
funckionalnih i nefunkcionalnih zahteva koje sistem
podrzava.

Na slici 4 prikazan je UML (Unified Modeling Language)
dijagram slucajeva koris¢enja koje sistem podrzava

Slika 1. Dijagram slucajeva koriscenja

1280

Pregled top liste igraca (evropske kosarkaske lige)
korisnicka je akcija koja zauzima pocetni deo korisnickog
interfejsa 1 predstavlja inicijalnu tacku interakcije sa
korisnikom. Sistem prikazuje top 10 igraca sortiranih po
kriterijumu efikasnosti u okviru Carousel komponente
koja je responzivna i omoguéava korisniku klikom na
strelice kretanja kroz listu.

Izbor kriterijuma sortiranja igraca korisnicka je akcija koja
zauzima drugi deo pocetnog ekrana. Sistem prikazuje
dodatnu listu u okviru koje korisnik ima mogu¢nost biranja
kriterijuma sortiranja. Dostupni kriterijumi su formirani na
osnovu proseka parametara igraca po utakmici i dostupni
parametri su: broj poena, broj minuta, broj asistencija, broj
ukradenih lopti, broj izgubljenih lopti, broj skokova.

Pretrazivanje igraca na osnovu imena (punog imena)
korisni¢ka je akcija pri kojoj sistem u okviru zagljavlja
aplikacije prikazuje tekstualno polje za unoSenje upita u
formi imena odnosno dela punog imena igraca. Pri unosu
upita sa odredenim kasnjenjem od 300ms sistem izlistava
u okviru padajuéeg menija igrace koji zadovoljavaju upit i
zutom bojom naznacava deo imena igraca koji se poklapa
sa upitom.

Pregled najnovijih ¢lanaka predstavlja korisnicku akciju
koja se nalazi u okviru zavrSnog dela inicijalnog ekrana
korisnickog interfejsa. Sistem prikazuje korisniku
poslednjih 10 prikupljenih ¢lanaka (najsvezijih). Prikazane
informacije ¢ine uvod u clanak (pocetnih 250 karaktera)
kao i slika igraca o kom je ¢lanak napisan. Klikom na
¢lanak korisnik biva preusmeren na stranicu detaljnog
prikaza ¢lanka.

Tekstualna pretraga ¢lanka po kljuénim re¢ima korisnicka
je akcija pri kojoj sistem u zavr$nom delu pocetnog ekrana
prikazuje tekstualno polje za unoSenje upita za pretragu
Clanka. Pri pritisku dugmeta FEnter, sistem prikazuje
korisniku listu ¢lanaka koji zadovoljavaju upit, zutom
bojom oznacavajuci preklapajuée delove ¢lanka sa upitom
kao i sumarizaciju konteksta oko preklapajuceg dela (250
karaktera).

Pregled detalja igraca korisnicka je akcija koju korisnik
inicira klikom na sliku igraca iz liste (pretrage ili top liste)
odnosno klikom na sliku igra¢a u okviru detaljnog pregleda
¢lanka. U okviru detaljnog pregleda igraca sistem
prikazuje naredne informacije o igracu: ime, fotografiju,
statistiku, listu ¢lanaka o njemu.

Pregled detalja ¢lanka akcija je koju inicira korisnik klikom
na bilo koji njemu prikazan ¢lanak iz liste ¢lanaka. Sistem
prikazuje korisniku detaljan prikaz sadrzaja clanka i
njegovih meta podataka. Prikazane informacije Cine:
fotografiju igraca o kom je clanak, ime igraca o kom je
Clanak, celokupan tekstualni sadrzaj clanka, link ka
originalnoj lokaciji ¢lanka.

Pristup originalnom ¢lanku je akcija koju inicira korisnik
klikom na link ka originalnom sadrzaju u sklopu detaljnog
prikaza c¢lanka. Po kliku korisnik biva preusmeren na
lokaciju u okviru veb aplikacije sa koje je preuzet
originalni ¢lanak.

Buducdi da se radi o veb aplikaciji koja manipuliSe velikom
koli¢inom podataka, a korisnik ocekuje brz odziv bez
dugotrajnog ¢ekanja na poslati zahtev, neophodno je
obezbediti performantan i robustan sistem, Jedno od
reSenja navedenog problema ogleda se u keSiranju

odgovora serverskog dela sistema (bekenda) u trajanju od
10 minuta, §to omogucava sama priroda domena sistema
odnosno njegove sprorije promene.

Kritina tacka sistema predstavlja webscraper, koji
svakom promenom sadrZaja odnosno veb stranica koje
obraduje, moze dovesti do nezeljenih rezultata i
potencijalnog usporavanja ili ¢ak ruSenja sistema.
Navedeni problem reSen je na arhitekturalnom nivou
izdvajanjem webscraper-a 1 zaseban servis i
neblokiraju¢om komunikacijom sa njim putem SQS-a pri
¢emu centralni deo serverskog dela aplikacije ne biva
usporavan niti u bilo kakvoj rizi¢noj zavisnosti od rusenja
u slu€aju problema ili nedostupnosti webscraper-a. Takode
webscraper servis ne briSe SOS poruku tokom Cijeg
izvrSavanja je doslo do greske nego je ponovo uzima u
obradu nakon isteka visibility-timeout-a, odnosno
prekonfigurisanog vremena nakon kog procitana poruka
moze ponovo biti preuzeta sa SQOS-a. Time pruzajuci
pretrazivanoj stranici vreme da se oporavi i da se
potencijalno izvrsi Zeljena pretraga iz ponovnih pokusaja.

4.2. Specifikacija sistema

U ovom poglavlju dat je detaljan uvid u specifikaciju
sistema, njegovu arhitekturu i komponente koje ga ¢ine. Na
slici 2. prikazan je C4 UML dijagram arhitekture sistema
visoke apstrakcije u okviru koje je svaki servis modelovan
zasebnom komponentom.

Slika 2. Dijagram arhitekture sistema

Celokupan sistem za prikupljanje i pretrazivanje podataka
o igraCima evropske kosarkaske lige sastoji se iz tri logicke
celine, odnosno iz 3 podsistema. Podsistem klijenteske
aplikacije, podsistem serverske aplikacije i podsistem
webscrapera.

Podsistem webscrapera predstavlja servis zaduzen za
prikupljanje podataka sa svetske internet mreze. Putem
drajvera interaguje sa veb pretrazivaCem i pretrazuje i
prikuplja podatke na osnovu upita pristiglih iz poruka sa
SQOS-a,a zatim prikupljene podatke zapisuje i Salje ih nazad
takode putem poruka preko SOS-a.

Podsistem serverske aplikacije ¢ini REST API koji izlaze
podatke spoljnim sistemima putem Htp-a, odnosno
omogucuje slanje odgovora i zahteva na relaciji klijent-
server. Takode navedeni sistem vr$i orkestraciju
prikupljanja podataka, izvrSavaju¢i jedan deo akvizicije
samostalno komunicirajuéi sa evroliginim javno
dostpunim API-em. Zatim za svakog pronadenog igraca
Salje asinhron zahtev putem SQOS-a webscraper

1281

podsistemu, nakon toga Citaju¢i prikupljene podatke i
objedinjeno sa ve¢ prikupljenim podacima sa evroliginog
API-a perzistira ih u PostgreSQL i ElasticSearch bazama
podataka.

Podsistem klijentske aplikacije ¢ini prednji deo sistema
(frontend) namenjen za direktnu kominikaciju sa
korisnikom. Omogucuje korisniku interakciju sa sistemom
putem grafickog korisnickog interfejsa, odnosno
omogucuje slanje zahteva serveru i vizualizaciju pristiglih
odgovora.

5. ZAKLJUCAK

Resenje rada predstavlja aplikaciju koja upro$c¢ava proces
onlajn pretrage podataka o igra¢ima Evrolige, njihovih
statistika, biografija i novinskih ¢lanaka. Pri ¢emu korisnik
Cesto biva primoran da poseéuje velik broj sajtova
razli¢itog sadrzaja ne bi li na svakom od njih nasao neke
od zeljenih informacija o igracu. Navedni proces pretrage
i prelaska sa veb sajta na veb sajt neretko biva ispracen
mnosStvom iskacuc¢ih obavestenja (kolacica, pretplata,
akcija..) dodatno produzavajué¢i sam proces pretrage i
odvlaceci paznju korisnika.

Razlika navedenog reSenja u odnosu na prethodno
pomenute sli¢ne sisteme obradene u 2. poglavlju ogleda se
prvenstveno u obimu informacija koje prikazuje. Ne
koncentriSuéi se na striktno statisticke ili striktno
biografske podatke, ve¢ objedinjujuéi ih i grupiSudi ih na
nivou igrata time znacajno ubrzavajuéi korisnikovu
pretragu i dalje istrazivanje. Takode bitan faktor resenja,
koji ga izdvaja od ostalih sistema, Cini tekstualna pretraga
sa sumarizacijom. Pri ¢emu osim same brzine i koli¢ine
podataka koja je dostupna korisniku, sistem Zutom bojom
u okviru korisni¢kog interfejsa oznacava delove sadrzaja
koji se preklapaju sa upitom i takode prikazuje sadrzaj koji
se nalazi u kontekstu preklapajuéeg dela. Cineéi sistem
veoma intuitivnim i samu pretragu izuzetno brzom i
olakSanom.

Potencijalna unapredena proizvoda i samog sistema mogu
da se ogledaju u 2 pravca, kosarkasko i komercijalno.

Kosarkasko unapredenje reSenja moguée je kroz akviziciju
dodatnih statistickih podataka i1 njihovu vizualizaciju.
Jedno od potencijalnih unapredenja predstavlja prikaz 2D
mape terena u okviru koje bi se videlo sa kojih pozicija
igra¢ promasuje odnosno pogada Suteve. Mape Suta igraca
bi se perzistirale u okviru ElasticSearch-ove ve¢ podrzane
geolokacione pretrage te bi top liste igraca osim po
dosadasnjim kriterijumima omogucili i po izboru dela
terena. Korisnik bi u okviru 2D mape mogao da oznaci deo
terena a zatim Salje upite sistemu koji bi mu prikazali listu
igraca koja imaju najviSe pogodenih Suteva sa tog dela
terena, zatim najviSe promasenih Suteva, najbolji odnosno
najgori procenat i slino. Takode sam domen koji je
trenutno fokusiran na igrate mogao bi da se prebaci i na
timove te bi sistem mogao da omogucéi pretragu timova,
njihova poredenja, sortiranja kao i prikupljanje biografskih
podataka i relevantnih ¢lanaka o njima.

Komercijalno reSenje bi se ogledalo u proSirenju
webscraper sistema da podrzi akviziciju komercijalnijih
tipova informacija, odnosno nekoj vrsti press-clippinga.
Te bi korisnik osim striktno biografskih i kosarkaskih

¢lanaka imao moguénost pretrage i svih ostalih tipova
Clanaka kao Sto su ¢lanci zute Stampe.

Takode potencijalno unapredenje postojeCeg sistema
moglo bi da se ogleda i u refaktorisanju njegove
arhitekture, odnosno koriS¢enju i ostalih AWS servisa
poput SNS (Simple Notification Service) i S3 (Simple
Storage Service). Pri ¢emu bi poruka poslata od strane
serverskog dela sistema ka skrejperskom delu sistema
mogla da se centralizuje u vidu SNS teme koja bi odasiljala
ime igraca te bi iz perspektive serverskog dela bio poslat
samo jedan dogadaj dok bi SNS dalje prosledivao dogadaj
na ve¢ postojece SOS servise koris¢enjem fan-out
arhitekturalnog obrasca pri cemu bi se zadrzale pozitivne
strane SQOS-a (robusnost, ponovni pokusaji neuspelih
akcija, DLQ), a smanjila spregnutost sistema sa serverske
strane. Takode mana trenutnog sistema je koris¢enje URL-
ova ka originalnom sajtu koji potencijalno mogu da se
promene ili ukinu pri ¢emu bi korisnik bio pogresno
naveden na stranicu bez zeljenog sadrzaja. ReSenje
navedene mane ogledalo bi se u perzistenciji HTML-a
originalne stranice, pri njenoj akviziciji, u okviru S3
baketa. Pri ¢emu u okviru baze podataka ne bi perzistirali
URL do originalnog sajta ve¢ lokaciju originalnog HTML-
a u okviru S3 baketa koji bi prikazivali u okviru grafickog
korisnickog interfejsa aplikacije bez nepotrebnog
redirektovanja korisnika.

6. LITERATURA

[1] Minnick, C. (2023). JavaScript All-in-One For
Dummies. For Dummies.

[2] Kumar, T. (2024). Fluent React: Build Fast,
Performant, and Intuitive Web Applications. O'Reilly
Media.

[3] Schildt, H. (2024). Java: The Complete Reference,
Thirteenth Edition. McGraw Hill.

[4] Miguel Puig, F. (2024). Spring Boot 3.0 Cookbook:
Proven recipes for building modern and robust Java
web applications with Spring Boot. Packt Publishing.

[5] Matthes, E. (2024). Python Crash Course, 3rd Edition:
A Hands-On, Project-Based Introduction to
Programming. No Starch Press

[6] Sherwin C. Tragura, J. (2024). Mastering Flask Web
and API Development: Build and deploy production-
ready Flask apps seamlessly across web, APIs, and
mobile platforms. Packt Publishing.

[7] https://www.euroleaguebasketball.net/about/

[8] https://www.eurohoops.net/en/

[9] https://www.proballers.com/about

Kratka biografija:

Aleksié¢ Nikola, roden je
22.02.2000. godine u Novom
Sadu. Skolske 2018/19 upisuje se
na Fakultet tehni¢kih nauka, na
studijski program Racunarstvo i
automatika u okviru kojeg
zavrSava osnovne akademske
studije Skolske 2021/2022 godine.
. Iste godine upisuje master
studije na Fakultetu tehnickih
nauka, na smer Elektronsko
poslovanje.

1282

https://www.euroleaguebasketball.net/about/
https://www.eurohoops.net/en/
https://www.proballers.com/about

Zbornik radova Fakulteta tehnickih nauka, Novi Sad

UDK: 4.41
DOI: https://doi.org/10.24867/33BE02Artukov

SISTEM ZA PRETRAGU SLIKA ZASNOVAN NA CLIP MODELU I VEKTORSKIM
BAZAMA

IMAGE SEARCH SYSTEM BASED ON THE CLIP MODEL AND VECTOR DATABASES
Katarina Artukov, Fakultet tehnickih nauka, Novi Sad

Oblast - PRIMENJENE RACUNARSKE NAUKE I
INFORMATIKA

Kratak sadrzaj — Ovim radom predstavijen je sistem za
pretragu slika zasnovan na CLIP modelu i vektorskim
bazama podataka, koji omogucéava efikasnu pretragu
vizuelnog sadrzaja na osnovu tekstualnih ili slikovnih
upita.

Kljuéne vrei: Pretraga slika, vektorske baze,
multimodalna ugnjezdenja, masinsko ucenje, CLIP model.

Abstract — This thesis presents an image search system
based on the CLIP model and vector databases, enabling
efficient search of visual content using textual or image-
based queries.

Keywords: Image search, vector databases, multimodal
embeddings, machine learning, CLIP model.

1. UVOD

U doba kada koli¢ina digitalnih slika raste nevidenom
brzinom proizilazi potreba za preciznom i efikasnom
pretragom vizuelnog sadrzaja. UspeSan sistem za pretragu
mora biti u stanju da protumaci korisnikove upite, zakljuci
njihove namere, a zatim primeni strategiju pretrage koja ¢e
verovatno vratiti relevantne rezultate. Tradicionalni
sistemi za pretragu Cesto zavise od tekstualnih oznaka
(tagova) ili metapodataka koji se rucno dodaju, Sto nije
odrzivo reSenje za velike baze podataka i Cesto nije
dovoljno tacno u reprezentaciji sadrzaja slika.

Razvoj pretrazivaca slika uz kori$éenje savremenih tehnika
masinskog ucenja i obrade podataka omoguéava nove
nacine pristupa informacijama i sadrzaju, olakSavajuéi
pronalazenje vizuelno sli¢nih ili konceptualno povezanih
slika.

U ovom radu, razvijen je sistem za pretragu slika koji se
oslanja. na CLIP (Contrastive Language—Image
Pretraining) model za generisanje multimodalnih
ugnjezdenja [1], koja kombinuju tekstualne i vizuelne
karakteristike u jedinstveni prostor vektora. Ugnjezdenja
se zatim indeksiraju u Pinecone vektorsku bazu podataka.

NAPOMENA:
Ovaj rad proistekao je iz master rada ¢iji mentor je bio
dr Dragan Ivanovié, red. prof.

Integracija sa Pinecone vektorskom bazom [2] pruza
skalabilno i brzo reSenje za pretragu i indeksiranje velikog
broja slika. S obzirom na moguénost indeksiranja
multimodalnih ugnjezdenja i brzog pretrazivanja, ovaj
sistem postaje izuzetno koristan u poljima kao Sto su
istrazivanje 1 pronalaZenje slicnog vizuelnog sadrzaja,
marketing, analiza drustvenih medija i kreativne industrije.
Osim $to unapreduje pristup vizuelnim podacima, ovaj
sistem takode predstavlja praktican primer primene
savremenih tehnika masinskog ucenja u realnim
okruzenjima, ¢ime doprinosi razvoju naprednih reSenja u
oblasti obrade i pretrage slika.

U zavisnosti od potreba korisnika, sistem podrzava dva
modela pretrage. Prvi model omogucéava pretragu na
osnovu slike, gde se kao wulazni parametar koristi
fotografija, za koju ¢e se u rezultatu vratiti deset
osnovu tekstualnog upita, tako S§to se kao rezultat vracaju
fotografije koje vizuelno reprezentuju sadrzaj zadanog
teksta.

Sistem je realizovan kao veb aplikacija, pri ¢emu je
pozadinski deo (backend) implementiran u Python FastApi
radnom okviru, dok je korisnicki interfejs implementiran u
React-u. Ovakva arhitektura omoguéava upotrebu
savremene platforme za pretragu slika na osnovu opisa ili
slicnih vizuelnih karakteristika, ¢ime se znacajno
unapreduje korisnic¢ko iskustvo.

Aplikacija je osmiSljena da bude intuitivna kako
profesionalcima koji se bave analizom vizuelnog sadrzaja,
tako 1 krajnjim korisnicima koji Zele da lakse i brze dodu
do relevantnih vizuelnih informacija.

1.1. Skup podataka

U ovom radu koriséen je Flickr30k Entities [3] skup
podataka, proSirena verzija popularnog Flickr30k skupa,
standardnog benchmarka za opisivanje slika. Skup
obuhvata 31.800 fotografija i 158.915 receni¢nih opisa,
organizovanih u fajlu results.csv sa kolonama:
image name, comment number 1 comment. Nakon
eksplorativne analize podataka zaklju€ene su karakteristike
skupa podataka. Glavni nalazi uklju¢uju ravnomernu
distribuciju komentara po slikama, umeren sentiment i
krace opise u vec¢ini komentara. Skup podataka je sam po
sebi dobro pripremljen, tako da faza pretprocesiranja ima
svega nekoliko dodatnih koraka.

1283

https://doi.org/10.24867/33BE02Artukov

1.2. Radni tok vektorske baze podataka i CLIP
modela masSinskog ucenja

CLIP model maSinskog ucenja predstavlja savremeni
multimodalni pristup zasnovan na Transformer arhitekturi,
sposoban za istovremenu obradu tekstualnih i vizuelnih
podataka. Obuka CLIP modela obuhvata velike skupove
tekstualno-vizuelnih parova, gde model uéi zajednicki
reprezentativni prostor. Ovaj prostor omogucava da sli¢ni
tekstualni i vizuelni sadrzaji budu bliski u vektorskom
prostoru, $to ¢ini CLIP izuzetno korisnim za zadatke kao
$to su pretraga, klasifikacija i semanti¢ko povezivanje.
Kada se CLIP model integriSe sa vektorskom bazom
podataka, dobija se optimalan radni tok koji kombinuje
snage oba sistema. Na pocetku, CLIP model se prethodno
obucava kako bi naucio vektorske reprezentacije koje
mogu da povezu tekst i slike na semantiCkom nivou. Ove
vektorske reprezentacije zatim se ugraduju u vektorsku
bazu podataka, koja omogucava efikasno skladiStenje i
brzo pretrazivanje.

Kada korisnik unese tekstualni upit ili dostavi sliku, CLIP
generiSe vektorsku reprezentaciju upita. Vektorska baza
zatim koristi napredne algoritme za pribliznu pretragu
najblizih suseda, kao §to je HNSW, kako bi pronasla sli¢ne
vektore iz skupa podataka. Rezultati pretrage se vracaju
korisniku, pri ¢emu CLIP osigurava da ovi rezultati
odgovaraju semantickom kontekstu korisnickog upita.
Integracija CLIP modela i vektorske baze podataka
omogucava znacajno poboljSanje u odnosu na upotrebu
samo jedne od ovih komponenti. Ako se koristi samo
CLIP, rezultati mogu biti manje tacni u radu sa velikim
skupovima podataka. Sa druge strane, ako se koristi samo
vektorska baza podataka, rezultati mogu biti tehnicki
precizni, ali ne i u potpunosti semanticki relevantni za
korisnika. Kombinacija ove dve tehnologije omogucava
postizanje 1 preciznosti 1 prilagodenosti rezultata
korisni¢kim ocekivanjima, ¢ime se postize optimalan
balans izmedu efikasnosti i korisni¢kog iskustva u
multimodalnim aplikacijama.

1.3. Kontrastivno pretreniranje

Kontrastivno ucenje je metod obuke 47 modela koji ga uci
da razlikuje sli¢ne od razlicitih stvari, koriste¢i kontrastivni
gubitak. Konkretnije, na osnovu skupa od N parova (slika,
tekst), CLIP zajednicki trenira enkoder za slike i enkoder
za tekst kako bi predvideo koji od NxN mogucéih (slika,
tekst) parova u okviru skupa zapravo postoje [4].

Model prima batch podataka u obliku parova (slika, tekst).
Za svaku sliku u batch-u, vizuelni enkoder generise vektor
slike. Prva slika odgovara vektoru 77, druga 12, itd. Svaki
vektor je veli¢ine de, gde je de dimenzija latentnog
prostora, koja predstavlja broj komponenti (dimenzija)
vektora koji opisuju sliku ili tekst u zajednickom embeding
prostoru. Veli¢ina de je kljucna jer odreduje kapacitet
modela da uci i reprezentuje kompleksne odnose izmedu
tekstualnih i slikovnih podataka. Vece dimenzije
omogucéavaju bogatiju reprezentaciju, ali istovremeno
zahtevaju visSe resursa za obradu i memoriju. Izlaz ovog
koraka je matrica Nxde. Sli¢no, tekstualni opisi se
konvertuju u tekstualne embedinge {7/, 72, T3... Tn},
¢ime se dobija matrica N xde. Nakon toga, ove matrice se
medusobno mnoze, izracunavajuéi kosinusne sli¢nosti
izmedu svake slike i teksta, Sto rezultira N XN matricom.

CLIP u¢i multimodalni ugnjeZzdeni prostor tako $to
zajednicki trenira enkoder za slike i enkoder za tekst kako
bi maksimizirao kosinusnu slicnost ugnjezdenja slike i
teksta za N stvarnih parova u skupu, istovremeno
minimizujuéi kosinusnu sli¢nost ugnjezdenja za NXN—-N
pogresnih parova.

Na slici 1.3.1, to zna¢i da Zelimo da maksimiziramo
dijagonalu u matrici, dok minimiziramo sve ostale
elemente.

(1) Contrastive pre-training

Pepper the

Text ‘
aussie pup

e r—

T T, | T3 n
L LTy | LTy LTy LTy
I, LT [Ty | LTy | . | LTy
E';";%Zr I LT | LT | Ty | . | LTy
In INTy | INTy | INTs InTy
Slika 1. Kontrastivno pretreniranje
Za svako wulazno slikovno ugnjezdenje vrS$i se

klasifikacioni zadatak u pravcu x ose, koji nam govori koji
od tekstualnih ugnjezdenja {71, 72, T3... Tn} najvise
odgovara toj slici. Takode, za svako tekstualno
ugnjezdenje vrsi se klasifikacioni zadatak u pravcu y ose
koji govori koje od slikovnih ugnjezdenja {11, 12, I3...In}
ga najbolje reprezentuje. Na primer, slika // se opisuje
tekstom 7'/, a ne tekstovima 72, T3 itd.

Gubitak koji se ovde koristi je cross entropy gubitak,
izracunat izmedu logita i labela u x pravcu i y praveu, a
zatim se racuna njihova prose¢na vrednost. To znaci da ova
vrsta gubitka minimizuje greske u oba pravca — od slike ka
tekstu 1 od teksta ka slici. Sustinski, sa kontrastivnom
tehnikom, CLIP je treniran da razume da sli¢na
predstavljanja treba da budu blizu u latentnom prostoru,
dok razli¢ita treba da budu udaljena.

1.4. Pinecone

Pinecone [2] je specijalizovana baza podataka za
upravljanje vektorima, dizajnirana da olaksa rad sa velikim
skupovima podataka i slozenim zadacima pretrage u
domenu vestacke inteligencije i1 masSinskog ucenja.
Zasnovana je na konceptu vektorske pretrage i omogucava
korisnicima da efikasno organizuju, indeksiraju i
pretrazuju podatke visoke dimenzionalnosti.

Jedna od kljuénih prednosti Pinecone-a je njegova
sposobnost da precizno i brzo vr$i pretragu sli¢nosti u
velikim skupovima podataka. Ovo se postize kori§¢enjem
sofisticiranih algoritama za vektorsku pretragu, koji
omogucavaju brzo pronalazenje najrelevantnijih rezultata
na osnovu sli¢nosti ugradenih vektora.

1.5. Hijerarhijski navigabilan mali svet (HNSW)

Hijerarhijski navigabilan mali svet [5] je savremena
tehnika za pronalazenje pribliznih najblizih suseda datog
vektora u velikom skupu vektora. Ona funkcionise tako Sto
gradi graf koji povezuje vektore na osnovu njihove

1284

sli¢nosti ili udaljenosti, a zatim koristi strategiju pretrage
zasnovanu na pohlepnom pristupu za kretanje kroz graf i
Algoritam takode gradi hijerarhijsku strukturu grafa, gde
se svakoj tacki dodeljuje razlic¢it sloj sa odredenom
verovatnocom. Visi slojevi sadrze manji broj tacaka i duze
ivice, dok nizi slojevi sadrze veci broj tacaka i krace ivice.
Najvisi sloj sadrzi samo jednu tacku, koja predstavlja
ulaznu tacku za pretragu.

Hijerarhijska struktura omogucéava efikasnu i preciznu
pretragu, pocevsi od najviseg sloja i postepeno prelazeéi na
nize slojeve, pri ¢emu se u svakom koraku bira najblizi
¢vor kao sledeca tacka pretrage.

Hijerarhijska struktura koju koristi HNSW omogucava brzu
i preciznu pretragu, jer se pretraga zapocinje od najviseg
sloja i postepeno se spusta ka nizim slojevima, pri ¢emu se
u svakom koraku bira najblizi ¢vor kao sledeca tacka
pretrage.

Performanse HNSW algoritma zavise od nekoliko faktora,
kao Sto su dimenzionalnost vektora, broj slojeva, broj
suseda po ¢voru i broj koraka pretrage. Ovi faktori uti¢u na
balans izmedu tacnosti i efikasnosti, kao i na sloZenost i
skalabilnost algoritma.

2. SPECIFIKACIJA SISTEMA ZA PRETRAGU
SLIKA

Sistem za pretragu slika koristi arhitekturu koja objedinjuje
vise komponenti i tehnologija za omogucavanje efikasnog
indeksiranja i pretrage. Kao §to je prikazano na dijagramu
sa slike 2, ova arhitektura je zasnovana na integraciji
klijentske aplikacije, CLIP modela i vektorske baze
podataka sa sistemom za pretragu.

@ python @ Openal

&

React

CLIP mogen

CHCTEM 32 NpeTpary
KMJEHTCRA annukaLpja

BeKTOpCka Gaza

Slika 2. Arhitektura sistema

Klijentska aplikacija: Razvijena u React-u, ova
komponenta pruza korisnic¢ki interfejs koji omogucéava
interaktivnu pretragu i prikaz rezultata. Korisnik moze
pretrazivati slike na osnovu teksta ili druge slike, a
aplikacija Salje zahteve sistemu za pretragu.

Sistem za pretragu: Glavni deo sistema, implementiran u
Python-u, vr$i osnovne funkcije za pretragu i obradu
podataka. On komunicira sa CLIP modelom i vektorskom
bazom kako bi kreirao i upravljao embedinzima za slike i
tekst.

CLIP model: Ovaj model, razvijen od strane OpenAl-a,
sluzi za kreiranje multimodalnih embedinga koji
predstavljaju semanticki sadrzaj slika i tekstova. CLIP
model generiSe embedinge koji se kasnije uporeduju sa
embedinzima u vektorskoj bazi kako bi se nasle slike koje
su najslicnije zadanom upitu.

Vektorska baza (Pinecone): Pinecone sluzi kao baza
ugnjezdenja, gde se embedinzi slika i tekstova Cuvaju u
vektorskom formatu radi efikasnog pretrazivanja. Kada

korisnik postavi upit, sistem uporeduje embedinge upita sa
embedinzima u Pinecone bazi kako bi vratio najsli¢nije
srezultate.

Ovakva arhitektura omogucava fleksibilno pretrazivanje
slika, bilo na osnovu tekstualnih upita ili sli¢nih slika, sa
velikom tacno$¢u i brzinom.

3. EKSPERIMENT

Ovim poglavljem definisaéemo izabran nacin za evaluaciju
implementiranog sistema i objasniti razlog za izbor istog.
U sistemima za pretragu informacija, kao $to su pretrage
teksta, slika ili multimodalnih podataka, metrike poput top-
N taénosti igraju kljuénu ulogu u proceni kvaliteta sistema.
Top-N tacnost predstavlja procentualni udeo upita gde je
relevantni rezultat (tj. dokument, slika ili drugi objekat)
pronaden medu prvih N rezultata rangiranih od strane
sistema.

U informacionim sistemima, korisnici ocekuju da
relevantni rezultati budu rangirani medu prvima. Visoka
top-1 tacnost pokazuje sposobnost sistema da konzistentno
vrata najrelevantniji rezultat kao prvi, dok visoke
vrednosti top-3, top-5 ili top-10 tacnosti ukazuju na to da
sistem efikasno identifikuje vecinu relevantnih rezultata,
iako oni mozda nisu uvek rangirani na samom vrhu.

Zbog velikih koli¢ina podataka u nasem sistemu (oko
31.800 slika), korisnic¢ka evaluacija bila je neprakti¢na, jer
bi ispitanici morali da procenjuju rezultate bez uvida u ceo
skup slika. Zbog toga smo se odlucili za automatsko
testiranje metrikom top-N tacnosti, koja omogucava
objektivnu procenu na reprezentativnom uzorku od 500
nasumicno izabranih slika.

4. REZULTATI I TUMACENJA

Dobijeni rezultati prikazuju procente tacnosti sli¢nosti
slika 1 tekstova. Vrednosti po sve Cetiri metrike date su
narednom tabelom

Tabela 1. Rezultati tacnosti CLIP modela u predvidanju
slicnosti slika i tekstova

Metrika ta¢nosti Procenat tacnosti
Top-1 tacnost 61%
Top-3 tacnost 75%
Top-5 tacnost 85%
Top-10 tacnost 94%

Ovi rezultati ukazuju da model Cesto gresi u identifikaciji
najboljeg podudaranja, ali sa ve¢im N postize znatno bolju
tacnost. Niska top-1 tacnost od 61% ukazuje na
ograniCenja modela u direktnoj tekstualnoj pretrazi. Ipak,
visoka ta¢nost u top-10 (94%) ¢ini ga veoma pogodnim za
inicijalnu fazu pretrage, gde se potencijalno relevantni
rezultati mogu rangirati za dalju obradu.

CLIP model pokazuje veliki potencijal kao osnova za
sistem pretrage, uz mogucnost poboljSanja kroz dodatno
podesavanje parametara, izborom drugih arhitektura
enkodera ili integracijom sa specificnim algoritmima za
fino rangiranje.

1285

5. ZAKLJUCAK

U ovom radu predstavljen je sistem za pretragu slika
zasnovan na CLIP modelu i vektorskim bazama podataka,
koji omogucava efikasnu pretragu vizuelnog sadrzaja na
osnovu tekstualnih ili slikovnih upita. Razmatrajuci
izazove savremenih sistema za pretragu, kao Sto su
ogranicenja tekstualnih oznaka i potreba za skalabilnoscu,
implementiran je pristup koji kombinuje multimodalne
embedinge i vektorske baze kako bi se obezbedila tac¢nost
i brzina u obradi velikog broja podataka.

Sistem je omogucéio dve vrste pretraga — na osnovu teksta i
na osnovu slike — pri ¢emu je postignuta visoka tacnost u
identifikaciji relevantnih rezultata, narocito u top-10
metrici (94%). lako top-1 tacnost od 61% ukazuje na
potrebu za dodatnim pobolj$anjima, rezultati su u skladu sa
ocekivanjima za primenu modela u slozenim i velikim
skupovima podataka.

Naucni doprinos rada ogleda se u uspesnoj primeni CLIP
modela za reSavanje stvarnih problema pretrage vizuelnog
sadrzaja. Evaluacija sistema pruza vredne uvide u
moguénosti 1 ograniCenja trenutnog pristupa, dok
sposobnost modela da generalizuje preko razlicitih
zadataka bez dodatnog finog podeSavanja potvrduje
njegovu robusnost i svestranost.

5.1. Dalji razvoj sistema

Buduca istrazivanja mogu se usmeriti na unapredenje
tacnosti kroz primenu naprednih tehnika, ukljucujuci
razli¢ite arhitekture enkodera i pazljiv odabir parametara
modela u skladu sa specificnim zahtevima domena
primene. Prosirenje sistema detaljnijim pretprocesiranjem
slika takode bi moglo doprineti pobolj$anju performansi.

Trenutno implementirani sistem Ccuva slike sa
metapodacima u indeks vektorske baze, pri cemu
metapodaci obuhvataju iskljuéivo nazive = slika.

Unapredenje sistema dodavanjem opisa slike kao dela
metapodataka znadajno bi poboljsalo korisnost i
funkcionalnost. Ovo prosirenje bi, pored bolje pretrage,
omogucilo i primenu naprednih tehnika semantickog i
hibridnog pretrazivanja koje podrzava Pinecone, cime bi se
dodatno unapredile = mogucnosti povezivanja i
identifikacije relevantnih sadrzaja.

Dodatno, integracija reranker-a u postojeci sistem mogla
bi znacajno poboljsati redosled prikazanih rezultata,
naroCito u slucCajevima gde je potrebno preciznije
rangiranje u okviru top rezultata. Reranker bi omogucio
finu obradu i prilagodavanje rezultata specifiénim
kontekstima pretrage, $to bi ujedno podiglo nivo taénosti
sistema i korisnicko iskustvo.

Zaklju¢no, sistem razvijen u ovom radu predstavlja
znacajan korak napred u oblasti pretrage vizuelnog
sadrzaja, objedinjuju¢i savremene tehnike maSinskog
ucenja i vektorske baze podataka. Njegova primena i
rezultati pokazuju potencijal za Siroku upotrebu u
razli¢itim domenima, dok istovremeno postavljaju osnovu
za buduéi razvoj i istrazivanje u ovoj oblasti.

6. LITERATURA

[1] openai.com, ,https://openai.com/index/clip/
[Na mrezi].

[2] pinecone.io, ,,https://www.pinecone.io/*

[Na mrezi].

[3]1J. R, ,kaggle.com,” [Na mrezi]. Available:
https://www kaggle.com/datasets/hsankesara/flickr-
image-dataset/data

[4] Radford, Alec, et al. "Learning transferable visual
models from natural language supervision."
International conference on machine learning. PMLR,
2021.

[5] Y. A. Malkov and D. A. Yashunin, “Efficient and
robust approximate nearest neighbor search using
hierarchical navigable small world graphs,” IEEE
transactions on pattern analysis and machine
intelligence, vol. 42, no. 4, p. 824-836, 2018.

Kratka biografija:

~

Katarina Artukov rodena je
12.06..2000. godine u Sremskoj
Mitrovici. Skolske 2019/20 godine
upisuje se na Fakultet tehni¢kih nauka
na studijski program Racunarstvo i
automatika, a 2022. godine upisuje

usmerenje Primenjene racunarske
nauke i informatika. Osnovne
akademske studije zavrSila je u

septembru 2023. godine, nakon cega
je u istoj Skolskoj godini upisala
" master akademske studije.

1286

https://openai.com/index/clip/
https://www.pinecone.io/

E‘Z%ﬁ Zbornik radova Fakulteta tehni¢kih nauka, Novi Sad

UDK: 621.38
DOI: https://doi.org/10.24867/33BE03Stamenkovic

FORMALNA VERIFIKACIJA DVOJEZGARNOG JEDNO-CIKLUSNOG RISC-V
PROCESORA I DELA MEMORIJSKOG PODSISTEMA

FORMAL VERIFICATION OF A DUAL CORE SINGLE-CYCLE RISC-V CORE WITH
PART OF MEMORY SUBSYSTEM

Petar Stamenkovi¢, Fakultet tehnickih nauka, Novi Sad

Oblast - ELEKTROTEHNIKA I RACUNARSTVO

Kratak sadrzaj — U ovom radu je prikazan nacin verifikacije
dvojezgarnog jedno-ciklusnog RISC-V procesora i dela
memorijskog podsistema pomolu formalnih metoda i
JasperGold alata kreiranog od strane kompanije Cadence. Dat
je osnovni opis dizajna koji se verifikuje, osnovni operatori
SystemVerilog jezika koji se koristi kao i verifikacione tehnike
koje su upotrebljene za efikasniju verifikaciju sistema.

Kljuéne reci: Formalna verifikacija, RISC-V, Memorijski
podsistem, Pokrivenost dizajna, Kes memorija

Abstract — This paper presents the way that dual core single-
cycle RISC-V processor with part of memory subsystem is
verified with formal methods by using a formal tool JasperGold
developed by Cadence. Basic description of design is given,
alongside with basic SystemVerilog operators and verification
tecniques that were used for efficent verification of the system.

Keywords: Formal verification, RISC-V, Memory subsystem,
Design coverage, Cache memory

1.UVOD

Formalna verifikacija podrazumeva upotrebu alata koji
matematicki analiziraju dostizna stanja u dizajnu umesto da
proracunavaju vrednosti za konkretno zadate ulazne vektore.
Danas predstavlja veoma efikasan i temeljit nacin verifikacije
jer teoretski moze da potvrdi totalno odsustvo greski, uz
idealno napisane osobine. Alat pruza ogroman broj
mogucénosti 1 veliki broj aplikacija koje olakSavaju proveru
odredenih aspekata sistema kao $to su provera pokrivesnoti
(Coverage app), provera validnosti napisanih osobina (FPV),
provera ekvivalentsnoti sistema (SEQ) i tako dalje. Formalna
verifikacija sa sobom nosi neke veoma vazne prednosti u
odnosu na verifikaciju baziranu na simulaciji i neke od njih su:

1. Za jednostavne RTL modele nema potrebe za
pisanjem test okruzenja.

2. Lako ispitivanje nama nepoznatog sistema.

NAPOMENA: Ovaj rad proistekao je iz master rada ¢iji
mentor je bio dr Vuk Vranjkovié, vanr. prof.

3. Efikasnije i uglavnom kraée vreme proveravanja.

4. Omogucena je potpuna pokrivenost

5. Dostupnost kontra-primera

6. Dostupnost analize beskona¢nih putanja
U radu je najviSe koriS¢ena FPV aplikacija koja radi sa
osobinama. Osobina (property) je jezicka konstrukcija koja
formalno opisuje neki aspekt digitalnog sistema i predstavlja
uopstenje ve¢ poznate assert naredbe. DefiniSu se pomocéu
HDL jezika od kojih je u ovom radu koris¢en SystemVerilog.

Na njih se primenjuju verifikacione akcije assert, assume ili
cover.

2. KRATAK OPIS PROJEKTOVANOG DIZAJNA

Kao $to je pomenuto, projektovani dizajn je RISC-V sistem
i on se sastoji od slede¢ih komponenti :

e Dva RISC-V jedno-ciklusna
sopstvenim L1 ke§ memorijama.

procesora sa

e Globalna magistrala sa kontrolerom.
e Deljena L2 ke§ memorija sa ke$ kontrolerom.
e Globalna memorija za podatke.

Blok Sema sistema je data na slici 1 na sledecoj stranici.
Projektovanje sistema je radeno u 3 faze, gde je prva faza
podrazumevala procesor koji sadrzi i ke§ memoriju i data
memory komponentu za podatke. U nastavku je ustanovljeno
da to nije optimalno, pa je u fazi 2 data memory komponenta
izbacena van procesora. Konacno faza 3 sadrzi ceo sistem i
njegovo povezivanje. Svaku fazu je pratila jednostavna
verifikacija i pisanje kratkih test scenarija za simulaciju u
okviru alata Vivado.

2.1. RISC-V JEDNO-CIKLUSNI PROCESOR

Srce ovog sistema predstavlja upravo pomenuti RISC-V
procesor. Inicijalno, procesor je sadrzao osnovne komponente
RISC-V arhitekture a zatim je po fazama dodato ostalo.
Procesor podrzava instrukcije tipova R, I,L, S, U, B iJ. Sadrzi
sopstvenu L1 memoju koja je direktno mapirana i ima 256
lokacija i uz nju je i kes kontroler za istu.

1287

https://doi.org/10.24867/33BE03Stamenkovic

Valid + Payload/Snoop

<

CPU 1

o]

Valid + Payload/Snoop

CPU2

=l

Y N

Bus Controller Memory

L2

Slika 1 : Blok Sema projektovanog sistema

Protkol koherenntnosti koji je odabran za ovaj rad je MESI
i on je takode implementiran u okviru L1 ke§ memorije.
Sustinski, ako se desi pogodak (cache hif) u L1 kes
memoriji procesora koji trazi podatak, on se jednostavno
upisuje u registar. Ako se desi promasaj (cache miss), prvo
proveravamo dostupnost podatka u drugom procesoru,
zatim u L2 ke§ memoriji i na samom kraju u globalnoj
memoriji za podatke koja predstavlja poslednji nivo
memorijske hijerarhije. Procesor se sastoji od sledecih
komponenti: aritmeticko-logicka jedinica (4ALU),
instrukciona memorija, sabira¢ (sa 4 i sa poljem imm),
modul za grananje (branch condition), kontroler samog
procesora (kontorlni signali), modul za generisanje
konstante (immediate generator), programski broja¢(PC),
multiplekseri, registarski fajl, modul za prosledivanje
podatka koji se upisuje u registarski fajl (write back) i L1
kes memorija sa svojim kontrolerom.

Bitno je napomenuti da se magistrali pristupa samo u
sluc¢aju L ili S tipa instrukcija i da u sluéaju istovremenog
pristupa oba procesora postoji implementriana arbitraza
koja odlucuje koji ¢e imati prednost u tom momentu.
Inicijalno, prednost ima prvi procesor. Upis u sve memorije
kao i registarski fajl se izvrSava na opadajucu ivicu taktnog
signala dok je Citanje iz svih asinhrono.

2.2. Ostatak sistema

Procesor je instanciran dva puta i oba su povezana na
zajednicku magistalu koja za cilj ima efikasno rutiranje i
prosledivanje podataka, bilo to od strane drugog procesora
ili L2 memorije. Magistrala dobija informacije kao $to su
adresa, operacija, tag kao i sam podatak i pomocu istih
odlucuje gde se Sta Salje. Takode, poseduje indikatore o
tome gde se podatak moze naci, Sto delom predstavlja
snoop protokol. Ukoliko jezgro 1 nema podatak, magistrala
¢e proveriti da li ga ima drugo jezgro i tek u sluéaju da ga
nema ¢e se osvrnuti na ostatak sistema.

Deljena L2 ke§ memorija je set-asocijativna sa dva kanala i
ima 1024 lokacije koje su podeljene u 512 setova (4 puta
veci kapacitet od LI). Algoritam zamene podataka unutar
kanala koji se koristi je LRU i implementiran je pomoc¢u
LRU bita koji je sastavni deo svake linije u L2 memoriji.
Od trenutka kada su oba podatka validna unutar jednog seta
u memoriji, LRU biti tih kanala moraju uvek biti suprotni.
Globalna memorija za podatke predstavlja poslednji nivo
memorijske hijerarhije i nakon odluke u fazi 2, izbacena je
van procesora. Njoj pristupamo u slucaju da podatak nije

1288

dostupan niti u jednom od procesora niti u L2 ke$ memoriji.
Tokom rada, njen kapacitet je bio 1024 kako bi se alatu
olaksala provera osobina, medutim nakon iste, moguce je
povecati njen kapacitet.

3. PROCES VERIFIKACIJE PROJEKTOVANOG
SISTEMA

Slicno procesu projektovanja, i proces verifikacije je
raden u 3 faze. Verifikacija procesora koji je imao i kes
memoriju 1 data memory komponentu predstavalja
verifikaciju faze 1 dok je verifikacija finalne verzije
procesora bez data memory komponente predstavljena sa
verifikacijom faze 2. Verifikacija celokupno povezanog
sistema je verifikacija faze 3. Kao §to je pomenuto, pre
same formalne verifikacije pisani su jednostavni testovi
za test okruzenje u okviru alata Vivado gde je proverena
osnovna funkcionalnost sistema za par smisljenih ulaznih
kombinacija instrukcija.

3.1. Verifikacioni plan

Verifikacioni plan predstavlja prvi korak u svakoj
verifikaciji i predstavlja bitan dokument jer se upravo na
njega ceo verifikacioni tim oslanja. Sastavlja se na osnovu
funkcionalne specifikacije sistema i preporuka je pisati ga
,hladne glave® kako bi rastereCeni obuhvatili sve bitne
tacke za proveru sistema.

Faza 1 i faza 2 su pokrivene istim verifikacionim planom
obzirom da obe obuhvataju proveru procesora uz
modifikaciju pomenute data memory komponente. Radi se
provera svih komponenti unutar procesora kao i proveri
tranzicija masina stanja i MESI protkola koherentnosti.
Faza 3 je pokrivena drugim verifikacionim planom i on
podrazumeva proveru interakcija izmedu svih komponenti
sistema kao $to su deSavanje nakon flush operacije, provera
oba kanala u jednom setu L2 memorije, LRU biti i sli¢no.
Takode se proverava i upis i Citanje kako iz L2 ke§
memorije, tako i iz globalne memorije za podatke.

3.2. Verifikaciono okruZenje

Za razvijanje verifikacionog okruZenja je kori§¢ena metoda
referentog modela, to jest, napisana je checker komponenta.
Za povezivanje ove komponente i samog dizajna se
koristila bind komanda i napisana skripta. Sli¢no kao i za
verifikacioni plan, i u ovom sluaju su napisana dva
referentna modela, jedan za verifikaciju procesora i jedan
za verifikaciju celokupnog sistema. U ovim fajlovima su

pisane osobine koje za ulogu imaju proveru funkcionalnosti
sistema. Oba referentna modela imaju slicnu strukturu i ona
se sastoji od sledecih delova :

PrRd/-
PrWr/-

Slika 2 : MESI protkoll?

Deklaracija portova dizajna procesora odnosno
sistema

Sekcija za definisanje
parametara i struktura.
Sekcija za definisanje restrikcija 1 ogranicenja
(assumes)

Sekcija za definisanje tzv. grey box signala koji
idu kroz hijerarhiju i uzimaju se direktno iz
dizajna.

Pomo¢ni kod (Auxillary code)

Sekcija za definisanje tvrdnji i pomoénih tacaka
pokrivenosti (asserts, covers)

pomoc¢nih signala,

Restrikcije su veoma bitan deo referentnog modela jer
ograni¢avaju vrednosti ulaza koje alat moZze da kreira.
Osobina koju alat dokaze, uz restrikcije koje nisu dobro
napisane, ne moze se smatrati validnom jer smo time mozda
maskirali gresku. Na primer, RISC-V arhitektura ne
dozvoljava da u registru x0 bude bilo koja vrednost sem 0.
Ukoliko ne napiSemo restrikciju koja osigurava da alat ne
kreira takvu instrukciju koja ¢e da radi upis u taj registar,
nasa osobina za upis u registarski fajl nece biti korektna.
Jo§ jedan primer su vrednosti maske za S ili L tip
instrukcije. Maska u ovim slu¢ajevima odreduje koji deo
reci od 32 bita ¢e biti upisan ili ucitan, byte (8 bita), half
word (/6 bita) ili word (32 bita). Po RISC-V standardu,
polje za masku je Siroko 3 bita pa je alatu dostupno 8
vrednosti za istu, iako za S postoje samo 3 vrednosti koje
se koriste i za L samo 5 vrednosti. Bez ogranicenja, alat bi
odmah dao kontra-primer sa jednom od vrednosti koje se
ne koriste, §to ne bi bilo korektno. Bitno je napomenuti da,
obzirom da sistem radi i na rastucu i na opadajucu ivicu
takta, svaka restrikcija mora imati svoju kopiju koja se
evaluira i na opadajucu ivicu.

1289

3.3. Tehnike formalne verifikacije

Kako bi se alatu olakSao rad i dokaz napisanih osobina,
koris¢ene su razne tehnike. One su pomogle i pri tome da
se kod organizuje i time inzinjeru olaksa da razume
povratnu informaciju alata.

Metoda crne kutije (black box) — Unutar instrukcione
memorije su ucitane instrukcije koje sistem treba da izvrsi.
Kako bi verifikacija bila preciznija, na ovu komponentu je
primenjena black box tehnika. Alat sada ne posmatra
unutrasnjost ove komponente i njenu funkcionalnost, veé
ima slobodu da na njene ulaze dovodi sve moguce vrednosti
koje poStuju zadate restrikcije. Obzirom da je ova
komponenta jednostavna i ne izvrSava neki napredan kod,
nije postojalo nikakvih mera opreza za primenu ove
tehnike. Nakon primene iste, trebalo je samo napisati
propratne restrikcije koje ¢e da osiguraju korektan rad
sistema. Preciznije, donjih 7 bita izlazne instrukcije je
moralo da ima jednu od 7 vrednosti za svaki od podrzanih
tipova instrukcije.

Pisanje pomoénog AUX koda — Kod kompleksnijih
dizajnova kao $to je ovaj, osobine mogu biti takode veoma
kompleksne i dugacke, §to nikako ne odgovara alatu.
Pomo¢ni kod omogucava da se kreiraju neki pomocni
signali koje kasnije mozemo da upotrebimo za poredenje u
okviru nekog dokaza. Na primer, za proveru programskog
brojaca bi na prvi pogled imali 7 provera za svaki tip
instrukcije. Medutim ukoliko samo napisemo jednostavni
pomo¢ni kod i kreiramo signal pc_ref koji prati promenu
vrednosti brojaca u referentnom modelu, kao $to je uradeno
u ovom projektu, dovoljna je samo jedna osobina koja
dokazuje validan rad programskog broja¢a. U nekom
drugom slu¢aju je bolje jednu osobinu rastaviti na vise
manjih osobina. Recimo da Zelimo da proverimo
skladistenje podataka u L1 ke§ memoriju. Postoje 3
vrednosti maske za S tip instrukcije tj. mozemo skladistiti
1, 2 ili 4 bajta. Teoretski je moguce napisati jednu osobinu
koja ¢e proveriti sve maske odjednom, ali obzirom da je
skladiStenje podataka kompleksna operacija za alat (jer
radi sa velikim brojem stanja), mnogo je pametnije i
efikasnije to uraditi sa 3 odvojene osobine.

Upotreba nedeterministicke konstante (location based
coupling) — Nedeterministicka konstanta ili jo§ poznato kao
i slobodna varijabla je varijabla koju alat zadaje tokom
provere. Ova tehnika podrazumeva proveru jedne
nedeterministi¢ke lokacije i Cesto se koristi upravo za
adrese i tagove kod ke§ memorija. Na ovaj nacin se
apstrahuju svi elementi osim lokacije koja se proverava,
¢ime se drasti¢no smanjuje prostor koji alat mora da ispita.
Ovo se Cesto koristi u slu¢ajevima:

Kada sistem ima dosta simetri¢nih elemenata kao
Sto su tabele, memorije ili nizovi.

Kada sistem ima veliki adresni prostor, kao §to je
DMA kontroler ili memorija.

Uz ovu tehniku je potrebno napisati restrikciju koja drzi

ovu varijablu stabilnom, jer ona ne sme da se menja tokom
jedne iteracije rada alata. Takode, ako je potrebno, moguce
je ograniciti i vrednost ove varijable. Tehnika se uglavnom
primenjuje u osobinama tako $to se evaluacija iste radi pri
podudaranju adrese koju je doveo alat i pomenute varijable.
Graficki prikaz ove tehnike je dat na slici 3.

DUT

Memory

Memory Abstraction
Hold data just
for address IV

Check address N

Slika 3 : Location based coupling!®

Za vecinu osobina je koris¢eno pisanje pomoé¢nog AUX
koda i za sve kompleksnije osobine (rad sa memorijama)
je koriS¢ena nedetermisnitcka konstanta. Medutim, postoje
i osobine za koje ovo nije bilo potrebno. Ovo su uglavnom
jednostavne osobine za koje je dovoljno koristiti dostupne
portove i grey-box signale kako bi se dokaz napisao. Primer
jedne takve osobine je dat ispod ovog pasusa.

property checking transition from IDLE to DMEM_ WRITE;
top.cache L2.state ==2'000 &&
top.cache L2.cache hit out==2'b01 |=>
top.cache L2.state ==2'b01;

endproperty

Napisana osobina jednostavno proverava da li se prelazi u
stanje DMEM_WRITE u slu¢aju promasaja u memoriji.
Sve osobine koje su napisane su dokazane i sve pronadene
greske u svim fazama su ispravljene i dokumentovane u
samom radu.

4. ANALIZA REZULTATA

Nakon §to su sve osobine napisane i dokazane, poslednji
korak je upotreba Coverage aplikacije u okviru alata. Njena
uloga je da nam pruzi metriku i povratnu informaciju o
tome koliko smo dizajna pokrili sa naSim osobinama, da li
su sva granjanja proverena i sli¢no.

Formalni alat nudi 3 tipa pokrivenosti :

1. Stimuli coverage — Koji kod ili funkcionalnost je
dostizna pomo¢nu formalnog alata? Koje osobine
alat moze da pokrije?

Checker coverage — Ova pokrivenost nam daje
informaciju o tome da li je verifikacija zavrSena i
koliko dizajna je pokriveno pomocu napisanih
tvrdnji.

Formal coverage Kombinacija rezultata
prethodne dve metrike. Tacka u okviru ove
pokrivenosti se smatra ,,pokrivenom® ako je ista
,pokrivena™ i u Stimuli i u Checker metrici. Ova

1290

metrika nam daje

pokrivenosti sistema.
Aplikacija je pokrenuta nakon pisanja oba referetna
modela, na kraju faze 2 i na kraju faze 3.
Nakon verifikacije procesora, aplikacija je pokazala
maksimalnu pokrivenost (slika 4) nakon odredenog
vremena. Ovime smo dobili zeleno svetlo da nastavimo sa
verifikacijom ostatka sistema.

informaciju o ukupnoj

I e L e "= chesker setings [owt coe + <01 2]

>

Jex Jrorm:
o1
o I >

nnmim

LT

I

Slika 4 : Pokrivenost nakon verifikacije

procesora

Nakon uspesne verifikacije celokupnog sistema, aplikacija
je pokrenuta i nakon faze 3.

Usled manjka memorijskih resursa na virtuelnoj masini na
kojoj je bilo radeno, pri kraju rada aplikacije alat je izdao
upozorenje zbog kojeg je provera morala biti obustavljena
pred kraj. Ovime pokrivenost nije teoretski maksimalna,
medutim na slici 5 mozemo primetiti sledece stvari:

Novo dodate komponente su maksimalno
pokrivene, dok je alat ostavio samo ve¢ proverene
procesore za kraj.

Vecina funkcionalnosti kod procesora je
dokazana, zbog cega se pretpostavlja da bi i
ostatak bio dokazan sa vise dostupnih resursa.
Nema oblasti u koje alat ne moze uopste da ude
(crvene oblasti), ve¢ su preostale samo Zute oblasti
koje su ,,jos uvek nedokazane* (undetermined).

Coverage Analysis | ssert Analysis | waiver Table | console |
Coverage Analysis

Task(s) [<embedded>] Excludes [Waived, Deadcode, Reset =] Checker Setings [Froot Core + coI =]

Coverage Models.

Instance Jex [Formal coverage @] stimuli coverage @ | checker Coverage |
1032/1180 (87.46%) [EE] 1140/1180 (96 61%) [MNE] 1072/1180 (90.85%)

] 423477 (88.68%)

[75/75 (100.00%)

£ 0 top ltop)

@ [78,75 (100.00%)

@ I 408477 (8553%) NI 462/477 (96.86%) [N 423/477 (88.68%)
@ [130130 (10000%) [N 130/130 (10000%) [N 130/130 (100.00%)
@ I 44 110000%) [44 (100 00%) [/4 (10000%)

-2] 0/0 10.00%) [] 0/0 10.00%) [] 00 (0.00%)

T chk_ref_model top (ref_model_top)

Slika 5 : Pokrivenost nakon verifikacije sistema

Uz sve ove tacke kao i osobine koje su dokazane, odredeno
je da se na ovom mestu verufikacija zavrsi, a time i ovaj
projekat.

5. ZAKLJUCAK

Nakon analize rezultata je ustanovljeno da sistem sadrzi sve
osobine koje su predvidene po specifikaciji. Procesori
mogu da izvrSe sve instrukcije koje podrzavaju sa
korektnim rezultatima. Za verifikaciju su uspes$no
iskoris¢ene formalne metode i tehnike za smanjenje
kompleknosti. Sve pronadene greske su dokumentovane i
ispravljene i analiza rezultata pomoc¢u Coverage aplikacije
je dala dobar rezultat ¢ime zakljucujemo da je verifikacija
uspesno odradena.

6. LITERATURA

[1] E. Seligman, T. Schubert, M. V. A. K. Kumar, 4n
essential toolkit for modern VLSI Design

[2] T. Suh, Integration and evaluation of cache coherence
protocols for multiprocessor socs, 2006

[3]”Jasper expert course”, Cadence [Na mrezi]. Available:
https://www.cadence.com/en_US/home/training/all-

courses.html

Kratka biografija

\.’J

Petar Stamenkovié roden je u
Novom Sadu 2000. godine.
Diplomirao je na Fakultetu
tehnickih nauka, na smeru
Energetika, elektronika i
telekomunikacije 2023. godine.
Master rad na Fakultetu tehnickih
nauka iz oblasti Elektrotehnike i
racunarstva — Energetika,
elektronika i telekomunikacije
odbranio je 2025. godine.
Kontakt:
petarstamenkovic35@gmail.com

1291

https://www.cadence.com/en_US/home/training/all-courses.html
https://www.cadence.com/en_US/home/training/all-courses.html

%iﬁ%g Zbornik radova Fakulteta tehni¢kih nauka, Novi Sad

UDK: 4.42
DOI: https://doi.org/10.24867/33BE06Todic

OBRADA VELIKIH SKUPOVA PODATAKA KORISCENJEM CLOUD TEHNOLOGIJA
PROCESSING LARGE DATA SETS USING CLOUD TECHNOLOGIES
Bosiljka Todi¢, Fakultet tehnickih nauka, Novi Sad

Oblast - ELEKTROTEHNIKA I RACUNARSTVO

Kratak sadrzaj — U ovom radu analizirani su dnevni
valutni kursevi koris¢enjem Google BigQuery platforme,
koja omogucava obradu velikih skupova podataka i
predikciju buducih trendova. Analiza podataka ukljucuje
identifikaciju dugorocnih trendova i volatilnosti valuta, uz
koriséenje grafickih prikaza i prediktivnih modela. Fokus
Jje na upotrebi BigQuery-a kao efikasnog cloud alata, koji
nudi skalabilnost i brzinu obrade kompleksnih upita. Cilj
rada je pokazati potencijale cloud tehnologija i Big Data
alata u analizi i donoSenju strateskih odluka.

Kljuéne re€i: Cloud computing, Big Data, Google Cloud
BigQuery, Kaggle, Dnevni valutni kursevi

Abstract — This paper analyzes daily currency exchange
rates using the Google BigQuery platform, which enables
the processing of large datasets and the prediction of
future trends. The data analysis focuses on identifying
long-term trends and currency volatility, complemented by
graphical representations and predictive models. The
emphasis is on BigQuery as a robust cloud tool that offers
scalability and speed for executing complex queries. The
goal is to demonstrate the potential of cloud technologies
and Big Data tools in analysis and strategic decision-
making.

Keywords: Cloud computing, Big Data, Google Cloud
BigQuery, Kaggle, Daily exchange rates

1. UVOD

Razvoj savremenih tehnologija i sve veca koliina
dostupnih podataka stvorili su potrebu za efikasnim
alatima 1 platformama za obradu velikih koli¢ina
informacija. Ova potreba dovela je do Sirenja koncepta Big
Data i cloud racunarskih platformi. Danas se mnoge
industrije, poput finansija, maloprodaje, zdravstva,
trgovine valutama, oslanjaju na brze i precizne informacije
kako bi donele strateske odluke. Moguénost analize velikih
skupova podataka u realnom vremenu postala je klju¢na za
uspeh u ovim sektorima.

U ovom radu fokus ¢e biti na obradi i analizi velikih
skupova podataka koris¢enjem cloud servisa. Konkretno,
obradivace se skup podataka sa platforme Kaggle, koja
sluzi za deljenje i analizu podataka.

NAPOMENA:
Ovaj rad proistekao je iz master rada ¢iji mentor je bio
dr Srdan Vukmirovié, red. prof.

Skup podataka sadrzi dnevne promene valutnih kurseva u
odnosu na baznu valutu, §to pruza priliku za analizu
dugoroc¢nih trendova i promenjivosti valuta. Podaci ¢e biti
obradeni, analizirani i graficki prikazani. Koristice se
Google-ova platforma BigQuery koja je serverless
skladiste podataka sa ugradenim mogucénostima masinskog
ucenja. Platforma ima mnostvo funkcija koje pomazu u
analitici razli¢itih veli¢ina 1 tipova podataka. Takode,
platforma nudi nekoliko na¢ina za vizualizaciju, kao i
kreiranje predikcija pomocu BigQuery ML ugradenih
funkcija. Cilj ovog rada je da prikaze kako cloud
tehnologije i Big Data alati mogu biti korisni u analizi
velikih skupova podataka, kroz konkretan primer valutnih
kurseva.

2. OSNOVNI POJMOVI

U ovom poglavlju ¢e biti detaljno objasnjeni kljuéni
pojmovi koji ¢ine osnovu za dalju razradu teme i analizu
podataka u ovom radu. Fokus ¢ée biti na definisanju i
razumevanju osnovnih principa cloud computinga i big
data tehnologija, kao 1 na njihovoj medusobnoj
povezanosti i znacaju u savremenim IT sistemima.

2.1. Cloud computing

Cloud computing predstavlja isporuku IT resursa na zahtev
putem interneta uz placanje prema koris¢enju. Umesto
kupovine, posedovanja i odrzavanja fizickih data centara i
servera, moguce je pristupiti tehnoloskim uslugama, kao
§to su raCunarska snaga, skladiStenje i baze podataka, po
potrebi, od pruzalaca cloud usluga [1].

Tipovi modela implementacije cloud computing-a:

e Javni cloud — u vlasni$tvu i pod upravom trecih
strana, poput pruzalaca cloud usluga kao §to je
Google Cloud. Ova vrsta clouda omogucava
kompanijama pristup rac¢unarskim, skladiSnim i
mreZnim resursima putem interneta. Resursi su
dostupni na zahtev, §to firmama pruza
fleksibilnost da ih koriste prema svojim
specificnim potrebama i poslovnim ciljevima, bez

potrebe za wulaganjima u sopstvenu IT
infrastrukturu.
e Privatni cloud - infrastruktura koju gradi,

poseduje i upravlja jedna organizacija, pri ¢emu
se resursi hostuju unutar njenih sopstvenih data
centara. Ovaj pristup, poznat i kao ,,on-premises”
reSenje, pruza kompanijama vecu kontrolu,
sigurnost i upravljanje podacima.

1292

https://doi.org/10.24867/33BE06Todic

e Hibridni cloud — kombinuju modele javnog i
privatnog cloud-a, omoguc¢avaju¢i kompanijama
da koriste usluge javnog cloud-a, a istovremeno
zadrze moguénosti koje su uobiCajene u
arhitekturama privatnog cloud-a.

Postoje tri glavna tipa modela cloud computing usluga koje
se mogu izabrati u zavisnosti od nivoa kontrole,
fleksibilnosti i upravljanja koje korisnik zahteva:

e Infrastructure as a service (IaaS) — obezbeduje
osnovne resurse, kao $to su serveri, skladistenje i
mogucnosti umrezavanja, upotrebom virtuelnih
masina, kao S$to su Amazon EC2, Google
Compute Engine i Microsoft Azure.

e Platform as a service (PaaS) — obezbeduje
platformu za razvoj, testiranje i implementaciju
softverskih aplikacija, kao §to su AWS Elastic
Beanstalk, Google App Engine i Heroku.

e Software as a service (SaaS) — model usluge u
cloud-u koji omogucava korisnicima pristup
softverskim aplikacijama putem interneta, bez
potrebe za instalacijom i odrzavanjem tih
aplikacija na svojim lokalnim uredajima ili
serverima, kao $to su Amazon WorkSpaces,
Gmail, Salesforce, Dropbox, Google Apps for
Work i Microsoft Office 365.

2.2. Big Data

Ogromne koli¢ine podataka prikupljenih tokom vremena
koje je teSko analizirati i obradivati koriS¢enjem
uobicajenih alata za upravljanje bazama podataka. Ovi
podaci se analiziraju radi identifikacije trzi$nih trendova u
poslovanju, kao i u oblastima proizvodnje, medicine i
nauke. Tipovi podataka ukljucuju poslovne transakcije, e-
poruke, fotografije, snimke nadzornih kamera, evidenciju
aktivnosti i nestrukturirani tekstovi sa blogova i drustvenih
mreza, kao i ogromne koli¢ine podataka koje mogu
prikupljati senzori razli¢itih vrsta [2].

Big Data se definiSe kroz pet kljucnih karakteristika
poznatih kao 5V. Prva karakteristika je obim (Volume),
koja se odnosi na koli¢inu podataka koji se generiSu iz
razli¢itih izvora i u razli¢itim formatima, Cesto toliko
velika da tradicionalne metode skladiStenja i obrade nisu
dovoljno efikasne. Zatim, tu je vrednost (Value), koja
oznacava korisne uvide koje se mogu izvu¢i iz podataka, a
koji dodaju vrednost poslovnim procesima. Brzina
(Velocity) se odnosi na brzinu generisanja, prikupljanja i
analize podataka, $to omoguéava donoSenje odluka u
realnom vremenu. Raznovrsnost (Variety) oznacava
razli¢ite tipove podataka, ukljucujuéi strukturirane, polu-
strukturirane i nestrukturirane podatke, prikupljene iz
brojnih izvora. Na kraju, tu je validnost/verodostojnost
(Validity/Veracity), koja se odnosi na kvalitet i pouzdanost
podataka, koji su klju¢ni za preciznu analizu i donoSenje
tacnih odluka.

2.3. Povezanost Cloud computing i Big Data koncepta

Cloud computing i Big Data su medusobno povezane
tehnologije koje su promenile nacin na koji organizacije
upravljaju i analiziraju podatke. Big Data, generisana iz
raznovrsnih izvora, ¢esto dolazi u razli¢itim formatima.

Pruzaoci cloud wusluga nude alate poput vestacke
inteligencije za standardizaciju i analizu ovih podataka.

Cloud platforme, poput Amazon S3 ili Google Cloud
Storage, omogucavaju centralizovano i skalabilno
skladistenje velikih koli¢ina podataka. U kombinaciji sa
alatima poput Hadoop-a i Spark-a, podaci se mogu brzo
obradivati 1 transformisati u korisne uvide. Dodatno, alati
za analitiku i vizualizaciju, kao §to su Power BI i Tableau,
pomazu organizacijama da identifikuju trendove i donesu
bolje odluke.

Jedna od najveéih prednosti cloud-a je skalabilnost, zbog
toga $ro organizacije mogu povecavati ili smanjivati
resurse prema potrebama, placajuéi samo za ono S§to
koriste. Ova fleksibilnost omogucava preduze¢ima svih
veli¢ina da analiziraju podatke na efikasan i isplativ nacin.
Kombinacija cloud tehnologija i Big Data tako otvara vrata
ka inovacijama, smanjenju troSkova i optimizaciji
poslovanja.

3. CLOUD SERVISI ZA OBRADU BIG DATA

Serijska obrada (batch processing) i strim obrada (stream
processing) su dva osnovna nacina obrade velikih skupova
podataka. Ove metode prilagodene su specificnim
potrebama 1 sluCajevima upotrebe. Serijska obrada
omogucéava analizu podataka iz proSlosti u unapred
definisanim vremenskim intervalima, dok je strim obrada
optimalna za aplikacije kojima su potrebni trenutni
rezultati, kao $to su detekcija prevara u realnom vremenu
ili pracenje finansijskih transakcija.

Servisi za obradu velikih skupova podataka u cloud-u
pruzaju skalabilnost, pouzdanost i visoke performanse,
omogucavaju¢i kompanijama efikasno upravljanje i
analizu podataka. Kljucne cloud platforme i njihovi servisi
ukljucuju:

e Amazon Web Services (AWS) — alati poput
Amazon S3 za skladiStenje, EMR za obradu
(Hadoop/Spark), Redshift za analitiku i Kinesis za
strimovanje podataka u realnom vremenu.

e Google Cloud Platform (GCP) — BigQuery za
analitiku, Dataflow za paralelnu obradu, Dataproc
za Hadoop/Spark i Pub/Sub za razmenu poruka.

e Microsoft Azure — HDInsight za Hadoop/Spark,
Synapse Analytics za skladistenje i obradu, Data
Lake Storage za velike skupove podataka i Stream
Analytics za real-time analitiku.

e IBM Cloud — Watson Studio za Al, Cloud Object
Storage za skladiStenje i Streams za analitiku u
realnom vremenu.

e Oracle Cloud — Autonomous Data Warehouse za
Al analitiku i Big Data Service za Hadoop
bazirane procese.

e Alibaba Cloud — MaxCompute za analizu
podataka, DataWorks za ETL i EMR za
Hadoop/Spark klastere.

e Cloudera — Platforma za hibridna reSenja koja
kombinuje upravljanje podacima, analitiku i AL

e Apache Hadoop: Osnova za mnoge Big Data
servise sa HDFS za skladistenje i MapReduce za
obradu.

1293

4. OBRADA KAGGLE DATASETA POMOCU GCP
BIGQUERY SERVISA

Google Cloud BigQuery je platforma za podatke koja
pomaze pri upravljanju i analiziranju podataka sa
ugradenim funkcijama kao S$to su maSinsko ucenje,
pretraga, analiza i poslovna inteligencija. Serverless
arhitektura ~ BigQuery-ja ~ omogucava kori$cenje
programskog jezika poput SQL-a i Pythona za odgovaranje
na najveCa pitanja, bez potrebe za upravljanjem
infrastrukturom [3]. Podaci su automatski replicirani na
viSe lokacija radi visoke dostupnosti i otpornosti.

4.1. Opis skupa podataka sa Kaggle platforme

Skup podataka koji je koris¢en pri obradi je dostupan na
slede¢em linku na Kaggle platformi:

https://www.kaggle.com/datasets/asaniczka/forex-
exchange-rate-since-2004-updated-daily/data

Skup podataka o dnevnim valutnim kursevima pruza
istorijske i aktuelne kurseve za preko 160 valuta. Ovaj skup
podataka se azurira svakodnevno i sadrzi podatke o
dnevnim valutnim kursevima od 2004. godine do danas.
Ukljucuje pet kolona: valuta (currency) je kod strane
valute, npr. USD za americki dolar, EUR za evro. Tip
podataka je string. Sledeca kolona je osnovna valuta
(base_currency) koja predstvalja kod osnovne valute, u
odnosu na koju se kurs izracunava, u ovom slucaju EUR.
Tip podataka je string. Sledi kolona za puno ime valute
(currency_name), kao §to su ,,Americki dolar” ili ,,Evro”.
Tip podataka je string. Cetvrta kolona je vrednost valutnog
kursa (exchange rate), tj. odnos izmedu strane valute i
osnovne valute. Ovo je broj koji pokazuje koliko osnovne
valute vredi jedna jedinica strane valute. Tip podataka je
float. Poslednja kolona je datum (date) kada je valutni kurs
zabelezen. Tip podataka je datetime.

Skup podataka sadrzi skoro 400000 redova podataka o
dnevnim valutnim kursevima i trenutna verzija zauzima
17.01 MB, §to ga ¢ini dovoljno obimnim za detaljne
analize kretanja valutnih kurseva i trziSnih trendova na
globalnom nivou.

4.2. Koraci za uvoz skupa podataka i SQL analiza
Koraci:

1. Priprema podataka — preuzeti dataset u CSV
format i pripremiti za uvoz.

2. Kreiranje projekta — prijava na Google Cloud
Console i kreiranje novog projekta.

3. Uvoz podataka — kliknuti na Create Table i
izaberite CSV fajl sa lokalnog diska ili Google
Cloud Storage-a. Definisati Semu kolona.

4. Opcije uvoza — Append to table ili Replace table

5. Analiza pomoc¢u SQL upita za filtriranje i analizu
podataka, kao npr. u listingu 1.

SELECT *

FROM "masterrad-
438309.dailyForexRates.DailyForexRates"

WHERE date >= '2023-01-01"

'USD!

AND currency =

ORDER BY exchange rate ASC;

Listing 1. SOL upit za dobavljanje liste svih kurseva za
USD od pocetka 2023. godine

5. ANALIZA SQL UPITA, KREIRANJE MODELA I
PREDIKCIJA POMOCU BIGQUERY ML

5.1. Analiza SQL upita i prikaz rezultata

Prvi SQL upit kroz koji su podaci analizirani se odnosi na
broj jedinstvenih valuta. SQL upit je korisen za
prebrojavanje razli¢itih valuta u tabeli. Identifikovane su
sve jedinstvene vrednosti u koloni valute, $to pomaze u
analizi pokrivenosti skupa podataka.

Drugi upit se odnosi na prose¢ni mesecni kursevi izmedu
RSD i EUR. Grupisanjem po godini i mesecu, dobijeni su
prosecni kursevi, zaokruzeni na dve decimale, sa ciljem
pracenja trendova na mese¢nom nivou. BigQuery nudi
nekoliko razli¢itih moguénosti prikaza reultata, medu
kojima je i tabelarni prikazan na slici 1.

Treé¢im upitom izvuceni su podaci o dnevnim kursevima
RSD, hronoloski poredani. Rezultati omogucavaju
vremensku analizu promenjivosti kursa i vizualizaciju
trendova.

Row L, year ¥ y month = y avg_ex-:hange_rateA
111 2024 1 117.27
112 2024 2 117.27
113 2024 3 117.2
114 2024 4 117.13
115 2024 5 117.14
116 2024 6 117.07
17 2024 7 117.05
118 2024 8 117.03
119 2024 9 117.06
120 2024 10 117.04

Slika 1. Tabelarni prikaz rezultata SQL upita

5.2. Kreiranje prediktivnog modela pomocu BigQuery
ML

BigQuery ML je alat koji omogucava kreiranje i treniranje
modela masinskog ucenja direktno u BigQuery-u koriste¢i
SQL upite. Ovo pojednostavljuje proces primene
masinskog ucenja, jer korisnici mogu raditi sa SQL-om,
koji je ve¢ poznat mnogim analitiarima i programerima
[4]. Prednost BigQuery ML-a lezi u moguénosti direktne
primene na postojece podatke u BigQuery-u, ¢ime se
izbegava potreba za prenosom podataka u drugo okruzenje.
Kreiran je model predikcije za kurs americkog dolara
(USD) koriste¢i vremenske serije ARIMA modela. Model
predvida kurs USD za narednih 15 dana i evaluira se na
osnovu podataka u BigQuery bazi podataka.

ARIMA model (Autoregressive Integrated Moving
Average) koristi se za analizu i predikciju vremenskih
serija, posebno onih koje nisu stacionarne [5]. Cilj ARIMA
modela je da pronade §to precizniji matematicki opis
podataka, §to omogucava bolje razumevanje serije i tacnije
predvidanje bududih vrednosti.

U ovom procesu je kreiran ARIMA model za predikciju
kursa ameri¢kog dolara na osnovu podataka o dnevnim
kursevima od 1. januara 2016. do 1. septembra 2024. Prvo
je postavljen model u BigQuery koristeci podatke iz tabele
koja sadrzi dnevne kurseve. Parametri modela su
automatski podeSeni kako bi optimizovali predikciju.

1294

https://www.kaggle.com/datasets/asaniczka/forex-exchange-rate-since-2004-updated-daily/data
https://www.kaggle.com/datasets/asaniczka/forex-exchange-rate-since-2004-updated-daily/data

Zatim je upotrebljena funkcija ML.FORECAST =za
generisanje predikcija kursa na slede¢ih 15 dana sa 80%
nivoa poverenja.

Nakon $to su predikcije izvrSene, model je evaluiran
koriste¢i stvarne podatke od 1. do 15. septembra 2024.
kako bi se proverila ta¢nost predikcija. Rezultati evaluacije
su pokazali razli¢ite metrike greske, kao §to su MAE, MSE,
RMSE, MAPE i SMAPE, s$to je omoguéilo analizu
preciznosti modela. Iako su vrednosti MAE i RMSE bile
relativno niske, visoki procenti greske (MAPE i SMAPE)
ukazali su na to da model moze imati poteskoée sa
sezonskim promenama ili neredovnim podacima.

5.3. Identifikacija vezanih valuta

U sljede¢em delu analize, identifikovane su valute vezane

za evro iz posmatranog skupa podataka. Valutni kursevi
mogu biti fiksni ili promenljivi. Za identifikaciju vezanih
valuta posmatrani su podaci sa istorijom valutnih kurseva
pre 2015. godine i izraCunat je koeficijent varijacije (CV),
koji pokazuje stabilnost kursa, pomoc¢u formule (1):

cv=2
= (1)

Pocetna analiza se bazira na filtriranju valuta koje su usle
u skup podataka pre 2015. godine, jer se pretpostavlja da
su ove valute stabilnije, imaju duzu istoriju i mogu biti
pogodnije za dalju analizu. SQL upit je kori$éen da bi se
identifikovale valute koje su prvi put prikazane u skupu
podataka pre 1. januara 2015. Na osnovu ovog upita,
dobijeno je 134 valuta koje zadovoljavaju ovaj kriterijum.

Za svaku od identifikovanih valuta, izracunata je prose¢na
vrednost valutnog kursa, kao i standardna devijacija koja
pokazuje promenjivost kursa tokom vremena. Ovo je
kljuéno za razumevanje koliko se kurs jedne valute menja
u odnosu na evro. Prose¢na vrednost kursa daje osnovnu
vrednost za analizu, dok standardna devijacija pomaze u
oceni stabilnosti kursa.

Nakon §to su izraCunati srednji kurs i standardna devijacija,
koristi se koeficijent varijacije (CV) kao kriterijum za
identifikaciju vezanih valuta Valute sa niskim CV (manje
od 0.03) smatraju se stabilnim, §to znaci da njihovi kursevi
imaju malu varijaciju oko prosec¢ne vrednosti, §to moze
ukazivati na to da su vezane za evro. Na osnovu ovog
kriterijuma, identifikovane su valute sa malim CV, koje su
potencijalno vezane za evro.

Nakon identifikacije vezanih valuta pomo¢u SQL upita i
analize CV, rezultati su uporedeni sa informacijama sa
Wikipedije o medunarodnom statusu i upotrebi evra, koje
su dostupne na sljede¢em linku:

https://en.wikipedia.org/wiki/International _status and_us

age_of the euro#Pegged currencies

Valute koje su tacno identifikovane kao vezane za evro su
BAM, BGN, DKK, KMF, MAD, MKD i XAF. Takode su
identifikovane valute koje nisu bile prisutne u analizi, kao
$to su CVE, STN, XOF i XPF, pri ¢emu su valute poput
STN-a bile izostavljene zbog nedostatka podataka, dok su
ostale dodane u poslednjem azuriranju podataka krajem
2023. godine. Postoje i dodatne valute koje se nalaze u listi

identifikovanih vezanih valuta, ali nisu prisutne na
Wikipediji: RSD, HRK i XDR.

6. ZAKLJUCAK

Ovaj rad je uspesno pokazao povezanost Cloud computing
i Big Data koncepta, kao i primenu cloud tehnologija za
analizu i predikciju trziSta valuta. KoriS¢enjem Google
Cloud BigQuery platforme, analizirani su dnevni kursevi
valuta, identifikovani dugorocni trendovi i razvijen model
za predvidanje vrednosti kurseva. SQL upiti su omogucili
analize, dok je ARIMA model delimi¢no uspesno
predvideo vrednosti kurseva u odredenim periodima Sto
ukazuje na potencijal, ali i na prostor za unapredenje ovog
pristupa.

Google BigQuery se istice u izvodenju kompleksnih
analiza, dok za jednostavnije operacije nije najucinkovitiji.
Rad otvara mogucnosti za dalja istrazivanja, kao §to su
koris¢enje sloZenijih masinskih modela 1 uvodenje
ekonomskih faktora za bolje predikcije. Takode, Sirenje
analize na vece vremenske intervale i druge valute moze
doprineti boljem razumevanju globalnih finansijskih
tokova. Ovaj rad pruza c¢vrstu osnovu za buduca
istrazivanja u oblasti cloud tehnologija i analize podataka.

7. LITERATURA

[17 https://aws.amazon.com/what-is-cloud-computing/
(pristupljeno u septembru 2024.)

[2] https://www.pcmag.com/encyclopedia/term/big-data
(pristupljeno u septembru 2024.)

[3] https://cloud.google.com/bigquery/docs/introduction
(pristupljeno u septembru 2024.)

[4] https://cloud.google.com/bigquery/docs/create-
machine-learning-model#sql (pristupljeno u oktobru
2024.)

[5] https://en.wikipedia.org/wiki/Autoregressive
integrated_moving_average (pristupljeno u oktobru
2024.)

Kratka biografija:

Bosiljka Todi¢ je rodena 2000. godine u
Bijeljini, Bosna i Hercegovina. Zavrsila je
gimnaziju ,,Vaso Pelagi¢” u Brckom,
2019. godine. Fakultet Tehnickih Nauka u
Novom Sadu je upisala 2019. godine.
Diplomirala je u septembru 2023. godine
na smeru Primenjeno softversko
inzenjerstvo. Uspesno je ispunila sve
akademske obaveze i polozila sve ispite
predvidene master studijskim programom
Primenjeno softversko inzenjerstvo.

kontakt: bosiljkatodic00@gmail.com

1295

https://en.wikipedia.org/wiki/International_status_and_usage_of_the_euro#Pegged_currencies
https://en.wikipedia.org/wiki/International_status_and_usage_of_the_euro#Pegged_currencies
https://aws.amazon.com/what-is-cloud-computing/
https://www.pcmag.com/encyclopedia/term/big-data
https://cloud.google.com/bigquery/docs/introduction
https://cloud.google.com/bigquery/docs/create-machine-learning-model#sql
https://cloud.google.com/bigquery/docs/create-machine-learning-model#sql
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average

g?ﬁ Zbornik radova Fakulteta tehniékih nauka, Novi Sad

UDK: 4.41
DOI: https://doi.org/10.24867/33BE07Nedic

PLATFORMA ZA VIZUALIZACIJU DISTRIBUIRANIH ALGORITAMA NA PRIMERU
KLASE ALGORITAMA ZA 1ZBOR LIDERA

PLATFORM FOR VISUALIZING DISTRIBUTED ALGORITHMS ON THE EXAMPLE
OF A CLASS OF ALGORITHMS FOR LEADER ELECTION

Aleksandra Nedi¢, Fakultet tehnickih nauka, Novi Sad

Oblast - ELEKTROTEHNIKA I RACUNARSTVO

Kratak sadrzaj — U radu je predstavijena proSiriva
platforma za vizualizaciju distribuiranih algoritama za
izbor lidera u sinhronim mrezama. Platforma omogucava
korisniku da dodaje nove algoritme pored predefinisanih,
kao i da manipulise sistemom kroz dinamicko dodavanje i
uklanjanje c¢vorova koji ucestvuju u izvrSavanju
algoritama. Detaljno se razmatraju implementirani
algoritmi za izbor lidera, razlicite topologije i tehnoloske
osnove platforme, uz prikaz njenih kljucnih elemenata i
nacina funkcionisanja. Rad takode opisuje specifikaciju i
arhitekturu sistema, kao i implementaciju platforme.

Kljuéne refi: distribuirani algoritmi, biranje lidera,
topologije, ~ Chang-Roberts, Gallager-Humblet-Spira,
Hirschberg-Sinclair, Bully, Hypercube

Abstract — The paper presents an extensible platform for
visualizing distributed algorithms for leader election in
synchronous networks. The platform allows the user to add
new algorithms in addition to predefined ones, as well as
to manipulate the system through dynamic addition and
removal of nodes participating in the execution of
algorithms. The implemented algorithms for the selection
of leaders, different topologies and technological
foundations of the platform are discussed in detail, with a
presentation of its key elements and ways of functioning.
The paper also describes the system specification and

system architecture, as well as the platform
implementation.
Keywords: distributed algorithms, leader election,

topologies,fklas Chang-Roberts, Gallager-Humblet-Spira,
Hirschberg-Sinclair, Bully, Hypercube

1. UVOD

U kontekstu izgradnje kompleksnih sistema, postoje dva
glavna pristupa: monolitni i1 distribuirani. Monolitne
arhitekture integrisu sve komponente u jedan proces, dok
distribuirani sistemi funkcioniSu kroz viSe povezanih
¢vorova bez centralnog autoriteta. To c¢ini pracenje
komunikacije, stanja ¢vorova i toka izvr§avanja algoritama
slozenim. Zbog toga je razvijena edukativna platforma
koja vizuelno prikazuje rad distribuiranih

NAPOMENA:
Ovaj rad proistekao je iz master rada ¢iji je mentor bio
dr Milan Stojkov, docent

algoritama, ukljucuju¢i topologiju sistema, razmenu
poruka i tabelu rutiranja. Platforma inicijalno podrzava
algoritme za izbor lidera (engl. Leader Election) [1] u
sinhronim mrezama. Omogucava korisnicima interaktivno
razumevanje ponasanja distribuiranih sistema i algoritama
nakon izbora lidera. Platforma je prosiriva i omogucava
jednostavno dodavanje novih algoritama putem Python
skripti.

2. TOPOLOGIJE

Topologija unutar distribuiranih sistema predstavlja nacin
na koji ¢vorovi komuniciraju i saraduju. Ona definise
organizaciju ¢vorova i putanje preko kojih se podaci
prenose. Topologije definisane u okviru platforme jesu
prsten [2], hiperkocka [3], mes [4] i mreza.

2.1. Prsten

Prsten topologija je struktura u distribuiranim sistemima u
kojoj su ¢vorovi povezani u krug. Svaki ¢vor je direktno
povezan sa svoja susedna dva ¢vora formirajuci zatvoreni
krug. Podaci se krecu kroz prsten od jednog do drugog
¢vora dok ne stignu do Zeljenog odredista.

2.2. Hiperkocka

Hiperkocka je slozena struktura u distribuiranim sistemima
koja povezuje ¢vorove tako da formira graf koji predstavlja
n-dimenzionalnu kocku. Za n dimenzija, broj ¢vorova u
hiperkocki mora biti 2". Svakom ¢voru je dodeljen binarni
broj od n bitova, a ¢vorovi su povezani ako se njihovi
binarni kodovi razlikuju u ta¢no jednom bitu.

2.3. Me§

Mes topologija predstavlja strukturu u kojoj postoje tri
vrste &vorova u zavisnosti od broja suseda. Cvorovi u
uglovima imaju dva suseda, ¢vorovi na ivicama imaju tri,
dok unutra$nji ¢vorovi imaju Cetiri suseda. Ukupan broj
veza m u me$ topologiji veli¢ine izra¢unava se formulom
m = 2ab — a — b, $to predstavlja horizontalne i vertikalne
veze izmedu ¢vorova.

2.4. Mreza

MreZa je univerzalan naziv za topologiju u kojoj su ¢vorovi
povezani na odredeni nacin. Ukoliko je unutar mreze svaki
¢vor povezan sa ostalim ¢vorovima, u pitanju je kompletna
mreza, dok je parcijalna mreza ona mreza u kojoj nisu svi
¢vorovi direktno povezani jedan sa drugim. Kod
kompletnih mreza prenos podataka je veoma brz i ovakva

1296

https://doi.org/10.24867/33BE07Nedic

mreza je korisna u sistemima u kojima je minimalno
kasnjenje kljucno.

3. ALGORITMI ZA BIRANJE LIDERA

Algoritmi za biranje lidera igraju veoma vaznu ulogu u
distribuiranim sistemima jer omoguéavaju izbor jednog
¢vora koji ¢e preuzeti ulogu koordinatora. Ovaj proces je
kljucan za osiguranje efikasnosti, stabilnosti i organizacije
sistema. Koordinator deluje kao centralna tacka koja
upravlja zadacima poput sinhronizacije C¢vorova i
upravljanja resursima, S$to omogucéava uskladenu
komunikaciju i sprecava nastanak konflikata.

3.1. Chang-Roberts algoritam

Chang-Roberts algoritam [5] bira lidera u sistemima sa
unidirekcionom prstenastom topologijom gde svaki ¢vor
ima jedinstveni identifikator (ID). Bilo koji ¢vor moze
pokrenuti algoritam slanjem poruke sa svojim ID-jem
susedu u smeru kazaljke na satu i time postaje ucesnik.
Prilikom primanja poruke, ¢vor:

1. prosleduje poruku ako je ID u njoj veci od njegovog,

2. 8alje svoju poruku ako je ID u njoj manji i nije

ucesnik,

3. ignoriSe poruku ako je ID manji i ve¢ je ucesnik,

4. proglasava se liderom ako je ID jednak njegovom.

3.2. Bully algoritam

Bully algoritam [6] je algoritam za biranje lidera u
sistemima u kojima svaki ¢vor ima svoj ID i u kojima je
mreZa potpuno povezana, te svaki ¢vor moze direktno
komunicirati jedan sa drugim. Za lidera se bira onaj ¢vor
koji ima najveéi ID. Proces zapocinje ¢vor koji otkrije da
trenutni lider viSe nije aktivan, ukoliko, na primer, ne
odgovara na poruke. Cvor pokreée proces za izbor tako §to
Salje poruku svim ¢vorovima koji imaju veéi ID od njega.
Ukoliko ne dobije odgovor od ¢vorova sa ve¢im ID-jem,
taj ¢vor proglasava sebe liderom. Ako ¢vor sa ve¢im ID-
jem odgovori na poruku inicijatoru, on preuzima proces
izbora lidera i Salje poruku ¢vorovima koji imaju ve¢i ID
od njega.

3.3. Hypercube algoritam

Hypercube algoritam [7] koristi se u distribuiranim
sistemima sa hiperkockastom topologijom. Za hiperkocku
dimenzije k postoji ukupno 2¥ &vorova, pri ¢emu svaki
¢vor ima binarni ID duzine k bita. Algoritam pokrece bilo
koji ¢vor slanjem poruke sa svojim ID-jem susedima u &
koraka. U svakom koraku poruka se $alje susedu koji se
razlikuje u jednom bitu — pocevsi od najmanje znac¢ajnog
(desnog) ka najznacajnijem (levom) bitu. Po prijemu
poruke, ¢vor:

1. ukoliko je ID iz poruke vec¢i od njegovog ID-ja, ¢vor

oznacava sebe da nije lider

2. ukoliko je ID iz poruke manji od njegovog ID-ja, a

¢vor do sada nije bio oznacen kao ne-lider, ¢vor

oznacava sebe kao lidera
Cvor zatim $alje svoj ID ostalim susedima. Po zavrsetku k
koraka, ¢vor koji je oznacen kao lider postaje lider, dok
ostali zavr$avaju rad.

3.4. Gallager-Humblet-Spira algoritam

Gallager-Humblet-Spira algoritam [8] je algoritam za
pronalazenje minimalnog razapinjujuceg stabla (engl.
Minimum spanning tree) u povezanim grafovima.

Koristi se u distribuiranim sistemima kod kojih veze
izmedu ¢vorova imaju odredenu tezinu. Algoritam se
zasniva na ideji fragmentacije grafa, gde ¢vorovi i grane
formiraju fragmente koji se iterativno spajaju dok se ne
formira jedno stablo. Na pocetku algoritma, svaki ¢vor
predstavlja fragment za sebe i ima sopstveni ID. Jedan ¢vor
zapoCinje proces za izbor lidera tako Sto Salje poruku
susedu sa kojim ima vezu najmanje tezine. Kada ¢vor primi
poruku, on uporeduje svoj ID sa ID-jem iz poruke, ukoliko
je njegov ID manji, ova dva ¢vora se spajaju u jedan
fragment, a za ID fragmenta se uzima manji od ova dva.
Ovaj proces se nastavlja iterativno dok svi ¢vorovi ne
postanu deo jednog fragmenta, ¢iji ID ima najmanju
vrednost. Na ovaj nacin je formirano minimalno
razapinjujuce stablo, a lider postaje ¢vor ¢iji ID predstavlja
ID ¢&itavog fragmenta.

3.5. Hirschberg-Sinclair algoritam

Hirschberg-Sinclair algoritam [9] koristi se za izbor lidera
u distribuiranim sistemima sa bidirekcionom prstenastom
topologijom, gde svaki ¢vor ima jedinstven ID. Izvr§ava se
u vise iteracija, pri ¢emu poruke putuju na sve vecim
udaljenostima, udvostru¢uju¢i domet u svakoj iteraciji,
tako da vazi k < 2%, gde je k udaljenost, a i broj iteracije.
Algoritam pocinje slanjem izborne poruke (engl. election
message) u oba smera. Prilikom prijema izborne poruke,
¢vor uporeduje svoj ID sa ID-jem iz poruke:

1. prosleduje poruku ako je ve¢i ID i domet nije

dostignut,

2. Salje povratnu poruku ako je domet dostignut,

3. ignoriSe poruku ako je ID manji,

4. proglasava se liderom ako je ID isti.
U slucaju povratne poruke (eng. reply message), ukoliko
ID-jevi ¢vora i poruke nisu isti, ¢vor vrac¢a poruku svom
susedu, dok ukoliko su ID-jevi isti, i povratna poruka je
stigla iz oba smera, ¢vor je lokalni lider, ¢ime je jedna
iteracija zavrSena i ¢vor zapocinje sledecu fazu elekcije.

4. MODEL SISTEMA

4.1. Arhitektura sistema

U arhitekturi platforme centralnu ulogu ima task
manager, ¢vor zaduZen za upravljanje i orkestraciju
celokupnog sistema. On poseduje kompletnu konfiguraciju
sistema, ukljucuju¢i definicije ¢vorova, algoritama i
njihove komunikacione topologije. Ova konfiguracija se
¢uva u JSON formatu na fajl sistemu i povezuje sa Docker
kontejnerom putem bind mount mehanizma, S§to
omoguéava lako azuriranje bez potrebe za restartovanjem
sistema. Task manager je jedini ¢vor izloZen spoljasnjoj
mrezi i sluzi kao komunikaciona spona izmedu korisnicke
aplikacije i ostatka sistema. Koristi HTTP protokol za
prijem korisni¢kih zahteva, poput dodavanja ¢vorova ili
pokretanja algoritama, dok se WebSocket koristi za
dvosmernu komunikaciju u realnom vremenu,
omogucavaju¢i korisniku da prati status algoritama i
trenutno stanje ¢vorova. Osnovna funkcija task manager-a
je koordinacija - inicira i uklanja cvorove, pokrece

1297

algoritme, upravlja njihovim izvrSavanjem i prati njihov
status. Informacije o izvrSavanju prosleduje korisniku kako
bi on imao uvid u rad sistema u realnom vremenu. Pored
task manager-a, sistem se sastoji od vise ¢vorova koji
medusobno komuniciraju sinhrono putem HTTP-a kako bi
izvrSavali distribuirane algoritme. Svaki ¢&vor, takode,
asinhrono $alje informacije o svom stanju task manager-u
koriste¢i RabbitMQ message broker, ¢ime se omoguéava
azuriranje prikaza sistema u realnom vremenu.

Arhitektura sistema prikazana je na slici 1.

RabbitMQ *

Usop 1

KopHcHKuKK
HHTEPEIC
nnargopme

- Task Manager - (GRS —

Kopmcris

Usop 4 Uscp 3

SLIKA 1: ARHITEKTURA RESENJA

4.2 Funkcionalnosti sistema

Platforma je namenjena jednoj vrsti korisnika i ne zahteva
autentifikaciju. Korisnik moze pregledati listu dostupnih
algoritama, izabrati neki i pratiti njegovo izvrSavanje na
grafickom prikazu.

Postoji 1 posebna stranica za pregled celog sistema,
ukljucujuci ¢vorove sa parametrima i tabele rutiranja koje
prikazuju ucesnike i njihove veze. Na toj stranici korisnik
moze dodavati nove algoritme, menjati ¢vorove i njihove
karakteristike, kao i dodavati nove ¢vorove unosom
podataka. Takode, moze menjati tabele rutiranja postoje¢ih
algoritama i time prilagodavati topologiju sistema.

4.3. Model podataka

Model podataka platforme je jednostavan i odnosi se na
konfiguraciju koja definiSe algoritme koji su dostupni u
sistemu, ¢vorove zajedno sa njihovim karakteristikama i
tabele rutiranja koje definiSu topologiju algoritama.
Konfiguracija sistema predstavljena je klasom Config, koja
sadrzi atribute nodes, algorithms, routing. Atribut nodes
predstavlja listu ¢vorova koji su prisutni u sistemu i
prikazani su klasom Node, atribut algorithms oznacava
algoritme unutar sistema i oni su predstavljeni klasom
Algorithm, dok atribut routing predstavlja tabelu rutiranja
za svaki algoritam i unutar platforme je modelovan klasom
Routing. Klasa Node sadrzi atribute id, url, active,
is_participant koji definiSu osnovne karakteristike ¢vora u
sistemu. Klasa Algorithm sadrzi dva atributa, name koji
predstavlja ime algoritma, i file name koji oznaava naziv
Python skripte u kojoj je algoritam implementiran. Tabela
rutiranja, predstavljena klasom Routing, modeluje
topologiju komunikacije izmedu <&vorova za svaki
algoritam. Klasa Routing sadrzi dinamicke parametre, gde
svaki klju¢ predstavlja ime algoritma, a njegova vrednost
je re¢nik u kome su kljucevi ID-jevi ¢vorova, dok su
vrednosti liste objekata koji opisuju rute. Svaka ruta je
predstavljena klasom Route koji sadrzi atribute id (ID
odrediSnog ¢vora) i ur/ (adresa odredisnog ¢vora).

Klasni dijagram prikazan je na slici 2.

Config
- nodes: List[Node]
- algorithms: List[Algorithm]
- routing: Routing
0.” 0.* 0..1
| S— 1 1
Node Algorithm Routing
- id: number) .
- url: string - name: string - [algorithm_name: str]:
- active: boolean - file_name: string Dict[string, List[Route]]
- is_participant:
booclean T
[
Route
- id: string
- url: string

SLIKA 2: KLASNI DIJAGRAM

5. IMPLEMENTACIJA

Serverska strana platforme sastoji se iz viSe servisa koji
igraju razli¢ite uloge. Svaki servis predstavlja ¢vor i
implementiran je u Python programskom jeziku uz pomo¢
FastAPI radnog okvira za lakSu komunikaciju izmedu
servisa i klijentske strane.

Svaki servis je kontejnerizovan radi lakSeg skaliranja
¢vorova. Za kontejnerizaciju se koristi Docker alat, a u
Docker Compose datoteci, pored servisa koji predstavljaju
¢vorove, definisan je 1 RabbitMQ =za asinhronu
komunikaciju, kao i volumen koji je deljen izmedu task
manager-a i ostalih ¢vorova, a predstavlja direktorijum u
kojem su smestene sve Python skripte koje predstavljaju
implementaciju algoritama. Na ovaj nacin, bez prekidanja
rada platforme korisnici mogu da definiSu nove algoritme
koji ¢e biti odmah dostupni ¢vorovima na izvrSavanje.
Kompletna konfiguracija platforme koju c¢ine dostupni
¢vorovi i algoritmi, kao i tabela rutiranja za svaki od
algoritama smeStena je u JSON datoteci i njoj moze da
pristupi centralni ¢vor radi orkestracije zadataka.

Konfiguracija se ucitava u sistem i zadrzava u radnoj
memoriji prilikom pokretanja centralnog c¢vora.
Konfiguracija se nalazi u globalnom objektu tipa Config i
pri svakom klijentovom zahtevu za pokretanje algoritama
koriste se podaci iz konfiguracije, a u slu¢aju izmena, nova
konfiguracija se zapisuje u JSON datoteku.

Prilikom pokretanja servisa, pored ucitavanja
konfiguracije, na pozadinskoj niti ucitava se i statistika
¢vorova poput zauzeca memorije 1 koriSéenja procesorske
mo¢iuz pomo¢ docker.py biliboteke, kako bi korisnik imao
uvid u njihov kapacitet prilikom izvrSavanja algoritama.
Na kraju, task manager na pozadinskoj niti otvara
konekceiju sa RabbitMQ servisom kako bi bio spreman da
konzumira podatke koji mu pristizu od strane ¢vorova i
prosleduje ih klijentu.

Centralni ¢vor se sastoji iz Cetiri krajnje tacake koje
pruzaju funkcionalnosti platforme. Postoji krajnja tacka za
dobavljanje konfiguracije koja ¢e biti prikazana korisniku
radi uvida i manipulacije sistema, zatim postoji mogucnost
izmene konfiguracije pri ¢emu se mogu dodavati ili
uklanjati ¢vorovi koji su specificirani u konfiguraciji i
poslednje dve krajnje tacke odnose se na pokretanje
algoritma i dodavanje novih algoritama.

Task manager zapoCinje izvrSavanje algoritama
inicijalizacijom svih ¢vorova koji se nalaze u tabeli
rutiranja za odredeni algoritam. Pod inicijalizacijom se
podrazumeva slanje podataka potrebnih za izvrSavanje

1298

algoritma. Kada su svi ¢vorovi uspe$no inicijalizovani,
task manager na slucajan nacin bira jedan ¢vor koji ¢e
zapoceti izvrSavanje algoritma za biranje lidera.

Cvor sadrzi pet krajnjih tadaka koje omoguéavaju
inicijalizaciju ¢vora, pokretanje algoritma, deaktivaciju
¢vora, prijem poruke od strane drugog cvora prilikom
izvrSavanja algoritma i izvrSavanje krajnje funkcije nakon
Sto je lider izabran.

Svaki ¢vor sadrzi globalnu promenljivu koja predstavlja
instancu klase Node i koja se inicijalizuje prilikom
inicijalizacije samog ¢vora. Unutar klase Node cuvaju se
podaci koje task manager Salje C¢voru prilikom
inicijalizacije.

Klasa Node ima nekoliko metoda, a najbitnije su metoda
za zapofinjanje izvrSavanja algoritma, metoda za slanje
poruke narednom ¢voru, metoda za obradu odgovora koji
je naredni ¢vor poslao i metoda za izracunavanje sume
sluc¢ajno odabranih brojeva.

Kako bi platforma bila proSiriva i kako bi mogla da
izvrSava veliki broj razliCitih algoritama, sve S$to je
zajednicko svim algoritmima nalazi se u okviru metoda ove
klase, dok je sve specifiéno za odredeni algoritam
smesteno u posebnom modulu. Klasa Node pretpostavlja
da svaki modul sadrzi tri funkcije, a to su:

1. run_algorithm(node_data, routing_table),
2. handle_message(node_data, routing_table, data)
3. handle result(node_data, routing_table, result)

Ove tri funkcije zajedno predstavljaju implementaciju
odredenog distribuiranog algoritma.

Nakon §to je zavrSen algoritam, odabrani lider $alje poruku
task manager-u ¢ime ga obaveStava da je izvrSavanje
zavrSeno. Task manager zatim poziva funkciju za
izraCunavanje zbira brojeva za svaki od ¢vorova. Nakon §to
svi ¢vorovi vrate rezultat, task manager izraCunava ukupan
zbir koji je stigao sa svih ¢vorova. Konacan rezultat,
zajedno sa medurezultatima prosleduje se korisniku kao
konacan korak algoritama za biranje lidera.

6. ZAKLJUCAK

Razumevanje distribuiranih algoritama je izazovno zbog
paralelnog izvrSavanja na velikom broju ¢vorova, slozenih
topologija i nacina komunikacije medu ¢vorovima. Ovi
izazovi su motivisali razvoj platforme koja vizuelno i u
realnom vremenu prikazuje izvrSavanje klasi¢nih
algoritama za izbor lidera u sinhronim mrezama,
omogucavajuéi pracenje topologije i stanja ¢vorova tokom
izvrSavanja. Platforma se sastoji od centralnog servisa,
task managera, koji upravlja konfiguracijom, komunicira
sa klijentom i koordinira &vorove. Cvorovi zajednigki
izvrSavaju algoritme, a sistem je proSiriv dodavanjem
novih algoritama putem Python skripti sa tri definisane
funkcije. Skaliranje je omoguceno dodavanjem ili
uklanjanjem ¢vorova. Buduéa unapredenja ukljucuju
podrsku za algoritme sa kasnjenjem poruka, ¢ime bi se
omogucdila Sira vizualizacija, kao i debagovanje i korak-po-
korak izvrSavanje za bolje razumevanje algoritama.

7. LITERATURA
[1] Shirali, M., Toroghi, A. H., & Vojdani, M. (2008).
Leader election algorithms: History and novel

schemes. In 2008 Third International Conference
on Convergence and Hybrid Information
Technology (pp. 1001-1006). IEEE.
https://doi.org/10.1109/ICCIT.2008.57

[2] Huang, M., & Bode, B. (2005). A performance
comparison of tree and ring topologies in distributed
systems. In /9th IEEE International Parallel and
Distributed Processing Symposium (pp. 8). IEEE.
https://doi.org/10.1109/IPDPS.2005.57

[3] Liu, H. (2009). The structural features of enhanced
hypercube networks. In 2009 Fifth International
Conference on Natural Computation (pp. 345-
348). IEEE.
https://doi.org/10.1109/ICNC.2009.191

[4] Santoro, N. (2006). Design and analysis of
distributed algorithms. Wiley.

[5] Chang, E., & Roberts, R. (1979). An improved
algorithm for decentralized extrema-finding in
circular configurations of processes.
Communications of the ACM, 22(5), 281-283.
https://doi.org/10.1145/359024.359027

[6] Garcia-Molina, H. (1982). Elections in a distributed
computing system. [EEE Transactions on
Computers, C-31(1), 48-59.
https://doi.org/10.1109/TC.1982.1675885

[7] McBryan, O. A., & Van de Velde, E. F. (1987).
Hypercube algorithms and implementations. STAM
Journal on Scientific and Statistical
Computing, 8(2), s227-s287.
https://doi.org/10.1137/0908040

[8] Gallager, R. G., Humblet, P. A., & Spira, P. M.
(1983). A distributed algorithm for minimum-weight
spanning trees. ACM Transactions on
Programming Languages and Systems, 5(1), 66-
77. https://doi.org/10.1145/357195.357200

[9] Hirschberg, D. S., & Sinclair, J. B. (1980).
Decentralized extrema-finding in circular
configurations of processors. Communications of
the ACM, 23(11), 627-628.
https://doi.org/10.1145/359024.359029

Kratka biografija:

Aleksandra Nedi¢ rodena je 09.04.2000.
godine u Vranju. U Skolskoj 2019/20
godini upisuje osnovne studije na Fakultetu
tehniCkih nauka, na smeru Softversko
inzenjerstvo i informacione tehnologije,
koje zavrSava Skolske 2022/23 sa
prose¢nom ocenom 9.80. Master rad na
Fakultetu tehnickih nauka iz oblasti
Softversko inzenjerstvo i informacione tehnologije, usmerenje
Elektronsko poslovanje odbranila je u skolskoj 2024/25 godini.

kontakt: aleksandranedic843(@gmail.com

1299

https://doi.org/10.1109/ICCIT.2008.57
https://doi.org/10.1109/IPDPS.2005.57
https://doi.org/10.1109/ICNC.2009.191
https://doi.org/10.1145/359024.359027
https://doi.org/10.1109/TC.1982.1675885
https://doi.org/10.1137/0908040
https://doi.org/10.1145/357195.357200
https://doi.org/10.1145/359024.359029
mailto:aleksandranedic843@gmail.com

Zbornik radova Fakulteta tehnickih nauka, Novi Sad

UDK: 4.9
DOI: https://doi.org/10.24867/33BE08Bajat

MEDUREPREZENTACIJE IZVORNOG KODA RUSTC KOMPAJLERA

INTERMEDIATE REPRESENTATIONS OF THE SOURCE CODE IN THE RUSTC
COMPILER

Aleksa Bajat, Fakultet tehnickih nauka, Novi Sad

Oblast — ELEKTROTEHNICKO I RACUNARSKO
INZENJERSTVO

Kratak sadrzaj — Ovaj rad istrazuje arhitekturu prednjeg
kraja (engl. frontend) Rust kompajlera (rustc), sa fokusom
na kljucnu ulogu koju medureprezentacije izvornog koda
igraju u procesu prevodenja. Analizirane su faze od
leksicke analize i parsiranja do generisanja Apstraktnog
Sintaksnog Stabla (ASS), preko Medureprezentacije
Visokog ~ Nivoa (MVN/HIR), Tipizirane ~ MVN
(TMVN/THIR), do Medureprezentacije Srednjeg Nivoa
(MSN/MIR). Rad objasnjava kako svaka od ovih
reprezentacija omogucava kljucne funkcionalnosti Rust
Jezika, ukljucujuci proveru tipova, dijagnostiku gresaka,
inkrementalno kompajliranje, proveru pozajmljivanja
(borrow checking) i pripremu za dalju optimizaciju i
generaciju koda u LLVM-u. Cilj je da se prikaze kako
generisanje infrastrukture doprinosi garancijama
memorijske bezbednosti i visokim performansama Rust
programskog jezika.

Kljucéne vreci: Rust, rustc, kompajler, frontend,
medureprezentacije, ASS, MVN, TMVN, MSN, LLVM,
analiza koda, optimizacija

Abstract — This paper explores the architecture of the Rust
compiler's (rustc) frontend, focusing on the crucial role of
intermediate representations (IRs) of source code in the
compilation process. Phases from lexical analysis and
parsing to the generation of the Abstract Syntax Tree
(AST), through the High-Level Intermediate
Representation (HIR), Typed HIR (THIR), to the Mid-Level
Intermediate Representation (MIR) are analyzed. The
paper explains how each of these representations enables
key features of the Rust language, including type checking,
error diagnostics, incremental compilation, borrow
checking, and preparation for further optimization and
code generation in LLVM. The aim is to demonstrate how
generation of compiler infrastructure contributes to Rust's
guarantees of memory safety and high performance.

Keywords: Rust, rustc, compiler, frontend, intermediate
representations, AST, HIR, THIR, MIR, LLVM, code
analysis, optimization

NAPOMENA:
Ovaj rad proistekao je iz master rada ¢iji mentor je bio
dr Dunja Vrbaski, doc.

1. UVOD

Programski jezik Rust je stekao znacajnu popularnost
zahvaljujuéi svom fokusu na memorijsku bezbednost bez
upotrebe sakupljaca smeca (engl. garbage collector) i
visokim performansama koje pariraju jezicima kao §to su
C i C++. Ove karakteristike ¢ine ga idealnim za razvoj
sistemskog softvera, operativnih sistema, veb servera i
drugih aplikacija gde su performanse i bezbednost kriti¢ne
[1]. Postizanje ovih ciljeva zahteva sofisticiran kompajler,
rustc, Ciji prednji kraj (frontend) igra kljuénu ulogu u
analizi, validaciji i transformaciji izvornog koda.

Prednji kraj rustc kompajlera koristi niz
medureprezentacija (engl. Intermediate Representations)
kako bi postepeno transformisao izvorni kod u formu
pogodnu za dalje faze kompajliranja, ukljucujudi
optimizaciju i generaciju koda od strane LLVM bekenda
[13]. Svaka medureprezentacija sluzi specificnoj svrsi,
omogucavajuéi razliCite vrste analiza i transformacija.
Razumevanje ovih reprezentacija je kljuéno za
razumevanje kako Rust postize svoje garancije.

2. PUT IZVORNOG KODA U RUSTC
KOMPAJLERU

Proces kompajliranja u rustc frontendu zapocCinje
leksickom analizom 1 parsiranjem, nastavlja se kroz
nekoliko nivoa medureprezentacija gde se vrSe kljucne
analize i transformacije, a zavrSava se generacijom
Medureprezentacije Srednjeg Nivoa (MSN) koja se potom
prosleduje LLVM-u za dalju optimizaciju i generaciju
masinskog koda. U tipi¢no struktuiranom kompajleru
svaka od medureprezentacija predstavlja poseban program
i posebno izvrSavanje. Ovakvi kompajleri se nazivaju
kompajleri zasnovani na prolascima - arhitektura cevi. Rust
kompajler je u tranziciji izmedu kompajlera zasnovanog na
prolascima i kompajlera zasnovanog na potraznji.
Kompajler zasnovan na potraznji koristi upite nad
izvornim kodom i simultono izvrSava velike celine
kompajliranja. IzvrSavanje upita je memoizovano. Samo
prvi poziv upita izvrSava komputacije, dok je svaki naredni
kesiran. Sve medureprezentacije nakon ASS se zasnivaju
na sistemu upita, tj. samo lekser i parser rade po principu
arhitekture cevi. Dugoro¢ni cilj je refaktorizacija
kompajlera tako da celokupan proces radi na osnovu
sistema upita.

1300

https://doi.org/10.24867/33BE08Bajat

2.1. OD TOKENA DO APSTRAKTNOG
SINTAKSNOG STABLA (ASS)

Prvi korak je leksic¢ka analiza, gde rustc lexer, kao lekser
niskog nivoa, ¢ita izvorni kod kao niz karaktera, grupise ih
u lekseme (npr. kljucne reci, identifikatori, operatori) i
proizvodi tok tokena. Svaki token obi¢no sadrzi tip i,
opciono, vrednost. Rust-ov lekser je ru¢no implementiran,
Sto omogucava finu kontrolu nad procesom tokenizacije i
rezultira detaljnijim i korisnijim porukama o greskama.

Nakon toga, rustc parse::lexer, lekser viSeg nivoa,
dodatno obraduje ove tokene. U ovoj fazi, vrsi se
interniranje simbola (engl. symbol interning), gde se
stringovi poput identifikatora smeStaju u posebnu
memorijsku oblast (arenu) tako da svaki jedinstveni string
ima samo jednu kopiju. Ovo optimizuje upotrebu memorije
i ubrzava poredenje simbola. Takode se koriste strukture
kao Sto su Span i SpanData za pracenje lokacije svakog
tokena u izvornom kodu, §to je klju¢no za preciznu
dijagnostiku gresaka. Pre samog parsiranja, vrs$i se i
rezolucija zagrada, gde se tok tokena strukturira u stabla
tokena (TokenTree), olakSavajuci kasniju obradu.

Parser zatim koristi ovaj obradeni tok tokena da generise
Apstraktno Sintaksno Stablo (ASS ili AST), koje
predstavlja hijerarhijsku strukturu izvornog koda [3]. ASS
verno odrazava strukturu korisnickog koda, eksplicitno
prikazujuéi, na primer, prvenstvo operatora. Koren ASS-a
je obic¢no Crate struktura, dok su osnovni gradivni blokovi
Item-1 (npr. funkcije, strukture, moduli), koji sadrze
atribute, jedinstveni identifikator (Nodeld) i Span. lako je
ASS osnova za dalje analize, nije direktno pogodan za sve
operacije zbog svoje bliskosti originalnom izvornom kodu.
U ovoj fazi se vrsi i ekspanzija makroa — moéne Rust-ove
karakteristike koja omogucava metaprogramiranje ("kod
koji generiSe kod") i smanjuje potrebu za ponavljajuc¢im
kodom. Takode, zapo¢inje inicijalna rezolucija imena, gde
kompajler pokusava da poveze imena koris¢ena u kodu sa
njihovim definicijama, koriste¢i koncept "rebara" (engl.
ribs) za upravljanje vidljivos¢u imena u razliCitim
opsezima (engl. scopes). Pre prelaska na sledecu
reprezentaciju, ASS se validira, posebno nakon ekspanzije
makroa koji mogu generisati sintakticki nekompletan ili
neispravan kod.

2.2. MEDUREPREZENTACIJA VISOKOG NIVOA
(MVN ili HIR)

ASS se zatim ‘"snizava" (engl. lowering) u
Medureprezentaciju Visokog Nivoa (MVN) [4]. MVN je
apstraktnija reprezentacija koja pojednostavljuje mnoge
konstrukcije iz ASS-a; na primer, for petlje se prevode u
while let konstrukcije, if let izrazi u match izraze, a impl
Trait u parametrima funkcija u odgovarajuée genericke
argumente. Svrha ovog snizavanja je da se smanji broj
razli¢itih sintaksnih formi (sintaksni Secer) sa kojima
kasnije faze kompajlera moraju da rade, cime se
pojednostavljuje analiza. HIR Crate struktura sadrzi
informacije o celokupnom kodu paketa, ukljucujuéi i
delove koji mozda nisu direktno pozvani, §to je vazno za
analizu eksternih biblioteka. HIR je kljucan za sistem upita
(engl. query system) rustc-a. Sistem upita funkcionise kao

baza podataka kompajlera gde se rezultati razli¢itih analiza
(upita) kesiraju (memoizacija). Svaki upit je funkcija koja
mapira jedinstveni klju¢ (npr. identifikator stavke) na
rezultat (npr. tip stavke, telo funkcije u MVN-u). Ako se
upit ponovo pozove sa istim kljucem, vraca se keSirani
rezultat umesto ponovnog izracunavanja. Ovo je temelj
inkrementalnog kompajliranja: prilikom izmene koda,
samo oni upiti €ije su zavisnosti promenjene moraju
ponovo da se izvrSe. Sistem upita zahteva da provajderi
upita budu deterministicke funkcije i odrzava direkcioni
acikliéni graf (DAG) poziva upita kako bi se izbegli
ciklusi. Za stabilnu identifikaciju ¢vorova grafa izmedu
razli¢itih kompajliranja koriste se DefPath i DefPathHash
strukture, kao i "otisci prsta" (engl. fingerprints) za
efikasno poredenje stanja. Na MVN-u se vrSe mnoge
semanticke analize, kao Sto su rezolucija osobina (engl.
trait resolution) i provere koherentnosti.

2.3. TIPIZIRANA MEDUREPREZENTACIJA
VISOKOG NIVOA (TMVN ili THIR)
Nakon MVN-a, generiSe se Tipizirana Medureprezentacija
Visokog Nivoa (TMVN). TMVN obogacuje MVN
informacijama o tipovima za svaki izraz i deo koda unutar
tela funkcija; dakle, TMVN se generiSe samo za izvrsni
kod [5]. TMVN je efemerna reprezentacija, Sto znaci da se
delovi generiSu "na zahtev" i ne ¢uvaju se kompletno u
memoriji tokom celog procesa, ¢ime se smanjuje
memorijski otisak kompajlera. U TMVN-u, mnoge
implicitne operacije iz izvornog koda postaju eksplicitne:
automatska referenciranja i dereferenciranja, pozivi
metoda na osobinama, i preklopljeni operatori se prevode
u eksplicitne pozive funkcija. Takode, uniStenje opsega
(engl. scope destruction) je eksplicitno predstavljeno.

TMVN sluzi kao osnova za dve vazne provere:

1. Provera bezbednosti (engl. check unsafety):
Algoritam analizira unsafe kontekste, proverava
da li se unsafe operacije (npr. dereferenciranje
sirovog pokazivaca) pozivaju van unsafe bloka, i
da li unsafe blokovi zaista sadrze unsafe kod (ako
ne, generise se upozorenje - lint).

2. Provera iscrpnosti Sablona (engl. pattern
matching exhaustiveness): Za konstrukcije kao
Sto su match, if let, while let, let else, pa cak i za
argumente funkcija koji koriste destrukturiranje,
TMVN omoguéava proveru da li su svi moguci
slucajevi pokriveni. Pored iscrpnosti, proverava
se 1 "korisnost" svake grane, kako bi se
detektovale nedostizne (redundantne) grane koda.

2.4. MEDUREPREZENTACIJA SREDNJEG
NIVOA (MVN ili HIR)

Konacna reprezentacija u frontendu je Medureprezentacija
Srednjeg Nivoa (MIR). Uvodenje MSN je bilo motivisano
potrebom za preciznijom kontrolom nad tokom
izvrSavanja, lakSim sprovodenjem Rust-specificnih
optimizacija i pojednostavljivanjem procesa dokazivanja
memorijske bezbednosti, $to je bilo tesko postici direktnim
prevodenjem sa MVN-a ili TMVN-a na LLVM IR. MSN
je eksplicitna reprezentacija kontrolnog toka (control flow
graph - CFG) programa [5]. CFG se sastoji od osnovnih

1301

blokova (engl. basic blocks), gde svaki blok predstavlja niz
naredbi koje se izvrSavaju sekvencijalno, a poslednja
naredba u bloku, terminator (engl. terminator), odreduje u
koji slede¢i blok (ili blokove) ¢e se prec¢i. MSN koristi
LIFO stek za smeStanje argumenata funkcija, lokalnih
promenljivih i privremenih vrednosti. Memorijske lokacije
na steku se identifikuju preko "mesta" (engl. places, npr.
_1 za prvu lokalnu promenljivu, 0 za povratnu vrednost),
a pristupi poljima struktura ili dereferenciranje se
predstavljaju kao "projekcije" (npr. 1.polje, * 1). Izrazi
koji generiSu vrednosti nazivaju se "desne vrednosti"
(RValues).

U neoptimizovanom MSN, eksplicitno se koriste iskazi
StorageLive i StorageDead kako bi se oznacio pocetak i
kraj zivotnog veka svake lokalne promenljive, S§to
kompajleru daje jasnu informaciju o tome kada je
memorija za datu promenljivu validna i kada se moze
bezbedno osloboditi.

Na MSN se vrSi kljuéna analiza za Rust: analiza
pozajmljivanja (borrow checking). Ovo ukljucuje
implementaciju Neleksi¢kih Zivotnih Vekova (Non-
Lexical Lifetimes - NLL). Tradicionalni leksi¢ki Zivotni
vekovi su vezani za opsege u kodu i mogu biti previse
restriktivni. NLL, s druge strane, analizira stvarnu upotrebu
pozajmica unutar grafa kontrole toka, omogucéavajuci
preciznije 1 fleksibilnije odredivanje ta¢nog trajanja svake
pozajmice, Sto Cesto rezultira prihvatanjem koda koji bi sa
leksickim zivotnim vekovima bio odbijen. MSN takode
sluzi za Rust-specificne optimizacije; na primer,
kompleksne petlje ili match izrazi mogu biti dodatno
pojednostavljeni (npr. for petlja se preko loop { match ... }
sa goto naredbama moze transformisati u efikasnije switch
konstrukcije) pre nego sto se kod prosledi LLVM bekendu
za dalje, generalnije optimizacije i kona¢nu generaciju
masinskog koda.

3. ZNACAJ MEPUREPREZENTACIJA

Svaka od navedenih medureprezentacija u rustc frontendu
ima svoju specifi¢nu i kljuénu ulogu:

e ASS: Predstavlja vernu reprezentaciju izvornog
koda, sluzi kao osnova za makro ekspanziju i
inicijalnu rezoluciju imena. Njegova bliskost
izvornom kodu omoguéava precizne poruke o
sintaksnim greSkama.

e MVN: Kao apstrakcija nad ASS-om,
pojednostavljuje strukturu koda i kljucna je za rad
sistema upita, omogucéavajuéi semanti¢ke analize
i inkrementalno kompajliranje.

e TMVN: Obogacuju¢i HIR tipovima, omogucéava
detaljnu proveru tipova, proveru bezbednosti
unsafe koda i iscrpnosti i korisnosti $ablona, §to
su kljuéne komponente Rust-ove pouzdanosti.

e MSN: Kao eksplicitni graf kontrolnog toka,
fundamentalan je za analizu pozajmljivanja
(borrow checking) i implementaciju Neleksickih
Zivotnih Vekova (NLL), §to direktno doprinosi
memorijskoj bezbednosti. Takode, omogucava
Rust-specificne optimizacije.

Ova visefazna arhitektura, gde svaka IR resava specifican
skup problema, omogucava rustc-u da efikasno sprovodi
kompleksne analize neophodne za garantovanje
memorijske bezbednosti i generisanje efikasnog koda, $to
su dve klju¢ne prednosti Rust jezika. Modularnost pristupa
olakSava razvoj i odrzavanje kompajlera, dok sistem upita
dodatno doprinosi ukupnoj efikasnosti kroz memoizaciju i
inkrementalno kompajliranje. Precizne dijagnosticke
poruke su takode rezultat moguénosti da se greske lociraju
u odgovarajucoj fazi i na odgovaraju¢em nivou apstrakcije.

4. BEZBEDNO NEBEZBEDAN

Analiza je provedena 2023. godine da se 12% paketa u Rust
ekosistemu direktno oslanja na nestabilne funkcionalnosti,
dok je 44% paketa indirektno zavisilo od nestabilnih
funkcionalnosti da bi se kompajliralo. Procentualna
zavisnost prema nestabilnim funkcionalnostima je visoka
ali analiza nije sprovedena da se izra¢una procenat masivno
koris¢enih paketa sa direktnim ili tranzitivnim
zavisonstima, kao i procenat nestabilnih funkcionalnosti na
kojima se ovakvi paketi zasnivaju [9].

Kapije funkcionalnosti su mehanizam na osnovu kog se
kontrolise vidljivost funkcionalnosti u odredenom skupu
alata (stable, beta, nightly). Funkcionalnost moze biti
prihvaéena, nestabilna, nezavrSena ili obrisana. Kapije
funkcionalnosti se ne briSu fizicki iz koda, veé¢ uz
adekvatan opis sluze kao perzistentno obrazlozenje odluke
da funkcionalnost nije podobna za razvoj.

Odobravanje funkcionalnosti je rigorozan ali transparentan
proces. Svaka znacajna promena koja nije refaktorizacija
ili dokumentovanje mora pro¢i kroz sledece faze:

1. Zahtev za komentare (RFC): Proces zapocinje
kreiranjem RFC dokumenta koji detaljno
obrazlaze svrhu nove funkcionalnosti i njen opsti
dizajn. Ovaj dokument je javan i podlozan
diskusiji od strane Rust tima i celokupne
zajednice. Odobrenje RFC-a daje zeleno svetlo za
pocetak razvoja, ali ne garantuje konacno
prihvatanje.

2. Razvoj i testiranje: Nakon odobrenja,
funkcionalnost se implementira i detaljno testira.

3. Proces stabilizacije: Kada je funkcionalnost
razvijena 1 testirana bez znacajnih primedbi,
pokrece se formalni zahtev za stabilizaciju, koji se
sastoji iz Cetiri klju¢na dela:

e Azuriranje dokumentacije:
Dokumentacija se premesta iz interne
"nestabilne knjige" (Unstable Book) u
zvani¢nu dokumentaciju za korisnike
(Rust Reference).

e Stabilizacioni izvestaj: Kreira se
izvestaj koji sadrzi primere koris¢enja,
linkove ka dokumentaciji i testove koji
pokrivaju grani¢ne slucajeve.

e Period finalnog komentara (FCP):
Tim ponovo pregleda ceo predlog kako
bi se postigao konacni konsenzus.

e Stabilizacioni Pull Request: Ukoliko je
konsenzus pozitivan, kreira se finalni

1302

zahtev za povlacenjem (pull request).

Njegov cilj je da tehnicki omoguci

funkcionalnost u stabilnoj verziji jezika,

uklanjajuci oznaku nestabilnosti i

gresku koja sprecava njeno koriséenje

van nocéne (nightly) verzije kompajlera.

4. Beta i stabilna verzija: Nakon uspesne

stabilizacije, funkcionalnost postaje dostupna
korisnicima u beta verziji za finalno testiranje,
pre nego S§to konacno postane deo sledece
stabilne distribucije Rust-a.

4. ZAKLJUCAK

Medureprezentacije izvornog koda u prednjem kraju rustc
kompajlera ¢ine slozen, ali visoko efikasan sistem. Kroz
pazljivo dizajnirane faze transformacije i analize — od ASS-
a, precko MVN-a i TMVN-a, do MSN-a — kompajler
postepeno prevodi, proverava i optimizuje korisnicki kod.
Ova slojevita arhitektura je temelj na kojem Rust gradi
svoje jedinstvene prednosti: garantovanu memorijsku
bezbednost bez sakupljaca smeca, konkurentnost bez rizika
od "dataraces", i visoke performanse uporedive sa C i C++.

Svaka izmena ili proSirenje Rust kompajlera podleze
rigoroznom 1 transparentnom procesu prihvatanja. Kroz
mehanizam Zahteva za komentare (RFC) i1 viSefaznu
stabilizaciju, zajednica osigurava da se jezik razvija na
kontrolisan nacin, cuvajuéi integritet i bezbednosne
garancije koje kompajler pruza.

Razumevanje ovih internih mehanizama i uloge svake
medureprezentacije je od velikog znacaja, ne samo za dalji
razvoj 1 unapredenje samog kompajlera (npr. poboljsanje
vremena kompajliranja ili uvodenje novih optimizacija),
ve¢ 1 za dublje razumevanje ponasanja Rust programa i
efikasnije koris¢enje naprednih mogucénosti jezika.

5. LITERATURA

[1] MSRC, “A proactive approach to more secure code |
MSRC Blog | Microsoft Security Re-

sponse Center,” Microsoft.com, Jul. 16, 2019.
https://msrc.microsoft.com/blog/2019/07/
a-proactive-approach-to-more-secure-code/ (pristupljeno
u septembru 2024.)

[2] “Parsing” Rochester.edu, 2024.
https://www.cs.rochester.edu/u/nelson/courses/csc_
173/grammars/parsing.html#:~:text=Recursive%2Ddesce
nt%?20parsing%20is%20one,
non%?2Dterminal%20with%20a%20procedure
(pristupljeno u septembru 2024.)

[3] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman,
Compilers: Principles, Techniques, and Tools, 2nd ed.
Boston, MA, USA: Addison-Wesley, 2006.

[4] “Getting Started - Rust Compiler Development
Guide,” Rust-lang.org, 2024. https:
//rustc-dev-guide.rust-lang.org/getting-started.html
(pristupljeno u Septembru 2024.)

[5] “Introduction - The Rust Reference,” Rust-lang.org,
2015. https://doc.rust-lang.org/
reference/introduction.html (pristupljeno u septembru
2024.)

[6] “Meet Safe and Unsafe - The Rustonomicon,” Rust-
lang.org, 2024. https://doc.rust-lang.
org/nomicon/meet-safe-and-unsafe.html (pristupljeno u
septembru 2024)

[7] “What are editions? - The Rust Edition Guide,” Rust-
lang.org, 2024. https://doc.rust-lang.
org/edition-guide/editions/ (pristupljeno u oktobru 2024.)

[8] “The Unstable Book - The Rust Unstable Book,”
Rust-lang.org, 2024. https://doc.rust-lang.
org/unstable-book/index.html (pristupljeno u oktobru
2024.)

[9] Li, Chenghao, et al. “Demystifying Compiler Unstable
Feature Usage and Impacts in the Rust Ecosys-
tem.” 26 Oct. 2023. arXiv, (pristupljeno u oktobru 2024.)

[10] Bugden W, Alahmar A. Rust: The programming
language for safety and performance. arXiv preprint
arXiv:2206.05503. 2022 Jun 11.

[11] P. Mainardi, “The Rising Threat of Software Supply
Chain Attacks: Managing Dependencies of Open Source
projects,” Linuxfoundation.eu, Aug. 15, 2023.
https://linuxfoundation.eu/newsroom/
the-rising-threat-of-software-supply-chain-attacks-
managing-dependencies-of-open-source-p

(pristupljeno u oktobru 2024.)

[12] “The Architecture of Open Source Applications
(Volume 1)LLVM,” Aosabook.org, 2024. https:
//aosabook.org/en/v1/llvm.html (pristupljeno u novembru
2024.)

[13] “The LLVM Compiler Infrastructure Project,”
Llvm.org, 2024. https://llvm.org/ (pristupljeno u
novembru 2024.)

Kratka biografija:

Aleksa Bajat roden je 2001. godine u Novom
Sadu. ZavrsSio je prirodno-matematicki smer
na engleskom jeziku u gimnaziji ”Jovan
Jovanovi¢ Zmaj” 2019. godine. Tokom sve
Cetiri godine gimnazije uspesno je pohadao
”Centar za mlade talente” kompanije
Schneider Electric. Godine 2019. upisao je
Fakultet Tehni¢kih Nauka u Novom Sadu, gde
je ispunio sve obaveze i polozio sve ispite
predvidene studijskim programom sa
prosecnom ocenom 9.03.

kontakt: aleksabajatlS@gmail.com

1303

Zbornik radova Fakulteta tehniékih nauka, Novi Sad

UDK: 004.42:004.738.12
DOI: https://doi.org/10.24867/33BE09Pavlovic

FAGL — JEZIK SPECIFICAN ZA DOMEN IMPLEMENTACIJE VEB APLIKACIJA

FAGL - A DOMAIN-SPECIFIC LANGUAGE FOR WEB APPLICATION
IMPLEMENTATION

Lazar Pavlovié, Fakultet tehnickih nauka, Novi Sad

Oblast — ELEKTROTEHNICKO I RACUNARSKO
INZENJERSTVO

Kratak sadrzaj — U ovom radu opisan je razvoj FAGL
Jjezika specificnog za domen za opis i generisanje veb
aplikacija. Rad pruza uwvid u konkretnu sintaksu jezika,
dizajn, arhitekturu i implementaciju ovog reSenja.
Poredenje sa pet postojecih resenja, omogucilo je kriticku
evaluaciju mogucnosti i funkcionalnosti razvijenog FAGL
jezika koja je pokazala da su postavljeni ciljevi rada
ostvareni razvojem tekstualnog JSD-a koji je jednostavan
za koriséenje, lak za ucenje i sadrzi sve neophodne
funkcionalnosti.

Kljuéne re€i: Jezik specifican za domen, textX, Python,
generator koda, veb aplikacija

Abstract — This work describes the development of the
FAGL domain-specific language for the description and
generation of web applications. The paper provides insight
into the specific syntax of the language, its design,
architecture, and implementation. A comparison with five
existing solutions enabled a critical evaluation of the
features and functionalities of the developed FAGL
language, demonstrating that the goals of the study were
achieved through the development of a textual DSL that is
user-friendly, easy to learn, and includes all necessary
functionalities.

Keywords: Domain specific language, textX, Python, code
generator, web application

1. UVOD

Kao odgovor na sve sloZenije zahteve trZiSta i potrebe za
Sto ve¢om produktivnoSéu, raste potraznja za
automatizovanim razvojem softverskih resenja koja se
mogu brzo i efikasno implementirati. Takode, napredak u
tehnologijama kao $to su vestacka inteligencija, Internet of
Things i Cloud computing stvara nove prilike i zahteve u
razvoju inovativnih softverskih resenja.

Racunar izvrsava zadatke na osnovu instrukcija zapisanih
na programskom jeziku. JON imaju primenu u izradi
softvera u razli¢itim domenima primene. Domen se moze
posmatrati s dva aspekta: horizontalnog, koji se odnosi na
tehni¢ke aspekte sistema, i vertikalnog, koji obuhvata
poslovne aspekte i specifi¢ne potrebe organizacije.

NAPOMENA:
Ovaj rad proistekao je iz master rada ¢iji mentor je bio
dr Igor Dejanovié, red. prof.

Horizontalni ili tehnicki domen moze biti: bekend
aplikacija, frontend aplikacija, bezbednost, baze podataka,
blok¢ejn, obrada podataka, vestacka inteligencija, mobilne
aplikacije. Vertikalni ili poslovni domen je oblast u kojoj
se softver primenjuje: finansije, osiguranje, zdravstvo,
administracija i mnogi drugi.

Potrebe za daljim poveéavanjem efikasnosti i
omogucéavanjem programiranja ne-tehnickom osoblju
kvalifikovanom za odredene oblasti, dovele su do nastanka
malih specijalizovanih programskih jezika — Jezika
Specificnih za Domen (JSD). Iako JON jezici nude veliku
fleksibilnost programeru prilikom razvoja softvera,
upotreba JSD-a za razvoj vise sli¢nih softvera za isti domen
(bilo horizontalni ili vertikalni) donosi brojne benefite:
veéu produktivnost programera, kvalitetnija reSenja
opisana u manje linija programskog koda, manji broj
bagova, bolji kvalitet programskog koda, bolje modeliranje
slozenih sistema [1].

Prema vrsti konkretne sintakse JSD se dele na graficke,
tekstualne i tabelarne [2]. U literaturi su opisani JSD-ovi
razliite kompleksnosti, fleksibilnosti i mogucénosti
primene. Jednostavnija reSenja najces¢e imaju ograni¢ene
funkcionalnosti za opis sistema, generisanje programskog
koda i upravljanje korisnicima [2,3]. JSD koji nude vece
moguénosti za opisivanje sistema u kontekstu
mikroservisnih aplikacija i poseduju generatore za vise
platformi Cesto imaju sloZzenu sintaksu, koja se znatno
razlikuje od JON. Zbog toga njihova primena zahteva
znaCajan angazman programera i dodatno vreme za
prilagodavanje [1,4,5]. Bez obzira na nivo sloZenosti,
vecini JSD-ova nedostaju moguénosti za validaciju
vrednosti atributa [1,2,4,5], kao i podrska za automatsko
generisanje frontend aplikacija [2,4,5].

Polaze¢i od prednosti i nedostataka tekstualnih JSD-ova
opisanih u literaturi, cilj ovog rada bio je razvoj tekstualnog
JSD-a koji je intuitivan za koriS¢enje, jednostavan za
ucenje i koji integriSe sve neophodne funkcionalnosti za
sveobuhvatno reSavanje problema.

2. ARHITEKTURA I DIZAJN RESENJA

FAGL JSD opisan u ovom radu implementiran je
koris¢enjem Python programskog jezika i biblioteka:
i0.8tringlO, os, textX, jinja2, i click. Projekat je razvijen na
Python interpreteru, verzija 3.10.0, a virtuelno okruZenje
kreirano je pomocu alata virtualenv.

Arhitektura softvera zasniva se na modularnom pristupu, a
glavni moduli su: model, parser, checker,

1304

https://doi.org/10.24867/33BE09Pavlovic

generator_config, generator_backend i
generator_frontend.
Faze u radu programa su:
1. Parsiranje programa napisanog na FAGL jeziku
2. Provere nad ucitanim modelom

3. Generisanje programskog koda

Konkretna sintaksa FAGL JSD-a definisana je pomocu
metamodela koji ukljuuje semanticke informacije o
njemu. Za definiciju metamodela koris¢ena je biblioteka
textX [6]. Parsiranje programa napisanog na FAGL jeziku
obavlja se korisCenjem fextX biblioteke i gramatike,
odnosno metamodela. Rezultat parsiranja programa je
ucitan program konvertovan na klase definisane u modulu
Model. Provere nad ucitanim modelom obezbeduju
adekvatnost ulaznog programa za generisanje validnog
programskog koda na JON. U poslednjoj fazi, vrsi se
generisanje programskog koda, koje obuhvata generisanje
programskog koda bekend i frontend aplikacije, kao krajnji
rezultat rada programa.

Bekend aplikacija implementirana je na Go programskom
jeziku, pomocu generator backend generatora. Oslanja se
na Gin framework za kreiranje aplikativnog servera, dok za
rad sa sqllite bazom podataka koristi GORM Objektno
Relacioni Maper. Generisana frontend aplikacija
implementirana je pomocu Vue3js framework-a.
Generisanje aplikacija vr$i se na osnovu ulaznih podataka
i Sablona definisanih upotrebom biblioteke jinja2.
Komunikacija izmedu frontend i bekend aplikacije
realizovana je upotrebom REST arhitekturnog stila.

3. KONKRETNA SINTAKSA FAGL JEZIKA

FAGL omogucava definisanje programa u jednom fajlu, ali
je zbog kvalitetnijeg programskog koda i veée Citljivosti
moguce napisati programski kod u vise fajlova, koje je
potrebno importovati. U svakom fajlu definiSe se naziv
paketa, importi i elementi jezika. Glavni elementi
konkretne sintakse FAGL jezika su: konstanta (Constant),
entitet (Entity), enumeracija (Enum), uloga (Role),
restrikcija (Restriction) 1 servis (Service), koji su u
metamodelu definisani posebnim pravilima.

Constant je apstraktno pravilo za izbor RegularConst ili
GeneralConst elementa. RegularConst se koristi za
definisanje konstanti c¢ije se vrednosti prikazuju na
korisni¢kom interfejsu, dok se GeneralConst primenjuje za
prikaz vrednosti konstanti sa predefinisanim imenima.

Enum element predstavlja tip podatka enumeracije sa
predefinisanim vrednostima (literali), S§to omogucava
definisanje i upravljanje kolekcijom imenovanih vrednosti,
poboljsava Citljivost 1 konzistentnost programskog koda.

Entity element opisuje klasu modela i sadrzi minimalno
jedan atribut i reprezentaciju instance entiteta. Kako bi se
postigla jednostavnost sintakse, uvedeno je pravilo prema
kojem prvi atribut svakog Entity elementa mora imati ime
id 1 biti tipa wwuid ili long. Ovo ograni¢enje nije
implementirano na nivou sintakse JSD-a, ve¢ je provera
ovog pravila obavljena u checker modulu, koji osigurava
njegovo sprovodenje. Atributi entiteta, odnosno uloga se
prepoznaju Attribute pravilom, definisanim u gramatici
jezika. Atributi su definisani tipom, kardinalitetom,
imenom 1 opciono validatorskim funkcijama. Za
validiranje vrednosti atributa u toku izvrSavanja (engl. run-

time) generisanog programa u trenutnoj implementaciji
FAGL JSD-a postoji 26 razlicitih validatorskih funkcija,
koje su u gramatici definisane pravilom ValidationBlock.
Tip atributa definisan je apstraktnim pravilom 7ype, koje
predstavlja izbor izmedu SimpleType i
ComplexTypeReference pravila. SimpleType predstavlja
izbor izmedu prostih tipova definisanih u jeziku: wuuid,
string, integer, date, float, bool 1 long.
ComplexTypeReference je apstraktno pravilo koje sadrzi
referencu na kompleksni tip predstavljen ComplexType
pravilom koje predstavlja izbor izmedu prethodno
definisanih entiteta, enumeracija ili uloga.

Role element koristi se za opis uloge korisnika sistema.
Sintaksa ovog elementa sli¢na je sintaksi Entity elementa.
Predefinisana su imena prva tri atributa: id (uuid ili long
tipa), username (tipa string) i password (tipa string).
Nakon atributa navodi se reprezentacija instance uloge.

Restriction element predstavlja ograni¢enje prethodno
definisanog entiteta. Ograni¢enje se ogleda u navodenju
atributa Cije vrednosti ¢e korisnik mo¢i da menja (azurira).
Ovaj element jezika koristi se prilikom definisanja
servisnih metoda koje azuriraju entitet (engl. update).

Service element predstavlja skup CRUD servisnih metoda
za jedan prethodno definisan entitet. Servisna metoda
definise jednu od CRUD operacija, uloge autorizovane za
izvrSavanje metode, povratni tip metode i njegov
kardinalitet, jedinstveno ime servisne metode, parametre
metode tipa restrikcije ili jedinstvenog identifikatora (/D),
a mogu da sadrze i poruke o gresci ili uspehu.

4. STUDIJA SLUCAJA

Mogu¢nosti FAGL JSD-a demonstrirane su na primeru
sistema za inventuru pica. Sistem je opisan sa dve
enumeracije, pet entiteta (klasa), dve uloge, Cetiri servisa i
12 generalnih i1 59 regularnih konstanti. Enumeracije su
PakageStatus i TransactionType. Enumeracija
PakageStatus se koristi za opis statusa paketa i sadrzi pet
literala: Available, Reserved, Expired, InConsuming i
Consumed. Enumeracija TransactionType se koristi za opis
tipa transakcije i sadrzi literale /n 1 Out. Entiteti su
Category, DrinkType, Location, Pakage i
InventoryTransaction. Definisane uloge su Worker i
Admin. Za entitete specificirani su servisi
DrinkTypeService, LocationService, PackageService i
CategoryService.

Rad je zapoCet unosom opisa sistema na FAGL jeziku
distribuiranim u Sest fajlova. Komandom fag/ definiSu se
putanje ulaza i izlaza koda i pokrece program, koji generise
programski kod. U cilju pokretanja bekend aplikacije
manuelno su uklonjeni neupotrebljeni import iskazi i
formatiran je generisani programski kod pomocu
goimports alata, nakon cega su instalirane zavisnosti
navedene u go.mod fajlu. Nakon pokretanja komande go
run server.go generisana bekend aplikacija je dostupna na
portu 8080. Instaliranjem zavisnosti navedenih u
package.json fajlu pomocu npm install komande, ispunjen
je uslov za pokretanje frontend aplikacije. Aplikacija se
pokre¢e komandom npm run dev, nakon Cega je dostupna
na portu 5173. Pristup pocetnoj stranici frontend aplikacije
mogu¢ je pomocu veb pretrazivata, na adresi
http://localhost:5173/.

1305

Programski kod sistema za inventuru pi¢a na FAGL jeziku
sadrzi 269 linija. Generisana bekend aplikacija ima ukupno
2883 linija, a generisana frontend aplikacija 2469, Sto je
ukupno 5352 linija. Jednoj liniji koda na FAGL JSD-u
odgovara 19,9 linija generisanog programskog koda na
JON jezicima Go i JavaScript. Ova metrika prikazuje
veliku efikasnost i ubrzanje rada ostvareno upotrebom
FAGL JSD-a.

5. POREDENJE SA DRUGIM RESENJIMA

Analizom dostupne literature identifikovano je pet
relevantnih radova koji opisuju JSD slicne namene:
MaGiC [1], CRUDyLeaf [2], DOMMLite [3], Silvera [4] i
MicroBuilder [5]. Svi ovi jezici kao i FAGL imaju
tekstualnu konkretnu sintaksu. Za razvoj JSD-a
(metaprogramiranje) koriste se razliciti alati, biblioteke i
platforme. Na primer, jezik MaGiC razvijen je kori§¢enjem
alata Jetbrains MPS, dok su CRUDyLeaf, DOMMLite i
MicroBuilder kreirani pomocéu Xtext-a. Za razliku od njih,
jezici Silvera 1 FAGL JSD, implementirani su pomocu
biblioteke fextX, koja je inspirisana alatom Xzext.

Iako svi navedeni JSD imaju sli¢an domen, znacajno se
razlikuju po svojim moguénostima i nac¢inu modelovanja.
Na primer, MaGiC koristi tri razli¢ita JSD-a za specificne
celine: mikroservisnu backend aplikaciju, klijentsku
aplikaciju i jezik za definisanje komunikacije izmedu ove
dve aplikacije (eng. gateway). Silvera i MicroBuilder su
ograniCeni na opis mikroservisnog backenda i ne
podrzavaju modelovanje klijentskih aplikacija. S druge
strane, FAGL JSD, razvijen u ovom radu, dizajniran je za
modelovanje monolitne backend aplikacije. Po svojim
mogucénostima sliCan je jezicima CRUDyLeaf i
DOMMLite, ali istovremeno nudi unapredene
funkcionalnosti uz ve¢u jednostavnost korisc¢enja.

Generisanje programskog koda moze se realizovati na vise
naCina. Autori jezika MaGiC koristili su Plaintextgen,
M2T generator, za kreiranje koda svih komponenti
aplikacije. Za generisanje koda jezici CRUDyLeaf i
MicroBuilder oslanjaju se na biblioteku Xfend, dok
DOMMLite koristi specijalizovani jezik Xpand za
definisanje Sablona prema kojima se generise kod. Za jezik
Silvera, navedeno je da se generisanje koda zasniva na
M2T transformacijama i koriS¢enju Sablona za generisanje
Java koda, ali nije precizirano koja je biblioteka koris¢ena
za ovu svrhu. Za razliku od njih, FAGL JSD koristi M2T
transformaciju pomocu jinja2 biblioteke, ¢ime se postize
jednostavnost i fleksibilnost u radu sa Sablonima.

Generatori na osnovu modela generisu programski kod na
JON jezicima, koji se moze izvrSavati. Kako postoji vise
razli¢itih JON jezika, jedno reSenje moze da sadrzi
generatore za viSe JON jezika. lako je za osnovnu
funkcionalnost dovoljan samo jedan, prisustvo generatora
za vise jezika povecéava fleksibilnost i kvalitet reSenja.
Resenja kao $to su MaGiC i Silvera sadrze generatore za
razli¢ite JON jezike. Na primer, MaGiC nudi tri
generatora, po jedan za svaki JSD. Bekend aplikacije
(mikroservisi) 1 gateway generiSu se u Node.js koris¢enjem
Express frejmvorka ili u Python-u sa Flask frejmvorkom,
dok se frontend aplikacija generiSe koriS¢enjem React
frameworka. Sa druge strane, jezik Silvera ukljucuje
generator za Java programski kod koji koristi Spring Boot
frejmvork. Dodatno, zahvaljuju¢i modularnoj arhitekturi,

razvijeni su generatori 1 za druge JON jezike, poput
Python-a, C#1i Go.

Ostala reSenja analizirana u ovom radu implementiraju
generatore samo za jedan JON jezik. Na primer, generator
CRUDyLeaf-a generise bekend aplikaciju na Java
programskom jeziku koja koristi Spring Boot frejmvork.
DOMMLite generiSe bekend aplikaciju u Python
programskom jeziku, koja koristi Django frejmvork, dok
MicroBuilder generise Java programski kod koji se oslanja
na Spring, Spring Cloud i NetflixOSS frejmvorke. FAGL
razvijen u ovom radu, ima dva generatora: jedan za
monolitnu bekend aplikaciju na Go programskom jeziku i
drugi za frontend aplikaciju na JavaScript jeziku.

Osim MaGiC 1 FAGL resenja, ostala razmatrana reSenja
nemaju implementirane generatore za frontend aplikacije.
Ovaj nedostatak generatora za frontend aplikacije
predstavlja znacajan problem, jer iako se generisanje
bekend aplikacija moze automatizovati, nije moguce
automatski generisati frontend kod, koji omogucava
interakciju sa aplikacijom krajnjim korisnicima, posebno
onim koji nisu tehnicki osposobljeni. lako DOMMLite ne
sadrzi generator za frontend aplikaciju, zbog koris¢enja
Django frejmvorka, bekend aplikacija generiSe
administrativni interfejs koji se moze koristiti za
upravljanje aplikacijom tokom razvoja ili nakon isporuke
krajnjim korisnicima. Medutim, ovo reSenje nije potpuno,
jer izmene u dizajnu ili funkcionalnostima frontend
aplikacije postaju znatno slozenije i zahtevaju dodatno
manuelno podesavanje, Sto moze biti prepreka za brzu
kastomizaciju i razvoj.

JSD-ovi CRUDyLeaf, Silvera i MaGiC omogucavaju
automatsko generisanje dokumentacije. CRUDyLeaf u te
svrhe koristi OpenAPI 1 Swagger, a Silvera generiSe
dokumentaciju zasnovanu na OpenAdPI specifikaciji.
MaGiC ide korak dalje, jer osim generisanja
dokumentacije pomoéu SwaggerUl, omogucava i
generisanje infrastrukture za kontejnerizaciju i skripti koji
poboljsavaju korisni¢ko iskustvo prilikom upotrebe alata.
S druge strane, FAGL slicno DOMMLite i1 MicroBuilder,
ne podrzava generisanje dokumentacije i infrastrukture za
kontejnerizaciju.

FAGL kao i svi razmatrani JSD-ovi podrzava CRUD
operacije. MaGiC pored toga nudi funkcionalnosti za
definisanje specificnih operacija poput GetEntitiesBy i
GetEntity. DOMMLite 1 MicroBuilder omogucéavaju
pretragu entiteta pomocu operacije Search, $to je narocCito
korisno u scenarijima kada se obim podataka u sistemu
znacajno poveca. DOMMLite i Silvera omogucavaju
definisanje metoda koje nemaju unapred definisano
ponasanje, Sto uvecava mogucnost operacija. U tom
slu¢aju nakon generisanja programskog koda, korisnik
manuelno implementira metode. U MicroBuilder-u,
operacija create je preimenovana u insert, a operacija read
zamenjena je funkcionalno$éu search. Svi analizirani jezici
omoguéavaju azuriranje vrednosti svih atributa entiteta, ali
ne pruzaju mogucnost definisanja atributa Cije vrednosti se
mogu izmenjeni. Ovaj nedostatak uspesno je reSen u FAGL
JSD-u, wuvodenjem restrikcija nad entitetima, S§to
omogucava preciznu kontrolu promena nad podacima.

Nijedan od prethodno analiziranih jezika ne nudi
mogucénost definisanja korisnika sistema i1 opisivanja

1306

dozvola (permisija) koje reguliSu pristup odredenim
metodama. Za razliku od njih, FAGL JSD omogucava obe
funkcionalnosti, ¢ime znacajno pojednostavljuje rad
korisnicima, eliminiSe potrebe za naknadnim izmenama
generisanog koda radi implementacije autorizacije i
omogucava preciznije i efikasnije opisivanje sistema.

Jos jedna slabost vecine analiziranih JSD-ova je odsustvo
podrske za validacione funkcije, koje su od kljucnog
znacaja za proveru ispravnosti podataka unetih u sistem.
Ipak treba istaci da su validacione funkcije implementirane
u FAGL-u kao i u DOMMLite-u, ¢ime oba jezika
omogucavaju kontrolu i pouzdanost prilikom obrade
podataka.

Sintakse analiziranih reSenja znacajno se razlikuju po
sloZzenosti. CRUDyLeaf se istiCe izuzetno jednostavnom
sintaksom koja omogucava brzo usvajanje i skracuje vreme
razvoja softvera. Medutim, ova jednostavnost dolazi sa
ograniCenjima — CRUDylLeaf ne podrzava opis
mikroservisne arhitekture, Sto ga ¢ini neprikladnim za
kompleksnije projekte. MicroBuilder, takode nudi
jednostavnu sintaksu, koja za razliku od CRUDyLeaf-a
omogucava opisivanje mikroservisne arhitekture. Ipak,
njegova sintaksa za definisanje tipova atributa (npr.
»voSingle String%*®) nije intuitivna, a entiteti se mogu
definisati samo unutar mikroservisa, $to otezava rad sa
ve¢im modelima i moze rezultirati nepreglednim kodom.
Silvera JSD ima slozeniju sintaksu koja je pogodna za
iskusne programere upoznate sa mikroservisnom
arhitekturom i njenim moguénostima. Suprotno ovim
jezicima, MaGiC ima kompleksniju sintaksu, koja vise
podsec¢a na govorni jezik nego na standardne programske
jezike. Pored toga, korisnici MaGiC-a moraju da savladaju
cak tri razli¢ita JSD-a kako bi opisali ceo sistem, §to
predstavlja znacajnu prepreku za njegovu primenu.
Sintaksa FAGL jezika podse¢a na JON i po jednostavnosti
i preglednosti sli¢na je sintaksi DOMMLite-a. Definisanje
entiteta i CRUD operacija u FAGL jeziku sintaksno je
najsli¢nije onome opisanom u Silvera-i.

Analizirana reSenja pruzaju razli¢ite nivoe udobnosti za
programere. Rad sa MaGiC-om je zahtevan jer ukljucuje
instalaciju MPS softvera, nakon Cega sledi ¢ak 17 koraka
kako bi se kreirala najjednostavnija aplikacija. Autori
CRUDyLeaf, DOMMLite i MicroBuilder-a preporucuju
rad u okviru Eclipse alata, koji je poznat po brojnim
dokumentovanim nedostacima i Cesto izaziva frustracije
kod korisnika [7]. S druge strane, reSenja Silvera i FAGL
su znacajno jednostavnija za upotrebu. Ova reSenja
omogucavaju programerima da koriste bilo koji tekstualni
editor po sopstvenom izboru, ¢ime se eliminiSe potreba za
specijalizovanim softverom. Nakon instalacije u Python
virtuelno okruzenje, FAGL se sli¢no Silvera-i pokrece
intuitivno 1 brzo.

6. ZAKLJUCAK

Rad pruza uvid u tehnicke moguénosti FAGL jezika
specificnog za domen, koji ukljuuje dva generatora
programskog koda. Detaljno su analizirani konkretna
sintaksa jezika, kao i dizajn, arhitektura i implementacija
ovog reSenja. Posebna paznja posvecena je definisanju
atributa Cije vrednosti korisnik moze da aZzurira,
specifikaciji ~ korisnika sistema i implementaciji
autorizacije za pristup CRUD operacijama nad entitetima.

Rezultati rada prikazani su studijom slucaja, koja ilustruje
proces opisivanja sistema 1 njegovog generisanja na
konkretnom primeru. Takode, izvrSeno je poredenje
razvijenog reSenja sa pet postoje¢ih JSD-ova, Sto je
omoguéilo kriticku evaluaciju = moguénosti i
funkcionalnosti razvijenog FAGL jezika. Na osnovu ove
analize, moze se zakljuciti da su postavljeni ciljevi rada
ostvareni razvojem tekstualnog JSD-a koji je jednostavan
za koriS¢enje, lak za ucenje i sadrzi sve neophodne
funkcionalnosti. Fleksibilnost i lakoca kori§¢enja cine
FAGL pogodnim izborom, posebno za programere koji
traze efikasne alate bez suvi$nih komplikacija.

Ovaj rad postavio je temelje za dalje unapredenje ovog
reSenja, razvojem generatora programskog koda za vise
JON jezika, wuvodenjem koncepata mikroservisne
arhitekture i dodavanjem novih funkcionalnosti kao §to je
pretraga. Takode, implementacija alata za generisanje
dokumentacije i infrastrukture za kontejnerizaciju otvorila
bi moguénosti za dalja poboljSanja, Cine¢i reSenje jo$
efikasnijim i fleksibilnijim.

7. LITERATURA

[1] A. Bucchiarone, C. Ciumedean, K. Soysal, N.
Dragoni, and V. Pech, "MaGiC: a DSL framework for
implementing language-agnostic microservice-based
web applications," Journal of Object Technology, vol.
22, no. 1,2023.

[2] O. S. Gémez, R. H. Rosero, and K. Cortés-Verdin,
"CRUDyLeaf: a DSL for generating Spring Boot
REST APIs from entity CRUD operations,"
Cybernetics and Information Technologies, vol. 20,
no. 3, pp. 3—14, 2020.

[3] L. Dejanovi¢, G. Milosavljevié, B. Perisi¢, and M.
Tumbas, "A domain-specific language for defining
static structure of database applications," Computer
Science and Information Systems, vol. 7, no. 3, pp.
409-440, 2010.

[4] A. Suljkanovi¢, B. Milosavljevi¢, V. Indi¢, and 1.
Dejanovi¢, "Developing microservice-based
applications using the silvera domain-specific
language," Applied Sciences, vol. 12, no. 13, p. 6679,
2022.

[5] B. Terzi¢, V. Dimitrieski, S. Kordi¢, G. Milosavljevié,
and I. Lukovi¢, "MicroBuilder: a model-driven tool
for the specification of REST microservice
architectures," in Proc. Int. Conf. Inf. Soc. Technol.,
2017, pp. 179-184.

[6] 1. Dejanovi¢, R. Vaderna, G. Milosavljevi¢, and Z.
Vukovi¢, "TextX: A Python tool for Domain-Specific
Languages implementation," Knowledge-Based
Systems, vol. 115, pp. 1-4,2017.

[7] https://medium.com/@ashaytikekar/why-eclipse-
sucks-dd70e572¢675 (pristupljeno u novembru 2024.)

Kratka biografija:
Lazar Pavlovi¢ roden je u Pozarevcu
ﬁ 2001. god. Master rad na Fakultetu
= = tehnickih nauka iz oblasti Elektrotehnike i
= racunarstva — Softversko inzenjerstvo i
informacione tehnologije odbranio je
2024.god.
kontakt: Ip.pavlovic.001 @gmail.com

1307

Zbornik radova Fakulteta tehnickih nauka, Novi Sad

UDK: 4.9
DOI: https://doi.org/10.24867/33BE10Ubiparip

PRIMENA LINEARNOG PROGRAMIRANJA U OPTIMIZACIJI PLANIRANJA I
UPRAVLJANJA PROJEKTIMA

THE APPLICATION OF LINEAR PROGRAMMING IN THE OPTIMIZATION OF
PROJECT PLANNING AND MANAGEMENT
Jelena Ubiparip, Fakultet tehnickih nauka, Novi Sad

Oblast - ELEKTROTEHNIKA I RACUNARSTVO

Kratak sadrziaj — Ovaj rad je u potpunosti posvecen
optimalnom upravljanju projektima posebno iz oblasti
upravljanja IT projektima uz oslonac na metodologiju i
tehnike linearnog programiranja. Da bismo upotpunili rad
i upotrebu projekta optimizacionog softvera ucinili
dostupnom, razvili smo jedno veb-bazirano resenje koje
omogucuje optimalno planiranje svih procesa u projektu.

Klju¢ne re€i: Linearno programiranje, Veb aplikacija,
Naucni menadzment, Projektni menadzment

Abstract — This paper is fully dedicated to optimal project
management, especially in the field of IT project
management, based on the methodology and techniques of
linear programming. In order to make the use of the
optimization software project available, we have
developed a web-based solution that enables optimal
planning of all processes in the project.

Keywords: Linear programming, Web application,
Scientific management, Project management

1. UVOD

Uspeh i opstanak svake organizacije zavisi od kvaliteta
odluka koje donose njeni menadzeri. Osnovno pitanje u
mnogim problemima koji se javljaju u poslovanju i
industriji je kako raspodeliti ogranicene resurse na razlicite
aktivnosti. Odgovornost menadzera (donosioca odluke) je
da rasporedi resurse na odredene aktivnosti kako bi se
postigli najbolji rezultati za organizaciju. Iz tog razloga,
razvijeni su alati i tehnike koje mogu pomoc¢i u potrazi za
optimalnim raspodelom resursa.

Upravo iz tog razloga je razvijena aplikacija ,,Upravljanje
projekta®. Pre svega, korisniku je omoguceno da unosi
podatke o zadacima koje je potrebno izvrsiti tokom trajanja
projekta na lak nacin i nakon toga sledi raCunanje najbolje
putanje toka projekta. Odnosno, koliko bi se cena projekta
mogla uvecati ukoliko se redukuje vreme trajanja projekta.
Osim toga, odreduje se i u kom trenutku je najbolje
zapoceti odredeni zadatak.

Bilo bi pogre$no smatrati da ova aplikacija oslobada
korisnika od donoSenja odluka. Ona mu samo pomaze u
procesu odlucivanja, dajuéi perspektivu odluke koju treba
da donese.

NAPOMENA:

Ovaj rad proistekao je iz master rada ¢iji mentor je bio
dr Zeljko Kanovi¢, red. prof.

Kada se ova komponenta (rezultati) doda kvalitativnoj,
iskustvenoj i intuitivnoj — odluka korisnika nesumnjivo
postaje bolja.

2. OPERACIONA ISTRAZIVANJA I PRIMENA
LINEARNOG PROGRAMIRANJA U
OPTIMIZACIJI

Osnovna karakteristika savremenog drustva je postojanje
velikog broja slozenih sistema, kao $to su tehnolosko-
proizvodni sistemi, energetski sistemi, komunikacioni
sistemi, transportni sistemi, razni sistemi u poljoprivredi,
industriji, i dr.

U ovakvim uslovima, upravljanje se mora vrs$iti metodicno,
sa programom koji podrazumeva planiranje odluka,
odnosno izrada plana i upravljanje realizacijom plana.

Operaciona istrazivanja su nastala upravo na tim temeljima
i zahtevima sa ciljem da primenom postojecih i razvojem
novih nau¢nih metoda na kvantitativnim osnovama daju
odgovore po pitanju najboljeg funkcionisanja slozenih
sistema u postoje¢im uslovima. Danas postoji Citav niz
raznih nauénih metoda i tehnika koje su razvijene i koje
imaju primenu reSavanja raznih problema upravljanja
sistemima.

Metode i tehnike operacionih istrazivanja su prvenstveno
namenjene donosiocima odluka (menadzeri), ali i
ekspertima i specijalistima koji dobro poznaju prirodu
problema koji se reSava i koji, zajedno sa menadzerima,
trebaju biti ukljuceni u ceo proces donosenja optimalnih
odluka.

2.1. Funkcija cilja ili kriterijum upravljanja

U procesima upravljanja postoje tri jedinstvena pojma sa
kojima se Cesto operiSe. Ti pojmovi narocito dolaze do
izrazaja kod primene matematickih metoda u izucavanju
procesa upravljanja, a to su funkcija cilja (kriterijum
upravljanja), skup ograni¢enja i matematicki model.
Nijedan upravljacki zadatak ne moze da postoji bez
definisanog cilja. Drugim re€ima, bez definisane funkcije
cilja nemoguce je ostvariti konkretno upravljanje.

Po svom karakteru i sadrzaju ciljevi mogu biti veoma
razli¢iti. U odnosu na definisani cilj meri se kvalitet
upravljanja i vrSi komparacija u procesu odabiranja
najbolje ili zadovoljavajuce upravljacke akcije.

U matematickom smislu funkcija cilja izraZzava se nekom
funkcijom F(X) gde je X=(x,x;...,x,) n-dimenzioni vektor,
pri ¢emu treba odrediti njen minimum ili maksimum.
Drugim rec¢ima, funkcija cilja predstavlja funkciju vise

1308

https://doi.org/10.24867/33BE10Ubiparip

promenljivih za koju je potrebno odrediti ekstremnu
vrednost.

Funkcija cilja se minimizira ukoliko su njome izrazeni
troskovi, vreme realizacije zadatka, utroSak materijala,
gubitak, skart u proizvodnji, vreme transporta, itd.

Funkcija cilja se maksimizira ako odrazava dobit, prinos
po jedinici povrsine, dohodak po glavi stanovnika, u¢inak,
itd. Svaki konkretni zadatak zahteva poseban pristup u
realizaciji funkcije cilja, Ciji oblik zavisi od specificnih
uslova zadatka.

Optimalno ostvarivanje cilja, posredstvom trazenja
ekstremne vrednosti funkcije F(X), u realnim uslovima ne
moze se ni zamisliti bez skupa ogranicenja, koja
karakteriSu granice potencijalnih moguénosti odredenog
sistema. Svaki organizacioni sistem karakterisan je
brojnim ogranic¢enjima, ¢ija se priroda najéesce vezuje za
razli¢ite kategorije ograniCenih resursa (radna snaga,
masine, materijal, nov¢ana sredstva, prostor, itd.). Pored
navedenog skupa ograni¢enja postoji joS i prirodni skup
ogranicenja koji se sastoji u tome da komponente vektora
X moraju biti nenegativne veli¢ine x>0, (i=1,2,...,n).
Metode odabiranja upravljackih odluka koje se zasnivaju
na angaZovanju matematickih modela pruzaju moguénost
sveobuhvatnijeg sagledavanja problema, boljeg
iskori§¢enja resursa, brzeg obavljanja procesa, smanjenje
troskova i1 povecanje efikasnosti. Vrednost upravljacke
odluke, dobijene pomocu matematickog modela zavisi od
adekvatnosti modela sa procesom koji se izucava.

Matematicki model koji realno odrazava sistem koji se
istraZzuje omogucava da se pronadu uticaji upravljackih
parametara na izmenu karakteristika sistema u cilju
postizanja uslova njegovog optimalnog funkcionisanja.

2.2. Linearno programiranje

Zadaci koji se sa aspekta odgovarajuéeg matematickog
modela M svode na linearno programiranje, karakteriSu se
funkcijom cilja F(X) koja predstavlja linearnu kombinaciju
nepoznatih, kao i skupom ograni¢enja koji se zadaje
sistemom linearnih jednacina ili nejednacina.

Ako se sa stanovis$ta matematickog modela osvrnemo na
linearno programiranje, problem se sastoji u tome kako
na¢i minimum ili maksimum jedne linearne funkcije F(X),
pri odredenom skupu ograni¢enja L zadanih linearnim
vezama. Broj nepoznatih i ogranienja moze da bude
veoma razlicit.

Linearno programiranje predstavlja metodu odredivanja
takve kombinacije uzajamno povezanih faktora, koja od
niza moguc¢ih kombinacija predstavlja najpovoljniju.
Drugim recima, trazi se takva kombinacija koja ¢e, pored
toga $to ¢e zadovoljiti data ograniCenja, dati kriterijumu
optimalnosti najbolju mogucu (optimalnu) vrednost.
Opsta matematicka formulacija zadatka
programiranja sastoji se u slede¢em:

linearnog

Treba odrediti takav skup vrednosti x;,xs....x, ¢tj.
komponenata n-dimenzinog vektora X=(x;x....x,) iz
oblasti koja je zadata sistemom linearnih jednacina

n

Z QX + b 20, (i=12..m))
k=1
Xk > 0,

za koje funkcija cilja

(k=12,..,n))

F(X) = F(x1:x2’ ...,Xn) = (3)

= C1xy + Coxy + -+ Cuxy
koja predstavlja linearnu kombinaciju nepoznatih x
dostize maksimalnu (minimalnu) vrednost.

Razli¢ite metode reSavanja zadataka linearnog
programiranja imaju niz specificnosti u pretraZivanju
mogucih varijanti plana u cilju izbora optimalnog plana.
Pored toga, postoje opste metode koje omogucavaju da se
nade reSenje bilo kog zadatka linearnog programiranja. U
takve metode spada Dantzig-ova metoda koja je vise
poznata kao simpleks metoda kao i njene modifikacije
razvijene vremenom.

2.3. Simpleks metoda
Ideja simpleks metode sadrzi tri bitna elementa:

1. moguénost odredivanja bar jednog dopustivog
plana X
2. moguénost provere da li je odredeni dopustivi
plan X optimalan ili ne
3. moguénost da se u slucaju izbora dopustivog
plana X koji nije optimalan odredi novi plan koji
je blizi optimalnom
U slucaju da postoje sve tri ove moguénosti, moze se u
okviru konacnog broja koraka (racunski korak u
iteracionom procesu traZzenja reSenja) dobiti optimalni plan
koji predstavlja reSenje formulisanog zadatka. Prema tome,
simpleks metoda zasniva se na sukcesivnom pobolj$anju
dopustivog plana, sve dok se ne dobije optimalan plan.
Ovakav prilaz u formiranju algoritma simpleks metode,
takode omogucava da se u procesu resavanja bilo kog
zadatka ustanovi da li je on resiv ili ne, Sto znaci da postoji
moguénost ispitivanja postojanja protivre¢nosti u
ogranienjima 1 ispitivanje da li je funkcija cilja F(X)
neograniCena u oblasti.

2.4. Optimizacioni proces u Phyton-u

Kori$¢enje Python-a za linearno programiranje obuhvata
nekoliko klju¢nih koraka:

1. Definisanje problema
Definisanje promenljivih
Definisanje funkcije cilja
Definisanje ograni¢enja
Resavanje problema

6. Prikaz rezultata

kv

Cilj definisanja problema je da se dode do formalnog opisa
modela. Uzimajuéi u obzir dostupne podatke, Cesto
problem mozZe da bude mnogo zahtevniji nego S$to je
potrebno. 1z tog razloga je potrebno dobro prouditi koji su
podaci zaista potrebni jer ograni¢enja dostupnih podataka
mogu znacajno promeniti opis modela i kasniju
formulaciju.

Za reSavanje problema u Python-u najces¢e se koriste
biblioteke ,,Scipy* i ,,PuLP®“. Prednost biblioteke ,,PuLP*
nad ,,Scipy* je u tome $to omogucava lakse definisanje i
reSavanje problema linearnog programiranja.

,,PuLP* je, kao §to je navedeno, biblioteka koja se koristi
za reSavanje problema optimizacije, posebno u kontekstu
linearnog programiranja i celobrojnog programiranja. Ova
biblioteka je vrlo korisna iz nekoliko razloga:

1309

- Podrska za razliCite vrste optimizacije - linearno
programiranje, celobrojno programiranje,
mesovito celobrojno programiranje

- Kompatibilnost sa razli¢itim solverima —
podrzava Sirok spektar solvera za reSavanje
optimizacionih problema kao $to su COIN-OR
CBC, GLPK, CPLEX i Gurobi

- Prilagodljivost — omoguéava korisnicima da
kreiraju razlicite vrste problema, bilo da se radi o
logistici, proizvodnji, finansijama, planiranju...

- Integracija sa drugim Python alatima — lako se
integriSe sa drugim alatima i bibliotekama kao $to
su Pandas (za rad sa podacima), NumPy (za
numericke operacije), i mnoge druge.

3. APLIKACIJA ,,UPRAVLJANJE PROJEKTOM*
Aplikacija “Upravljanje Projektom” je osmisljena tako da
unos projektnih zadataka kao i podataka o samom zadatku
budu jednostavni za koris¢enje. Cilj aplikacije je da
upotrebu projekta optimizacionog softvera ucini
dostupnom.

Zamisao je da aplikacija bude veb-bazirana, Sto
omogucava laksi pristup i upotrebu sa razlicitih uredaja.
Aplikacija nije namenjena svim zaposlenima, veé
isklju¢ivo menadzerima, kako bi imali uvid u kljucne
zahteve za izvrSavanje projekta. Pored toga, aplikacija,
koriste¢i prethodno objasnjeno linearno programiranje,
izratunava najbolju putanju toka projekta, odnosno
odreduje optimalne trenutke za zapocinjanje svakog
zadatka.

1. Ova aplikacija je veb aplikacija a za njeno
razvijanje je koris¢eno:
2. SQLite — ugradna baza podataka koji koristi
standardni SQL jezik za upravljanje podacima.
3. Angular - open-source framework za izgradnju
veb aplikacije.
4. Python — kori$¢en je za proces optimizacije.
5. Django veb okvir — koristi Phython za razvoj veb
aplikacija.
Na Slici 1. je prikazan primer projekta sa manjim brojem
zadataka, u cilju lakSeg objasnjenja i razumevanja.

Upravijanje Projektom
Unesite podatke o projektu

nnnnnnnnnn

Slika 1. Aplikacija ,, Upravijanje Projektom *
Aplikacija ,,Upravljanje Projektom* razvijena je kao veb-
bazirana aplikacija koja koristi modernu arhitekturu
klijjent-server modela. Ova arhitektura omogucéava
efikasnu obradu podataka, brzu interakciju sa korisnicima
i skalabilnost sistema.

Dijagram arhitekture aplikacije dat je na Slici 2.

Klijent - Angular d - Django/Python Baza podataka - SQLite

Slika 2. Arhitektura aplikacije

4. PRIMENA - PLANIRANJE I UPRAVLJANJE
PROJEKTIMA

U radu je iskoris¢eno prethodno opisano softversko
reSenje, koje je primenjeno na konkretne podatke iz
kompanije ,,Yris Solutions® sa ciljem analize mogu¢nosti
optimizacije vremenskih i resursnih parametara. Projekat
¢iji se podaci koriste u radu predstavlja skup zadataka koje
je neophodno resiti da bi se projektovala a posle i proizvela
Stampana ploca (engl. Printed Circuit Board - PCB).

U podacima koji su dostavljeni od strane kompanije svaki
zadatak ima 8 obeleZja:

1. ID (jedinstveni broj)

Ime (skraceni opis zadatka)

Opis (detaljan opis zadatka)

Od kog prethodnog zadatka zavisi (ne moze
poceti izvrSavanje zadatka dok se navedeni
zadatak ne izvrsi)

Trajanje izvrSavanja zadatka

Cena

Ubrzano izvr$avanje zadatka

8. Cena ubrzanog izvrSavanja zadatka

Rl el

Nowm

Cilj je odrediti koje zadatke treba vremenski skratiti,
uzimajuéi u obzir da je cena ukoliko se zadatak skrati veca.
,Ubrzano izvrSavanje zadatka“ odreduje zaposleni koji
izvrSava zadatak i predstavlja najkrace vreme u kojem
zadatak moze biti uspe$no zavrSen ako se poveca broj
resursa, odnosno ako zaposleni bude u potpunosti
posvecen samo tom zadatku.

Cena se povecava ukoliko se vreme izvrSavanja zadatka
skrati, jer ubrzavanje procesa obi¢no zahteva dodatne
resurse, kao S$to su dodatni radnici, rad u vanrednim
uslovima ili kori$¢enje specijalizovane opreme. Ove
dodatne potrebe povecavaju ukupne troskove projekta, Sto
dovodi do visih cena u sluCaju skracivanja vremena
izvrSenja zadatka.

4.1. Odredivanje Kriterijuma optimalnosti na osnovu
podataka

Da bi formulisanje funkcije bilo jednostavnije objasnjeno,
upotrebicemo uopstenu formulaciju problema koja je
prikazana u Tabeli 1.

Zavisi _— Ubrzano Cena
ID od Trajanje | Cena rajanje ubr;anpg
Zadatka sadatka [T] [C] [TU] trﬁé%lia
A TA CA | TUA CUA
B A TB CB | TUB CUB
C B TC CC | TucC CUC
n n-1 Tn Cn TUn CUn

Stvarno trajanje zadatka definise se kao standardno trajanje
umanjeno za vremenski period za koji je moguce njegovo
skracenje:
Dj=Tj—xj “

Tj predstavlja standardno vreme trajanja zadatka, odnosno
vreme koje je potrebno da se zadatak zavrsi bez ikakvog
ubrzanja; xj predstavlja broj nedelja (ili bilo koja druga
jedinica vremena) koliko se trajanje zadatka moze skratiti
ako se uloze dodatni resursi; j je ID zadatka.

Dakle, formula (4) predstavlja novo trajanje zadatka nakon
§to je njegovo standardno vremensko razdoblje 7j skra¢eno

1310

za xj. Ako uzmemo uopstene vrednosti iz tabele gore,
trajanje zadatka je:
B=TB—xB (5)

TB predstavlja standardno vreme trajanja zadatka B,
odnosno vreme koje je potrebno za izvrSavanje zadatka B
bez bilo kakvog ubrzanja; xB predstavlja vreme skracenja
za zadatak B, tj. vreme koje se oduzima od standardnog
vremena 7B kako bi se skratilo trajanje zadatka B kroz
dodatne resurse ili ubrzanje bilo koje vrste; B je novo
vreme trajanja zadatka B nakon $to se primeni skraéivanje
xB.

Veza izmedu zadatka C i zadatka B od kojeg zadatak C
zavisi je takva da pocetak zadatka C (yC) ne moze nikako
biti pre nego Sto zadatak B zavrsi, tj:

yC =yB+TB —xB (6)
yC predstavlja novo vreme ili trenutak kada ¢e zadatak C
biti zavrSen; yB predstavlja vreme ili trenutak kada je
zadatak B zavrSen; 7B i xB su prethodno objasnjeni.

Na osnovu prethodno definisanih veli¢ina, funkcija
kriterijuma optimalnosti, ¢ija se minimalna vrednost trazi,
formuliSe se na slede¢i nacin:

minZ = Z(cw —Ci) -(Tj — D)))

3ai=1,...,n. Uovom izrazu, Z oznac¢ava ukupni troak koji
treba minimizirati. Parametar CUi predstavlja cenu
ubrzanog izvrSenja zadatka, odnosno dodatni troSak koji
nastaje kada se vreme trajanja zadatka smanji, dok je Ci
standardna cena izvrSenja zadatka. Veli¢ine 7j i Dj
oznacavaju redom standardno i stvarno (ubrzano) trajanje
zadatka.

Konkretizacijom opste funkcije kriterijuma optimalnosti
date u formuli (7), dobija se slede¢a funkcija za slucaj
razmatranog projekta:

Z =1000x1 + 600x2 + 800x5 + 1200x7

+ 106,67x6 + 106,67x8 + 160x9 + 160x10

+160x11 + 177,77x12 + 145,45x13

+ 160x14 + 160x15 + 200x16 + 400x17

+400x18 + 177,78x19 + 80x20 + 80x21

+ 80x22 + 160x23 + 228,57x24 + 160x25

+ 533,33x26 + 160x27 + 400x28 @)

+ 320x29 + 333,33x30 + 320x31

+ 320x32 + 320x33 + 320x34 + 320x35

+ 400x36 + 400x37 + 320x38 + 320x39

+ 733,33x4 + 160x40 + 160x41 + 160x42

+ 160x43 + 160x44 + 160x45 + 160x46

+ 160x47 + 80x48 + 1200x49 + 1600x50

+ 17542,86x51 + 500x5

Pored funkcije cilja, model ukljucuje i sledeca ograni¢enja:
1. Ogranicenja maksimalne redukcije vremena

Za svaki zadatak unapred je odredeno koliko njegovo
trajanje moze maksimalno da se skrati. Na primer:

x10<1,x11<1,x12<009, ...,x9<1
2. Uslov nenegativnosti

Sve promenljive koje predstavljaju trajanja i vremenske
pomake zadataka moraju biti nenegativne:

xi>0,yi>0,3ai=1,..,52.

3. Vremenska
zadataka)

ogranienja (zavisnost izmedu

Redosled izvrSavanja zadataka uslovljen je logickim
zavisnostima. Na primer, ako zadatak y/0 ne moze da
pocne dok se ne zavrSi zadatak y9, to se izrazava
nejednacinom : y9 + y10-x9>15

5. DISKUSIJA REZULTATA

Na osnovu analize klju¢nih zadataka projekta, procenjeno
je da ¢e njegovo trajanje biti 242 nedelje. Ovaj rezultat
pokazuje ukupan vremenski okvir potreban za zavrSetak
svih zadataka, uzimaju¢i u obzir njihove medusobne
zavisnosti i raspored. Ipak, postoji moguénost optimizacije
tog vremena.

Ukoliko bi se maksimalno smanjio vremenski period
izvrSavanja projekta na 228 nedelja, uz odgovarajuce
povecanje resursa i ubrzanje odredenih zadataka, troskovi
skra¢ivanja vremena izvrSavanja bi bili 44.325,81. Ovaj
iznos predstavlja dodatne troskove koji bi bili neophodni
za ubrzanje izvrSenja, ukljucujuéi povecanje broja radnih
sati, angazovanje dodatnih resursa i primenu tehnologija
koje omogucavaju brze zavrSavanje zadataka.

6. ZAKLJUCAK

Ovaj rad istrazuje primenu linearnog programiranja u
optimizaciji planiranja i upravljanja projektima, sa
posebnim fokusom na IT projekte i projekte proizvodnje
Stampanih ploca. Kroz analizu teorijskih osnova, razvoja
matematickih modela i implementacije softverskih resenja,
postignuti su znacajni rezultati koji unapreduju proces
donosenja odluka i upravljanja resursima.

Razvijeni alat pokazao je visok stepen fleksibilnosti i
prilagodljivosti za primenu u razli¢itim industrijama i
vrstama projekata.

Rad je uspesno demonstrirao kako primena linearnog
programiranja moze unaprediti planiranje i upravljanje
projektima. Matematicki modeli, softverska reSenja i
prakti¢ne primene pokazali su vrednost optimizacije u
smanjenju troskova i vremena, doprinose¢i efikasnijem
koris¢enju resursa i donosenju boljih odluka. Ova
istrazivanja pruzaju solidnu osnovu za dalji razvoj u oblasti
upravljanja projektima.

7. LITERATURA

[1] P.E. Amiolemhen, J. Akpomwomwo ,,Building
Project Activities/Tasks Time Scheduling using a
Linear Programming Model*, Department of
Production Engineering, University of Benin, Nigeria

[2] Jovan J.Petri¢ ,,Operaciona istrazivanja“

[3] Mokhtar S. Bayaraa, John J. Jarvis, Hanif D. Sherali
»Linear Programming and Network Flows*

[4] Dimitris Bertsimas, John N. Tsitsiklis ,,/ntroduction to
Linear Optimization*

[5] Eri¢ D.“Uvod u menadzment”, Ekonomski fakultet,
Beograd

Kratka biografija:

Jelena Ubiparip rodena je u Novom Sadu
1995. godine. Osnovne akademske studije
zavrsila je 2019. godine na studijskom
programu Biomedicinsko inzenjerstvo.

Kontakt: jelena.antelj1@gmail.com

1311

Vi

360pHuK papnoBa PakynteTa TeXHUUKUX Hayka, Hoeu Cap

UDK: 4.633
DOI: https://doi.org/10.24867/33BE11Knezevic

ITPOILIUPEILE AJIATA AUTOPSY CA MOAYJIOM 3A JETEKIINJY OBJEKATA HA
OOTOI'PAONIJAMA

EXTENDING AUTOPSY TOOL WITH OBJECT DETECTION MODULE

Ucunopa Kuexesuh, @axyrmem mexnuuxux nayka, Hosu Cao

Ooaact — EJIEKTPOTEXHUYKO "
PAYYHAPCKO NH)KEILEPCTBO

Kparak canp:kaj — [ueumanna gpopensuxa ce cyouasa
€a u3az0eoM auanuse GelUKux Koaekyuja gomocpaduja
Koje — moey cadpoycamu KwyuHe — OoKaze Y
KpUMUHATUCIUYKO] — ucmpasu. Y oeom pady je
npeocmaemeHo pewierbe Mo0yn 3a Autopsy anam,
wemexmop opyocia u nosya“, koju kopucmu YOLOvVS
Mmoden 0ybokoe yuera 3a OemeKkyujy objekama nonym
NUUMO/bA, HOJCEBA, HOBYAHUYA U KPEOUMHUX Kapmuyd,
uuMme ce 3nauajno yopzaea npoyec ananuse. Ilpednoiceno
pewerve nokasyje 3uamuo 6ome nepgopmance y
Odemexyuju objekama y oOHocy Ha nocmojehia peuiersa.
Kibyune peun: oueumanna ¢popenzuka, Oemexyuja
objexama, YOLOVS, Autopsy

Abstract — Digital forensics faces the challenge of
analyzing large collections of photographs that may
contain key evidence in a criminal investigation. This
paper presents a solution, module for the Autopsy tool,
“Weapon and Money Detector”, which uses the YOLOvS
deep learning model to detect objects such as guns,
knives, banknotes and credit cards, significantly speeding
up the analysis process. The proposed solution shows
significantly better performance in object detection
compared to existing solutions.

Keywords: digital forensics, object detection, YOLOVS,
Autopsy

1. YBOJ

JurutamHa QopeH3WKa je HaydHa AWCHUIUINHA YHjH
npeaMeT cy uAeHTH(HKalUja, MPHUKYIUbabhe, YyBaibe,
nperjefame, aHaliu3a W Ope3eHTalyja JUTHTAITHUX
JOKa3a KOpI/H_HheH)eM HAy4YHO U MPaBHO BaJbaHUX METOJa
u amata [1]. Y caBpeMeHo] auruTaiHoj (opeH3uimy,
¢dortorpaduje mpencTaBibajy BakaH HM3BOP JO0Ka3a KOjU
MOTy cajipkaTtu UH(opMaluje o/ CyIITHHCKOT 3Havaja 3a
ucrtpary. [Topact O6poja pauyHapa U Apyrux padyyHapcKUX
crcTeMa KOje KOHCTaHTHO KOPHCTUMO Yy CBaKOJHEBHOM
JKHBOTY, JIOBEO je 10 CTBaparha BEJIMKUX KOJMYHHA CIUKA.
MehyTtum, pydHa aHamM3a ~ BENMKUX KOJEKITHja
¢dororpaduja Moxxe OUTH M3Y3€THO BPEMEHCKH 3aXTEBHA
3a IUTHTaHE opeH3ndape.

Y O0BOM paly akueHaT je CTaB/beH Ha IIPOHAJAXKEHY
¢dororpaduja Ha KojuMa ce Haja3e O0jeKTH Kao LITO Cy
MAMITOJbU, HOKEBU, HOBYAHUIIC U KPEAUTHE KapTUILIC.

HAIIOMEHA:
Ogaj pax npoucTekao je U3 MacTep pajga 4iju MEHTOP
je ouo np CreBan I'ocTojuh, pen. npod.

BuxoBa ayToMaTcka AETEKIHja 3HAYAJHO CMambyje BpeMe
MOTPEeOHO 33 aHAIM3y CIHKA U NPYykKa HCTPAKUTEIHHMA
MmoryhHocT fa ce GoKycupajy Ha Jpyre acleKkTe ucTpare.
Ja 6u ce oBa ayTomMaTHm3amuja MOCTHUTIA, KOpuIIheH je
HampeaHu Moaen ayookor yuema YOLOVS 3a nerekuujy
HaBeneHUX o0jekaTa. Mozen je TpeHupaH U eBaIyupaH Ha
CKyIly mojiaTaka Koju caapxu (ororpaduje ca o0jekTuMa
on uHTepeca. PasBujeH je momatak 3a (OPSH3MUKU ajaT
Autopsy Bep3uje 4.21.0, HasBaH JleTekTOp OpyXja H
HoBua (eHr. Weapons and Money Detector), xoju
oMoryhaBa TpEMEeHy OBOI TpPEHHpAHOT Mojnena 3a
ayTOMacKo TNpoHalaxewme (ororpaduja Ha KojuMa ce
HaJla3e HaBeIeHH 00jeKTH.

2. IPEIVIEJ CJIMYHUX COPTBEPA

I'maBHM kpuTepujymMu 3a W300p CIMYHHUX AaIUTAKaIja
OmmM Cy BUXOBa IpUMEHa y (OPEH3MUKUM HCTparama,
MoryhHOCT ayTromarcke aHajau3e MYJITHMEIH]jaJTHOT
cazpkaja ¥ MOApIIKa 3a WAeHTU(HKauWjy oapeheHux
oOjexkara on umHTepeca. IloceOHa maxkma je moceehena
ajatuMa KOjH YKJbYYyjy METOJAE MAIIMHCKOT y4YeHa 3a
JIeTekimjy objekata. Ha OCHOBY OBUX KpUTEpHUjyMa,
UACHTH(UKOBAHHU Cy W aHAJIM3MPAaHU alaTH Kao LITO Cy
Autopsy, Bepsuje 4.21.0, y mormaBby 2.1, m Magnet
Axiom, Bep3uje 6.8, y nornasmy 2.2.

2.1. Autopsy

Autopsy [2] je amar 3a aurutanay GopeH3NKy OTBOPEHOT
Koma, koju omoryhaBa aHamM3y AWTHTAIHAX IOKa3a ca
YBPCTUX JMCKOBAa pauyHapa W MOOMIHHMX ypebaja.
Jlu3ajHupaH ¥ UMIUIEMEHTHPAH j€ MOAYJIApHO, IITO 3HAYN
Jla TIOCTOje MOMAYJIM KOjH MpOIMpyjy (yHKIMje amara.
Jeman onm moxayna jecre u Object Detection momyn koju
CIy’)XHM 3a JCTeKIHjy oOjekara Ha ciukama. Moy
KopucTH KackamHu kiacupukatop (enmr. Cascade
Classifier) aropuTaM MaIIMHCKOT yuemha U3 OnOIMOoTEKe
3a padyHapcku BUJ U MamMHCKO yuewe OpenCV. Ilomro
oubimmoreka OpenCV, Bepuje 3.4.16, mma camo
Kiacudukarope 3a IETEKIH]y JIMIA, 0YHjy, Tella, MadaKa
U PerucTapckux Tabnuma, a U Autopsy He CaapKH CBOje
Kimacudukarope y3 MomIyl, OMIIo je moTpeOHO TpeHHpaTH
u eBaiyuparu kiacudukarope 3a 00jeKTe Koje XKEIuMOo
Ja IETEeKTyjeMOo, a TO Cy: INHIUTOJbH, HOKEBH, HOBUAHHUIIE
u KpeautHe kaptuie. MeTpuke koje cy kopuiiheHe 3a
eBaiyalujy Cy mpemnusHoct, oa3us u F1 mepa. Ha tabenu
1 ce Mory BuAeTH BpPEAHOCTH eBalyalldje 3a CBaKH
KJIacu(uKaTop.

1312

https://doi.org/10.24867/33BE11Knezevic

TaGena 1. Pesyimamu esanyayuje kiacuguxamopa

OdjexTH IIpeunsnoct On3uB F1 mepa
[Tumrosbu 0.114 0.472 0.184
Hosuanwuiie 0.048 0.245 0.08
Hoxesu 0.007 0.087 0.013
Kpen. kaprt. 0.036 0.193 0.06
Pesynratm eBanyauuje mokasyjy ~Ja KacKaJgHH

KJIacu(pUKaTOPH UMajy HUCKE BPEAHOCTH MPELM3HOCTH U

OlI3MBa, INTO YyKa3dyje Ha BEJIMKA OpoOj JaXHUX
MO3UTHBHUX pe3yliTaTa H IPOIMYIITame CTBAPHUX
o0jekara.

2.2. Magnet Axiom

Magnet Axiom [3] je xomepumjaaau codTBEep 3a
IUTUTATHY (OpEeH3WKy, KOjH je CIeIHjaM30BaH 3a
aHaIM3y MOJaTaKa ca pa3IMYUTHX W3BOpa Kao LITO Cy
YBPCTH JHUCKOBH, MOOWIHM ypebhaju, cloud cepBucu u
JIpYIITBEHE Mpexe. JemHa on (YHKIMOHAIHOCTH j€ |
HampenHa (YHKIMja 3a KaTeropu3alyjy TeKcTa Yy
pasroBopuMa, CJIMKa ¥ BHJIEO 3anuca nomohy Magnet Al.
Magnet Al je wHTerpucaHu CHCTEM KOjU KOPUCTH
MalOIMHCKO Yy4Y€lhe 3a ayTOMarcKy aHamm3y |
KaTeropmsandjy mnojaraka. Moke na HICHTHDUKY]e
CIIFKE KOje cajpike creruduaHe 00jeKkTe WiH CIleHe, Kao
IITO Cy Opy’Xje, JOKyMEHTa, HOBAall, BO3WIA, HEMOI00aH
cazapikaj U pasHe apyre o0jexte, Y paxy [4] Bacumapac u
CapagHULM Cy M3BPLIMIN €BATYalHjy (yHKIHOHATHOCTH
KaTeropusaiidje ciuka, amata Magnet Axiom, Bep3uje
6.8. MeTpuke Koje cy KopuIinheHe 3a eBalyaldjy cy
TA4YHOCT, Mpeuu3HocT, o3uB U F1 mepa. Kateropuje xoje
Cy eBaJlyupaHe Cy: Jpora, opyXje, TOJIOTHHA, HOBAll U
Bo3mia. Y Tabenu 2 cy NpuKa3aHu pe3yliTaTy eBajyalyje.

Tabena 2. Pesynmamu esanyayuje anama Magnet Axiom

O0jextn | Taunocr | IIpenusnocr | On3us F1
Mepa
Hpora 0.988 0.066 0.279 | 0.107
Opyxje 0.993 0.156 0.052 | 0.078
lNonotum 0.992 0.231 0.146 | 0.179

a

Hosan 0.980 0.021 0.333 | 0.040
Bozmia 0.991 0.810 0.545 | 0.652

Pesynratnn eBamyammje mokasyjy na Magnet Al uma
orpanudeHe nepdopMaHce y HEKIM KaTeTOpHjaMa, TOIMyT
Opykja, Ipore W HOBIA, TJAC Cy HHCKE BPEIHOCTH
nperu3Hoctd U om3uBa. OBO ykasyje Ha mosehan Opoj
JIKHUX TTO3UTHBHUX W MPOMYIITEHUX O0jeKkata y THM
kateropujama. DOYHKIMOHAHOCT KaTEropu3allyje CIHKa
momohy Magnet Al je Hajmoy3maHHja 3a KaTeropujy
BO3MJIA.

3. AUTOPSY

OBaj ozxemak ce OaBu aHanmm3oM Autopsy anara 3a
murutanHy Qopensuky. Y omesrky 3.1 he Outnm
o0jammeHe OCHOBHE KapaKTepHCTHKE ajlaTa W
MoryhHOCTMMa Koje HyIOW KOPHUCHHLIMMA, JOK he y
oJ1eJbKy 3.2 OuTH 00jallkbeHO KaKo Ce MOTY MpPOLIHMPHTH
(YHKIMOHAIHOCTH OBOT aJaTa.

3.1. OcHOBHe KapaKTepHCTHKe ajaTa
Autopsy ce 6a3upa Ha cieehuM KJbyYHAM KOHIICITHMA!

e Ciyuaj (eHr. case): nedHHHCAH je Kao KOHTEjHEp
KOjH CaJIpXKH jeJlaH WM BUILE U3BOPA MMOAATAKA.

e l3Bop moparaka (enr. data source): mory OuTH
(opeH3nuKe KOIHje ANCKA, JIOKATHW AWCKOBHU U
JOTHYKH (HajIIoBH U (OIIACPH.

e Monynu 3a oOpany momataka (eHr. ingest modules):
00aBsbajy aHamms3e (ajnoBa W3 M3BOpa IMOJaTaka U
apcupajy HUXOB CalpiKaj.

e Ilpna Tabma (enr. blackboard): mpencraBpa HaunH
KoMmyHHKaruje uzmehy Moayna. Mojynu nocrassbajy
CBOje pe3yiTraTe Ha LpHY Tabmy y OOJNHKY
apredakara, a KOpUCHUYKH HHTEpQEjC UX MpUKazyje.

Hexn ox momyna 3a oOpady momaTaka KOjU IOCTOjE y

Autopsy-y cy:

e File Type Identification — uneHTHdUKYje naToTeke Ha
OCHOBY IbHXOBHX MHTEPHHUX IIOTIIHCA U HE OClIamba ce
Ha eKCTeH3Hje TaTOTeKa.

e Picture Analyzer — oBaj moxyn u3aBaja Exchangeable
Image File Format (EXIF) uadopmarmmje u3 ciuka,
Tj. MeTanogatke. OBe HHPOPMAIIHje MOTY J1a cajpiKe
MOJIaTKe O TEOJIOKAIM]U CIUKE, BPEMEHYy M JaTyMmy
HacTaHKa, MOJIeNly KaMepe ¥ HeHUM MOJIelIaBabiMa
Kao u Apyre uHpopmMarmje.

e Object Detection — kopuctu OpenCV na merekryje
o0jeKTe Ha cIUKaMa.

KopucHui na O MOKPEHYIH AUTUTANHY (DOPEH3HUKY

ucTpary momohy Autopsy-a moTpeOHO je &a Hampase

CIIy4aj ¥ MOITyHe CBE HEOIXOAHE MOJATKE O BeMy. 3aTHM

0NIajy W3BOp TOAaTaka W OWpajy Momyne 3a obOpamy

momaTaka koju he ce W3BpIIaBaTH HaX THM H3BOPOM.

Hakon 3aBpiieTka pajga MoJyJia, KOPUCHHUIY MOTY PYYHO

a TIperyenajy caapikaj ¢ajmoBa W pe3yirare MoIyia

Kako Ou wmaeHTH(uKOBaaM aokasze. Kama je 3aBpiueHa

aHajuM3a KOPHCHHK MOXE Jia T[OKpeHEe TIeHepHucame

(¢uHaNHOr M3BellTaja HA OCHOBY OJa0paHMX O3HAKa U

pesyntara. OBo ykibyuyje kpeupame HTML mnmm Excel

U3BEIITAja.

3.2. lIpommmpuBocT Autopsy-a

Autopsy je TIperno3HaTJbMB Kao jedaH O

HAjTIpUIATOUBMBHjUX ajlaTa 3a IUTUTAIHY (opeH3uKy,

300or MoryhHOCTH Tpommpema (YHKIHOHATHOCTH KpO3

pasmmunte Monyie. Heke ox BpcTa Momyia Koje mocToje

y OoKkBHpY Autopsy-a cy:

e Moaynu 3a 00pany nosaataka (eHr. Ingest Modules):
OBH MOJYJIHM Ce IOoKpelly Kaga ce HOBH H3BOD
nojaraka Joja y CIy4aj, M MOTY C€ IIOHOBO
MOKPEeHYTH HakoH Tora. OBM MOJyJH HOCTOje y J1Ba
obOnuka: Monmynu 3a oOpany naroreka (eHr. File
Ingest Modules) — mo3uBajy ce 3a CBaKy AaTOTEKy y
W3BOpY TlOJaTtaka, W MOIYJNH 3a o0paxy H3BOpa
momataka (eHr. Data Source Ingest Modules) —
MO3MBAjy C€ jeJHOM 3a CBAKY CIHKY IUCKA WA CET
JIOTUYKHUX JaTOTEKa.

e Moaynu 3a usBemraje (enr. Report Modules): oBu
MOIyTu ce (THIMUYHO) MOKpehy HakoH mTOo je
KOPHMCHHMK IIPEeryieia0 pe3yiTaTe ¥ 03HaYHo JaTOTeKe
ol uHTepeca. thuxosa cBpxa je Kpeuparme U3BelITaja
0 pe3yjiraTiMa, ajd MOTY C€ KOPHCTHTH M 3a
aHaJm3y.

Autopsy je mmcan y Java IpoOrpaMcKOM je3WKy, IOK

MoIynu Mory Outu nucanu y Java mim Python jesuxy (1j.

1313

Jython jesuky, xoju mperBapa koj mucaH y Python-y y
Java xom). Craxu Python momy:n, xoju ce numie y jenHoj
Python ckpunth, Tpeba ma O6yne y donmepy 3a Python
ckpunre y okBupy Autopsy-a. Y Autopsy GitHub
penosuropujymy [5] ce Hamaze mpUMepd 3a MOIYJT 3a
o0pany maToTeka, MOIYJ 3a 00paay W3BOpa IojaaTaka u
Momyn 3a wm3Bemraje. CBu mpumepun wmmajy TODO
HamoMeHe Koje yKa3yjy Ha TO mTa Tpeba /a ce mpOMeHH.
CBe gerajpHHje uWHpOpPMandje O HUMIDIEMEHTAIHjU
Moaylna, yKJbYdyjyhu Kopake, mpuMepe Koxa W J0JaTHE
mMoryhHocTH, MOry ce mpoHalin y 3BaHMYHOj Autopsy
JIOKYMEHTAITUjH 3a feBeromnepe [6].

4. TETEKIIUJA OBEJAKTA

Jereknuja objekata TpeACTaBiba jelaH OJ KIBYYHHUX
3ajJaTaka pauyHapCKOr BUJA U BELITAuKe MHTEIUTCHIH]C,
YMju je IWb Ja Tpeno3Ha W Jonupa oOjekre Ha
IUTHTAJHUM CJIAKaMa WM Buueo-cHuMmuouma [7]. Y
onespKy 4.1 6uhe objammeHo 1mITa je IeTeKIuja o0jexaTa
U Kako (yHKIWoHHMIE, JOK he y oxmeipky 4.2 OutH
MIPeICTaBJLEHN HEKH OJ1 MOJIeTIa 3a JeTeKInjy objekara.

4.1. OcHOBHU KOHIIENTH JeTeKuuje odjexara
Jerexnuja objekara je OMIITH TEPMUH KOjU OIHKCY]je CKYII
MOBE3aHMX 3aJlaTaka y 00JacTH padyyHapCcKOT BUa, a KOju
oJpa3yMeBajy uAeHTH(UKALIN]Y o0jexara Ha
qurutanHuM - Qororpadujama. ONIUTH MPUHIMO paja
JeTeknyje odjekara je ciaenehn:

1. Yaa3na cimka: [Ipomec gereknuje o0jexaTa MOYHEE
QHAJIM30M CIIUKE WJIH BHICA.

2. Ilpepodpana: Crmuka ce mpemoOpahyje xako Om ce
00e30emno oaromapajyhm ¢dopmar 3a Momenm Koju ce
KOPHCTH.

3. U3nBajame kapakTepucTuka: Mojen pasnaxe CIUKY

Ha pErHOHE W W3 CBaKOl PErHOHA W3BJIAYH
KapaKTepUCTUKE Kako ©Oum JerexkToBao oOpacie
pa3nnuuTHX objexara.

4. Kaacupuxanumja: CBaku peruoH CiIHKEe Cce

KnacupuKyje y Kareropwje Ha OCHOBY wu3BaljeHHX
KapakTepUCTUKa. 3aJaTtak KiIacu(pHKaluje MOXe jaa ce
obaBspa iomohy SVM-a (support vector machines — Tum
aNrOpHTMa 3a HAATJIEIAaHO Y4Yemhe KOjU Cce MOXe
KOPHCTUTH 3a 3alaTKe KIacupUKaIje WIH perpecuje)
WA HEYPOHCKE Mpexe Koja padyyHa BepoBaTHONY cBake
KaTeropuje MpUCyTHE Y PETHOHY.

5. Jlokaau3zaumja: HcroBpeMeHO ca MPOIECOM
knacudukaiyje, Momen ojpehjyje OKBHpe 3a CBaku
nerekToBaHM oOjekar. OBO yKJbydyje H3pauyHaBame
KOOpJIMHATa OKBHPA KOJU OKpPY)Kyje CBaku o0jexar, yume
ce 00jeKxat IPEeLH3HO JIOLHPa YHYTap CIHKE.

6. Cy30mjame npekjanama (€HI. non-max suppression):
Kama ™mozmen wuaeHTHOUKyje BHIIE OKBHpAa 3a HCTH
o0jekat, mpuUMemyje ce cy30Hmjame mpexianama. OBa
TEeXHHKa 33p)KaBa CaMO OKBHP Ca HajBUIINM HHBOOM
MTOY3JaHOCTH U YKJIamkha CBE OCTajle KOj! ce TpeKamnajy.

7. U3na3: Ipouec ce 3aBpiiaBa OpUrHHAIIHOM CIMKOM Ha
KOjOj Cy O3HauYeHW OKBUPUM M HAa3MBU Kiaca, Koje
WIIyCTPYjy JleTeKToBaHe 00jeKTe M HBHXOBe oAroBapajyhe
Kareropuje.

4.2. MeToje v aJITOPUTMHU JieTeKuje o0jexaTa
Jereknuja objekara ocliamba Ce Ha Pa3slIUUUTEe METOJC U
QITOPUTME KOjU Ce YIJIABHOM JIelic Ha TpPaJAWIMOHATHE

(mpe 2014. romumHe) u moxepHe Mmerozxe (mocie 2014.
rO/IMHE), 3aCHOBaHE Ha TyOOKOM yuewy. TpaauiroHaine
METOJIe Koje ce u3aBajajy cy: Buoma-Ilonc nerexropu (Tj.
kackagHu knacugukaropu), HOG (histogram of oriented
gradients) nerektop m DPM (deformable part-based
model) momen. Mopepre MeTome ce Jeie Ha JBe
KaTeropwuje: ,,JIBOCTENEHa MIeTeKIHja” U ,,jeHOCTENeHa
nmerexmmja’. Kox ,,iBOCTENIEHNX AETEKIMja’™ W3Bajajy ce
metozae: RCNN, SPPNet, Fast RCNN, Faster RCNN, nok
ce KOI ,,JeTHOCTENEeHHX NIETeKIHja™ W3[Bajajy MeToje:
you only look once (YOLO) u single shot multibox
detector (SSD).

4.2.1. YOLOvVS

YOLOVS je pasBujen ox ctpane Ultralytics Ttuma.
Apxurextypa YOLOVS ce cacroju on aBa IJIaBHA Jena,
KAYMeE U TJIaBe, KOja YMHE JBe KOHBOJIYIMOHE HEYPOHCKE
Mpexe.

Y pagy [8] bunoyc wu capagHMmM Cy TOpeAWIH
nepdopmance moznena, kao mrto ¢y YOLOv4-v8, Faster
RCNN, SSD u EfficientDet, 3a nerexkuujy Jpynu u
TEXHUYKUX oOjekara. [1aBHe MeTpuKe 3a nopehjeme Ome
cy TauHocT (mAP), mpermsHocT, om3uB, F1 Mepa u
opsuna obpange (FPS). Ha TabGenmu 3 cy mnpukasaHu
pe3ynTatu epanyaruje moaena. YOLOvVS ce mokazao kao
HajeUKacHUjU MOJEN 3axBaJbyjyhm CB0jOj BHCOKO]
Ta4HOCTH, Op3uHK obpane u CIOCOOHOCTH
npuarohaBama pa3HOBPCHUM cueHapujuma. Y 360r Tora
je YOLOv8 mozen n3zabpan 3a pemasame mpodieMa oBor
pana.

Tabena 3. Pesyimamu esanyayuje mooena

F1
Mopaen Ipemnsnocr | Ox3us | mAP mepa FPS

YOLOv4 0.81 0.83 0.82 0.82 40
YOLOv5 0.73 0.73 0.73 0.73 45
YOLOv6 0.62 0.62 0.62 0.62 42
YOLOv7 0.68 0.68 0.68 0.68 43
YOLOvS 0.87 0.89 0.88 0.88 48
Faster

RCNN 0.84 0.82 0.83 0.83 10
SSD 0.76 0.75 0.75 0.75 35
EfficientDet 0.82 0.80 0.81 0.81 30

5. IETEKTOP OPYKJA U HOBLIA HA
JANTUTAJHUM CIINKAMA

Jetexkrop opyxja u HoBua (enr. Weapons and Money
Detector) je Momayn pa3BujeH 3a (QOPEH3MYKH ajar
Autopsy, Bep3mje 4.21.0, xoju aHamM3Mpa JAUTUTAIHE
CIIMKE U3 U3BOpA MOJlaTaka ¥ M3/1Baja CJIMKe Ha KojuMma ce
Haja3e MHUIITOJbH, HOXKCBH, HOBYAHMIEC W KPEIUTHE
kaptuie. Monyn je uMruieMenTipan y Python ckpuntu n
3a JeTeKIWjy HaBeldeHuX obOjekara kopuctu YOLOvS
MoOzeN, KOjU je TpeHHpaH M €BalyHpaH Ha CKYITy
mojaTaka Koju caipxu (ororpaduje ca objekTMa of
nHTepeca. CKyI mogataka Haj KOjUM je TPEHUpPAH MOJIEIN
mpeyset je u3 paxa [9] Ilepe3-Epnanneza u capagHuka.
Ha Ttabenu 4 je npukasaH CKyn IOAaTaka Koju je
kopuiheH 3a TPeHUPambe 1 eBaTyaljy MOJea.

1314

Tabena 4. Cxyn nodamaxa

ITumrosen | HoBuanune | HoxeB | Kpeaurthe
u KapTHle
Tpenupame 855 425 621 222
Tecr 214 102 172 57

Monen je Tpenupan y 25 emoxa. HakoH TpeHmpama je
ypahena epamyaruja. MeTpuke koje cy KopurmheHe 3a
eBaNyalnujy cy mpenusHoct, om3uB u F1 mepa. Ha tabenn
5 ce MOTy BUJETH PE3yNITaTu eBalyalyje MoJena.

Tabena 5. Pesynmamu esanyayuje YOLOVS modena

KpeauTHe Kapruue. Takohe, TpeHHpame Mojena ja
JIETEKTyje joul BHIIE KaTeropuja obOjekara, mro he
MIPOLIMPHUTH NPUMEHY pelleha y JpyTriM 00JlacTUMA.

7. INTEPATYPA

[1] A. Arnes, Digital Forensics: An Academic
Introduction, John Wiley & Sons Ltd, 2018.
[2]"Autopsy User Documentation 4.21.0," [Online].
Available: https://sleuthkit.org/autopsy/docs/user-
docs/4.21.0/index.html. [Accessed 7 December 2024].
[3] "Magnet Axiom," Magnet Forensics, [Online].
Available:
https://www.magnetforensics.com/products/magnet-
axiom/. [Accessed 9 December 2024].

O0jextn | IlpenusHoct On3uB F1 mepa
[Tumrossu 0.913 0.937 0.925
Hoguanmnue 0.911 0.931 0.921

Hoxesu 0.930 0.820 0.872
Kpen. xapr. 0.882 0.474 0.617

Monyn Weapons and Money Detector y Autopsy anary
canpxu Qongep utils, y xome ce Hamaze nBa (oimepa
model u dist. ¥ ¢onnepy model ce Hanasu dajn best.pt,
koju npeacraBiba Y OLOVE monen, 1ok ce y donaepy dist
Hasa3zu weaponsMoneyDetector.exe naroreka.

KopucHuk kajma 3aloudmbe IUTHTAIHY —(DOPEH3HUKY
UCTpary MOTPeOHO je NMPBO @ HAapaBH HOBH CiIyda] U
Joza u3Bop nojataka. Hakon tora mokpehe Weapons and
Money Detector Momyn, Koju H3/Baja CBE CJIHKE ca
MOAP>KAHOM EKCTEH3HMjOM M KOIHpa HUX Yy INPUBPEMEHH
donmep. Monayn 3aTUM 03MBa
weaponsMoneyDetector.exe AaToTeKy Koja Ha CIIMKama
JeTeKTyje o0jekTe on uHTepeca (IHINTOJbE, HOXKEBE,
HOBYAHUIIE U KPEJUTHE KapTHIIE) U pe3yJiITaTe 3amucyje y
TEKCTyalHy JaToTeKy report.txt. Moayn obpabhyje
pe3yiraTe W3 TEKCTyallHe JaToTeKe M CIIMKe ca
JeTeKToBaHUM o0jekTnMa goxaje Ha Blackboard y
cekuuju Interesting Files rpymnucane y nucty mon
HasuBoM Weapons and Money in Images. Hakxon
3aBpIIETKA pajga MOAyJa, MOIyJ obaBelTaBa KOPUCHHKA
Ia je mpormec oOpane 3aBpIICH W KOPHCHUK MOXE Ia
rerepuie uaanan HTML nnn Excel n3Bemraj.

6. 3AK/bYYAK

IIpo6iieM KOjH je aHATU3UPaH y OBOM paiy OJHOCH Ce Ha
JIETEKIH]jy TIOTEHIIMjJTHO OMAaCHUX M 3HA4ajHUX objekarta,
Kao IITO Cy MHUIITOJbH, HOBYAHHUIIC, HOKEBU M KPEIUTHE
KapTHIle, Y TUTHTATHAM cliikama. Kao meton pemnraBama
npobnema kopumhen je YOLOV8 mozen 3a myOoxo
y4YeHe U pa3BHjeH je MOAYJ 3a (OPEH3MYKH ajaT Autopsy
Bep3uje 4.21.0, [lerexTop opyxja u HoBIa (eHr. Weapons
and Money Detector), koju omoryhaBa mpuMmeHy OBOT
MoOJZieNa 3a ayTOMaTCKO NpoHaJaxkeme (ororpaduja Ha
KOjUMa Ce¢ Hajla3e HaBeJCHUM 00jekTH. MoTuBaigja 3a
OBakKaB IMPUCTYN JISKH Yy MOTpeOu 3a eduKacHUjoM
aHAJIM30M JWTHTATHUX JoKaza y (OPEH3UYKHUM
HcTparama, Kao U y orpaHuuemhuMa mocTojehux penierma,
Kao mrTo cy Autopsy m Magnet Axiom, Koja MOKa3yjy
HEJIOBOJbHE PE3yJTaTe Y MPEIU3HOCTH U O3UBY BUXOBHX
mozena. Mako YOLOvV8 mozmen mokasyje 3HaTHO Oosbe
pe3ynTate oA KOHKYpPEHLHje, Heropa JeTeKluja
KpPEeIMTHUX KapTHIa M Jajbe ocTaje u3a3oB. [IpaBum
JajbeT pa3Boja 00yxXBaTajy MOOOJBIIAKE JCTEKITH]je
KpPEIUTHUX KapTHlla, Kpo3 noBehame ckyma mojaraka 3a
TpeHupame ca Behum OpojeM cimka Ha KojuMa ce Hajase

[4] A. Vasilaras, N. Papadoudis and P. Rizomiliotis,
"Artificial intelligence in mobile forensics: A survey of
current status, a use case analysis and Al alignment
objectives," Forensic Science International: Digital
Investigation, vol. 49, no. 301737, 2024.

[5] https://github.com/sleuthkit/autopsy/tree/autopsy-
4.21.0/pythonExamples [Accessed 9 December 2024].
[6]"Autopsy Forensic Browser Developer's Guide and
API Reference," [Online]. Available:
http://sleuthkit.org/autopsy/docs/api-docs/4.21.0//.
[Accessed 10 December 2024].

[7] J. Murel and E. Kavlakoglu, "What is object
detection?" IBM, 3 January 2024. [Online]. Available:
https://www.ibm.com/think/topics/object-detection.
[Accessed 12 December 2024].

[8] N. Bilous, V. Malko, M. Frohme and A.
Nechyporenko, "Comparison of CNN-Based
Architectures for Detection of Different Object Classes,"
Al vol. 5, pp. 2300-2320, 2024.

[9] F. Pérez-Hernandez, S. Tabik, A. Lamas, R. Olmos,
H. Fujita and F. Herrera, "Object Detection Binary
Classifiers methodology based on deep learning to
identify small objects handled similarly: Application in
video surveillance," Knowledge-Based Systems, vol. 194,
no. 105590, 2020.

Kparka Onorpaguja:

Hcunopa KnexeBuh poljena je y

Hosom Cazgy 2000. rox. Junmomupana

je Ha dakynTeTy TeXHUYKHUX HayKa y

Horom Camy 2023. ronuse u ucte

TOJIMHE yIhcajia MacTep CTyIdje Ha

N dakynreTy TEXHUYKHUX HayKa,

[CTyJHjcKH mporpam PauyHapcTBO U
ayromaruka, cmep [IpumMemene

padyHapcKe HayKe U HHPopMaTHKa — EIeKTpoHCKO

MOCTIOBAKbE.

1315

https://sleuthkit.org/autopsy/docs/user-docs/4.21.0/index.html
https://sleuthkit.org/autopsy/docs/user-docs/4.21.0/index.html
https://www.magnetforensics.com/products/magnet-axiom/
https://www.magnetforensics.com/products/magnet-axiom/
https://github.com/sleuthkit/autopsy/tree/autopsy-4.21.0/pythonExamples
https://github.com/sleuthkit/autopsy/tree/autopsy-4.21.0/pythonExamples
http://sleuthkit.org/autopsy/docs/api-docs/4.21.0/
https://www.ibm.com/think/topics/object-detection

g?ﬁ Zbornik radova Fakulteta tehniékih nauka, Novi Sad

UDK: 4.9
DOI: https://doi.org/10.24867/33BE12Vasic

RAZVOJ SAVREMENIH VEB APLIKACIJA U .NET EKOSISTEMU PRIMENOM
WEBASSEMBLY 1 BLAZOR TEHNOLOGIJA

DEVELOPMENT OF MODERN WEB APPLICATIONS IN THE .NET ECOSYSTEM
THROUGH THE USE OF WEBASSEMBLY AND BLAZOR TECHNOLOGIES

NataSa Vasié, Fakultet tehnickih nauka, Novi Sad

Oblast - ELEKTROTEHNICKO I RACUNARSKO
INZENJERSTVO

Kratak sadrzaj — U ovom radu prikazano je istrazivanje
WebAssembly i Blazor tehnologija, sa ciljem da se
predstave njihovi osnovni koncepti, prednosti i prakticne
primene. WebAssembly bajtkod moze se izvrsavati u
razlicitim okruzenjima, ali u ovom radu fokus je na .NET
okviru zbog njegovih Sirokih mogucnosti i popularnosti
medu programerima. Dat je pregled mogucnosti koje ove
tehnologije pruzaju uz doprinos boljem razumevanju
njihove primene u savremenoj industriji.

Kljuéne reci: WebAssembly,
tehnologije, veb aplikacija

Blazor, .NET, veb

Abstract — This paper presents a study of WebAssembly
and Blazor technologies, aiming to introduce their
fundamental concepts, advantages and practical
applications. WebAssembly bytecode can be executed in
various environments, however this paper focuses on its
use within the .NET ecosystem due to its extensive
capabilities and popularity among developers. The paper
provides an overview of the opportunities these
technologies offer and contributes to a better
understanding of their application in modern industry.

Keywords: WebAssembly, .NET,
technologies, web application

Blazor, web

1. UVOD

Razvoj veb tehnologija omogucio je pojavu kompleksnih
aplikacija kao $to su igrice, razliciti audio i video softveri i
slicne aplikacije, te zahtevi za efikasnos$¢u i sigurnoscu
rastu. JavaScript, HTML i CSS i dalje dominiraju u razvoju
veb aplikacija, ali zbog svojih ogranicenja ne mogu u
potpunosti da ispune te zahteve. WebAssembly, otvoreni
standard koji omoguéava izvrSavanje binarnog koda
direktno u pregledacu, uspeo je da ispuni zahteve [1, 2]. U
okviru .NET Blazor tehnologije WebAssembly se koristi
kao klju¢na tehnologija za pokretanje aplikacija u veb
pregledacima. Blazor je Ul framework koji omogucava
razvoj interaktivnih veb aplikacija koriste¢i C# i .NET
umesto koris¢enja JavaScript jezika.

NAPOMENA:
Ovaj rad proistekao je iz master rada ¢iji mentor je bila
dr Dunja Vrbaski, docent

Blazor omogucava programerima da koriste poznate alate
i biblioteke iz .NET okruZenja. Ovaj pristup eliminise
potrebu za dva programera, jednog za JavaScript, a drugog
za backend u klasinom veb projektu, povecava
produktivnost i omogucéava kreiranje aplikacija koje mogu
da se pokrenu na svim modernim pregleda¢ima [3].

2. WEBASSEMBLY

WebAssembly (Wasm) je tip koda koji se moze izvrSavati
u modernim veb pregledac¢ima. To je jezik niskog nivoa
slican asembleru koji koristi kompaktan binarni format i
omoguéava izvrSavanje sa performansama bliskim
nativnim. Pruza moguénost kompajliranja programskih
jezika kao sto su C/C++, C#, Rust i drugi u oblik pogodan
za izvr$avanje unutar veb pregledaca. Dizajniran je da
funkcioniSe ~ uporedo sa JavaScript jezikom,
omoguéavaju¢i im da rade zajedno [4]. Razvijen je u
saradnji Cetiri glavne kompanije koje se bave razvojem
pregledaca — Google, Microsoft, Mozilla i Apple [1].
Prema W3C organizaciji, WebAssembly je Cetvrti jezik za
veb koji omogucava izvrsavanje koda u pregledacu [5].
JavaScript, HTML i CSS su ostala tri jezika [2].
WebAssembly je dizajniran da bude kompaktan, brz i
siguran, a da pritom omogucava validaciju, kompilaciju i
bezbedno izvrSavanje uz minimalne troskove. Nezavisan je
od programskih jezika, hardvera i platforme. Od samog
pocetka dizajniran je sa formalnom semantikom [1].

2.1. Primene

Google, eBay i Norton implementirali su WebAssembly u
svoje projekte kako bi unapredili performanse. Primeri
primene ukljucuju ¢itace bar kodova [7], masinsko ucenje
sa TensorFlow.js bibliotekom [8], prepoznavanje
obrazaca, graficke alate, kompresiju podataka,
kriptografske biblioteke, igrice, obradu slika, numericke
proratune 1 druge specijalizovane zadatke [6].
Jednostavnost 1 univerzalnost podstakla je njegovu
primenu u razli¢itim domenima, ukljuCujuc¢i serversku
stranu u kombinaciji sa Node.js, serverless racunarstvo u
oblaku, Internet stvari (IoT) i integrisane uredaje, pa ¢ak i
kao samostalno okruzenje za izvrSavanje [9]. Unutar
pregledaca koristi se i za uredivanje slika i video sadrzaja,

podrzava razli¢ite vrste igrica, razvoj aplikacija,
prepoznavanje slika, VPN i drugo. Izvan pregledaca koristi
se za distribuciju raCunarskih igara, izvrSavanje

nepoverljivog koda na serveru, server-side aplikacije i
sli¢no [10].

1316

https://doi.org/10.24867/33BE12Vasic

2.2. Razlozi za razvoj novih veb tehnologija

JavaScript je dugo bio jedina opcija za kreiranje
interaktivnih aplikacija u pregledacu. Medutim, razvoj
aplikacija koje zahtevaju visoke performanse procesora,
kao §to su igre, bio je ograni¢en zbog slabih performansi.
Da bi se resili problemi napravljeni su brojni pokusaji da
se prednosti nativnog koda prenesu na veb. Adobe je
promovisao Flash platformu, Microsoft je predlozio
ActiveX, Google uvodi Native Client tehnologiju [11].

2.3. Prethodna resenja

ActiveX kojeg je uveo Microsoft, Flash platforma koju je
promovisao Adobe, Native Client kojeg je predloZio
Google i asm.js, prvi su pokusali da reSe izazove sigurnog,
brzog i prenosivog koda niskog nivoa. Medutim, to nisu u
potpunosti uspeli jer je svaki od njih zahtevao dodatne
plugin-ove i bio vezan za specifiCan pregledac. Ove
tehnologije Cesto su imale problema sa sigurnoséu,
kompatibilno$¢u i performansama S$to je ogranicavalo
njihovu upotrebu [1, 11].

2.4. Struktura i funkcionalnost binarnih fajlova

Binarni format koda definisan je tako da moze da se
posmatra kao jezik sa sintaksom i strukturom. Ovaj format
olakSava razumevanje, a da pritom ne ugrozava kompaktnu
formu ili jednostavnost dekodiranja. Struktura u smislu
apstraktne sintakse moze se videti na Slici 1 [1].

value types) £:=i32 | i64 | 32 f64
packed types) tp =18 116|132

function types) ff =" = t*
(global types) g ::= mut” ¢

(instructions) e ::= unreachable | nop| drop | select |
block #f ¢" end | loop ff ¢" end |if if ¢" else " end |
bri | br.if i | br_table i" | return | call i | call_indirect {f |

(
(
(
(get local i | set.local i | tee_local ¢ | get.global i |

sat global | t.load (tp.sz)’ a o tstore ty’ a o
unopyy = dlz | ctz | popent current.memory | grow_memory | ¢.const c |
unopyy = neg | abs | ceil | floor | trunc | nearest | sqrt t.unap, | Lbinop, | ttestop, | trelop, | t.cvlop t.sx’
binop,y :=add | sub | mul | div.sz | rem_sz |

and | or | xor | shl | shr_sz | otl | rotr (functions) ~ f == ez func tf local t* ¢" | ez func ff im
bingp,,, = add | sub | mul | div | min | max | copysign (globals) ~ glob == ex" global fg * | ez* global fg im
testopy = eqz (tables) lab = ex” table n i* | ex” table n im
m],"\ s=eq|ne|It.sr | ghse |le_sr | gesr (memories) mem == ez” memory 1 | ez” memory n im
relop,y w=eq|ne|lt|gt|le|ge (imports) ~ im ::= import “name” “name”
cutop = convert | reinterpret (epors) erz=export “mame”
stu=s|u (modules) m ::= module f* glob" tab” mem”

Slika 1. WebAssembly pravila sintakse [1]

Neki od osnovnih koncepata koje WebAssembly koristi su
moduli, funkcije, instrukcije, lokalne varijable, globalne
varijable i tako dalje [1].

Moduli su binarni fajlovi koji sadrze funkcije, globalne
promenljive, tabele i memoriju. Sastoje se od razlicitih
tipova sekcija kojih ima ukupno 11, od kojih su cetiri
najvaznije: sekcija koda, sekcija podataka i sekcije importa
i eksporta. Dok moduli predstavljaju staticku strukturu,
instanca modula omogucava dinamicko izvrSavanje sa
memorijom i stekom. Instanciranje modula obezbeduje
okruzenje kao $to je JavaScript VM ili operativni sistem.
Sekcija koda predstavlja najvecu sekciju obuhvatajuéi sve
funkcije modula. Slika 2 prikazuje primer funkcije iz ove
sekcije, koja ukljuéuje osnovne operacije poput kontrolnih
naredbi, oduzimanja i mnozenja [1, 11].

C program code Binary Text representation
20 00 get_local 0
42 00 i64.const 0
51 i6d.eq
int factorial(int n) { 04 Te if 164
if (n==0) 42 01 i64.const 1
return 1 05 else
else 20 00 get_local 1
return n * factorial(n-1) 20 00 get_local 1
} 42 01 i64.const 1
7d i64.sub
10 00 call 0
Te i64.mul
Ob end

Slika 1. Jednostavna C funkcija sa leve strane i
odgovarajuci WebAssembly bajtkod zajedno sa
tekstualnom reprezentacijom poznatom kao Wat format sa
desne strane [11]

Kod u modulu organizovan je u funkcije koje primaju
vrednosti kao parametre i vracaju vrednosti kao rezultate,
prema definisanom tipu funkcije. Funkcije mogu
medusobno pozivati jedna drugu, ukljucujuci rekurziju, ali
ne mogu biti ugnjezdene [1].

IzvrSavanje operacija u WebAssembly tehnologiji bazira
se na stek masini. Funkcije se sastoje od instrukcija koje
manipuliSsu vrednostima na steku. Sistem sa tipom
omogucéava statiCko odredivanje rasporeda steka, Sto
omogucéava direktnu kompilaciju tokova podataka bez
stvarnog materijalizovanja steka. Ova organizacija steka
omogucéava kompaktno predstavljanje programa [1].

Neke instrukcije mogu izazvati izuzetke koji odmah
prekidaju izvr§avanje. WebAssembly kod ne moze obraditi
izuzetke direktno, ali ih JavaScript okruZenje moze
obraditi. WebAssembly izuzetak ¢e generisati (eng. throw)
JavaScript izuzetak koji sadrzi trag steka (eng. stacktrace)
sa JavaScript i WebAssembly stekom. Trag steka se moze
uhvatiti i pregledati uz pomo¢ JavaScript koda [1].

U funkcijama, lokalne promenljive se inicijalizuju na nulu
injima se upravlja pomocu instrukcija get local i set local.
Instrukcija tee local omogucava upis u lokalnu
promenljivu dok ulazna vrednost ostaje na steku [1].

Moduli mogu deklarisati globalne promenljive koje se
¢itaju 1 piSu pomocu instrukcija get global i set global.
Globalne promenljive mogu biti promenljive ili
nepromenljive i moraju imati pocetnu vrednost koja je
konstantan izraz [1].

WebAssembly koristi linearnu memoriju koja predstavlja
veliki niz bajtova. Svaki modul moze definisati samo jednu
memoriju koja se moze deliti izmedu razli¢itih instanci
putem uvoza/izvoza. Memorija se kreira sa odredenom
veli¢inom, ali se moZe dinamicki proSirivati pomocu
instrukcije za povecanje memorije. Usled nedostatka
memorije, proSirenje nece uspeti i bice vracena vrednost -
1 kao signal neuspeha. Trenutna veli¢ina memorije moze
se proveriti koriS¢enjem instrukcije za ispitivanje
memorijskog stanja. WebAssembly memorija definisana je
da koristi little-endian redosled bajtova, §to znaci da
platforme sa big-endian redosledom zahtevaju eksplicitne
konverzije endian redosleda. Ove konverzije mogu biti
optimizovane od strane WebAssembly kompajlera [1].

1317

2.5. Arhitektura

WebAssembly je dizajniran tako da ne definiSe nacin na
koji se programi ucitavaju u izvr$no okruzenje, niti kako se
obavljaju 1/O operacije. Ovakva arhitektura omogucava
fleksibilnu integraciju WebAssembly tehnologije u
razli¢ita izvrSna okruZenja. Sistem koji implementira
WebAssembly preuzima odgovornost za ulitavanje
modula, povezivanje uvoznih 1 izvoznih funkcija,
obezbedivanje pristupa I/O operacijama i tajmerima, kao i
rukovanje izuzecima [1].

2.6. Performanse

Kompaktni binarni format omogucéava brzo uéitavanje i
dekodiranje. Analiza je dovela do sledecih zakljucaka:

* WebAssembly kompajleri uglavnom su zasnovani na
LLVM-u, gde optimizacije nisu specificno prilagodene za
WebAssembly.

» JIT optimizacije znacajno uticu na performanse
JavaScript jezika, dok za WebAssembly nema znacajne
razlike u performansama izmedu verzija sa i bez JIT-a.

* Performanse JavaScript-a i WebAssembly-ja variraju u
zavisnosti od pregledaca i platforme. Na desktop
racunarima Firefox pruza bolje rezultate u izvrSavanju
WebAssembly koda u odnosu na Chrome, dok Edge
postize najloSije rezultate. Nasuprot tome, na mobilnim
uredajima, Firefox je sporiji od Chrome-a, dok Edge
nadmasuje oba pregledaca. Performanse JavaScript jezika
takode variraju u zavisnosti od platforme. Tako je na
desktop racunarima Firefox sporiji u odnosu na Chrome,
dok je na mobilnim uredajima brzi.

* WebAssembly zahteva vise memorije u poredenju sa
JavaScript jezikom. Ovo se moZze pripisati ¢injenici da
WebAssembly koristi linearni model memorije koji ne
oslobada memoriju automatski, dok JavaScript koristi
sakupljanje smeca za automatsko oslobadanje memorije
[6].

Rezultati pokazuju da iako se oc¢ekuje da WebAssembly
bude brzi od JavaScript jezika, to nije uvek slucaj i
performanse mogu znacajno varirati. Kada WebAssembly
zeli da pristupi ili manipuliSe DOM-om, mora da zatrazi od
JavaScript-a da izvr$i te operacije. Ova upotreba uvodi
dodatno opterecenje, S$to moze smanjiti performanse
WebAssembly koda. WebAssembly se iz tog razloga
koristi za zadatke koji zahtevaju intenzivno racunanje [12].
JavaScript Cesto postize bolje rezultate u odnosu na
WebAssembly, narocito ako je ulaz u program velik.
Prilikom instanciranja WebAssembly modula, veliki deo
linearne memorije se inicijalizuje kako bi se simulirale
memorijske lokacije. Kada se linearna memorija potpuno
popuni, umesto oslobadanja memorije koja viSe nije u
upotrebi, ona se prosiruje na ve¢u veli¢inu. Nasuprot tome,
JavaScript koristi automatsko upravljanje memorijom,
koje dinamicki prati alokaciju memorije i oslobada onu
koja vise nije potrebna. Ova dinamika ¢ini JavaScript
efikasnijim u kori§¢enju memorije u poredenju sa
WebAssembly tehnologijom [6].

Jos jedno od klju¢nih poboljsanja koje WebAssembly nudi
odnosi se na energetsku efikasnost, koja je u proseku
poboljsana za 30%. lako JavaScript u nekim situacijama
daje bolje rezultate, opSte je prihvaéeno da je
WebAssembly ne samo brzi od njega nego i koristi manje

energije, $to ga ¢ini boljim izborom za razvoj aplikacija

[2].

3. BLAZOR

Blazor je .NET frontend veb framework koji omogucava
kreiranje interaktivnih korisnickih interfejsa koris¢enjem
programskog jezika C#, uz mogucénost deljenja aplikativne
logike izmedu serverske i klijentske strane. Renderovanje
korisnickog interfejsa ostvaruje primenom HTML i CSS
koda, ¢ime se omogucava Siroka podrSka za razlicite
pregledace, ukljucujuéi i one na mobilnim uredajima.
Blazor pruza zna¢ajne prednosti kao §to su pisanje koda u
CH#, koriscenje postojeéeg .NET ekosistema i integraciju sa
savremenim alatima kao Sto su Docker, Visual Studio i
Visual Studio Code, S$to doprinosi produktivnosti i
sigurnosti u procesu razvoja veb aplikacija [13].

Blazor aplikacije zasnivaju se na komponentama, koje
predstavljaju osnovne jedinice korisnickog interfejsa,
poput stranica, dijaloga ili formi za unos podataka.
Komponente su klase implementirane u C# jeziku koje
omogucavaju fleksibilno definisanje logike za prikaz
korisnickog interfejsa, upravljanje = dogadajima,
ugnjezdavanje i ponovno koriS¢enje. Ove komponente
mogu se deliti i distribuirati putem Razor biblioteka ili
NuGet paketa. Komponente se pisu u formi Razor stranica
sa ekstenzijom .razor i koriste Razor sintaksu koja
kombinuje HTML i C# kod. Ovaj pristup doprinosi vecoj
produktivnosti i omogucava efikasnije programiranje
unutar integrisanih razvojnih okruzenja kao Sto je Visual
Studio. U formalnom kontekstu ove komponente se
nazivaju Razor komponente, dok se neformalno cesto
nazivaju Blazor komponente [13].

3.1. Tipovi

Blazor pruza razli¢ite tipove implementacije, medu kojima
su server-side, client-side i hosted. Svaki od ovih tipova
dolazi sa specifi¢nim Sablonima koji su dostupni unutar
Visual Studio okruzenja. Nije moguée odrediti koji tip je
najbolji, budué¢i da izbor zavisi od zahteva i potreba
projekta [3].

Server-side Blazor omogucava izvrSavanje celokupne
aplikacione logike na serverskoj strani, koristeéi
WebSocket tehnologiju za uspostavljanje komunikacije
izmedu klijenta i servera. Prednost ovog pristupa lezi u
mogucénosti pisanja frontend logike u programskom jeziku
CH#, ¢ime se pojednostavljuje razvoj aplikacije. Medutim,
kljucni nedostatak ovog tipa je eliminacija potrebe za API
pozivima, jer se sve potrebne biblioteke direktno integrisu
u frontend, $to moze dovesti do smanjene efikasnosti ovog
reSenja [3].

Client-side Blazor funkcionise iskljué¢ivo na klijentskoj
strani unutar pregledaca. Iako su stranice host-ovane na
serveru, sva logika se izvrSava na klijentu. Ova opcija je
posebno pogodna za prezentacione veb sajtove ili
jednostavne veb aplikacije, ali moze postati neefikasna u
situacijama kada je potrebna interakcija sa bazama
podataka ili kada aplikacija ve¢ koristi postoje¢e API
servise [3].

Hosted Blazor predstavlja najefikasnije reSenje, gde se
logika aplikacije izvrSava na klijentskoj strani, ¢ime se
optimizuje koriS¢enje resursa servera. Ovaj pristup

1318

integriSe client-side Blazor sa posebnim API projektom,
omogucavaju¢i im da funkcioniSu zajedno kao jedna
celina. Ova kombinacija pruza optimalno reSenje za
aplikacije koje zahtevaju intenzivnu interakciju sa
serverom [3].

3.2. Blazor WebAssembly Hosted projekat — struktura
i sastavni delovi

Blazor WebAssembly Sablon automatski kreira inicijalne
fajlove 1 strukuru direktorijuma prilikom generisanja
pocetnog projekta, ukljucujuéi demonstracioni kod koji
sluzi kao primer implementacije osnovnih funkcionalnosti.
Struktura projekta sastoji se od tri glavna segmenta:
klijentski deo (Client), serverskog dela (Server) i deljenih
resursa (Shared). Ova struktura omogucava jasno
razdvajanje poslovne logike aplikacije od korisni¢kog
interfejsa, pri ¢emu se zajednicki kod odrzava u okviru
posebnog modula kako bi se olaksala njegova ponovna
upotreba i konzistentnost izmedu klijentskog i serverskog
dela aplikacije.

3.3. Opsti pregled

Blazor pruza Sirok spektar funkcionalnosti, ali i dalje
postoje situacije u kojima je neophodno Kkoristiti
JavaScript. Blazor omoguéava jednostavnu i efikasnu
integraciju sa JavaScript kodom, olakSavajuéi pristupanje
skladistu podataka, rad sa fajlovima i kori$¢enje postojecih
JavaScript biblioteka. Interakcija sa JavaScript kodom u
Blazor aplikacijama ostvaruje se putem IJSRuntime
interfejsa koji se injektuje u odgovarajucu stranicu. HTML
elementi podrzavaju Sirok spektar dogadaja, od kojih su
neki od njih genericki, a drugi specificni za odredene
elemente. Ovi dogadaji se mogu koristiti direktno u Blazor-
u bez potrebe za interakcijama sa JavaScript kodom [3].

4. ZAKLJUCAK

Rezultati ovog rada potvrdili su vaznost integracije
WebAssembly i Blazor tehnologija u modernom razvoju
veb aplikacija. Implementacija WebAssembly tehnologije
omogucéava visok nivo performansi i fleksibilnosti u
aplikacijama, omoguéavajudi izvrSavanje koda na strani
klijenta mnogo brze nego tradicionalni pristup zasnovan na
JavaScript jeziku. Blazor koriste¢éi C# jezik
pojednostavljuje razvoj, pruzajuéi programerima
mogucnost da koriste poznat ekosistem i alate i smanjuje
potrebu za koriS¢enjem vise programskih jezika.
Kori$éenje ovih tehnologija dovelo je do ubrzanja razvoja
aplikacija, poboljSanja odrzavanja koda i smanjenja
upotrebe JavaScript koda.

5. LITERATURA

[1] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M.
Holman, D. Gohman, L. Wagner, A. Zakai, and J. F.
Bastien, ,,Bringing the Web up to Speed with
WebAssembly*, In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language
Design and Implementation, pp. 185-200, 2017.

[2] J. De Macedo, R. Abreu, R. Pereira, and J. Saraiva,
»WebAssembly versus JavaScript: Energy and
Runtime Performance®, In 2022 International
Conference on ICT for Sustainability (ICT4S), pp. 24-
34, 2022.

[3] T. Litvinavicius, Exploring Blazor: Creating Hosted,
Server-side, and Client-side Applications with C#, 1st
ed., 2019.

[4] Mozilla Developer Network, ,,WebAssembly*,
https://developer.mozilla.org/en-
US/docs/WebAssembly, (pristupljeno u septembru
2024.)

[5] World Wide Web Consortium, ,,World Wide Web
Consortium (W3C) brings a new language to the Web
as WebAssembly becomes a W3C Recommendation®,
https://www.w3.org/press-releases/2019/wasm/,
(pristupljeno u septembru 2024.)

[6]Y. Yan, T. Tu, L. Zhao, Y. Zhou, and W. Wang,
,Understanding the Performance of WebAssembly
Applications®, In Proceedings of the 21st ACM
Internet Measurement Conference, pp. 533-549, 2021.

[71 S. Padmanabhan, and P. Jha, ,,WebAssembly at eBay:
A Real-World Use Case“,
https://innovation.ebayinc.com/tech/engineering/weba
ssembly-at-ebay-a-real-world-use-case/, (pristupljeno
u oktobru 2024.)

[8] D. Smilkov, N. Thorat, and A. Yuan, ,Introducing the
WebAssembly backend for TensorFlow.js*,
https://blog.tensorflow.org/2020/03/introducing-
webassembly-backend-for-tensorflow-js.html,
(pristupljeno u oktobru 2024.)

[9] D.Lehmann, J. Kinder, and M. Pradel, ,,Everything
Old is New Again: Binary Security of
WebAssembly*, In 29th USENIX Security
Symposium (USENIX Security 20), pp. 217-234,
2020.

[10] WebAssembly, ,,WebAssembly*,
https://webassembly.org/, (pristupljeno u septembru
2024.)

[11] M. Musch, C. Wressnegger, M. Johns, and K. Rieck,
,»,New Kid on the Web: A Study on the Prevalence of
WebAssembly in the Wild“, In Detection of
Intrusions and Malware, and Vulnerability
Assessment: 16th International Conference, DIMVA
2019, Gothenburg, Sweden, Springer International
Publishing, pp. 23-42, 2019.

[12] D. Kievits, ,,What effect does applying
WebAssembly have on a compute intensive client-
side application versus JavaScript?, 2021.

[13] Microsoft, ,,ASP.NET Core Blazor®,
https://learn.microsoft.com/en-
us/aspnet/core/blazor/?view=aspnetcore-8.0,
(pristupljeno u avgutu 2024.)

Kratka biografija:

NataSa Vasi¢ rodena je u
Novom Sadu 1999. god.
Master rad na Fakultetu
tehnickih nauka iz oblasti
Elektrotehnike i
racunarstva odbranila je
2025.god.

kontakt:
natasavas00@gmail.com

1319

Zbornik radova Fakulteta tehni¢ckih nauka, Novi Sad

UDK: 4.92
DOI: https://doi.org/10.24867/33BE13Ruzicic

RAZVOJ INTERPETERA U PROGRAMSKOM JEZIKU GO
DEVELOPMENT OF AN INTERPRETER IN THE GO PROGRAMMING LANGUAGE
Ratko RuziCi¢, Fakultet tehnickih nauka, Novi Sad

Oblast - RACUNARSTVO I AUTOMATIKA

Kratak sadrzaj — Ovaj rad bavi se izradom interpretera
hipotetickog programskog jezika, on predstavlja nastavak
prethodnog rada autora na temu kompajlera izradenog u
programskom jeziku C, koji je koristio alate ‘flex” i
“bison” za faze leksicke analize i parsiranja. Za razliku od
tog rada, interpretator predstavijen u ovoj tezi razvijen je
iskljucivo koris¢enjem standardne biblioteke programskog
jezika Go, bez oslanjanja na dodatne alate ili postojeci
kod.

Kljuéne re€i: Programski jezici, Interpreteri, Dinamicki
tipovi

Abstract — This paper explores the implementation of a
hypothetical programming language, it is an extension of
a previous paper by the same author of a compiler
implemented in C programming language using tools
“flex” and “bison” for lexical analysis and parsing. In
contrast to that paper, an interpreter presented here was
developed exclusively using a standard library of Go
programming language without relying on any other tools
or existing code.

Keywords: Programming
Dynamic types

languages, Interpreters,

1. UVOD
1.1. Definicija problema

Za pocetak neophodno je definisati programski jezik koji
bi imao sledece funkcionalne osobine:

e dinamicki sistem tipova

podrska za kondicionale(if...else)

podrska za funkcije

osnovni aritmeticki i logicki operatori

nizovi

petlje

osnovni tipovi podataka: integer, double, boolean,

string

e interaktivni(REPL) mod i ucitavanje programa iz
fajla

Pored funkcionalnih zahteva interpreter bi trebao da
zadovolji i odredene nefunkcionalne zahteve. Najbitniji
medu njima jeste lako distribuiranje interpretera i
omogucavanje krajnjim korisnicima da preuzmu

NAPOMENA:

Ovaj rad proistekao je iz master rada ¢iji mentor je bio
dr Dunja Vrbaski, docent

interpreter i da ga pokrenu bez potrebe za mukotrpnim
podesavanjem radnog okruzenja i instaliranja dodatnih
programa. Kao dodatni zahtev moze se izdvojiti i
pokretanje interpretera uz pomo¢ samo jedne komande.

1.1. Opseg i ogranicenja

Polje kompajlera i interpretera je jako slozeno i vrlo dobro
proucavano, takode postoji vrlo dobra povezanost sa
industrijom pa je mnogo novca i vremena uloZeno u
proucavanje ove oblasti od strane vrlo uspesnih kompanija.
Uzevsi to u obzir moze se zakljuciti da su dana$nji
interpeteri Cesto rezultat viSedecenijskog napora §to od
strane samih kompanija, $to od strane nezavisnih
kontributora §to samo potvrduje Cinjenicu da je
dizajniranje novog programskog jezika i implementiranje
interpretera za njega ogroman poduhvat i da je put od rane
implementacije do prihvatanja od strane industrije i
entuzijasta vrlo dug i jako nepredvidiv [1].

2. TEORIJA
2.1. Leksicka analiza

Leksicka analiza je prvi korak prilikom interpretacije (ili
kompilacije) programskog jezika. Ulaz u leksi¢ku analizu
predstavlja ’sirovi” tekst sacinjen od niza karaktera a izlaz
predstavlja niz tokena. Tako na primer ako postoji ulaz
sadrzine “var a = 3;”. Kao izlaz se moze ocekivati niz
tokena: “VAR, IDENTIFIER, ASSIGN, NUMBER,
SEMICOLON”. Pored toga ocekuje se da leksic¢ka analiza
javi gresku u slu¢aju da za dati ulaz nije moguce generisati
listu tokena ili da pak dostavi token koji bi oznacio da za
dati unos postoji greska. Na primer, za ulaz “var @ = 3;”,
ocekivani izlaz bi bio: “VAR, ERROR”. Dakle lekser
(nekada u literaturi nazvan i skener) je javio da je prvi
token VAR a da njega sledi ERROR token posto @
karakter nije podrzan u gramatici jezika. U ovom primeru
moze se uociti da je lekser efektivno prestao sa radom u
momentu kada je naiSao na karakter koji je uzrokovao
greSku, u praksi ovo Cesto nije slucaj. Skoro sve
implementacije modernih jezika omoguéavaju dalji rad
leksera kako bi pronaSao S$to viSe greSaka i o tome
obavestio krajnjeg korisnika koji bi onda dobio listing
greSaka koje treba da resi.

Danasnji lekseri takode uz sam token generisu i znacajnu
koli¢inu metapodataka o samom tokenu, osnovni
metapodaci mogu biti broj linije i broj karaktera unutar
fajla nad kojim je vrSeno leksiranje, dok neki napredniji
metapodaci mogu biti duzina same lekseme, sadrzaj
lekseme i ime fajla u kom je leksema pronadena.

1320

https://doi.org/10.24867/33BE13Ruzicic

2.2. AST

Kako bi opisali znacenje i znacaj AST-a moguce je
osvrnuti se na sam akronim(u obrnutom redosledu): stabla
(eng. Tree) oznaCavaju da se radi o obi¢noj strukturi
podataka stabla koje su jako ¢este u kompjuterskoj nauci,
sintaksna (eng. Syntax) oznacava da se radi o sintaksi
samog jezika tj. da se sintaksa samog jezika moze opisati
jednim takvim stablom i apstraktna(eng. Abstract) u ovom
slucaju znaci da ova stabla predstavljaju strukturu a ne da
mapiraju svaki karakter na svaki ¢vor u datom stablu.

2.3. Parsiranje

Slede¢a faza u interpretaciji programa jeste parsiranje,
zadatak parsera programskog jezika jeste da definiSe
sintaksu jezika tj. da preuzme tokene dobijene iz
prethodnog koraka (leksicke analize) i da utvrdi da li je
redosled tih tokena ispravan i da dodatno vrati neku
strukturu podataka koja bi bila reprezent samog programa.

Parseri se uglavnom mogu ru¢no implementirati i veéina
implementacija programskih jezika ima rucno napisane
parsere ali takode postoje alati za generisanje koda parsera
poput “ANTLR”, “bison” ili “yacc” alata koji za definisanu
formalnu gramatiku generi$u skelet koda parsera a korisnik
moze definisati svoju logiku provere semantike jezika, pa
¢ak 1 generisanje koda.

Parseri se ugrubo mogu podeliti u 2 razli¢ite kategorije,
“top-down” i1 “bottom-up”. Glavna razlika izmedu ova dva
tipa jeste da “top-down” parseri kreéu od korena
abstraktnog stabla i pokusavaju da dodu do listova samog
stabla pri tom proveravajuci da li su zadovoljena pravila
gramatike jezika, dok “bottom-up” parseri kre¢u od samih
tokena (tj. listova stabla) i pokuSavaju da "izgrade" stablo.

Generalno govore¢i “top-down” parseri su lakSi za
implementaciju ako su ru¢no implementirani, dok su alati
za generisanje parsera naj¢e$ée napravljeni da generiSu
neki derivat “bottom-up” parsera.

Klasi¢an primer “top-down” parsera je Pratov parser
(takode poznat kao "recursive descent parser") koji je
osmislio Von Prat 1970-ih godina. Pratov parser se u
sustini bavi parsiranjem izraza i reSavanjem problema
redosleda aritmetickih operacija nad izrazima, on nudi
elegantan nacin da se predstave odnosi izmedu razli¢itih
operacija. Sve §to je potrebno jeste da se definiSu operatori
i njihov prioritet 1 Pratov parser ¢e znati kako tacno da
grupiSe operatore. Ako se na primer uzme sledeéi izraz za
razmatranje “1 +2 * 3 -10/5”, onda izlaz Pratovog parsera
moze biti sama vrednost izraza, u ovom slucaju “5”, ili isti
izraz ali u formatu grupisanom uz pomoc¢ zagrada tj. “(1 +
((2 * 3) - (10 / 5)))” ili na kraju krajeva kao apstraktno
sintaksno stablo koje ¢e prikazati koje podizraze treba
evaluirati prvo.

2.4. Evaluacija

Evaluacija se odnosi na korak u interpretaciji u kom se u
apstraktnom sintaksnom stablu posecuju svi ¢vorovi i na
osnovu tipa ¢vora (i njegovih atributa) vrsi evaluacija
izraza. Radi o jednostavnoj implementaciji "Setanja" kroz
stablo i implementiranje logike evaluacije.

Sve do koraka evaluacije razlike izmedu interpretera i
kompajlera nije bilo ali u procesu evaluacije je doslo do
bitnog razdvajanja. U ovom koraku su zaista bile

evaluirane vrednosti izraza ali ako bi cilj bio da se
implementira kompajler onda to ne bi bilo moguce uciniti.
Kod implementacije kompajlera isti bi generisao nekakav
kod, bilo da je u pitanju masinski kod, asemblerski kod ili
nekakav bajtkod za neku hipoteticku (ili pravu) virtuelnu
masinu. Razlika deluje suptilno, i u primeru jednog "hobi"
programskog jezika ona sustinski to i jeste ali ako se
sagleda S§ira slika primetno je da interpreter zapravo
izvr§ava sve §to mu je dato $to znaci da ako bi interpreter
zeleo da pristupi fajlovima ili da otvori nekakvu datoteku
on bi morao da to uradi preko jezika u kome je
implementiran, dok bi kompajler za taj korak samo
generisao masinski kod koji bi uputio par sistemskih
poziva i otvorio fajl a taj masSinski kod bi kasnije bio i
izvrSen. Svaki moderan programski jezik danaSnjice
podrzava pristup fajlovima sa fajl sistema tako da to nije
realan problem ali i dalje treba biti svestan Cinjenice da
izbor jezika u kome se implementira interpreter moze
mnogo da doprinese performansama i funkcionalnostima
rezultujuceg interpretera.

3.DIZAJN

Prilikom faze dizajniranja jezika pristupilo se istrazivanju
koje su popularne osobine jezika danasnjice, u tome je
najvise pomogao “StackOverflow Developer Survey” tj.
anketa koju na kraju svake godine popunjavaju programeri.
Izmedu svih programskih jezika najvise su se izdvajali
“Python” i “JavaScript” kako medu profesionalcima tako i
medu pocetnicima pa je prilikom dizajniranja sintakse i
odabira osobina jezika bilo logi¢no pokusati imitirati
odredene osobine tih jezika [2].

3.1. Interpretacija

Prva i glavna osobina ovog programskog jezika jeste to da
je isti interpretiran a ne kompajliran. Postoji viSe razloga
zasto je interpretirani jezik ponekad dobar izbor: veca
fleksibilnost, prenosivost, manja kriva u¢enja za pocetnike
itd. No, za krajnjeg korisnika najbitniji razlog jeste
prenosivost samog jezika, prilikom konstruisanja
kompajlera bitna je odluka koju ¢e arhitekturu pogadati
kompajler: ARM, x86 ili PowerPC itd., mada je u danasnje
vreme donoSenje takve odluke olakSano postojanjem
radnih okvira za kompajlere poput LLVM. Bilo kako bilo,
definitivno je lakSe napisati interpreter u nekom dobro
podrzanom jeziku koji se moze izvr$avati na skoro svakoj
arhitekturi (a takvih jezika danas ne manjka pogotovu zbog
prethodno pomenutog LLVM) i time obezbediti da se i
ovaj interpreter moze pokrenuti na istim tim arhitekturama.

3.2. Dinamicki tipovi

Inicijalna zamisao bila je da interpreter podrzava staticke
tipove, i prva implementacija interpretera zaista jeste imala
staticke tipove, ali tokom kori§¢enja interpretera doslo se
do zakljucka da je ipak bolje slediti primere Ccisto
interpretiranih jezika koji podrzavaju dinamicke tipove.
Vecina interpretera zaista jeste dinamicki tipizirana i iako
koji je interpreteran, npr. “TypeScript” (doduse pitanje je
koliko je ovo dobar primer posto se “TypeScript” zapravo
transpajlira u “JavaScript” koji je interpretiran i dinamicki
tipiziran), glavni razlog jeste lakoca upotrebe jezika i to je
definitivno ta¢no kada se radi o malim programima i

1321

kratkim skriptama, a buduc¢i da ¢ée veéina programa
pisanim u jeziku koji je implementirao interpreter biti mali
programi ili kratke skripte onda je logicno da se sa
korisnika skine "teret" tipiziranja promenljivih.

3.3. Automatsko upravljanje memorijom

Tokom uobicajenog rada programa isti zauzima i oslobada
odredenu koli¢inu radne memorije. U racunarstvu,
memorija je ograniCen a Cesto i veoma vredan resurs o
kome se mora pazljivo voditi racuna, pa je jako bitno
minimizovati koli¢inu upotrebljene memorije. Postoje dva
pristupa u rukovodenju radnom memorijom. Prvi pristup
jeste da se rukovodenje memorijom prepusti programeru
koji implementira program. On ¢e odredivati trenutke kada
i koliko memorije ¢e biti zauzeto pozivanjem funkcija iz
programskog jezika koje ¢e tokom izvrSavanja vrsiti
sistemske pozive ka operativnom sistemu na kom se
program izvrsava. U onom trenutku kada odredeni komad
memorije bude nepotreban, ta memorija se potom moze
osloboditi. Postoje dva klju¢na aspekta na koje programer
u ovom slucaju uvek mora da misli: prvi, da ne zauzme vise
memorije nego §to mu je neophodno i drugi, da ne zaboravi
da oslobodi memoriju koju je zauzeo. Drugi pristup u
rukovodenju memorije jeste da se programeru oduzme
sloboda zauzimanja i oslobadanja memorije i da se
rukovodenje prepusti kompajleru ili interpreteru. Ovaj deo
posla vrsi zasebna komponenta interpretera koja se zove
modul za automatsko upravljanje memorijom, a Cesce se
koristi pojam na engleskom tj. "garbage collector".

Kada bi se jezik interpretera implementirao u jeziku koji ne
podrzava automatsko upravljanje memorijom (npr. C)
onda bi bilo nepohodno da se isti i implementira (zapravo
postoji i druga opcija a to je da prepustimo
zauzimanje/oslobadanje memorije krajnjem korisniku §to
nije uobicajeno ili tre¢a opcija da nikad ne oslobadamo
memoriju $to je suludo). Buduéi da je odabran jezik koji
ima ugradeno automatsko upravljanje memorijom ovaj deo
posla je ve¢ odraden posto svako zauzimanje memorije za
promenljive u jeziku koji implementira automatski znaci
da ¢e se ista operacija prevesti u zauzimanje memorije od
strane jezika koji implementira interpreter.

4. ZAKLJUCAK

Interpreteri mozda nisu najefikasnije reSenje za izvrSavanje
koda ali oni nude odredene karakteristike koje ih ¢ine vrlo
privlacnim u dana$njim razvojnim okruZenjima poput
brzine razvoja aplikacija i lakSeg otkrivanja greSaka
prilikom razvoja ali to dolazi po cenu nizih performansi u
odnosu na kompajlere.

Danasnji intereteri postigli su mnogo u pogledu
performansi, pa je ta razlika je dosta manja u odnosu na
period pre par decenija $to ih ¢ini odlicnim kandidatima za
zapocinjanje novih projekata [3].

Svrha ovog rada bila je da se prosiri znanje steCeno tokom
master i osnovnih studija kao i upoznavanje sa novim
konceptima prilikom dizajniranja i implementacije jezika,
radi se o kompleksnoj temi koja je predmet istrazivanja i
industrije i akademije i spada u red onih tehnologija koji
predstavljaju temelj modernih informacionih tehnologija.

5. LITERATURA

[1] L. A. Meyerovich and A. S. Rabkin, "Empirical
analysis of programming language adoption”,
Association for Computing Machinery, vol. 48, pp. 1-
18, Oktobar 2013.

[2] StackOverflow, https://survey.stackoverflow.co/2024/,
(pristupljeno u junu 2025.)

[3] T. H. Romer, D. Lee, G. M. Voelker, A. Wolman, W.
A. Wong, J. Baer, B. N. Bershad, H. M. Levy, "The
structure and performance of interpreters”,
Association for Computing Machinery, vol. 31, pp.
150-159, Septembar 1996.

Kratka biografija:

Ratko RuZi¢i¢ roden je 2000. godine u Cacku.
Zavrsio Tehnic¢ku Skolu u istom gradu 2019. godine.
Diplomirao je na Fakultetu Tehnickih Nauka
Univerziteta u Novom Sadu 2023. godine.

kontakt: rruzicic@gmail.com

1322

36o0pHMK papoBa PaKkynrera TeXHUYKMX Hayka, Hoeu Cap

UDK: 4.3
DOI: https://doi.org/10.24867/33BE14Maksic

PJEITABAIBE ITPOBJIEMA AYTOMATU3ALMJE ITPEIVIEJAIbA VHDL 3AJATAKA
KPO3 HHTEI'PALIMJY SYSTEM VERILOG U PYTHON AJIATA

SOLVING THE PROBLEM OF AUTOMATING VHDL ASSIGNMENT REVIEW
THROUGH THE INTEGRATION OF SYSTEM VERILOG AND PYTHON TOOLS

Munenko Maxkcuh, @akyrmem mexuuuxux nayka, Hosu Cao

Obaact — EJEKTPOTEXHUKA U PAYYHAPCTBO

Kparak caapkaj — Pao ce basu paszeojem cucmema 3a
aymomMamu308aHo npe2iedare CMmyoeHmcKux 3a0amaxa
Hanucanux y VHDL-y, kpo3 unmeepayujy SystemVerilog
anama 3a eepuduxayujy u Python ckpunmu 3a amamuzy
pesyaimama. L{un cucmema je yopsasarve u yjeonavasarse
npoyeca oyjerusarsda, NoCeOHO y YCio8uMa 8eiuKoe bpoja
cmydenama. SystemVerilog ce xopucmu 3a oegpunucarbe
meporu u mecm cyenapuja, 0ok Python omoeyhasa
aymomMamcKko NOKpemarbe CUMyiayuja, napcuparse oz
@ajnosa u cenepucarve uzgjewimaja ca 6ooosuma. Cucmem
je npumjerven Ha apxusy o0 223 cmyodewmcka paod, d
Odobujenu pesyimamu ¢y ynopehenu ca pyyHuM
npeznedarem. Aumanuza nokaszyje 0a aymomamu308aHO
oyjerwugare Modce 3HAYAjHO CMarbUmMu epujeme
npeenedara u nosehamu objekmusHocm, am u 0d
nocmoje u3zazoeu y npageoHoM 00008arby OjeNUMUYHO
MAYHUX pjewersd, wmo je nocebHo 8adcHO y 00PA306HOM
KOHmeKcmy.

Kibyune pujeun: aymomamusayuja npeanedarsa, VHDL,
SystemVerilog, Python, meporve, cumynayuja,
CcmyoOeHmcKuy 3a0ayu, OUSUMAaiHu Ou3ajH, eepuguxayuja
xaposepa, obpazosarve

Abstract — This paper presents a system for automated
evaluation of student assignments written in VHDL,
integrating SystemVerilog verification tools with Python
scripts for result analysis. The goal is to accelerate and
standardize the grading process, especially in large
academic groups. SystemVerilog is used to define assertion
and test scenarios, while Python automates simulation
execution, log parsing, and score report generation. The
system was applied to a dataset of 223 student submissions,
and the results were compared with manual grading. The
analysis shows that automated evaluation can significantly
reduce grading time and improve objectivity, but also
highlights challenges in fairly assessing partially correct
solutions — an important consideration in educational
environments.

Keywords: automated evaluation, VHDL, SystemVerilog,
Python, assertions, simulation, student assignments,
digital design, hardware verification, education

HAIIOMEHA:
OBaj paa je mpoucTexao U3 MacTep paja YMju MEHTOP
je omo np Hedojma IljeBannua, penoBau mpodecop.

1. YBOJ,

Bbp3u pa3Boj MHTETPUCAHUX KOJA U TUTHUTAIHUX CHCTEMa
3HAYajHO je YTHIA0 Ha XapIBEpCKO WHKEHEPCTBO.
CaBpeMeHU /JW33jH JUTHTAIHUX CHCTEMa OcCllakha ce Ha
jesuke 3a onmc xapasepa (HDL), xao mro cy VHDL n
Verilog, xoju omoryhaBajy mNpenu3HO NpOjEeKTOBAE,
CHMYJIalMjy ¥ BepH(HUKALM]y CJIOXEHHX KOMIIOHCHTH.
CJIOKEHOCT CHCTeMa 3aXTHjeBa TeMeJbHY BepU(HKaLH]y,
KOja 9ecTo Tpaje IyXe Of caMor Au3ajHa. 300r Tora ce
KOpHCTEe HampegHu ajatd momyT SystemVerilog-a, xoju
KOMOWHyje O0O0jeKTHO OpHjeHTHCAaHO NPOTPaMHUpPABE H
anare 3a tectupame. OBU amaTH MOOOJBIIABA]Y KBAIUTET
Mpou3Boaa, yOp3aBajy pa3BOj M CMamyjy PH3UK Of
rpelraka, mTo je KJby4HO 33 MHIYCTPHUjCKY MPUMjEHY |
TP)KUIIHY KOHKYPEHTHOCT.

2. TEOPUJCKE OCHOBE

Jesnnwm 3a xapasepcku onuc (HDL), kao mro cy VHDL un
SystemVerilog, mpecTaBibajy TeMeJb CABPEMEHOT TU3ajHa
OUTHTadHUX cucteMa. OHHM omoryhaBajy ONHCHBambe
CTPYKTYpe, MOHAIIaka U BPEMEHCKUX acIeKaTa Xxapasepa,
y3 MOJPIIKY 3a CUMyanujy u cuatesy. VHDL ce nctmue
CBOjOM CTPYKTYpPOM 3aCHOBAaHOM Ha CHTHUTETHMa U
apxXuUTeKTypama, INTO OMoryhaBa jacHO pa3lBajarbe
unrepdejca ¥ GyHKUHOHaNHOCTH. IberoBa mpumjeHa
obyxBara CHMYJIAIH]y, TPOTOTUTIOBAHEC "
JIOKYMEHTAIIM]y, YUME CE yOp3aBa pa3Boj U CMambyje PU3UK
on rpemraka. SystemVerilog, kao Hagorpaama Verilog-a,
yBOAM HampeaHe MoryhHocTH 3a BepuduKauujy,
yKibydyjyhu TBpame (assertions), 00jeKTHO OpHjEHTUCAHO
nporpaMupame 1 MOJPIIKY 3a CJI0XKSHE TECTHE CLIEHapHje.
BberoBa mHTerpanmja amM3ajHa W TecTHpama omoryhasa
paHO OTKpHBame Tpeliaka U Belly MOy3JaHOCT CHCTEMa.
Bepudukanmja je xjpydHa ¢asza y pazBojy AUTHTATHUX
cucrema. Ilopex cumynamuje, cBe BHIIE ce KOPHUCTE
ayTOMAaTH30BaHE METOAOJIOTHje W alaTH Kao IITO je
SVUnit, koju omoryhaBa MOAyJIapHO TeCTUpaAkE Y
SystemVerilog-y. SVUnit noapkaBa ayTromaTtH3auujy,
TeHEepHUCabe U3BjeIlTaja U UHTETPALU]y ca CUMYJIallMOHIM
OKpY)XCHbUMa, YHME JONPUHOCH e(QUKACHUjeM |
MOY3/JIaHHjEM Pa3Bojy.

3. MOTUBALIMJA ITPOBJIEMA CA KOHHEINITOM
PJEHIEIHLA

OOyka cryleHata y IOMEHY TEXHUYKHX IUCLHIUIMHA
moIpa3yMjeBa 00jeKTHBHY ITPOBjepy 3HAMa KPO3 3a/1aTKE y
KOjuUMa ce carjenaBa OCIIOCOOJHEHOCT Yy CaMOCTAITHOM
pagy Ha JOMEHCKMM Hpo0jeMHMa Yy OrpaHHYEeHOM

1323

https://doi.org/10.24867/33BE14Maksic

Bpemeny. Kypc ,Jlormuko mnpojekroBame pauyHapCKUX
cucreMa |, yBOOM CTYIEHTE Yy OCHOBE IIPOjeKTOBamba
qurutanHux cucrema kopumthemem VHDL jesuxa,
cllylnajy ra CTyIEHTH Jpyre TOAWHE OCHOBHHX
aKaZeMCKHUX CTyIHja Ha TPH CTYIHjcKa mporpama. butaa
KapakTepUCTHKAa Kypca je pelaTUBHO BEIUKHA Opoj
CTyJeHaTa, IUTO IOCIEANYHO NOHOCH BEOMa MAacOBHE
IpoBjepe 3Hama. Py4HO OIljjemHUBame BEIHKOT Opoja
CTYICHTCKUX PajoBa IpeAcTaBba 3HAa4YajaH M3a30B 300T
CIIO)KEHOCTH 3aJaTaka M pH3MKa OJ JbYACKHX TIpellaka.
Kao pjerieme, OpeayiokeH je CHCTEM 3a ayTOMaTH30BaHO
nperyieaame, Koju komounyje Python ckpunre 3a o6paxy
nmogaraka u SystemVerilog amate 3a cumynanujy u
BepuuKanyjy.

AcHcTeHTH Kpeupajy npuiaroeHe TeCcTHE ClieHapHje U
TBpAme (SVA) kako Ou ce ocurypana Taqsa u 00jeKTHBHA
nporjeHa. OBaj nmpuctyn oMmoryhasa Op:ke, moy3naHuje u
KOH3UCTCHTHHjE OIjelhHBalke, y3 O0JbY TIOBpaTHY
nHpOpMaNHjy 3a CTYACHTE, INTO MO3UTHBHO YTHYE Ha
IBUXOBO yUCHE U Pa3BOj.

4. TPOI'PAMCKO PJEHIEIBE

OCHOBY TpOrpaMCKOr pjellielha 4YMHU paHHuje
UMIUIEMEHTUpaHa WHpacTpyKTypa 3a 4YyBame
CTY/IGHTCKMX 3a/laTaka, IIOKpeTambe CHMYyJandja |

TEXHUUYKY BajuJanujy, y3 Kopumheme anara Siemens
Questa u Quartus. Y oBOM pagy AOAaTH Cy MOAYNIH 3a
o0pay moOMjeHHNX M3BjellTaja, CHCTEMAaTCKO 00I0Bame U
ayTOMaTH30BaHO (hOpMUpame pe3yirara, INTo yHanpelhyje
00jeKTUBHOCT U €(PUKACHOCT OIIjCE-HBAha.

4.1. CtyneHTcka apxuBa

ApxuBa CaJpKM CTyICHTCKE IUPEKTOpHjyMe ca
pjeliemuMa MMOCTaBJEHOT 3agaTka W mparehum Jor
¢dajnoBuma. OBHM JIOTOBM HacTajy Kao pe3ynTar

ayTOMaTCKE BATUIAIIM]€ U ICTEKI[Hje TPelraKa Kao mITo cy
KOMOWHAI[OHE TI€T/bE, JICUEBH W HENOTIyHE JIUCTE
0CjETJFUBOCTH.

4.2. AyroMaTcKa nIpoBjepa U BATUAANM}jA CTYIEHTCKUX
pjemema

Ckpunra sva.py nokpehe cumymnanmjy y Siemens Questa
amary, tectupajyhm DUT u TectOenu. Pesynmratm ce
ompexe y yor ¢ajmose run_dut.log u run_tb.log, mTo
omoryhaBa netasbHy H OOjEKTHBHY IIPOI[jEHY CBake
KOMITOHEHTE.

4.3. HUpentnpukanuja KOMOMHANMOHMX MeT/bM H
JieyeBa

Ckpunra qaas.py aHanu3upa Au3ajH y Quartus okpyxemy,
resepuinyhu n3BjemTaje o rpenKaMa Kao mTo Cy JICUeBH,
neTJjbe M HermoTmyHe jucte. OBHM Topamy ce 4yBajy y
top_map_rpt.log, mro omoryhasa 6omoBame 1o yHampujex
JIe(UHICAHUM KPUTEPH]jyMIMA.

4.4. Kpeupame u3Bjemitaja ca KOHAYHUM pe3yJTaTHMa
[Ipomec 6omoBama ce oBHja y Ba KOpakKa: MapCHparbe
nor ¢ajnoBa u dpopmuparme TabenapHor npukaza 6010Ba
IO CTYJICHTY.

4.4.1. Ilapcupame Jior pajiaosa
Ckpunita mpoBjepaBa IIOCTOjal€ JIOTOBA U aHAIN3UPA
TBpawme (assertions), Opoj wucnpaBHux DFF-oBa n

MPUCYCTBO Tpemiaka. Pesyntatu ce 4yBajy y JSON
bajnoBuma:

e assertions_summary.json

e synth vho rst summary.json

e synth 3problem summary.json

4.4.2. Cymapno ¢popmupame 6010Ba

BomoBu ce cabmpajy Ha OCHOBY TauyHHX TBPOHBH H
ncnpaBaux DFF-oBa, a 3atum ce ymamyjy 3a Opoj
JIETEKTOBAaHMUX rperiaka. KoHauyHu pe3ynrar mpeicraBiba
yKyTaH 0poj 00710Ba 110 CTyICHTY.

5. PE3YJITATH

[Mporpamcko pjerieme NpuMjemeHo je Ha 0azy on 223
CTYAEHTCKa paja, NMpH 4YeMy Cy pe3ylTaTH ayTOMaTcKe
aHamm3e ymnopeheHm ca oljeHaMa IOOHjeHHM ITyTeM
pyuHor mpernexa. [{use mopehema Omo je yrBphuBame
TaYyHOCTH, TOCJEAHOCTU H Mjepe pasiuke nuzmely oBa qBa
npuctyna. MamuHCKo 00/10Bamke U3BEICHO j€ IpeMa IBa
KpuTepHjyma, Oa3upaHa Ha NPHCYCTBY M HCIPABHOCTH
TBPIMH y pjelIelhIMa CTyIeHATA.

5.1. Pesynratu no6ujenu kpurepujymom 1

Kpurepujym 1 nonjessyje 601 ako ce 1ojelMHaYHa TBPAbHA
y pjeniewny Oap jeIHOM I0jaBJbyje TayHO, Oe3 003upa Ha
€BEHTYyaJIHE HeTauHe T0jaBe y ocTaTKy Kojia. Ha mpumjep,
aKO CTYAGHT y CBOM JU3ajHy HMa TBPIEBY IONYT
ASSERT sCNT1, koja mpoBjepaBa WHKpEMEHTalHjy
6pojaua sCNT Ha nosutuBHy uBHIy curHaia iCLK, 6ox
ce Jofjesbyje aKo je Ta TBpImka HajMame jeIHOM Omia
TayHO CUMYJIMpaHa.

e MammHcko OomoBame je CTaOWIHHje W
JOCJbEIHN]C; PYYHO OIjCIbHBAEC IOKa3yje
Bapujaiyje 300r cy0jeKTUBHUX OljeHa.

o Tlpocjeuno omreheme: 2.11 6010Ba 0 CTYACHTY

e Hajsehe omreheme: —10.05 6o10Ba

e Hajseha nobut: +4.00 6oxa
[loTnmyHo mMoOKJamame pes3ynaTaTa
CTylleHaTa

kon 13

Poredenje bodova po studentima

— Aoduui
—— 8odovi dobijeni autor

Broj bodova

3

‘Mr*'w|?’,\’1' il "‘n fi
5 | | ’
0 T

danjern
ra pregledanjem

1 26 51 76 101 126 151 176 200
Retni Lroj stutlenta

Cnuxa 1 Ananuza 60dosara — kpumepujym 1

5.2. Pesyaratn no0ujeHu KpuTepujymom 2

Kputepujym 2 monjesbyje 001 caMo ako ce TBpIma HH
JjEIHOM He I10jaBJbyje HETauHO — YaK U aKo je jeJHOM Oma
TayHa, 00 ce yKHIa aKo je TOKOM JpyruX CHUMYyJaluja
TBpIha IIOTPEIIHO aKkTuBMpaHa. Ha mpumjep, 3a
ASSERT sSIFRA2, xoja mpoBjepaBa IpaBHITHO J01aBaE
nudpe y mudpy IpIIAKOM YHOCA, CTYISHT IyOu 0011 ako
ce y OMJI0 KOM TPEHYTKY TOKOM CHMYJAalHje Ta TBPImba
UCIIOCTaBH KA0 HeTayHa.

1324

e Crpoxuja omjeHa gosoau jo0 Beher ryOutka
60/10Ba, an ¢ BehoM npermsHonthy y TeXHHUYKO]
MPOIL[j€HH UCTIPABHOCTH.

e Tlpocjeuno omreheme: 3.70 6010Ba IO CTYACHTY

e Hajsehe omrreheme: —13.75 6omoBa

e Hajseha nqobut: +2.95 6om0Ba
[MoTnyHo moknaname pesynirara Koj| 2 CTyAeHTa

Poredenje bodova po studentima
— Badew dol
— Bodow dol

,m \l‘ IW m W.

danjem
ing pregledariem

“” ‘M

'l

Cnuxa Ananuza 600o8area — Kpumepujym 2

6. 3AK/bYYAK

VY xapaBepckoj] MHAYCTPHjH, Bepu(UKaIHja CHCTEMa ce
oclama Ha MeETo/e Kao mTo cy coverage, functional
coverage W TBpAme (assertions), koje omoryhasajy
OWHAapHY TPOIjEeHYy HCIPABHOCTH — CHCTEM j€ WIH
ucnpaBan wiu Huje. OBaj mpucTyn je eduxacaH y
TEXHUYKOM KOHTEKCTy, ald Kaga ce INpuMjemyje Y
o0Opa3oBamy, jaBJbajy ce CHelM(DUIHM W3a30BH.
CryneHTCcKa pjelierha 4eCTo HUCY MOTITYHO HCIIPaBHA, alid
HU TIOTITYHO TOTPEIHA, MITO 3aXTHjeBa (pJIeKCHOMITHUU 1
HUjaHCHPaHUjHU NPUCTYTI 00/I0BAbY.

Coverage y HHIYCTpPHjH 3HAYH J]a j€ CUCTEM Oap jemHoM
panuo ucnpaBHo. Functional coverage mposjepaBa aa Ju
Cy cBe (DYHKIIMOHATHOCTH TECTHPAaHE, JOK TBPIHE CIyKe
3a (hopMaIHy MOTBPAY 1A j& CHCTEM pearoBao y CKjiaay ca
OuUeKUBamUMa y ojpeheHuM ycimoBuMa. Y aKaJIeMCKOM
KOHTEKCTY, OBAKBU KPUTEPHjYMH MOTY OMTH HEIOBOJHHU
jep He ofpakaBajy CTCICH pa3yMjeBama CTYACHTA, HUTH
CJIOKEHOCT F>ETrOBOT pjeleha.

Kipyuna gummema y oOpa3oBamy je: Ja JIM CTYACHT
3acyXyje ImyHe 00JJ0BE aKo je TBp/rha jeJHOM Ta4Ha, aJii
y ApYrUM ciydajeBuMa HUje? Y wHAyCTpHjH, TO Om ce
CMaTpaJio yCIjexOM, aJld y HACTaBH je MOTPeOHO yBeCTH
napIgjasHo 000Bamke KOje y3uMa y 003Up U IjeTUMHYHY
ucnpaBHocT. Ha mpumjep, ako pjeuiermne GyHKIHOHHUIIE Y
BehimHM TecT ciydajeBa, ald CaJApKU Mamby TPEUIKYy Y
JEeIHOM clieHapHjy, Tpeba pa3MOTPUTH Ja JIK 3aCIIyKyje
1o 6ozoBa.

Ha 6u ce oBaj mpobiieM pHjenno, TOTPEOHO je pa3BUTH
cucTeM KiacuduKalyje cBojcTaBa CTYICHTCKUX pjelerna
1 peuHUCATH KpUTEpUjyMe yerjexa. To yripydyje:

e wuneHTH(UKANU]y KPUTHYHUX CBOjCTaBa Koja
MOpajy OWTH 3310BOJbEHA,

e ogapehuBame cremeHa ucmpaBHocTH (HOp. 90%
Ta4YHOCTH),

e u ¢opmyucame (raekcuOWIHOr Mojea
OlljerbHBakba KOJU YBaKaBa pa3iMuuTe HUBOE
TAYHOCTH.

VY nasbeM HCTpaXuBamy, IIOTPEOHO je Pa3sBUTH 00jeKTUBAH
Mozmen OomoBama Kkoju he OamaHcupatén u3Mehy
WHAYCTPHUjCKUX CTaHIApAa U akageMcKux morpeda. Takas
Mozen Tpeba na Oyae mpaBenaH, TpPAHCIAPEHTaH |
MearomKy ompaBaaH, omoryhaBajyhm cTyaeHTHMa Ia
noOujy jacHy MOBpaTHy WH(pOpManWjy W MOACTHIA] 3a
JlaJbe yCaBpILaBambe.

7. JUTEPATYPA

[17,,C. Spear, SystemVerilog for Verification: A Guide to
Learning the Testbench Language Features,* 3rd ed.
Springer, 2012.

[2] ,,H. [TjeBanuma: Bepudukanmja AUTHTaTHAX
HMHTErpHCcaHuX Koia, System Verilog ca ocHoBama
UVM-a*, @akynrer Texunukux Hayka y HoBom
Cany, 2022, ISBN 9788660224073

[3],,B. Cohen, SystemVerilog Assertions Handbook,* 3rd
ed. VhdlCohen Publishing, 2010.

[4],.D. L. Perry, VHDL: Programming by Example, 4th
ed. McGraw-Hill, 2002.

[51,,JEEE Standard for SystemVerilog—Unified
Hardware Design, Specification, and Verification
Language, IEEE Std 1800™-2017,* IEEE Computer
Society, 2017.

[6] ,,Intel Corporation, Intel Quartus Prime Pro Edition
User Guide: Design Compilation, 2023.* [Ha mpexu].
Available: https://www.intel.com

[7] ,,Siemens Digital Industries Software, QuestaSim
User’s Manual, 2023.“ [Ha mpexu]. Available:
https://eda.sw.siemens.com

[8] ,,AgileSoC Inc., SVUnit User Guide, 2023.“ [Ha
Mpexu]. Available: https://github.com/svunit/svunit

[9] ,,Python Software Foundation, Python 3
Documentation, 2023.“ [Ha mpexu]. Available:
https://docs.python.org/3/

Kparka Onorpagpuja

Munenko Makcuh je pohern 13.
cenremOpa 1997. roaune y bujessunn. ¥
mkonckoj 2016/17 ymucyje cryaujcku
nporpaMm PadyHapcTBo m ayromarmka Ha
PakynTeTy TEXHUUKUX Hayka y HoBom
Cangy. HaxkoH 3aBpIICHMX OCHOBHHUX
crynuja, 2022. roxuHe, ynmcyje Macrep
CTyIIYje Ha UCTOM CTYJIMjCKOM IIpOrpamy,
cvjep CodTBep 3a MOTPOIIAYKY
€JIEKTPOHUKY.

1325

V7

Zbornik radova Fakulteta tehnickih nauka, Novi Sad

UDK: 7.52
DOI: https://doi.org/10.24867/33BE15Pavkovic

PRIMENA VESTACKIH NEURONSKIH MREZA U ESTIMACIJI UNUTRASNJE
TELESNE TEMPERATURE

APPLICATION OF ARTIFICIAL NEURAL NETWORKS IN ESTIMATING CORE BODY
TEMPERATURE

Vukasin Pavkovié, Fakultet tehnickih nauka, Novi Sad

Oblast - ELEKTROTEHNIKA I RACUNARSTVO

Kratak sadrZaj — Rad se bavi procenom unutrasnje
telesne temperature coveka na osnovu neinvazivnih
fizioloskih signala. Primenom razlicitih arhitektura
veStackih neuronskih mreza razvijeni su modeli za
estimaciju unutrasnje temperature. Nakon obrade i
normalizacije podataka, modeli su obuceni i testirani, a
njihova tacnost procenjena primenom standardnih metrika

Kljuéne reli: Vestacke neuronske mreze, unutrasnja
telesna temperatura, obrada podataka

Abstract — This thesis addresses the estimation of core
body temperature using non-invasive physiological
signals. Machine-learning models based on different
artificial neural-network architectures were developed to
estimate temperature. After data preprocessing and
normalization, the models were trained and tested, and
their accuracy assessed with standard regression metrics.

Keywords: Artificial neural networks,
temperature, data processing

core body

1. UVOD

Precizno pracenje unutrasnje telesne temperature je od
sustinskog znaCaja u mnogim situacijama od intenzivne
nege pacijenata do pracenja stanja sportista i radnika u
ekstremnim uslovima [1]. Unutra$nja telesna temperatura
pouzdan je indikator zdravstvenog stanja; ¢ak i relativno
mala odstupanja mogu ukazivati na ozbiljne probleme
(npr. hipertermiju ili hipotermiju). Ipak, direktno merenje
temperature jezgra tela obi¢no zahteva invazivne metode
(npr. rektalne ili ezofagealne sonde) koje nisu pogodne za
kontinuirani nadzor ili terensku primenu [2]. Razvoj
neinvazivnih metoda za procenu unutrasnje temperature
postao je vazan istrazivacki izazov. Jedan od pristupa je
koris¢enje vestackih neuronskih mreza (VNM) koji na
osnovu lako merljivih fizioloskih signala mogu predvideti
unutrasnju temperaturu. Motivi za primenu VNM leze u
njihovoj sposobnosti da modeluju sloZene nelinearne
odnose izmedu ulaznih parametara (npr. temperatura koze,
puls, spoljasnja temperatura okoline) i telesne temperature.
Na taj naéin, moguce je dizajnirati sistem za kontinuirano
pracenje koji je istovremeno neinvazivan i dovoljno
precizan.

NAPOMENA:
Ovaj rad proistekao je iz master rada ¢iji mentor je bio
dr Nikola Jorgovanovi¢, red. prof.

U ovom radu istrazene su dve strukture neuronskih mreza:
klasi¢na feedforward mreza i njena proSirena verzija
rekurentna feedforward mreza sa ciljem estimacije
unutra$nje telesne temperature.

2. METODOLOGIJA
2.1. Prikupljanje i obrada podataka

U istrazivanju su koriS$¢eni preuzeti podaci prikupljeni sa
viSe ispitanika tokom kontrolisanih fizi¢kih aktivnosti u
okviru projekta SixthSense. Merene su spoljasnje
fizioloske veli¢ine, ukljucujuéi temperaturu na povrsini
grudnog koSa, sréana frekvencija i varijabilnost sréanog
ritma, dok je referentna unutraSnja temperatura tela merena
invazivnom metodom (kapsulama). Eksperimenti su
obuhvatili viSe scenarija, sa variranjem uslova okoline i
stanja ispitanika (nivo fizi¢ke aktivnosti, hidracije,
aklimatizacije), kako bi model mogao da nauci odnose u
razli¢itim okolnostima [3, 4]. Prikupljeni sirovi podaci
filtrirani su radi uklanjanja Suma, a zatim normalizovani i
podeljeni na skup za obuku i testiranje.

2.2. Razvoj modela

Formirana su dva modela neuronskih mreza za predikciju
unutra$nje temperature:

1. Feedforward neuronska mreza (FFNN) — klasi¢na
viSeslojna perceptronska mreza, sa ulaznim ¢vorovima koji
predstavljaju trenutne vrednosti fizioloskih parametara:
temperatura koze - T chest, sr¢ana frekvencija — HR i
varijabilnost sr¢anog ritma - HRV. Mreza se sastoji od
jednog ili vise skrivenih slojeva sa nelinearnim
aktivacionim funkcijama, i jednim izlaznim ¢vorom koji
estimira unutrasnju telesnu temperaturu — Slika 1.

= |
T_chest’ | \1‘“\\\ o o
LN Ty \;7(™
; i Mo .
NI NI N AN W
R kD — 4
PN/ - A ™ N
P 3 I f
LN N N
HRV @
: N4
Input layer hidden layer hidden layer -dﬂtb'u"-t'léy-er

Slika 1. Struktura feedforward neuronske mreze

Kao najjednostavnija struktura razmatrana je mreZa sa
samo dva skrivena sloja sa po jednim neuronom i jedan
izlazni neuron. Takode je isprobana arhitektura sa dva
skrivena sloja sa po dva neurona radi poveéanja kapaciteta

1326

https://doi.org/10.24867/33BE15Pavkovic

modela, kao i sloZenija konfiguracija sa tri skrivena sloja.
Poredenjem ovih struktura obezbedeno je da se ispita uticaj
kompleksnosti modela na ta¢nost estimacije. FFNN model
nema internu memoriju stanja odnosno svaka predikcija se
vr§i samo na osnovu trenutnih ulaza, bez eksplicitnog
uvazavanja prethodnih vrednosti signala. Veéi broj
neurona u skrivenom sloju omogucéava modelu da nauci
slozenije nelinearne odnose, dok minimalisticka mreza
sluzi kao baseline za uporedivanje. Sve neuronske jedinice
u eksperimentima koristile su nelinarnu aktivacionu
funkciju (ReLU), osim izlaznog neurona koji je bio linearni
regresor, ¢ime se omoguéava predvidanje kontinuirane
vrednosti temperature.

2.Rekurentna feedforward neuronska mreza (RFFNN) ili
prosirenje FFNN modela dodatkom jednostavne povratne
veze. U RFFNN arhitekturi, originalnom skupu ulaza dodat
je jo$ jedan ulaz koji nosi informaciju o prethodnoj
predikciji unutrasnje temperature. Na taj nacin, model pri
predvidanju sledece vrednosti uzima u obzir i neposredno
prethodnu izlaznu vrednost, omoguc¢avaju¢i mu osnovni
vid “pamcenja” dinamike sistema — Slika 2.

Ve
; ™
T_chest' | 4/‘)
o\ N
AN
HR | i T
P N A N
i y
- N/
HRV [\\\g)
Input layer hidden layer hidden layer bl]tfﬁﬁfiéiﬂ-er

Slika 2. Rekurentna vestacka neuronska mreza

Tokom treniranja, za ovaj dodatni ulaz koriste se stvarne
prethodno izmerene vrednosti temperature (jer su poznate
u trening skupu), dok se prilikom testiranja koristi
prethodna predikovana vrednost (feedback petlja). Ovakva
jednostavna rekurentna povratna sprega omoguéava
RFFNN modelu da bolje uhvati vremenske zavisnosti u
podacima u poredenju sa obi¢nim FFNN [5, 6].

2.3. Obuka modela

Za treniranje obe mreZe koriS¢en je skup oznacenih
podataka (ulazi sa pripadajuéom merenom unutrasnjom
temperaturom kao izlazom). Modeli su trenirani metodom
nadgledanog ucenja, minimizacijom funkcije greske
izmedu predikcija mreZe i stvarne temperature. Isprobano
je vise konfiguracija hiperparametara (broj slojeva i
neurona, parametri ucenja) i razlic¢itih funkcija greske
MAE, MSE, kao i Huber-ova funkcija kako bi se pronasla
optimalna arhitektura za dati problem. Kori$¢ena je k-fold
unakrsna validacija, pri ¢emu su podaci jednog ispitanika
ostavljani za validaciju (pristup Leave-One-Subject-Out)
da bi se proverila sposobnost generalizacije modela.
Treniranje je ponavljano za svaku arhitekturu (FFNN i
RFFNN), a modeli su uporedeni po performansama na
nezavisnom test skupu.

2.4. Evaluacija tacnosti

U radu su izvrSene dve vrste evaluacije i odabira modela u
cilju analize performansi i izbora optimalnog resenja. Kod
obe arhitekture uradena je evaluacija koris¢enjem globalno

najboljeg prose¢nog modela i1 evaluacija kori$¢enjem
individualno optimalnog modela za svakog subjekta. U
nastavku teksta razmatrace se rezultati dobijeni kod
individualno optimalnog modela.

Za kvantitativnu ocenu performansi modela kori$éene su
standardne metrike regresije: srednja apsolutna greska
(MAE), srednja kvadratna greska (MSE), koren srednje
kvadratne greske (RMSE) i koeficijent determinacije (R?).
MAE i RMSE izrazavaju prose¢no odstupanje predikcije
od stvarne vrednosti (u °C), dok R? pokazuje udeo
varijanse objasnjen modelom (vrednost bliza 1 oznacava
bolju uskladenost predikcije sa realnim podatkom). Nakon
treniranja, za svakog ispitanika izraCunate su navedene
metrike posebno, a zatim je izvrSeno poredenje rezultata
FFNN i RFFNN modela.

3. REZULTATI I DISKUSIJA

Dobijeni rezultati potvrduju da model sa povratnom vezom
(RFFNN) uspesnije predvida unutra$nju temperaturu u
odnosu na klasi¢nu neuronsku mrezu. Tabela 1. prikazuje
vrednosti evaluacionih metrika za jednog reprezentativnog
ispitanika (oznaka BM13) pri koriS¢enju oba tipa modela.
RFFNN model ostvaruje znatno manje greske (nize MAE,
MSE, RMSE) i vi§i R?u poredenju sa FFNN, $to znaci da
bolje prati stvarne promene temperature.

Tabela 1. Metrike predikcije unutrasnje temperature za
ispitanika BM13 (poredenje arhitektura)

Model MAE MSE RMSE R?
FFNN 0.186 0.042 0.205 0.501
RFFNN 0.071 0.006 0.078 0.928

Na slikama ispod prikazane su krive stvarne temperature
tela (Actual output, plava linija) i predikcije neuronske
mreze (Predicted output, narandzasta linija) za ispitanika
BM13. Slika 3. prikazuje model FFNN. Vidljivo je da
postoje izvesna odstupanja kao 1 da reaguje sa
zakaSnjenjem na nagli pad temperature. Suprotno tome,
Slika 4. predstavlja RFFNN model koji prati unutra$nju
temperaturu kroz vreme. Takode, mozZe se primetiti da su
promene pravilnije predvidene.

BM13

Actual output
Predicted output

T core (°C)
\

4] 20 40 60 80 100 120
time (min)

Slika 3. Rezultati predikcije za ispitanika BMI3

korisc¢enjem FFNN modela

1327

BM13
39.0
—— Actual output
Predicted output
385
G, S —=
5 Ve
8 /
ns| ~—~—————”
—
37.0
36.5 v - + - - -
0 40 | 60 80 100 120
time (min)
Slika 4. Rezultati predikcije za ispitanika BMI3

koriséenjem RFFNN modela

4. ZAKLJUCAK

U ovom radu prikazana je primena vestackih neuronskih
mreza za estimaciju unutraS$nje telesne temperature na
osnovu spoljasnjih fizioloskih merenja. Uporedene su dve
arhitekture — feedforward i rekurentna feedforward
neuronska mreza — i pokazano je da dodavanje povratne
veze (memorije) znacajno poboljSava performanse
predikcije. RFFNN model se pokazao bolji u odnosu na
obi¢nu feedforward neuronsku mrezu, $§to potvrduje
hipotezu da uvodenje vremenskog konteksta u modele
poboljsava preciznost predikcija. Prednost ovog pristupa
jeste sistem za pracenje telesne temperature zasnovan na
ovakvim modelima bio bi neinvazivan i pogodan za
implementaciju u razlicite uredaje.

4. LITERATURA

[1] P. N. Stuart Russell, Artifical Intelligence: A Modern
Approach, Pearson, 2016..

[2] Y. B. G. H. Yann LeCun, "Deep Learning," Nature,
2015.

[3] H. B. Youngjoo Kim, Introduction to Kalman Filter
and Its Applications, InTechOpen, 2018.

[4] S. S. K. G. M. F. Shahin Tasoujian, Real-Time
Cubature Kalman Filter Parameter Estimation of
Blood Pressure Response Characteristics Under
Vasoactive Drugs Administration, IEEE, 2020.

[STW.JL.T.SSN.C.S.J.M.R.W.K.J.C.W.A. L. W.
S.R.M.R.O.C.J. R. W. H. Mark J Buller 1,
Estimation of human core temperature from, PubMed,
2013.

[6]E. W.S. A. A.P. S. D. R. M. R. Reto Niedermann 1,
"Prediction of human core body temperature using
non-invasive," Springer Nature Link, 2013.

Kratka biografija:
- Vukasin Pavkovié¢ roden je u Sr.
Mitrovici 1999. god. Fakultet
la tehgiékih nauka ppisuje 201.8.
o godine. Polozio je sve ispite
= predvidene studijskim programom

i ispunio sve fakultetske obaveze
na master akademskim studijama
kontakt:
vukasinpavkovic@gmail.com

i,

1328

Zbornik radova Fakulteta tehni¢ckih nauka, Novi Sad

UDK: 4.4
DOI: https://doi.org/10.24867/33BE16Pasanovic

ANALIZA ARTEFAKTA KOLABORATIVNOG RAZVOJA SOFTVERA PUTEM
VELIKIH JEZICKIH MODELA ZA UNAPREDENJE TIMSKOG RADA

ANALYSIS OF COLLABORATIVE SOFTWARE-DEVELOPMENT ARTIFACTS USING
LARGE LANGUAGE MODELS TO ENHANCE TEAMWORK.

Halid Pasanovié, Fakultet tehnickih nauka, Novi Sad

Oblast - ELEKTROTEHNIKA I RACUNARSTVO

Kratak sadrzaj — Efikasnost timova direktno utice na
uspeh organizacija, narocito u oblasti softverskog
inZenjerstva gde je uspesna saradnja kljucna. Ovaj rad
detaljno istrazuje primenu velikih jezickih modela (VJM-a)
kao alata za analizu i poboljsanje timske dinamike,
posebno kroz razvoj deljene svesti (Shared Cognition).
Eksperimentalni pristup je koris¢en za analizu razlicitih
podataka iz sprint retrospektiva, GitHub-a i Trello
platforme kako bi se identifikovali obrasci ponasanja
¢lanova tima i predlozZile konkretne mere za njihovo
unapredenje.

Kljuéne re€i: VJM, Shared Cognition, timska dinamika,
softversko inzenjerstvo

Abstract — Team efficiency directly impacts
organizational success, especially within software
engineering contexts, where effective collaboration is
critical. This paper comprehensively explores the use of
Large Language Models (LLMs) as tools for analyzing and
improving team dynamics, emphasizing the development of
Shared Cognition. An experimental approach was
employed to analyze various data sources, including sprint
retrospectives, GitHub histories, and Trello activity logs,
identifying team behavior patterns and proposing specific
improvement strategies.

Keywords: LLM, Shared Cognition, team dynamics,
software engineering

1. UVOD

U savremenom poslovnom okruZenju timovi predstavljaju
osnovne jedinice koje omogucéavaju efikasno reSavanje
kompleksnih zadataka zahvaljujuéi sinergiji razlicitih
vestina, znanja i kompetencija svojih ¢lanova.

Efikasnost timskog rada direktno utice na ukupne
performanse i konkurentnost organizacije, posebno u
tehnickim disciplinama poput softverskog inzenjerstva.
Ovaj rad istrazuje primenu velikih jezi¢kih modela (VIM-
a) kao inovativnog alata za analizu i unapredenje timske
dinamike, sa posebnim akcentom na razvoj deljene svesti
kao klju¢nog faktora uspeha.

NAPOMENA:
Ovaj rad proistekao je iz master rada ¢iji mentor je bio
dr Nikola Luburié, docent

2. TIMSKA DINAMIKA I SHARED COGNITION

Timska dinamika se odnosi na medusobne interakcije
Clanova tima koje omogucavaju efikasno postizanje
zajednicki definisanih ciljeva [1]. U okviru ovih interakcija
posebno su vazni faktori poput komunikacije,
koordinacije, poverenja, zajednickog donoSenja odluka,
kao 1 medusobnog razumevanja.

Efikasan timski rad mozZe se analizirati kroz tri osnovne
dimenzije:

obuhvata
kolektivnu

e Stavovi (Attitudes):
medusobno poverenje,
efikasnost [2].

e Ponasanja (Behaviors): Odnosi se na konkretne
aktivnosti i interakcije koje tim obavlja tokom rada. To
ukljuéuje razmenu informacija, pruzanje podrske
¢lanovima tima u kriznim situacijama i kontinuirano
praéenje napretka kako bi se pravovremeno
identifikovali i reSavali problemi [2].

e Kognicija (Cognition): Podrazumeva deljenu svest
unutar tima, odnosno zajednicko razumevanje uloga,
odgovornosti, ciljeva, normi, kao i veStina i
sposobnosti ostalih ¢lanova [2].

Ova dimenzija
koheziju i

2.1. Deljena svest kao klju¢ni aspekt timske dinamike

Deljena svest (Shared Cognition) predstavlja zajednicko
razumevanje medu ¢lanovima tima, koje nastaje kroz
kontinuiranu interakciju i saradnju [1]. Ona ukljuéuje dva
vazna koncepta: deljene mentalne modele i transaktivne
memorijske sisteme.

Deljeni mentalni modeli omogucavaju ¢lanovima tima da
precizno predvide ponasanja i odluke drugih ¢lanova na
osnovu zajednickih ocekivanja i razumevanja zadataka [3].
Ovakvi modeli su kljuéni za efikasnu koordinaciju
aktivnosti 1 pravovremenu reakciju na promene u
okruzenju.

Transaktivni memorijski sistemi se odnose na zajednicku
memoriju tima koja omogucava optimalnu raspodelu
zadataka prema individualnim sposobnostima i
specijalizacijama clanova tima [4]. Ovi sistemi pomaZzu
timu da efikasnije Kkoristi svoje unutraSnje resurse,
smanjuju¢i redundansu i poveéavajuéi ukupnu
produktivnost.

Istrazivanja pokazuju da razvijena deljena svest znacajno
doprinosi adaptabilnosti tima, omogucavajuéi implicitnu
koordinaciju i brzu reakciju na izazove [1]. Nedostatak
zajednicke svesti, s druge strane, moze rezultirati

1329

https://doi.org/10.24867/33BE16Pasanovic

nesporazumima, konfliktnim situacijama i smanjenom
efikasno§¢éu tima [1].

Kroz upotrebu velikih jezickih modela, moguce je
analizirati 1 unaprediti deljenu svest u timovima,
identifikujuci obrasce ponasanja i nude¢i konkretne savete
za poboljsanje timske dinamike.

3. VELIKI JEZICKI MODELI (VJM-I)

Veliki jezicki modeli (engl. LLM - Large Language
Models) predstavljaju kompleksne sisteme vestacke
inteligencije bazirane na dubokim neuronskim mrezama,
koje omogucéavaju obradu, razumevanje i generisanje
ljudskog jezika [5]. Ovi modeli koriste ogromne koli¢ine
tekstualnih podataka za ucenje statistickih obrazaca i veza
izmedu reci i izraza, ¢ime stiCu sposobnost predvidanja,
analize 1 kreiranja novog, smislenog sadrzaja [6].

Najvaznija arhitektura na kojoj se zasnivaju savremeni
VIM-i je arhitektura transformera, koja je 2017. godine
uvedena kao revolucionarno resenje za obradu prirodnog
jezika zahvaljuju¢i primeni mehanizma paznje (engl.
attention mechanism) [7]. Ovaj pristup omoguéava
modelima da efikasnije prepoznaju i analiziraju veze
izmedu reci unutar konteksta, prevazilaze¢i ogranicenja
prethodnih tehnika baziranih na rekurentnim ili
konvolucionim mrezama.

Zahvaljujuéi sposobnosti obrade velikih koli¢ina podataka,
VIM-i poput GPT (engl. Generative Pretrained
Transformer) modela, posebno GPT-4 i1 ChatGPT,
pokazali su izuzetnu efikasnost u raznim primenama,
ukljucuju¢i analizu i unapredenje timske dinamike u
oblasti softverskog inzenjerstva. Ovi modeli mogu detaljno
analizirati podatke iz razli¢itih izvora kao S$to su
komunikacija izmedu ¢lanova tima, istorije verzionisanja
koda i izveStaji sa sastanaka (npr. sprint retrospektive),
identifikovati obrasce ponasanja i predloziti konkretne
mere za optimizaciju zajednicke svesti i timskog rada.

U kontekstu timske dinamike, primena VJM-a pruza
mogucénost dubokog uvida u kvalitet 1 obrasce
komunikacije, omogucavajudi blagovremeno
prepoznavanje potencijalnih problema i formulisanje
preporuka za njihovo reSavanje, Sto direktno doprinosi

boljoj koordinaciji, efikasnosti i ukupnoj uspesnosti
timova.

4. METODOLOGIJA

U ovom istrazivanju koriScen je eksperimentalni pristup
zasnovan na detaljnoj analizi podataka koji dokumentuju
razliCite aspekte timskih aktivnosti. Proces generisanja,
prikupljanja, obrade i analize podataka je ilustrovan na slici
1. Eksperimentalna postavka obuhvatila je nekoliko jasno
definisanih koraka: prikupljanje, predobradu i analizu
podataka pomocu velikih jezickih modela.

Prvi korak podrazumevao je prikupljanje podataka iz
razlicitih izvora, koji ukljucuju sprint retrospektive, istorije
GitHub komitova, komentare sa pull request-ova, kao i
aktivnosti zabelezene putem Trello platforme. Nakon
prikupljanja, svi podaci su prosli kroz fazu
predprocesiranja, tokom koje su uklonjeni nevalidni,
nepotpuni i redundantni podaci, dok je preostali sadrzaj
strukturiran i formatiran radi efikasnije analize.

Zatim je za svaki pojedinacni tip podataka inicirana
zasebna sesija sa VIM-om (u ovom sluc¢aju ChatGPT), ¢iji
zadatak je bio da identifikuje kljucne pozitivne i negativne
obrasce ponasanja unutar svake od analiziranih kategorija
podataka. Dakle, zasebno su obradivani podaci iz sprint
retrospektiva, aktivnosti na GitHub platformi (komitovi i
pull request-ovi) i aktivnosti na Trello platformi, ¢ime je
omogucéena detaljna i specijalizovana analiza za svaku
vrstu podataka.

Svakom VIM-u prosleduje se odlomak iz knjige Scotta
Tannenbauma ,,Teams That Work: The Seven Drivers of
Team Effectiveness®, konkretno poglavlje 8 —
,»Cognitions — Are We on the Same Page* [8]. Time
modelima obezbedujemo jasan teorijski okvir i smernice za
prepoznavanje relevantnih koncepata pri analizi
dostavljenih podataka.

Po zavrsetku pojedinacnih sesija, rezultati dobijeni iz svih
inicijalnih analiza objedinjeni su i prosledeni zavrsnoj
(finalnoj) sesiji VIM-a. Finalni ChatGPT je imao zadatak
da objedini rezultate prethodnih analiza, pruzi integrativan
pogled na celokupnu timsku dinamiku, identifikuje
dominantne obrasce ponaSanja koji znacajno uti€u na

/ Pregled Experimenta \

—0)

Commit-ovi

"

Trello Akcije

Commit-i

@

> Raw \Processor

Predprocesuirani

—®
Predprocesuirane
Trello Akcije

G

Commit
Chat

Trello
Chat

Diskusija , &
Gy

Finalni
Chat

&

Razgovori

Data of data
Tim 8'})

Pull Request-ovi

Predprocesuirani
Pull Request-ovi

Pull Request
Chat

_,

Retrospektive

&

Chat za

N\ Retrospektive

Retrospektive /

Slika 1. Tok koji opisuje kako su podaci generisani, prikupljani, obradivani i analizirani u eksperimentu

1330

razvoj zajedniCke svesti, te da formuliSe konkretne
preporuke za unapredenje efikasnosti i koordinacije unutar
tima.

Ovakva eksperimentalna postavka omogudila je dubinski
uvid u timske interakcije kroz visestepenu analizu, ¢ime su
osigurani visok kvalitet i relevantnost dobijenih preporuka.

5. PROMPT FINALNOG GPT-A

Finalni GPT funkcioniSe kao meta-analizator: ne radi nad
sirovim podacima, ve¢ nad saZecima konverzacija
prethodnih GPT modela (Pull Request-ovi, commit
istorija, Trello aktivnosti, retrospektive), sa ciljem da
objedini nalaze i formira celovitu sliku timske dinamike.
Listing 1 prikazuje sistemski prompt za dati GPT.

Role Description:

You are an assistant specializing in
supporting young software engineering teams.
Your task involves summarizing specific
content from a book about teamwork, with a
focus on Chapter 8 - "Shared Cognitions." It
is crucial that you comprehend the factors
that positively and negatively influence
Shared Cognitions.

Context and Inputs:

Your users, software engineering teams, will
provide you with summaries of conversations
they had with other GPT models. These
conversations will analyze Pull Requests,
Commit History, Trello History and Sprint
Retrospectives, identifying behaviors that
affect Shared Cognition within the team.

Tasks and Output Requirements:

Behavior Analysis:

When requested to analyze these summaries:
List all behaviors that align with the
analysis in question.

For each behavior, specify the parts of the
provided conversations that led to your
conclusion.

Cite Chapter 8 of the book to explain why each
identified behavior influences Shared
Cognition positively or negatively.

By following these guidelines, you will help
software engineering teams understand the
dynamics of Shared Cognition and how to foster
a collaborative environment effectively.

Listing 1. Prompt Finalnog GPT-a

Prompt je strukturisan kroz tri celine: (1) Opis Uloge —
model se pozicionira kao asistent za mlade softverske
timove; (2) Contekst i Ulazi —ulaz ¢ine sazeci konverzacija
drugih GPT-eva o Pull Request-ovima, commit-ima, Trello
istoriji 1 retrospektivama; (3) Zadatci i specifikacija izlaza
— pri analizi model treba da navede sva relevantna
ponasanja, za svako pokaze delove sazetaka koji vode
zakljucku i1 obrazlozi uticaj na deljenu svest pozivanjem na
poglavlje 8 knjige ,,Teams That Work* [8].

Ovakav dizajn prompta obezbeduje dosledne, teorijski
utemeljene izlaze i omoguéava dublju, precizniju sintezu
timskih obrazaca od pojedina¢nih modela.

6. REZULTATI ISTRAZIVANJA

Rezultati eksperimentalne analize jasno pokazuju da VIM
efikasno identifikuje pozitivne obrasce timskog ponasanja,
ukljuuju¢i jasnu i transparentnu komunikaciju,

konstruktivne i detaljne revizije koda, kao i proaktivnu
medusobnu podrsku ¢lanova tima. Takode, identifikovani
su i negativni obrasci poput nedovoljne jasnoc¢e u raspodeli
odgovornosti, neprecizne komunikacije i nedostatka
redovnog pracenja aktivnosti.

Za potrebe procene kvaliteta identifikovanih obrazaca od
strane VJM-a, uvedena je skala ocenjivanja u rasponu od 1
do 3, gde pojedina¢na ocena znaci:

e 1: Model je u potpunosti pogresno protumacio ulaz.

e 2: Odgovor delimi¢no odgovara kontekstu deljene
svesti.

e 3: Analiza je temeljna i adekvatno adresira zadati
problem.

Pregledaci izlaza modela primenili su ovu skalu prilikom
evaluacije rezultata dobijenih za svaki od analiziranih
setova podataka. Ocene su dodeljene posebno za slucaj
kada su podaci individualno obradivani, zatim za slucaj
kada su podaci prosledivani u segmentima, te na kraju za
rezultate finalnog GPT-a (meta-analizatora).

6.1 Git Commit GPT Model

Rezultati analize pojedina¢nih Git commit-ova jasno
ukazuju na sposobnost GPT modela da precizno
identifikuje pozitivne 1 negativne obrasce timskog
ponasanja ¢ak i na nivou pojedinacnih akcija programera.
Pregledaci izlaza modela ocenili su da je model u 31
sluaju (94%) ponudio analizu koja je ocenjena kao
potpuni pogodak (ocena 3), dok su preostala dva ocenjena
kao delimic¢an pogodak (ocena 2).

Kada je analiza vrSena nad segmentima commit-ova,
rezultati evaluacije pokazuju jo§ visi nivo uspes$nosti
modela. Ukupno je analiziran 21 segment, pri ¢emu su svi
segmenti dobili maksimalnu ocenu (ocena 3). Ovaj pristup
omogucio je jasnije prepoznavanje kontekstualnih veza
izmedu razli¢itth commit-ova, kao i bolju identifikaciju
dugoro¢nih pozitivnih trendova u timskoj komunikaciji,
koordinaciji i reSavanju problema.

6.2 Pull Request GPT Model

Analizom individualnih Pull Request-ova utvrdeno je da je
u 8 od ukupno 9 slucajeva (89%) model pruzio analizu koja
je ocenjena kao potpun pogodak (ocena 3), dok je u jednom
slucaju analiza ocenjena kao delimi¢an pogodak (ocena 2).

Kada su podaci analizirani u formi segmenata, rezultati su
jos konzistentniji — od ukupno 9 segmenata, svi su ocenjeni
maksimalnom ocenom (3), §to ukazuje na visok nivo
preciznosti i pouzdanosti GPT modela pri obradi
kontekstualno bogatijih ulaza.

6.3 Trello GPT Model

Rezultati analize pojedinacnih Trello kartica pokazali su da
je model u 20 od ukupno 21 analiziranog slucaja (95,2%)
pruzio analizu ocenjenom kao potpuni pogodak (ocena 3),
dok je jedna analiza ocenjena kao delimic¢an pogodak
(ocena 2).

Segmentna analiza podataka sa Trello platforme pokazala
je potpunu konzistentnost i tacnost, jer je svih 8
analiziranih segmenata ocenjenom maksimalnom ocenom
(3), ¢ime je potvrden visoki nivo sposobnosti GPT modela
da efikasno prepozna timske obrasce u Sirem kontekstu.

1331

6.4 GPT Model za Retrospektive

Analiza pojedinacnih reCenica retrospektiva pokazala je
relativno visoku pouzdanost modela. Od ukupno 102
reCenice, u 74 slucaja (72,5%) pruzena je analiza ocenjena
kao potpuni pogodak (ocena 3), 16 slucajeva (15,7%)
ocenjeno je kao delimi¢an pogodak (ocena 2), dok je 12
sluc¢ajeva (11,8%) ocenjeno kao potpuni promasaj (ocena
1).

U segmentnoj analizi retrospektiva, evaluacija je pokazala
izuzetnu stabilnost i1 preciznost GPT modela. Svi
analizirani segmenti (ukupno 4) dobili su maksimalnu
ocenu (ocena 3), ukazuju¢i na efikasnost modela u
kontekstualno agregiranim analizama.

6.5 Finalni GPT Model

Za razliku od prethodnih modela koji su analizirali
iskljucivo sirove podatke, finalni GPT model funkcionise
kao meta-analizator: njegov ulaz predstavljaju
konverzacije koje su ve¢ prosle kroz pregled ranijih
modela.

Tokom analize, model je imao zadatak da izdvoji sve
pozitivne segmente koji osnazuju deljenu svest i sve
negativne segmente koji je narusavaju. Od ukupno 18
detektovanih ponasanja, 17 je ocenjeno najviSom
ocenom 3, dok je jedno dobilo ocenu 1, §to ukazuje na
visoku ta¢nost i konzistentnost u klasifikaciji slozenih
obrazaca.

Pored kategorizacije ponasanja, od modela je zatrazeno da
na skali 1-100 proceni nivo deljene svesti u timu. Dok je
GPT model za retrospektive u finalnoj retrospektivi svest
ocenio sa 90, meta-analizator je, ukljucujuéi Siri kontekst
celokupnih konverzacija, dao znatno nizi rezultat — 68.
Ova razlika osvetljava jaz izmedu percepcije GPT modela
na osnovu subjektivne percepcije tima i objektivno
izmerenog stanja, ¢ime model pruza dragocene uvide koji
prevazilaze ono $to pojedinacni GPT-evi mogu da uoce.

Sumirano, finalni GPT meta-analizator dokazuje
sposobnost da sintetizuje multimodalne izvore podataka i
isporuci dublje, preciznije procene stanja timske dinamike,
u odnosu na individualne GPT-e.

7. ZAKLJUCAK

Upotreba VIM-a kao analitickih alata za unapredenje
timske dinamike pokazala se kao izuzetno efikasan pristup.
Rezultati istrazivanja ukazuju na znacajan potencijal VIM-
a za razvoj zajednicke svesti u timu, omogucavajuci
blagovremeno identifikovanje problema i ciljano reSavanje
izazova.

Istrazivanje pokazuje da primena VIM-a na pojedinacnim
skupovima podataka daje solidne uvide u deljenu svest
tima, ali da se objedinjavanjem analiza viSe skupova i
njihovim prosledivanjem zavrSnom VIM-u - koji
funkcioniSe kao meta-analizator — problemi u timu

otkrivaju jasnije, Sto rezultira znatno kvalitetnijom
analizom. Buduca istrazivanja trebalo bi proSiriti
ukljucivanjem dodatnih izvora podataka i proverom
primenljivosti ovog pristupa u raznovrsnijim timovima i
organizacionim okruzenjima, a istovremeno usmeriti se na
razvoj preciznijih modela kako bi se utvrdilo donose li
pouzdanije zakljucke.

8. LITERATURA

[1] Understanding and improving teamwork in
organizations: A scientifically based practical guide —
Eduardo Salas, Marissa L. Shuffler, Amanda L.
Thayer, Wendy L. Bedwell, Elizabeth H. Lazzara.

[2] Factors that influence Teamwork — Julie V. Dinh and
Eduardo Salas.

[3] Shared Mental Models: A Conceptual Analysis.
Catholijn M. Jonker, M. Birna van Riemsdijk, Bas
Vermeulen -
https://www.researchgate.net/publication/221456658
Shared Mental Models - A Conceptual Analysis

[4] Routines and transactive memory systems: Creating,
coordinating, retaining, and transferring knowledge in
organizations -
https://www.sciencedirect.com/topics/psychology/tran
sactive-
memory#:~:text=A%20transactive%20memory%?20sy
stem%20(TMS,information%?20than%?20they%20indi
vidually%20possess.

[5] What are large language models (LLMs)? -
https://www.techtarget.com/whatis/definition/large-
language-model-LLM

[6] Large Language Model -
https://en.wikipedia.org/wiki/Large language model

[7] Attention Is All You Need -
https://arxiv.org/abs/1706.03762

[8] Tannenbaum S., Salas E. (2021). Teams that work:
The seven drivers of team effectiveness. Oxford
University Press.

Kratka biografija:

Halid PaSanovi¢ roden je 2000.
godine u Prijepolju, gde je zavrsio
osnovnu i srednju $kolu. Studije na
smeru Racunarstvo i automatika na
Fakultetu tehnic¢kih nauka zapoceo je
Skolske 2019/20. godine, a osnovne
akademske studije uspesno je
okoncao 2023. godine. Iste godine
upisao je master akademske studije
Primenjene racunarske nauke i
informatika, na modulu Elektronsko
poslovanje.

kontakt:
halidpasanovic1000@gmail.com

1332

Zbornik radova Fakulteta tehniékih nauka, Novi Sad

UDK: 4.3
DOI: https://doi.org/10.24867/33BE17Sekeres

RAZVOJ QGIS PLUGINA ZA VIZUALIZACIJU I ANALIZU KRETANJA OBJEKTA U
PROSTORU

DEVELOPMENT OF A QGIS PLUGIN FOR VISUALIZATION AND ANALYSIS OF
OBJECT MOVEMENT IN SPACE

Ivana Sekeres, Srdan Popov, Fakultet tehnickih nauka, Novi Sad

Oblast - ELEKTROTEHNIKA I RACUNARSTVO

Kratak sadrzaj — U radu je prikazan proces razvoja QGIS
plugina namenjenog vizualizaciji i analizi kretanja objekta
u prostoru, ilustrovan na primeru simulacije putanje
bespilotne letelice (UAV) wunutar definisane oblasti
interesa. Plugin je razvijen u programskom jeziku Python
i integrise PostgreSQL sistem za upravijanje bazama
podataka sa PostGIS ekstenzijom, cime se omogucéava
efikasno skladistenje, obrada i analiza prostornih
podataka.

Kljuéne reci: QGIS, GIS, plugin, UAV, Planiranje putanje
pokirvanja, PostgreSQL, PostGIS, Python

Abstract — The paper presents the development process of
a QGIS plugin designed for the visualization and analysis
of object movement in space, illustrated through a
simulation of an unmanned aerial vehicle (UAV) trajectory
within a defined area of interest. The plugin is developed
in Python and integrates a PostgreSQL database system
with the PostGIS extension, enabling efficient storage,
processing, and analysis of spatial data.

Keywords: QGIS, GIS, plugin, UAV, Coverage Path
Planning, PostgreSQL, PostGIS, Python

1. UVOD

Geografski informacioni sistemi (GIS) predstavljaju skup
alata, tehnologija i metoda namenjenih za prikupljanje,
skladistenje, obradu, analizu i vizualizaciju prostornih i
geografskih podataka. GIS tehnologija se primenjuje u
naucnim istrazivanjima, upravljanju resursima i
prostornom planiranju u razli¢itim oblastima. Da bi se GIS
koncepti primenili u praksi koriste se specific¢ni softverski
alati, poznati i kao GIS aplikacije. Jedna od najpoznatijih i
najrairenijih aplikacija otvorenog koda je QGIS.

Cilj rada je razvoj dodataka (eng. plugins) koji
omogucéavaju proSirenje standardnih funkcionalnosti
QGIS platforme. Rad prikazuje praktiénu primenu
koris¢enja QGIS-a u analizi kretanja objekta u prostoru. U
nastavku rada, radi lakSe terminoloske doslednosti,
koristice se engleski izraz plugins za oznacavanje
dodataka.

NAPOMENA:
Ovaj rad proistekao je iz master rada ¢iji mentor je bio
dr Srdan Popov, redovni profesor

2. TEHNOLOGUJE

U razvoju plugina kori$¢ene su sledece tehnologije: QGIS
(za vizualizaciju i rad sa prostornim podacima), Python (za
implementaciju logike), PostgreSQL sa PostGIS
ekstenzijom (za ¢uvanje prostornih podataka). Algoritmi
planiranja kretanja koji su obradeni u radu ukljucuju
Nearest Neighbor (NN) i A* algoritam, dok je vizualizacija
kretanja realizovana putem animacije u QGIS interfejsu.
Plugin omogucéava povezivanje sa bazom, unos i Cuvanje
koordinata, kao i prikaz animacije putanje, kao $to je to
prikazano na slici 1.

Slika 1. Generisana putanja UAV-a

3. QGIS

QGIS je besplatan geoinformacioni sistem (GIS)
otvorenog koda koji korisnicima omogucava kreiranje,
uredivanje, vizualizaciju, analizu 1 objavljivanje
geoprostornih podataka [2].

3.1 QGIS GUI

Interfejs QGIS-a, prikazan na slici 2, je dizajniran tako da
korisnicima omoguéi jednostavan pristup razliCitim
funkcionalnostima i alatima za rad sa geoprostornim
podacima [2]. Razvijeni plugin dodatno prosiruje interfejs,
uvode¢i nove opcije za vizualizaciju i analizu kretanja
objekata.

1333

https://doi.org/10.24867/33BE17Sekeres

Slika 2. QGIS GUI

3.2 Slojevi

U QGIS-u se podaci organizuju kroz slojeve (eng. layers)
koji mogu biti vektorski (tacke, linije, poligoni) ili rasterski

(satelitski snimci, digitalni modeli terena i sl).
Vizualizacija i analiza podataka zasnivaju se na
kombinaciji slojeva.

3.3 Pluginovi

Pluginovi omogucavaju prosirenje osnovnih

funkcionalnosti QGIS-a. Mogu se instalirati iz zvani¢nog
repozitorijuma ili razvijati lokalno, najces¢e u
programskom jeziku Python koris¢enjem PyQGIS API-ja.
Upravljanje pluginovima obavlja se preko Plugin
Manager-a, u kojem se oni instaliraju, aktiviraju i
odrzavaju.

3.4 Plugin Manager

Plugin Manager je centralni alat za upravljanje
pluginovima u QGIS-u. Pristupa mu se direktno putem
glavnog menija Plugins > Manage and Install Plugins.
Kroz njega korisnici mogu pretrazivati i instalirati
pluginove, dodavati privatne repozitorijume, pregledati
metapodatke (npr. detalje o autoru, verziji, opisu i
zavisnostima (eng. dependencies) svakog plugina, kao i
ukljucivati/iskljucivati instalirane pluginove.

3.5. Python

Python je interpretirani, objektno-orijentisani programski
jezik visokog nivoa sa dinami¢kom tipizacijom. Njegova
jednostavna 1 Citljiva sintaksa, zajedno sa moc¢nim
ugradenim strukturama podataka, ¢ini ga pogodnim za brzi
razvoj aplikacija, skriptovanje i povezivanje postojecih
komponenti, uz smanjenje troskova odrzavanja koda [4].

3.5.1 Python i QGIS

QGIS poseduje integrisanu Python konzolu, koja
omogucava direktno izvrSavanje Python komandi u okviru
QGIS okruzenja. Ova konzola se otvara putem menija
Plugins > Python Console. Python jezik se Siroko koristi za
implementaciju pluginova u QGIS-u. Za razvoj pluginova
koristi se PyQGIS API, putem kojeg QGIS pruza
developerima programski interfejs za interakciju i
modifikovanje osnovnih funkcija QGIS-a, ali i grafickog
interfejsa.

3.6. PostgreSQL

PostgreSQL, odnosno Postgres, predstavlja objektno-
relacioni sistem za upravljanje bazama podataka (eng.
Object-Relational Database Management System —
ORDBMS) otvorenog koda (eng. open source) koji, za
razliku od klasi¢nih relacionih baza podataka, poseduje
mogucnost Cuvanja objekata i vektora.

3.7. PostGIS ekstenzija

PostGIS je ekstenzija za PostgreSQL bazu podataka, koja
omogucava skladiStenje, upravljanje i analizu prostornih
podataka direktno u bazi. PostGIS omogucava skladistenje
razli¢itih vrsta prostornih podataka, ukljucujuéi tacke,
linije i poligone, u oba formata: dvodimenzionalnom (2D)
i trodimenzionalnom (3D) [3].

3.8. Planiranje kretanja

Planiranje kretanja predstavlja proces odredivanja
optimalne putanje kretanja objekta kroz odredeni prostor,
uzimajuéi u obzir razliCite kriterijume kao S§to su
minimalna duzina puta, vreme kretanja ili izbegavanje
prepreka. Planiranje moze biti realizovano od strane
coveka ili maSine koja ima moguénost planiranja svog
kretanja. Ukoliko je onaj koji planira maSina, tada
govorimo o algoritmima planiranja kretanja [5].

3.8.1 Primene u geoinformacionim sistemima

Coverage Path Planning nalazi $iroku primenu u oblasti
geoinformacionih sistema (GIS). Geoinformacioni sistemi
omogucavaju prikupljanje i obradu prostornih podataka
potrebnih za planiranje optimalnih putanja.

Upotrebom bespilotnih letelica, naro¢ito dronova, proces
prikupljanja prostornih podataka postao je znatno
ostvaruje velike benefite jer ¢ine da skupljanje prostornih
podataka bude jednostavnije i pristupacnije. Tradicionalni
na¢in sakupljanja podataka podrazumevao je
iznajmljivanje letelica i pilota, kao 1 postavljanje
instrumenta za snimanje za letelicu, Sto je zahtevalo
slozenu pripremu i visoke troskove. Velika prednost
upotrebe bespilotnih letelica je $to mogu preleteti veliku
povrSinu za nekoliko sati i prikupiti podatke visoke
rezolucije. Pored toga moguce je snimiti teSko dostupne i
rizi¢ne lokacije bez ugrozavanja ljudi. Podaci prikupljeni
dronovima lako se integrisu u GIS softvere, kao $to je to
QGIS.

3.9. Algoritmi

U radu su za planiranje putanje kretanja objekta u prostoru,
sa ciljem pokrivanja cele povrSine od interesa, koris¢eni
algoritmi Nearest Neighbor (NN) i A* (A star), koji
omoguéavaju odredivanje optimalnih ili priblizno
optimalnih putanja u okviru definisanog prostora interesa.
Nearest Neighbor (NN) algoritam je heuristicki pristup
kojim se iz trenutne pozicije bira najbliza neposecena tacka
kao sledeca destinacija.

A* algoritam se primenjuje u svrhe odredivanja najkraceg
puta izmedu dva ¢vora u grafu. Predstavlja unapredenje
Dijkstrinog algoritma i smanjuje broj ¢vorova koje je
potrebno posetiti odnosno ispitati. Ovaj algoritam koristi
heuristicki pristup za procenjivanje cene pruzanja do
ciljnog ¢vora. Algoritam odrzava celo stablo i iterativno se
pruza ka jednom ¢voru u svakom koraku. Cena pruzanja do
sledeceg ¢cvora se odreduje na osnovu najmanje predenog
rastojanja, vremena putovanja i sli¢no, u zavisnosti od
zahteva prakticne namene. Svakom iteracijom odnosno
svakim korakom, algoritam odreduje cenu putanje
slede¢om formulom:

1334

fm) =gm) + h(n) (1)

Gde je n slededi ¢vor, g(n) cena putanje od pocetnog ¢vora
do n, i h(n) heuristicka funkcija koja odreduje optimalan
put od n ka ciljnom ¢voru. h(n) se smatra prihvatljivom
cenom, $to znaci da nikada nece preceniti dostizanje cilja,
odnosno uvek predstavlja najnizu granicu moguée cene
kretanja [1].

4. KREIRANJE PLUGINA

Plugin u QGIS-u moze se kreirati na dva nacina:
koris¢enjem alata Plugin Builder, koji automatski generise
osnovnu strukturu projekta ili ru¢no definisanjem
potrebnih fajlova i direktorijuma. Plugin Builder je veoma
koristan jer ubrzava pocetnu fazu razvoja. Ru¢no kreiranje
plugina zahteva poznavanje osnovne strukture i obaveznih
komponenti koje svaki plugin mora da sadrzi.

4.1. Struktura tipi¢nog plugina

Pluginovi se sastoje od seta fajlova koji moraju da prate
standardnu strukturu. Plugin Manager upravlja
pluginovima i oni se ucitavaju kada pokrenemo QGIS
program.

Plugin mora da sadrzi sledece fajlove:

e metadata.txt: tekstualni fajl koji sadrzi
informacije o pluginu. Ove informacije su vidljive
u Plugin Manageru.

e init .py: koji se poziva od strane Plugin
Managera i ucitava glavni fajl. Ovaj fajl se ucitava
prviion sadrzi funkciju classFactory() koja kreira
instancu glavne plugin klase.

e main.py: glavni fajl definiSe glavnu plugin klasu i
ocekivano je da ima minimum tri metode.

o _ init () metoda koja daje pristup
QGIS interfejsu.

o initGui() metoda koja se poziva kada se
plugin ucita.

o unload() metoda koja se poziva kada se
plugin uklanja.

4.3. Prosirenje korisnickog interfejsa

Korisnicki interfejs QGIS-a moze se dodatno prosiriti
instalacijom ili razvojem pluginova. Kada se plugin
integrise, on ne uti¢e na veé postoje¢i GUI programa, veé
ga dodatno proSiruje kreiranjem novih elemenata i
funkcionalnosti.

5. DIZAJN I IMPLEMENTACIJA PLUGINA

Cilj kreiranja plugina je omoguciti vizualizaciju i analizu
kretanja objekta na mapi. U ovom primeru, realizovana je
simulacija kretanja drona na osnovu koordinata koje
definiSe korisnik. Plugin omogucava pracenje kretanja
objekta i analizu putanje u realnom vremenu na osnovu
prethodno zadatih podataka.

Podaci o kretanju drona se cuvaju u PostgreSQL bazi.
Plugin treba da omoguc¢i animaciju kretanja drona na mapi,
upisivanje i ¢uvanje novih koordinata i podataka u bazu.
Plugin ne obuhvata kontrolu stvarnog drona, veé
predstavlja simulaciju potencijalnog kretanja na osnovu
odabranih koordinata.

5.1. Konfiguracija radnog okruZenja

Za implementaciju plugina koris¢ene su sledece
komponente:
e QGIS verzija 340 LTR (kodnog imena

Bratislava), kori§¢en za vizualizaciju i obradu
prostornih podataka.

e Python, koji dolazi integrisan sa QGIS
instalacijom na Windows operativhom sistemu i
koristi se za razvoj.

e PostgreSQL sa PostGIS ekstenzijom, koji
obezbeduje Cuvanje i prostornu obradu podataka,
instaliran i konfigurisan unutar Docker kontejnera
radi lakSe portabilnosti i izolacije okruZenja.

5.1.1 Docker

Docker je platforma za kontejnerizaciju koja omogucava
pokretanje aplikacija u izolovanom okruzenju, odnosno
kontejneru (eng. container). U okviru ovog projekta,
PostgreSQL baza podataka pokrenuta je unutar Docker
kontejnera i koristi se specifi¢na slika postgres qgis. Ova
slika je kreirana tako da u sebi sadrzi zvani¢nu PostgreSQL
sliku (postgres:latest), ¢ime omogucava jednostavno
postavljanje baze sa svim osnovnim funkcionalnostima
PostgreSQL-a.

5.1.2. Struktura baze podataka

U bazi se cuvaju podaci o poligonima i parametrima
vezanim za kretanje, tabela sastoji se od sledec¢ih kolona iz
tabele 4.1.

Tabela 4.1. Opis podataka koji su ¢uvaju u tabeli
polygon_data

Kolona Opis

id Jedinstveni ID broj poligona.
geometry Koordinate granica poligona.
area Povrsina u kvadratnim metrima.

mov_duration Vreme potrebno dronu da pokrije

ceo poligon, u minutama.

path Putanja drona kroz poligon,

formatirana kao JSON.

flight height Visina leta drona u metrima.

camera_flow Brzina snimanja kamere, izrazena u

fps.

image overlap Procenat preklapanja izmedu slika

(0-100%)

strategy cost Procena troska misije.

ground_sampling | Rezolucija slike u cm po pikselu.

_distance

created at Datum i vreme kreiranja.

1335

Polje geometry je tipa GEOMETRY(POLYGON, 4326)
predstavlja definiciju kolone u prostornoj bazi podataka.
Poligon oznacava tip geometrije, §to znaci da se u tom
polju mogu ¢uvati isklju¢ivo poligoni.

5.2. Slojevi

U okviru projekta, slojevi sluze kao osnovni nacin
organizacije i prikaza prostornih podataka potrebnih za
simulaciju kretanja drona. Svaki sloj nosi odredeni tip
informacija i omogucava korisniku da prikaze razliCite
aspekte projekta unutar QGIS interfejsa. Pored osnovnih
slojeva koji definisu poligon i putanju, moguce je dodati i
slojeve sa preprekama, ¢ime se omogucava simulacija
realnog okruzenja u procesu planiranja kretanja letelice.

Layers B
\\@@)"'7'5"71_?&'
| == Point Trail

v @ Moving Point
V| * A* Scan Path (Shortest Path)
V|| | Scan Grid
v| [l Obstacles
v/ [] Selected Area
* ¥ B OpenStreetMap

Slika 3: Prikaz aktivnih slojeva u projektu

5.2.1 OpenStreetMap

U okviru projekta kori$¢ena je OpenStreetMap (OSM), jer
predstavlja besplatnu i otvorenu mapu sveta. OSM nudi
detaljne geografske podatke o wulicama, zgradama,
granicama, rekama i drugim objektima. Podaci su dostupni
pod licencom koja omogucava slobodnu upotrebu, izmene
i distribuciju.

5.2.2 Generisanje mreZe

Pre nego $to se putanja moze odrediti, generiSe se mrezZa
koja obezbeduje potpunu pokrivenost poligona. Svaka
¢elija u mrezi predstavlja pojedinacnu sliku koju bi
bespilotna letelica fotografisala u toku kretanja po putanji.
Funkcionalnost kreiranja mreze sastoji se od dva vazna
koraka: racunanje dimenzija éelija i generisanje mreze sa
pripadaju¢om putanjom.

5.2.4 Generisanje putanje algoritmom

Pre nego §to dron pocne simulirano kretanje, putanja se
izraCunava koriS¢enjem algoritma za planiranje kretanja.
Algoritam generiSe redosled tacaka koje dron treba da
poseti, a zatim se ove tacke povezuju linijjama u
vektorskom sloju, ¢ime se dobija definisana putanja.

5.2.5 Simulacija kretanja

Vektorski slojevi za kretanje drona predstavljaju tacke i
linije koje definiSu putanju drona. Svaka tacka sadrzi
koordinate, a linije povezuju te tacke kako bi se
vizualizovala simulirana putanja. Tacke se prikazuju u
realnom vremenu, a dron se kre¢e od pocetne ka zavr$noj
tacki, prateéi generisanu putanju.

5.3. Metapodaci

Plugin podrzava definisanje metapodataka (naziv, opis
funkcionalnosti, verzija, autor i sli¢no) koji se unose u fajl

metadata.txt. Na osnovu ovih podataka QGIS omogucava
identifikaciju, pretragu i prikaz osnovnih informacija o
pluginu u listi dodataka.

6. REZULATI

Razvijeni QGIS plugin omogucava simulaciju kretanja
bespilotne letelice (UAV) unutar definisanog poligona od
interesa. Rezultati pokazuju da plugin pruza jednostavnu i
interaktivhu vizualizaciju kretanja objekata, uz
fleksibilnost za dalje proSirenje i primenu u razli¢itim
oblastima.

7. ZAKLJUCAK

Implementacijom ovog resenja pokazano je da QGIS, kao
fleksibilna platforma otvorenog koda, omoguc¢ava razvoj
specijalizovanih alata koji mogu unaprediti proces analize
prostornih podataka i planiranja kretanja. Pre svega, plugin
je u potpunosti integrisan u QGIS okruzenje, Sto
korisnicima omogucava da koriste poznate GIS alate bez
potrebe za dodatnim softverom. Iako je u radu fokus bio na
simulaciji kretanja UAV-a, potencijalne primene
razvijenog reSenja prevazilaze ovaj domen. Plugin se moze
koristiti u poljoprivredi (planiranje ruta za prskanje i
mapiranje parcela), urbanizmu i prostornom planiranju
(analiza kretanja vozila i peSaka), ekologiji (monitoring
zasticenih podrucja i pracenje kretanja zivotinja), kao i u
bezbednosnim i spasilackim misijama.

6. LITERATURA

[1] Hart, P.E., Nilsson, N.J., Raphael, B. A Formal Basis
for the Heuristic Determination of Minimum Cost
Paths.

[2] QGIS Documentation, https://qgis.org (pristupljeno u
septermbru 2025.)

[3] PostGIS Documentation,
https://postgis.net/documentation/ (pristupljeno u
septermbru 2025.)

[4] Python Documentation, https://www.python.org/
(pristupljeno u septermbru 2025.)

[5] Enric Galceran and Marc Carreras. A Survey on
Coverage Path Planning for Robotics.

Kratka biografija:
Ivana Sekere§ rodena je 01.10.1995. u
Somboru. Zavrsila je ,,Fakultet tehnickih

nauka” u Novom Sadu, smer
Racunarstvo i automatika, 1 2020. godine
stekla zvanje diplomirani inZenjer

elektrotehnike i racunarstva. Iste godine
upisala je master akademske studije na
smeru ,,Primenjene racunarske nauke i
informatika — Elektronsko poslovanje”.
kontakt: sankovicivana27@gmail.com

1336

https://qgis.org/
https://postgis.net/documentation/
https://www.python.org/

Zbornik radova Fakulteta tehni¢ckih nauka, Novi Sad

UDK: 4.9
DOI: https://doi.org/10.24867/33BE18Ninkovic

ORKES CONDUCTOR - POREDENJE PERFORMANSI SA APACHE KAFKA
ORKES CONDUCTOR - PERFORMANCE COMPARISON WITH APACHE KAFKA
Jelena Ninkovié, Fakultet tehnickih nauka, Novi Sad

Oblast - ELEKTROTEHNIKA I RACUNARSTVO

Kratak sadrzaj — U ovom radu opisani su Orkes
Conductor kao primer orkestracije dogadajima i Apache
Kafka kao primer koreografije. Uradena je analiza i
poredenje performansi ova dva alata. Rad ukljucuje i opis
implementacije oba alata, napisane u programskom
Jjeziku Java, kao i poredenje redova koji predstavijaju
osnovnu strukturu podataka na koju se alati oslanjaju.

Kljucéne rei: Conductor, zadatak, razmena poruka,
Apache Kafka, red

Abstract — This paper describes Orkes Conductor as an
example of event orchestration and Apache Kafka as an
example of choreography. A performance analysis and
comparison of two tools is provided. This paper also
includes description of implementation of both tools,
written in Java programming language, as well as a
comparison of queues, which represent the fundamental
data structure these tools rely on.

Keywords: Conductor, task, messaging, Apache Kafka,
queue

1. UVOD

Mikroservisna arhitektura (MSA) predstavlja
arhitekturalni dizajn Sablon koji je uveden da resi
probleme oko horizontalne skalabilnosti, dostupnosti,
modularnosti 1 agilnosti arhitekture u tradicionalnim
monolitnim sistemima. Aplikacija se razvija kao skup
malih servisa [1], gde je svaki nezavisno razvijan,
testiran, azuriran, skaliran i deploy-ovan i komunicira sa
ostatkom preko jednostavnih mehanizama, najcesce
HTTP poziva. Servisi su tako definisani da svaki ima
sopstvene entitete i bazu podataka, §to ¢ini da promene u
bazi podataka jednog servisa nisi vidljive u bazi drugog
servisa. Ukoliko dode do rollback-a transakcije zbog
greske u jednom od servisa povratak na predasnje stanje
nije mogu¢ jer su u pitanju distribuirane transakcije.

Da bi se resio problem uvodi se SAGA [2] Sablon. U
slucaju greske okida se sekvenca rollback dogadaja, od
jednog servisa ka drugom, u obrnutom redosledu. SAGA
Sablon moze biti implementiran kori§¢enjem koreografije
dogadaja i orkestracionim tehnikama.

U slucaju koreografije dogadajima, svaki mikroservis radi
zasebno i kada zavr$i lokalnu transakciju emituje dogadaj,
koji drugi servisi osluskuju sa ciljem da zapo¢nu svoje
transakcije.

NAPOMENA:
Ovaj rad proistekao je iz master rada Ciji mentor je
bio dr Srdan Popov, red. prof.

Proces se nastavlja sve dok poslednji servis ne emituje
nijedan dogadaj, $to predstavlja kraj transakcije.

Kod orkestracije postoji centralni orkestrator, koji se
ponasa kao ,roditeljski“ servis, slusa sve dogadaje koje
emituju lokalne transakcije mikroservisa i na osnovu
dogadaja okida slede¢u lokalnu transakciju u drugom
mikroservisu ili servisima.

2. ORKES CONDUCTOR

Orkes Conductor [3] je radni okvir koji je razvijen povrh
Netflix Conductor-a. Pored osnovnih funkcionalnosti koje
je nudila platforma dodate su funkcionalnosti i
poboljsanja i cilju lakSeg deploy-ovanja i upravljanja
tokovima u produkcionom okruzenju.

2.1. Osnovni pojmovi

Proces orkestriranja koriS¢enjem Conductor-a obuhvata
koriS¢éenje tri osnovna koncepta: zadatke, radnike i
tokove.

Zadatak predstavlja jedinicu posla ili korak u toku, poput
kreiranja HTTP poziva, slanja mejla, procesiranja
podataka ili izvrSavanja poslovne logike. Predstavlja
osnovnu gradivnu jedinicu toka i dodatno moze biti
podeljen na operatore, sistemske zadatke ili radnike za
sopstveni kod.

Radnici su kod zaduZen za izvrSavanje zadataka. Za
sistemske zadatke i1 operatore je zaduzen Conductor
server, dok zadacima koje je definisao korisnik upravljaju
aplikacije koje ih implementiraju. Nakon $to radnik
kontaktira server da primi i izvr§i zakazane zadatke
Conductor ¢e proslediti ulazne parametre zadatka radniku
i preuzeti izlazne podatke nakon zavrsetka.

Tok se definiSe kao kolekcija zadataka i operatora, koji
specificiraju redosled i izvrSenje definisanih zadataka.
Ova orkestracija se deSava u hibridnom ekosistemu koji
objedinjuje serverless funkcije, mikroservise i monolitske
aplikacije. Kako je Conductor jezicki agnostiCan
orkestracija moze biti izvrSena u bilo kom programskom
jeziku. Workflow scheduler omoguéava tokovima da
budu pokrenuti po odredenom rasporedu. Ovo daje
mogucénost da tokovi budu konfigurisani da se pokreé¢u u
zeljenoj ucestalosti i da se prilikom kreiranja rasporeda
bira verzija toka.

2.2. Al zadaci

Orkes Conductor omoguéava kreiranje aplikacija koje
koriste generativne Al modele i vektorske baze podataka.
Generativni Al je tip veStacke inteligencije sposoban za
kreiranje novog ,,Covekolikog® sadrzaja na osnovu pre-
treniranih modela koji su bili izloZeni velikim koli¢inama

1337

https://doi.org/10.24867/33BE18Ninkovic

sli¢énog sadrzaja. Ljudska interakcija je i dalje potrebna da
se modeli usmere Sta treba da bude generisano -
usmeravaju se slanjem promptova (tekstualnih
instrukcija). Odgovor Gen-Al modela je isto tekstualan, i
ovi modeli se nazivaju LLM. LLM su deep learning
algoritmi obuceni na velikoj koli¢ini podataka. Mogu da

obavljaju razne NLP =zadatke, poput generisanja,
prevodenja, chatbot-ova, Al asistenata i sl.
2.3. Alert zadaci

Alert zadaci su poseban vid zadataka koji imaju ulogu da
Salju notifikacije ili upozorenja na osnovu odredenih
uslova ili dogadaja u sistemu.

2.4. Rukovalac dogadajima

Rukovalac dogadajima procesira dolazece poruke i
izvrSava akcije na osnovu njihovih detalja. Okida¢ moze
biti okinut od strane narednih akcija — complete task,
terminate workflow, update variables, fail task i start
workflow.

2.5. Kontrola pristupa

Orkes Conductor nudi kontrolu pristupa baziranu na
ulogama (RBAC) korisnicima Orkes platformi, kao i
aplikacijama koje koriste Conductor API. RBAC
obezbeduje pristup metapodacima tokova, zadataka, tajni,
promenljivama okruZenja, integracijama, promptovima,
korisni¢kim formama, rukovaocima dogadaja,
rasporedima, webhook-ovima i domenima.

Korisnik predstavlja ¢oveka koji interaguje sa Conductor-
om preko Orkes platforme, 1 autentifikovan je
koris¢enjem SSO provajdera ili mejla/lozinke. Svaki
korisnik moze imati jednu ili viSe dodeljenih uloga.

Grupa predstavlja set korisnika, i predstavlja brz na¢in da
se dodele permisije ve¢em broju korisnika. Svaka grupa
moze biti povezana sa jednom ili vise uloga. Takode
moze imati dodeljen set permisija, koje obezbeduju
pristup odredenim resursima. Kada je korisnik dodat u
grupu automatski nasleduje sve uloge i permisije grupe, a
kada je uklonjen iz nje gubi sve uloge 1 permisije koje je
nasledio iz nje.

Aplikacija predstavlja aplikaciju koja interaguje sa
Conductor serverom putem API-ja ili SDK-ja. Aplikaciji
mogu biti dodeljene permisije, koje ¢e obezbediti pristup
odredenim Conductor resursima. Svaka aplikacija moze
imati jedan ili vise klju¢/tajna parova, koji se koriste za
dobijanje pristupa.

Tag predstavlja par klju¢/vrednost koji moze biti
pridruzen metapodacima resursa. Sluzi kao precica za
deljenje permisija brojnih resursa ili korisnika.

Uloga predstavlja set opstih podrazumevanih permisija
resursima. Moze biti dodeljena korisniku, grupi ili
aplikaciji. Ako je dodeljeno vise uloga bi¢e dodeljene
permisije za svaku od njih.

Pored permisija baziranih na ulogama moguce je dodeliti i
granularne permisije grupama ili aplikacijama.
Granularne permisije pruzaju dodatni pristup povrh
korisnikovih ili aplikacijskih permisija baziranih na ulozi.

Domen se koristi da se dodeli pristup svim zadacima u
odredenom domenu. Koristan je za masovno dodeljivanje
prava radnik aplikaciji da izvrSi sve zadatke, bez da se
mora dodati svaki pojedinacni zadatak i da se definiSe
njegov domen.

2.6. Rutiranje zadataka

Za svaki konfigurisani tip zadatka Conductor server ¢e
odrzavati red 1 distribuirae zadatke svim radnicima
konektovanim na server. Postoji i opcija gde isti zadatak
moze biti rutiran razli¢itom setu radnika na osnovu
koncepta zvanog Task to Domain. Ova vrednost se
prosleduje toku kada je pokrenut, i ako je prisutna znaci
da se zadaci rutiraju drugacije od podrazumevanog
nacina.

2.7. Nadgledanje redova zadataka

Red zadataka sadrzi zadatke koji ¢ekaju da se izvrse.

Nadgledanje ovih redova obezbeduje optimalni
performans i efikasnost u procesiranju zadataka,
identifikovanje potencijalnih problema i odrzavanje

pouzdanosti sistema.
2.8. Metrika i skaliranje radnika

Skaliranje i podeSavanje performansi radnika zavisi od
slede¢ih metrika: broja zadataka na ¢ekanju, propusnosti
pojedinac¢nog radnika i ukupnog broja pokrenutih radnika.

2.9. Rukovanje greskama

Conductor je napravljen da nudi najmanje jednu garanciju
isporuke — sve poruke mogu da se ¢uvaju, trajne su i bice
isporucene radnicima najmanje jednom. Ovakav model
osigurava dve stvari: kada tok zapoc¢ne bi¢e kompletiran
ako su svi zadaci kompletirani i ako izvrSavanje toka bude
neuspesno zbog ponovnih pokuSaja i sl., poruke ¢e biti
isporucene slede¢em cvoru koji je ziv i responsivan.

Timeout se moze dogoditi ako nema radnika za zadati tip
zadatka, radnik primi poruku ali prekine svoj rad pre nego
S§to zavrsi zadatak i zadatak nikada ne prede u complete
status ili je radnik zavrSio procesiranje, ali ne moze da
komunicira sa Conductor serverom usled greske u mrezi,
ili srusenog Conductor servera.

3. APACHE KAFKA

Apache Kafka [4] je distribuirana platforma za striming
podataka koja moze da objavljuje, prima, ¢uva i procesira
strimove u realnom vremenu. Dizajnirana je da rukuje
velikim brojem real-time informacija 1 rutira ih
mnogostrukim consumer-ima.

Osnovna jedinica unutar Kafke je poruka — niz bajtova.
Poruke mogu imati opcione metapodatke — kljuc. Kljuc je
takode niz bajtova i koristi se kada se poruke upisuju u
particije. Zbog bolje efikasnosti poruke se u Kafku
upisuju kao batch — kolekcija poruka, gde se poruke
kategoriSu u teme, koje su dodatno razbijene na particije.
Poruke se upisuju na kraj teme i Citaju sa pocetka.
Ukoliko tema ima viSe particija ne moze biti garantovano
da ¢e u celoj temi biti ispoStovan redosled kako su poruke
stizale, samo u pojedinacnoj particiji. Particije su nacin na
koji Katka obezbeduje skalabilnost, jer svaka particija

1338

moze biti na drugom serveru, $to znaci da jedna tema
moze biti horizontalno skalirana na viSe servera.

3.1. Producer

Producer-i [5] su aplikacije koje kreiraju poruke i $alju ih
Kafka brokeru za dalje konzumiranje. Producer ne upisuje
poruke u particije, ve¢ kreira zahteve za poruke i Salje ih
vodi brokera. Kafka producer-i mogu biti sinhroni i
asinhroni. Sinhroni producer-i nakon slanja poruke ¢ekaju
potvrdu od brokera, dok asinhroni nastavljaju sa daljim
radom bez cekanja. Prednost sinhronih producer-a je
pouzdanost, medutim ¢ekanje na potvrdu moze dovesti do
zastoja u sistemu i ograni¢avanja broja poruka koje mogu
biti poslate odjednom. Kod asinhronih producer-a ovi
problemi su reSeni, ali su dosta komplikovaniji za
implementiranje, naro€ito rukovanje greskama i ako nisu
pazljivo implementirani moze do¢i do gubitka podataka.

3.2. Consumer

Consumer-i [5] su aplikacije koje konzumiraju poruke.
Consumer se pretplacuje na jednu ili vise tema i Cita
poruke u redosledu kojim su stigle. Consumer vodi racuna
koje poruke je ve¢ procitao tako $to vodi rauna o offset-u
poruka. Offset je metapodatak, integer broja¢ koji se
stalno uvecéava, na koji Kafka daje svaku poruku kako je
objavljena. Cuvanjem offset-a poslednje konzumirane
poruke za svaku particiju, u Zookeeper-u ili u samoj
Kafki, consumer moze biti zaustavljen i ponovo pokrenut
bez gubljenja podataka. Consumer-i se nalaze unutar
consumer grupe — jedan ili viSe consumer-a koji rade
zajedno i konzumiraju temu. Grupa osigurava da je svaka
particija konzumirana od samo jednog ¢lana. Mapiranje
consumer-a i particije se naziva vlasni§tvo particije od
strane consumer-a. Na ovaj nain consumer-i mogu biti
horizontalno skalirani da konzumiraju teme sa velikim
brojem poruka. Ukoliko jedan consumer ima gresku ostali
¢lanovi grupe ¢e rebalansirati particije tako da preuzmu
posao neuspesnog Clana.

3.3. Brokeri i klasteri

Jedan Kafka server se naziva broker. Broker prima poruke
od producer-a, dodeljuje im offset, i commit-uje poruke
na disku. Takode servisira consumer-e, odgovaraju¢i na
fetch zahteve porukama koje je prethodno commit-ovao.
Kafka brokeri funkcioniSsu kao deo klastera. Unutar
klastera, jedan broker sluzi kao kontroler, izabran
automatski iz skupa zivih ¢lanova klastera. Kontroler je
zaduzen za administrativne operacije, ukljucujuci
dodeljivanje particija brokerima i nadgledanje brokera u
slu¢aju neuspeha. Particija je u vlasni§tvu samo jednog
brokera unutar klastera, i taj broker se zove voda particije.
Medutim, particija moZe biti dodeljena vise brokera, Sto
¢e rezultovati repliciranjem particije.

Karakteristika Kafke je period zadrzavanja. Brokeri su
konfigurisani sa podrazumevanim periodom ili dok tema
ne dostigne odredenu veli¢inu. Pojedinacne teme mogu
biti definisane sa sopstvenim periodom zadrzavanja.

3.3. Zookeeper

Zookeeper je komponenta Kafke koja sluzi kao
koordinator i sluzi za biranje kontrolera, ¢uvanje statusa

brokera, <¢uvanje metapodataka tema, odrzavanje
informacija o klijentskim normama i ACL tema.

4. POREDENJE ORKES CONDUCTOR-A 1
APACHE KAFKE

Za poredenje orkestracije i koreografije uzet je primer
onlajn prodavnice. Kreiran je Java projekat u kome su
definisani slede¢i mikroservisi: ordering servis, inventory
servis, payment servis, notification servis i shipping
servis.

4.1. Implementacija Conductor toka

Mikroservis ordering preuzima ulogu orkestratora i
koordinise komunikaciju izmedu preostalih servisa. Tok
je definisan u JSON formatu i dodat u Orkes server. U
okviru ordering servisa definisan je REST endpoint koji
pokrece tok koris¢enjem WorkflowClient-a definisanog u
zavisnosti io.orkes.conductor:orkes-conductor-client.
Prilikom pokretanja toka zadaje se ime toka koji se
pokrece, kao i imena i vrednosti ulaznih promenljivih.

Prilikom definisanja radnika potrebno ga je anotirati sa
@WorkerTask. Anotacija od ulaznih parametara ima ime
zadatka, broj niti koje se koriste za izvrSavanje zadatka,
kao i interval koliko Cesto radnik $alje upite serveru.

4.2. Implementacija Kafke

Koristi se event-driven komunikacija. Kafka server (kafka
i zookeeper) je podignut na portu 9092 u Doker
kontejneru i koris¢enjem Java biblioteke u
mikrosrevisima se kreiraju KafkaTemplate i
ConcurrentKafkalistenerContainerFactory (samo u
servisima gde postoji consumer) na osnovu konfiguracije
definisane u application.yml fajlu. U okviru ordering
servisa definisan je endpoint koji pokrece slanje poruka —
ovaj servis jedini nema consumer-a, bududi da je servis od
kojeg pocinje slanje.

Prilikom definisanja consumer-a potrebno ga je anotirati
sa @XKafkaListener. Anotacija od ulaznih parametara ima
identifikator ~ consumer-a, temu koji osluskuje,
identifikator grupe — u ovom slucaju servis u kojem se
nalazi, kontejner fabrike — definisano Java kodom
prilikom konfiguracije Kafke i rukovalac u slucaju greske.

4.3. Poredenje primena struktura podataka tipa red

Red kao strukturu podataka koriste i Conductor i Kafka.
Kod Conductor-a zadaci koji ¢ekaju da se izvrSe se nalaze
u redu, a kod Kafke se poruke smestaju u redove.

Conductor koristi FIFO (First-in First-out) strukturu,
realizovanu preko Redis liste kao skladista podataka.

Kafka koristi log-baziranu distribuiranu append-only
strukturu, $to znaéi da su poruke redosledno upisane po
particiji, ali redosled medu razliCitim particijama nije
zagarantovan i viSestruki consumer-i mogu Citati poruku
nezavisno (poruka ne nestaje nakon ¢itanja).

1339

Tabela 1. Poredenje Orkes Queues i Kafka redova

Orkes Queues Kafka
. . Commit
Tip reda FIFO lista log/append-only
Redosled | Globalni FIFO Definisan
particijom
Cuvanje poruka Da Da
Vlsestrukq Ne Da
consumer-i
Lokacija U memoriji .
skladista (Redis) Disk
Odli¢no za real- | Odli¢no za bulk
Performanse . .
time zadatke striming
Ponovno Citanje Ne Da
poruka

4.4. Komparativna analiza performansi

Uzevsi u obzir da performanse sistema mogu zavisiti od
razli¢itih parametara — poput konfiguracije, hardverskih
resursa i memorije, tesko ih je kvantifikovati.

Za potrebe ovog rada, projekat ¢ita podatke o
porudzbinama iz pet datoteka, sa razliCitim brojem
porudzbina.

Tabela 2. Rezultati izvrsavanja

Broj

poruka >00

1000 | 2000 | 5000 | 10000

Conductor 10s 15s 26s 49s 95s

Kafka 041s | 0.31s | 0.43s 1.32s 7.24s

Razlika prilikom obrade malog broja podataka nije velika,
ali moze se videti da Kafka ima bolje performanse, i
razlika u performansama se povecava sa brojem podataka.

Kako servisi za shipping i notification ne zavise jedan od
drugog definisani su u paraleli. Ovaj paralelizam kod
Conductora-a zahteva 1 dodatne FORK 1 JOIN zadatke,
gde prilikom izvrSavanja najvise vremena odlazi na JOIN
zadatak. U verziji gde je Conductor tok definisan kao
sekvencijalni (izvrSavaju se shipping pa notification
zadatak) dolazi do ubrzanja - u slucaju sa 10000 podataka
vreme izvr§avanja je palo sa 95s na 76s. Razlozi zasto je
sekvencijalni tok ispao brzi od paralelnog su da je
paralelizam logicki, a ne fizicki i overhead orkestracije —
svaki zadatak mora biti evidentiran u bazi, status zadatka
se upisuje u skladiSte metapodataka, radnik ga mora
preuzeti i vratiti rezultat, Sto znaci da kod jednostavnih
tokova overhead postaje veci nego korist paralelizacije.

Na primeru implementacije Kafke, vidi se da Kafka ne
¢eka da poruke i od notification i shipping servisa budu
primljene da bi se smatralo da je proces uspesno zavrsen.
Za dobijanje informacija o tome uvodi se jos jedan servis
— delivery servis, koji ¢eka uspesnu obradu obe poruke i
nakon $to su obradene, razmena poruka ¢e biti uspesna.
Sa dodatnim servisom dolazi do znadajnog usporavanja
obrade poruka koris¢enjem Kafke, gde je za 10000
poruka sada potrebno 29.9s.

5. ZAKLJUCAK

Sam Conductor ne obraduje podatke direktno, ve¢ deluje
kao centralni koordinator koji ih delegira radnicima, koji
zatim vracaju rezultate po zavrSetku. Ova arhitektura
omogucava sistemu da ostane slabo spregnut, uz potpunu
vidljivost i kontrolu nad dugotrajnim i slozenim
procesima. Za razliku od Kafke koja je optimizovana za
brzo i pouzdano prosledivanje poruka izmedu producer-a
i consumer-a, Conductor je usmeren na orkestraciju
tokova 1 upravljanje stanjem kroz kompletan zivotni
ciklus procesa.

U situacijama gde je potrebna jednostavna razmena
poruka ili linearno procesiranje, Kafka je adekvatniji
izbor. Medutim, u slucajevima sa kompleksnijom
logikom, gde je neophodno izvr§avanje u paraleli,
ponovni pokusaji, rukovanje greSkama, uslovno grananje
ili su zadaci vezani za specifi¢ne korisnike Conductor
pruza prednost u pogledu deklarativnog modeliranja,
bolje preglednosti, naprednog upravljanja greskama i
nacina upravljanjem zavisnostima izmedu zadataka —
redosled izvrSavanja zadataka zavisi samo od definicije
toka, a ne od implementacije u mikroservisima, Sto
omogucava dinami¢no azuriranje poslovne logike, bez
modifikacije pojedina¢nih komponenti.

Sami Conductor i Kafka nisu medusobno iskljucivi —
Kafka moze funkcionisati kao centralna infrastruktura za
rukovanje dogadajima, dok Conductor moze da sluzi kao
,,mozak® procesa, koji orkestrira kako ¢e se ti dogadaji
obradivati, transformisati 1 povezivati u smislene
rezultate. Ovakav hibridni pristup omogucava koriS¢enje
prednosti obe platforme — Kafke za stabilno prosledivanje
poruka, a Conductor za strukturiranu orkestraciju tokova
poslovanja, ¢ime se postizu sistemi koji su istovremeno
skalabilni i inteligentni.

6. LITERATURA

[1TN. Alshuqgayran, N. Ali and R. Evans, “A Systematic
Mapping Study in Microservice Architecture”, Proc.
of the 9th International Conference on Service
Oriented Computing and Applications, IEEE, 2016.

[2] R. H. Campbell and P. G. Richards, “SAGA: A
system to automate the management of software
roduction”, Proceedings of the May 4-7 1981.
National Computer Conference on AFIPS, pp. 231-
234, 1981.

[3] https://orkes.io/content (pristupljeno u septembru
2024.)

[4] https://en.wikipedia.org/wiki/Apache Kafka
(pristupljeno u novembru 2024.)

[STN. Gard, “Apache Kafka”, PACKT Publishing, 2013.

Kratka biografija:

Jelena Ninkovi¢ je rodena u Sapcu 1993.
godine. Upisala je fakultet 2013. godine,
smer Elektrotehnika i racunarstvo.
Diplomirala je 2019. godine sa temom
»~lmplementacija korisni¢kog interfejsa
podsistema bankarskog poslovanja
kori§¢enjem AngularJS razvojnog
okvira®.

1340

gﬁyj Zbornik radova Fakulteta tehniékih nauka, Novi Sad

UDK: 4.9
DOI: https://doi.org/10.24867/33BE19Popov

PLATFORMA ZA TRGOVINU ENERGIJOM SA MIKROSERVISNOM
ARHITEKTUROM I AI ANALIZOM TRZISTA

ENERGY TRADING PLATFORM WITH A MICROSERVICES ARCHITECTURE
AND AI MARKET ANALYSIS

Aleksa Popov, Fakultet tehnickih nauka, Novi Sad

Oblast — PRIMENJENO SOFTVERSKO
INZENJERSTVO

Kratak sadriaj — U radu je prikazana realizacija
aplikacije za automatizovano trgovanje elektricnom
energijom, koja koristi treniran Al model za predikciju
cena. ResSenje je implementirano upotrebom mikroservisne
arhitekture, a celokupna aplikacija je bazirana na Docker
kontejnerima.

Kljuéne refi: Mikroservis, AI model, Docker, trgovina
energijom

Abstract — The paper presents the implementation of an
application for automated electricity trading, which uses a
trained Al model for price prediction. The solution is
implemented using a microservices architecture, and the
entire application is based on Docker containers.

Keywords: Microservice, Al model, Docker, energy
trading

1. UVOD

Trziste elektricne energije se danas menja velikom
brzinom. Kljuéni pokreta¢ ovih promena je razvoj
pametnih energetskih mreza (Smart Grid) koje
omogucéavaju dvosmernu komunikaciju izmedu
proizvodaca i potroSaca. U skladu sa ovakvim sistemom,
korisnici vi$e nisu samo pasivni potrosaci, ve¢ mogu i sami
da proizvode i skladiste energiju, na primer, pomocu
solarnih panela i ku¢nih baterija. Ova nova dinamika
dovodi do Cestih i naglih promena u cenama energije, ¢ime
dolazi do sve vece potrebe za automatizovanim sistemima
koji ¢e nam olaksati pracenje promena.

Cilj ovog rada je osmisljen da zadovolji potrebe nastale
novom dinamikom trgovine, kreiranjem softverske
platforme koja automatizuje proces trgovine energijom.
Platforma koristi veStacku inteligenciju da predvidi
kretanje cena i na osnovu tih prekdikcija donosi odluke o
kupovini ili prodaji, olakSavaju¢i korisnicima da ostvare
uStedu ili profit. Za osnovu sistema izabrana je
mikroservisna arhitektura, koja omoguéava da se
kompleksan problem razlozi na manje delove. Na taj nacin,
stvoren je skalabilan temelj za buduca unapredenja I
dodavanje novih funkcionalnosti.

NAPOMENA:
Ovaj rad proistekao je iz master rada ¢iji mentor je bio
dr Aleksandar Boskovié, doc.

2. 1ZBOR ARHITEKTURE SISTEMA

Izbor prave arhitekture je kljuan korak u izradi svakog
softvera, koja ¢e uticati na svaku dodatnu promenu na
sistemu u buduénosti. Za ovaj projekat, postojale su dve
glavne opcije pristupa: monolitnog i mikroservisnog.

Monolitna arhitektura podrazumeva da se sve komponente
aplikacije nalaze unutar jedne, jedinstvene celine. lako je
ovakav pristup jednostavniji za pocetni razvoj, on sa
sobom nosi veliki broj nedostataka kako sistem raste.
Svaka pa i manja izmena zahteva ponovno testiranje i
implementaciju celokupne aplikacije. Jo§ jedna velika
mana je da je ceo sistem vezan za jednu tehnologiju.

Zbog ovih nedostataka, za ovaj projekat je odabrana
mikroservisna arhitektura [1]. Ona podrazumeva razbijanje
sistema na skup manjih, nezavisnih servisa, gde je svaki
servis odgovoran za jedan specifiCan poslovni zadatak.
Ovaj pristup je doneo par kljuénih prednosti. Fleksibilnost
tehnologije, koja je bilo od klju¢nog znacaja za Al servis,
nezavisnost i lakSe odrzavanje §to omogucava da se svaki
servis razvija, testira i azurira nezavisno i skalabilnost.

2.1. Nadin organizacije mikroservisa

2

End User

AllAPI Calls

fapiusers {apifdashbard, fapiirade

Bakent Services

Resdsiuwites irade data Gets precitions

Slika 1. Arhitektura sistema sa prikazom komunikacije

1341

https://doi.org/10.24867/33BE19Popov

Unutar mikroservisne arhitekture, primenjeno je nekoliko
klju¢nih obrazaca kako bi se sistem efikasno sagradio. On
je podeljen na servise po njihovoj poslovnoj funkciji.
Postoje Cetiri servisa koja izvrSavaju glavne funkcije ovog
sistema. Vizualan prikaz ove arhitekture, kao i na¢in na
koji servisi medusobno komuniciraju, dat je na Slici 1.

e User Service: upravlja korisni¢kim nalozima,
procesima registracije i prijave, kao i izdavanjem
sigurnosnih JWT tokena [4]

e Trade Service: sadrzi klju¢nu poslovnu logiku,
upravlja stanjem baterije 1 donosi odluke o
trgovini.

e Al Service: funkcioniSe kao specijalizovana
komponenta koja na zahtev isporucuje predikcije
cena.

e Data Service: centralna tacka za pristup bazi
podataka, obezbedujuci potrebne podatke svim
ostalim servisima.

“Baza podataka kao servis” (DaaS) [5]: Mikroservis-data
simulira ulogu DaaS provajdera. Umesto da svaki servis
direktno pristupa bazi podataka, svi zahtevi za Citanje ili
pisanje podataka idu iskljucivo preko ovog servisa. lako
prestavlja odstupanje od “Cistog” mikroservisnog pravila
gde svaki servis ima svoju bazu, ovaj pristup je odabran
kao savrSeno reSenje za pocetnu fazu projekta. Postoje
mnoge prednosti u koriS¢enju paterna Shared Database [6]
za razvoj nove velike aplikacije koja ukljucuje
mikroservise.

3. KORISCENE TEHNOLOGIJE I ALATI

Za realizaciju ovog projekta koriS¢ena je kombinacija
modernih tehnologija, gde je svaka odabrana tako da na
najbolji nacin odgovari na specifi¢ne zahteve.

Frontend — Korisnic¢ki interfejs je izgraden pomocu React
biblioteke, koja omogucava kreiranje dinamickih I
reaktivnih komponenti. Za upravljanje globalnim stanje
aplikacije, koriS¢en je Redux.

Backend — Osnovu za User, Trade i Data servise ¢ini
Node.js, platforma izabrana zbog svoje efikasnosti u obradi
mreznih zahteva. Na njoj je koris¢en Express.js framework
za lako kreiranje REST API endpointa. Za Al servis
odabran je Python zbog velike dostupnosti biblioteka, dok
je Flask [3] posluzio kao web framework.

Baza podataka — Svi podaci se ¢uvaju unutar MongoDB,
popularnoj noSQL bazi podataka. Za komunikaciju drugih
servisa i baze koris¢en je Mongoose, alat koji olakSava
definisanje modela podataka i rad sa njima.

Vestacka inteligencija — Model za predikciju cena je
implementiran pomocu Scikit-learn biblioteke.

Kontejnerizacija — Ceo sistem je orhanizovan pomocu
Docker [2] platforme, gde je svaki mikroservis zapakovan
u sopstveni izolovani kontejner. Za pokretanje i
medusobno povezivanje svih kontejnera u lokalnom
okruzenju kori$éen je Docker Compose, ¢ime je postignuta
laka prenosivost i konzistentnost sistema.

4. SPECIFIKACIJA SISTEMA

Ovo poglavlje detaljno opisuje funkcionalnosti sistema iz
korisnickog i sistemskog ugla.

4.1. Korisni¢ko iskustvo i funkcionalnost sistema

Korisnik po prvom ulasku na aplikaciju ima pristup
pocetnoj strani, gde se nalazi cena energije kao 1 istorija
cena, i takode moze da pristupi predikcijama i strategijama
trgovine. Pre koriS§¢enja glavne funcionalnosti, potrebno je
prvo kreiranje profila. Nakon uspes$ne registracije, kao i
prilikom svake sledece prijave, korisnik unosi svoje
kredencijale. Ukoliko je autentifikacija uspe$no prosla,
korisniku se generise JWT (JSON Web Token) [4]. Ovaj
token sluzi kao digitalni klju¢ koji korisniku omoguc¢ava
siguran pristup svim delovima platforme.

Glavna kontrolna tabla, koja je centralno mesto za sve
aktivnosti, dizajnirana je da bude pregledna i intuitivna, a
njen izgled je prikazan na slici 2. Na tabeli se istice
grafikon koji vizualizuje istorijke, ali i predvidene cene
elektricne energije dobijene od Al servisa. Pored ovog
grafa korisnik ima i opciju da pogleda predikcije za ceo
sledeci dan na stranici Market.

Battery stranica korisniku omogucava da registruje svoje
baterije i definise parametre za njih. Svaka baterija pored
svojih vrednosti ima i strategiju trgovine kao i stanje u kom
se nalazi. Pored pasivnog pracenja, korisnik ima
moguénost I da aktivno upravlja svojim resursima.
Platforma nudi izbor predefinisanih strategija tgovanja
koje korisnik moze da dodeli svojim baterijama. Svaka
strategija definiSe razlicit pristup trgovini. I van strategija
korisnik moze da upravlja svojim baterijama manuelno.

Ipak, kljuéna prednost platforme lezi u njenom
automatskom radu. Jednom kada korisnik odabere
strategiju, sistem u pozadini preuzima upravljanje. Ovo je
najvazniji sistemski proces, nevidljiv za korisnika, gde
Trade Service neprestano analizira predikcije cena
dobijene od servisa i u skladu sa aktivnom strategijom, on
samostalno donosi odluke o najboljem trenutnom stanju
baterije.

Sve spomenute automatske akcije se beleze kao transakcije
1 azuriraju stanje korisnikovog virualnog novcanika. Svi
ovi podaci su vidljivi na user stranici, i korisnik moze uvek
da doda sredstva na spomenut novcanik. Uplata je ovde
obezbedjena Google reCaptcha-om v3 [8].

4.2. Dizajn model podataka

Osnovu sistema ¢ine Mongoose modeli koji definiSu
kljuéne entitete I njihove medusobne veze. Staticka
struktura ovih modela, koja predstavlja temelj celog
sistema, detaljno je prikazana na klasnom dijagramu na
slici 3.

Kao sto dijagram ilustruje, User model je centralni entitet
koji sadrzi osnovne informacije o korisniku I njegovom
novcéaniku. On je direktno povezan sa Battery modelom,
omoguéavajuci da jedan korisnik poseduje vise baterija,
kao i sa TransactionHisotry modelom, koji cuva zapise o
svim njegovim finansijkim aktivnostima. TradingStrategy
model povezan je sa baterijom.

1342

=» EnergiXchange

-~ - Sales Summary

New Wind Farm Opens

N

Read More

Energy Prices Drop Government
Tec ago

Read More

Slika 2. Izgled glavne kontrolne table aplikacije

User
PriceHistory
+String fullName
+String rram
9 use M +Number price
+String password
+Dale date
+8tring type
+Wallet wallet
g e g
Battery TransactionHistory
Wallet
+Number capacity +String userld
Number balance +Number stateOfCharge +String type
u
+String state +8tring traderld +Number amount
9 +5tring state +Date timestamp
+String tradingStrat +8tring stratName

"uses"

"executed with"

TradingStrategy D/

+Siring name
+String description
+String type

+Map parameters

Slika 3. Klasni dijagram

5. MODEL ZA PREDIKCIJU CENA

Za potrebe ovog projekta izabran je model Linearne
Regresije [7] implementiran pomocu Scikit-learn
biblioteke. Iako postoje kompleksniji modeli za vremenske
serije, ovaj model je odabran iz nekoliko prakti¢nih
razloga. On predstavlja odli¢nu polaznu osnovu I veoma je
brz za treniranje. Takode rezultati su lako razumljivi, §to
zna¢i da se moze jasno rezumeti kako svaka ulazna
karakteristika utice na krajnju predikciju. Za prototip
sistema ¢iji je cilj dokazivanje koncepta, ove prednosti su
bile presudne.

5.1. Proces treniranja

Proces rada modela se odvija u dve faze:

e Faza treniranja: U ovoj fazi, model se trenira na
istorijskim podacima. Ulazni podaci su
numericke karakteristike, a ciljna vrednost koju
model uci da predvidi je cena. Pozivom fit
metode, model pronalazi matemati¢ku formulu,
odnosno linearnu vezu izmedju ulaznih
karakteristika i cene. Jednom istreniran model,
odnosno nauceni koeficijenti, ¢uvaju se u .pkl
fajlu pomocu Joblib biblioteke.

e Faza predikcije: Kada Trade Service zatrazi
predikciju, ucitava se sacuvani model iz .pkl fajla.
Zatim se kreiraju buduce vremenske oznake I na
njima se primenjuje isti proces inZenjeringa
karakteristika. Tako pripremljeni podaci se
prosleduju modelu, koji pomocu naucene
formule izracunava i vraca predvidene cene za
naredni dan.

6. ZAKLJUCAK

Na osnovu iznetih rezultata, moze se zakljuciti da primena
mikroservisne arhitekture predstavlja efikasno resenje za
razvoj kompleknse platforme za trgovinu energijom.
Pokazalo se da je ovakav pristup znacajno fleksibilniji od
monolitnog, naro¢ito u domenu kombinovanja tehnologija.
Kori$¢enje pragmati¢nog obrazca kao $to je Daas se
pokazalo kao dobar kompromis koji je ubrzao pocetni
razvoj kao i testiranje aplikacije. Potrebno je u buducnosti
istraziti da li je ovakav model pouzdan i za globalnu
upotrebu ili je “tradicionalni” pristup ipak bolji.

U daljem radu, primarni fokus bi se mogao staviti na
unapredenje prediktivnog modela. Istrazivanje upotrebe
primene napredinijih modela, poput LSTM (Long Short-
Term Memory) neuronskih mreza, koje su specijalizovane
za analizu vremenskih serija. Ovo bi bilo od velikog
znacaja za preciznost same platforme, a samim tim i
profitabilnosti iz automatske trgovine i pouzdanosti celog
sistema.

Jo§ jedan ocigledan korak jeste hostovanje platforme na

1343

nekom od cloud servisa i detaljno testiranje performansi u
realnom okruZenju, $to bi potvrdilo spremnost sistema za
prakti¢nu upotrebu.

4. LITERATURA

[1] Sam Newma — Building Microservices: Designing
Fine-Grained Systems

[2] Docker -
https://www.techtarget.com/searchitoperations/definiti
on/Docker

[3] Flask - https://flask.palletsprojects.com/en/stable/

[4] JIWT Token - https://www.geeksforgeeks.org/web-
tech/json-web-token-jwt/

[5] DaaS - https://www.mongodb.com/solutions/use-
cases/data-as-a-service

[6] Pattern: Shared database -
https://microservices.io/patterns/data/shared-
database.html

[7] Linear Regression -
https://www.geeksforgeeks.org/machine-learning/ml-
linear-regression/

[8] reCAPTCHA -
https://developers.google.com/recaptcha/docs/v3

Kratka biografija:
B Aleksa Popov roden je u Zrenjaninu
1998. god. Zavrsio je osnovne
akademske studije na Fakultetu
tehnickih nauka 2021. godine, smer
Primenjeno softversko inzenjerstvo.
Nakon toga upisao je iste godine
master studije, smer Primenjeno
softversko inZenjerstvo.

—...

Kontakt:popovaleksal 23(@gmail.com

1344

https://www.techtarget.com/searchitoperations/definition/Docker
https://www.techtarget.com/searchitoperations/definition/Docker
https://flask.palletsprojects.com/en/stable/
https://www.geeksforgeeks.org/web-tech/json-web-token-jwt/
https://www.geeksforgeeks.org/web-tech/json-web-token-jwt/
https://www.mongodb.com/solutions/use-cases/data-as-a-service
https://www.mongodb.com/solutions/use-cases/data-as-a-service
https://microservices.io/patterns/data/shared-database.html
https://microservices.io/patterns/data/shared-database.html
https://www.geeksforgeeks.org/machine-learning/ml-linear-regression/
https://www.geeksforgeeks.org/machine-learning/ml-linear-regression/
https://developers.google.com/recaptcha/docs/v3
mailto:popovaleksa123@gmail.com

36o0pHuUK pagoBa Pakynrtera TeXHUMUKUX Hayka Hoeu Cap

YIK: 4.9
JOM: https://doi.org/10.24867/33BE20Kuzmanovic

KOMITAPATHUBHA AHAJIN3A OCHOBHUX KAPAKTEPUCTHUKA 1
MEP®OPMAHCH BPOKEPA IIOPYKA NATS, RABBITMQ N APACHE
ROCKETMOQ

A COMPARATIVE ANALYSES OF THE MAIN CHARACTERISTICS AND
PERFORMANCE OF NATS, RABBITMQ AND APACHE ROCKETMQ MESSAGE
BROKERS

Ormen KysmanoBuh, @axyrmem mexuuuxkux nayxa, Hosu Cao

Obaacr - EJJEKTPOTEXHUKA U PAYYHAPCTBO

Kparak cagpxkaj — V osom pady oamo je nopeherse
OCHOGHUX Kapaxkmepucmuka u nepgopmancu Opoxepa
nopyka NATS, RabbitMQ u Apache RocketMQ. Ananuza
nepghopmancu ypahena je kpo3 meperse Kauiberba nopyKa
u npomoka nopyka. 3a ceaxu 6pokep nopyka uzepuieH je
CKyn mecmosa Ha nAam@opmu 3a pavyHapcmso y o01axy
Azure. Kougueypayuja ceakoe mecma ce Ooduna
KOMOUHOBAIbEM HEKOUKO PA3TUYUMUX eTUYUHA U Opoja
nopyka. 3apao objexmuene Komnapayuje nepgopmancu,
OCMUL/BEH Je U Hanpaes/beH Nocedan anam y nPoSPaAmMcKoe
jeszuxy Python.

Kibyune peun: bpoxep nopyra, nopeherse nepghopmancu,
NATS, RabbitMQ, Apache RocketMQ.

Abstract - This paper compares the basic characteristics
and performance of NATS, RabbitMQ and Apache
RocketMQ message brokers. Performance is measured
through message lattency and message throughput. Tests
were conducted on the Azure cloud platform. The
configuration of each test was obtained by combining
several different message sizes and numbers. To ensure
objective comparison, a custom Python-based tool was
developed.

Keywords: Message broker, performance comparison,
NATS, RabbitMQ, Apache RocketMQ.

1. VYBoa

Bpemenom, ycien moehanor Opoja KOpPHCHHKA
WHTEpHETa, paciia je M KOJMYMHA Mojaraka KOjU Cy
CEpBUCH, KOjH OTICITYKY]y KOPUCHHKE, MOpaJIH Aa o0pasie.
Crora, 1ojeJMHN TUCTPUOYHPAHU CUCTEMH TTOCTOjaIH Cy
CBE KOMIUICKCHHJHU Ca CBE BHIIE ITOBE3aHUX KOMIIOHCHTH
KOoje ce MpHKJbYydyjy ¥ HCKJbYydyjy M3 CHCTeMa ca
reorpadCKi Pa3NMYUTUX JIOKalWja, a CBE TO paid
OICITY’)KMBamka CBE BHINE HAJOJa3ehMX KOPHUCHHUKA ca
Pa3TMYUTHX JIOKAIIH]a.

HAITIOMEHA:

OBaj paa nmpoucrekao je M3 Macrep paja 4YHuju je
MeHTOp 0o aAp Baagumup {lumMutpueckn, BaHpeIHH
npodgecop.

VY TakBMM CHCTEMHMa, YCKO TOBE3aHU EHTUTETH KOjU
MelycoOHO KOMYHUIIMPAjy, y KOMOUHANHUjH ca pakToprMa
HOMyT HEMOY3JaHOCTH MpEXE W XETepereHoCTH
pa3IMUMTHX aIlIMKaljja MOTY Jla HalTeTe TPajHOCTH U
noy3aanocTu cuctema [1]. I3 oBux pasiora, eKCKIIy3UBHO
Kopuinheme caMO CHHXPOHOT Mojella KOMYHUKaIuje
,,3aXTEB/OIrOBOP™ HE OM MPAaTHIIO ANHAMUYHY TPUPOJY H
moTpede MOMEHYTUX TUCTpuOynpanux cucrema [2]. Kako
Ou ce HagOMeCTWIE MaHE CHHXPOHOT Mojera
KOMYHUKaIlije, Ha 3HA4ajy je AOOMO acWHXPOH MOl
KOMYHUKaIFje Koju Hyu Behn HUBO (IIeKCHOMITHOCTH, U
TO MOJAeN pa3MeHe IMopyKa ,o00jaBa/mpeTmiaTta™ ca
OpoKepoM TOpyKa Kao IOCPETHHKOM Y OICIY)KUBambYy
HopyKa jep He 3aXTeBa Ja MPOILECH KOjH Cy YYECHHUIIU Y
pa3MeHu ropyka Oy ly KOHTHHYHPaHO aKTHBHH.

TokOoM TpPETXOMHOTr TMEpPHOAa, HACTA0 j€ BEIUKUA Opoj
pa3IMUUTHX CHUCTEMa 3a pa3MeHy IMopyKa IomyT Apache
Kafka, ActiveMQ, Apache Pulsar, NSQ wntn. 3a npenmer
OBOT paja OJUTydeHO je ma Oymy oOpahene cienche
nmmneMentanuje: NATS, RabbitMQ u Apache RocketMQ.
[TomenyTn Opokepn OpyKa HCTHIY Ce THME Jia Cy jaBHO
JOCTYIHH (GHIT. open source), TOIYIapHU Cy Yy
HHKCHEPCKO-aKaIeMCKO] 3ajCIHUIM, HYIC IUBEP3UTET
pa3nuuuTHX O0COOMHA, a Takohe ayTop HHUje MpPOHAIA0
HUjE/IaH paJl KOjH je aKIeHaT CTaBUO Ha Oalll bHX.

INopen Teopujcke oOpaie MOMEHYTHX Opokepa HOpyKa,
LIWJb OBOT pajia OMIIo je U Mepeme nepdopMancu Opokepa
Topyka Ha iat(opmu 3a pauyHapcTBO y oOmnaky Azure,
Kao M Kpajibe n3Boheme 3akjbydaka O TOME y KOJUM
cuTtyaiyjama ou TpeGasio KOpUCTUTH KOju OpoKep rmopyka.

2. NATS

IMpema [3], NATS npencraBmba UHPPACTPYKTYypHY
KOMITOHEHTY MOJEPHUX TUCTPUOYyMpaHUX CUCTEMa Koja
oMoryhaBa pasmeHy mojaraka usmely amnukanuja u
cepBuca y Buay nopyka. NATS ycayre cy omoryhene ox
crpane Bume NATS cepBepckux Tmpoueca KOju cCy
MehycoOHO moBezanu U Tako Kpeupajy NATS cepBucHY
nH}ppacTpykTypy. Kpo3 amumkaTnBHu Koa aeUHUITY ce
KITHjeHTHU KOju ce TIoBe3yjy Ha NATS cepBepcke mporece u
BUMa 00jaBIJbyjy MOPYKE WM O] BUX MIPUMAjy MOpYyKe Ha
Koje cy npetmiaheHu.

1345

OcHOBHM cKyn (yHKunMoHanmHocTH Koje NATS nHynu
HasuBa ce Core NATS. Ha oy, 06asuuny, NATS
KOMITOHEHTY MOJKE C€ TJIEJIATH Kao Ha jeJTHOCTABaH CUCTEM
3a pasMeHy Tmopyka ,o0jaBa/mpermiara™. Ilpumaar
nopyka he nmopyke npumaru camo ako ¢y ¥ OH ¥ TeéHepaTop
mopyka mose3ann Ha NATS y nctom MomeHTy. OCHOBHU
CKyN (DyHKIMOHATHOCTH MOXE C€ MPOLIMPUTH KpO3
JetStream KOMIIOHEHTYy KoOja HyAM NEP3UCTCHTHU
MUCTPUOYHpaHH CUCTEM KOju omoryhaBa 0J1a0aBJbEHU]Y
cnpery usmel)y reHeparopa ¥ KOH3yMEHTa IOpyKa, Kao U
JoJlatal CKyn ()YHKIMOHAJHOCTH IIONYT pPEeIUIHKalfja
TOpYKa, CKIIQJNIITA KJbY4/BPEAHOCT UTI.

3. RabbitMQ

RabbitMQ je momynapan Opokep mopyka OTBOPEHOT KOJa,
HaIWCaH y MPOTPaMCKOM je3uky Erlang, jaBHO TOCTyTIaH
on 2007. rogune. VMmiaeMeHTHpa HEKOIMKO Pa3IHYUTX
nporokona mehy kojuma cy AMQOP 0-9-1 u MOTT.

Apxwurekrypa RabbitMQ 6pokepa nopyka usriesa Tako ja
ce C jeJlHe CTpaHe Hajla3e IeHepaTopu MopykKa, a ca Jipyre
NPUMaoLM IopyKa. ['eHepaTtop TOpyke Kpeupa HOpyKy
KO0joj TIpHUI0aje KJbYY 3a Tpacupame (SHII. routing key)
KOju masjke Ka Opokepy, a Opokep mpuMa TOPYKY Kpo3
KOMIIOHEHTY 3a pa3MeHy TMopyka (eHIJ. exchange),
OJHOCHO pa3MemHBay MOpyKa. 3a pasMemHBad IMOpyKa
MTOTEHIIMjaJTHO MOXKe OWTH BE3aHO MHOTO PEIOBa YeKama
y3 moMoh pa3IMYMTHX TEXHUKA YBE3UBaha KOj€ 3aBHUCE O/
KOHKPETHOT THUIIa pa3MeuBaya Mopyke.

Tabena 1. TaGenapHa KoMITapanuja HereppopMaTHUX
KaTeropuja rnocMaTpanux Opokepa rmopyka

Oco0nna NATS RabbitMQ | RocketMQ
Torpmma 2011 2007 2012
HACTajamba
Jesux Go Erlang Java
lapanmmja Jm Ze[J jeman/ Hajmame
JIOCTaBe jenan/auHo HajBuIIe jenan

. jenan

jenan

DOUDO Penocneny |Penocneny
Tapanuja permocnen | peny pey

enocena o YeKamba, YeKamba,

p re"eparopy | PUDO OUDO

nopyka penocnen | peaocien
HoctynHoct | Bucoka Bucoka Bucoka
Tpancakmumje |He Ha Ha
CkanabuiHocT | Bucoka Cnaba Jo6pa

HTTP,

NATS MOTT,

IIporokonu npotokon | AMOP, MQIT
STOMP

Komnaunuje [5] | Nutanix, Reddit, Alibaba,
[6] MasterCard | CircleCI ByteDance

PasmemuBau nmopyka nma 3agatak J1a JUCTprOyHpa KOImje
[OpyKa Ka peIoBUMa YeKama Y 3aBUCHOCTH HETrOBOT THUIIA,
OJ1 TOra KaKo Cy PEIOBH YeKama yBE3aHU Ca UM, Kao U

KJbyua 3a Tpacupambe KOjH je IpHI0JaT HopyKkama Koje ce
Tpacupajy. C gpyre crpaHe, MNpUMaoly IOpYyKa
mperutaheHl Cy Ha penoBe YeKama W KOH3YMHPA]Y
HOpYyKe Y BbUMa.

4. Apache RocketMQ

RocketM(Q je Opokep Tmopyka KpeupaH oOf CTpaHe
kommanuje Alibaba wako Ou pemwid mpoodiemMe
nepopmMaHcH Koje cy umanu ca ActiveM(Q Opokepom
MOpyKa, a KOjHu Cy JIONUTH J0 U3pakaja TeK OHJa Kaja je
3HATHO MOpaciia MOTPaXKEa 33 yClyraMa OBe KOMIaHHje.
[Ipema [4], RocketM(Q mobuo je Ha TOMYIapHOCTH yCIe
BErOBE jEJHOCTABHE apXHUTEKTYPE, BEJIHUKOj JIeTe3H
(YHKIIMOHATTHOCTH, Ka0 W W3y3€THO] CKaJaOMIHOCTH.
AyTopu oBor Opokepa Mmopyka cMaTpajy Za je OH IOCTao
WHAYCTPHjCKHU CTAaHAAp] KaJa je ped O mopyKama y KOjuMa
ce Hajase (pMHAHCH]CKM MOJALM 33 KOje je HeONXoJaHa
U3y3eTHA J03a CUT'yPHOCTH IIpeHoca 1 odpaje.

5. Tlopehemwe HenmepopMaHTHUX 0COOMHA

Y rtabemn 1, mato je Tmopeheme Haj3HAYAJHUX
Henep(OopMaHTHHUX O0coOMHa Opokepa Mopyka Koje MOTyY
MMaTH yTHIAj HAa M300p KOHKPETHOT Opokepa Mmopyka 3a
MMIUIEMEHTAIN]Y Y HEKH COPTBEPCKU CHCTEM.

6. Tecrupame nepopmancu dpokepa mopyka

3a morpebe KOMIapaTMBHE aHAIM3E NepPopMaHCH
Opokepa mopyka ymopehene cy 1Be mneppopMaHTHeE
KaTeropuje: Kalllbemhe IMopyka (eHrI. latency), Kao o
MIPOTOK TOpyKa (eHTII. throughput). Kako 6u ce mmo oBe 1Be
KaTeropuje JoOMIe KOHKPETHE W YIOpEIHBE METPHKE,
CBaky Opokep mopyka Ouo je MOABPTHYT CEPHjH TECTOBA
Ha Tuapdopmu Azure. TecToBum cCy H3BpIIaBaHU
yInoTpedoM asiaTa moceOHO HaNpaBJbEHOT CaMo 3a oTpede
OBOT paja.

6.1. Xapasepcko-copTBEPCKO OKpPYKeH-€

3a motpebe TecTHpama mepdopmaHcu Opokepa MOpyka,
kopuinheHe cy Bupryenne mammne Standard D4ds v4 xoje
Hynu atgopma Azure 'y cknomy Azure Virtual Machines
cepBuca. OBaj THII BUPTYEeITHUX MAallMHAa HYIU cienehy
cnenudukanmjy: 4 vCPUs / 16GiB RAM /30 GiB HDD /
6400 IOPS / Ubuntu 22.04. Kao ¢wusuuka jokamuja
MailHa, u3abpaH je peruoH cesepHe Esporie, y 30Hu 3.

3apaj oNlaKIIaHOT TOKPETamka HM30JI0BAHUX OKPYKEHa y
KOjuMa cy ce OpOKepH TOpyKa U3BpIIABAIU, HA MAIIUHY
cy Oomnmm wHcTammpanu anatu Docker v27.3.1 w Docker
Compose v2.29.6. Docker xonTejHepu Hucy Ownm
YCIIOBJBEHHU OTpaHUUCHIMa pecypca.

Tectupame ce BPIINAIO HA jeHOj BUPTYEITHO] MAITHHU
Kako 0u ce 00e30eamio qodujame (hep pesynrara Ha Koje
HC YTHYC KAllIlbEHE MPEKE.

6.2. Ilapamerpu TecTHpama

Kao mpeamern Ttectupama, y o03up cy ce ysenu
Haj3Ha4yajHuje nepopMaHTHE METPUKE y CBETy Opokepa
mopyka [7], a TO cy Kallmbeme MopyKa, Kao M MPOTOK
nopyka. 3a cBaKy OJf HOMEHYTHX KaTeropuja TecTHpama,
TECTHPAmhE CEe BPIIMIO 32 TPU MOryhe BelIMYMHE MOpYyKe
Kako OM ce yCTaHOBWJIO Ja JIM U KaKo BEIHWYMHA MOpyKa
yrude Ha nepdopmance Opokepa mnopyka. Bemmuune
nopyxka:

1346

1. Mana nopyka — 1KB
2. Cpenma nopyka — 100KB
3. Benuka nopyka — IMB

Cpaka mopyka je caapkalla HU3 YyHanpel HAaCyMHYHO
reHepucanux kapaktepa (ASCII kapakrepu, nudpe, Kao u
3HAKOBU MHTEPITYHKIIN]E).

Kao momaran mapamerap TecTHpama yrnoTpedJbeH je Opoj
MOpyKa Kako OM ce YCTAaHOBHMIIO J1a JIH [TOCTOj€ TIPOMEHE Y
neppomMaHcamMa 3a pazIMUNUTEe pPeloBEe BEIMYMHA Opoja
nopyka. 3a CBaKy BENHYHMHY [OPYKa, TPU Pa3HUUHTE
KOJIMYKHE TIOpYKa Cy OnIie TeCTHpaHe:

1. Mamu 6poj mopyxka - 1.000
2. Cpenmu 6poj mopyxa - 10.000
3. Benuku 0poj nopyxka - 100.000

3a cBaky KOMOMHaIMjy TIOMEHYTHX Iapamarepa
TECTHparma, W3BPIICHO je HajMame TP TecTa. Y Cirydajy
Jla ce Mel)y m3BpIIeHa TpW TeCTa Hallao pe3ysTar Koju
3HAYajHO OJICTYIIAa O/ OCTAlMX pe3yJTaTa, M3BPIICHO je
jom Tpu Tecta. Kao Kpajmum pesynrar ysumana ce
MIPOCEYHA BPETHOCT TP HAjOO0JbaA pe3ynTaTa.

6.3. Crnenundukanuja 6pokepa nopyka

VY HacTaBKy Cy IaTe TauHe Bep3uje KopHuiheHux Opokepa
ropyka:

- NATSv2.10.14
- RabbitMQ v3.13.2
- Apache RocketMQ v5.2.0

Kox cBHX cleHapuja TecTHpama TIeHepaTop IOopyKa,
OpoKep W mpuMaall Mmopyka cy OWJIM 3ajeHO Ha jEIHO]
MarHi. Mo/iesl KOMyHHUKAIMje KOju je 010 KopuIiheH je
,,00jaBa/mpermaTa’.

6.4. HauuH TecTHpama u 0eslexKema pe3yaTaTa

3a moTpebe CBUX ONHCaHWX TECTHpama M 3apaj
MaKCHMAaITHO 00jeKTHBHUX pe3yIITaTa, KpeupaH je moceban
ajar y mporpaMcKkoM jesuky Python. IIpBu kopak y pamy
ca aJlaToM jecte KOH(UrypHcame rnapamerapa Tecta Kpo3
JSON xouduryparmonu ¢ajir. Kpo3 oBaj ¢aji, KOpUCHHK
MMa OMIIUjy Ja MOJIECH KeJbeHH OPOKep MOpyKa, BEIMUUHY
n O6poj nopyka. KoprcHuK 3a/1aje KOMaHy 3a IIOKpETame
KOH3yMEHTa IOpyKa KOjU c€ TMoBe3yje ca OpokepoM
nopyka u kpehe a ociylikyje nmopyke. Y TOM TPEHYTKY,
KOH3YMEHT Yy TePMHHAJy HCIHUCYje MOPYKY Ja je CpeMaH
U KOPUCHHK MOXKE NPHUCTYIMUTH MOKPETamy TeHepaTopa
nopyka. Ha ocHoBy mapamerapa W3 KOH(HUIYparHOHOT
(ajma koju ce ogHOCE HA THI OpoKepa MOpyka, Opoj U
BEJIMYMHY IOpyKa, I'eHepaTop IopyKa ce HWHCTauupa |
kpehe 1a reHepuine nopyke. KonsymeHT nopyka ux npuma
u obpalyje. Oba mporieca 3aayx)eHa Cy 3a Boljembe Opure o
NIPUKYIUbakby METPUKA TOKOM U3BPIIABaha TECTA, & IOTOM
U BUXOBO YyBare. HakoH u3Bpiiemha Tecta, IoTpeOHO je
MOKPEHYTH mapcep A00HjeHUX METPHKA paayl U3BIauCHa
nHpopMaIja BE3aHUX 3a MEPCHE Kareropuje. Busyennu
NPUKa3 apXUTEKType OMMCAHOI ajara JaT je Ha Cauuu 1.
Kon je nocrynan na miarpopmu GitHub m Moxe My ce
HIPUCTYNUTH IyTeM [8].

JSOM
KOHCMIypaumoH1

chajn Tecta
Moxkpeta4 MokpeTay
KOH3yMeHTa reHepatopa
. S ~ ,’ @ N
Opajsep KoHayMeHT __{ Uysau]‘_ leHepatop Opajsep
KOH3YMeHTa pesynTara nopyka reHepaTopa
MNapcep
pesyntara
Ty
Bpoxepj

Cnuxa 1. Buzyennu npuka3 apxuTeKType ajaTa 3a
M3BPIIABAHE TECTOBA

7. Pe3yaratu

VY HacraBKy Cy JaTh pesyiraTH Opokepa Iopyka y
KOHTEKCTY Kallllbeha U MPOTOKa MOPYKa.

7.1.

VY tabenu 2, npuka3aHu cy OpokepH mopyKa COpTHPAHH IO
pe3yaTaTuMa Koje ¢y OCTBApUIIH y CBAKOM TECTY.

Kammeme

Tabena 2. TaGenapHu pUKa3 pe3ynTaTa Kallbemha
nopyka Opokepa mopyka

Cpenma Benuka
Mana nopyxa nopyka opyka
g 1k | 10k [100k| 1k 10k |100x
opyka

RabbitMQ

RocketMQ

OHO mWTO ce MOXE 3aKJbYUUTH €BATyallljoM pe3yJTara
Mepema Kallibemha I0pyKa jecTe, Ja je [EJOKYIHO
rienano, Apache RocketM(Q miokazao HajOoJbe pesynTare
ca yOeJbBO HajMambIM KaIll-EHheM KOJT CPEIhE 1 BEITHKE
BEJINYMHE BEJIMYMHE TIOPYKa 3a CBE KOJIMYHMHE TTOopyKa (y3
HEJOCTaTaK pe3yliTaTa ca BEJIMKY BEIMYMHY IOpyKa H
ooum ox 100.000 mopyka), AOK je 3a Majie BCIHYHMHE
MopyKa TI0Ka3a0 MHHHMMAIIHO JIOLIHMjE pe3yjTaTe o
Hajoosser RabbitM(Q Opokepa mopyka. Pasior 3a Beoma
HHUCKO Kallllbeha CEe TIPBEHCTBEHO OIJIe/Ia y TOME IITO Cy
ayropu Apache RocketM(Q Opokepa YIOKHIN BEITHKE
Harope Jia HampaBe INTO BHIIE ONTHUMHU3AIMja Yy
u3BpwaBawy nponeca. Ilpema [9] [10], 3HaTHa
yHanpehema cy HalpaB/beHAa HAa TOJbY ONTHMHU3AIM]E
M3BpIIaBamke Tpoleca yHyTap Java BUPTyeIHE MallUHE,
Kao U Ha IOJbY CMambeHha Kallllbelha y 3aKJbydaBarby
pecypca (eHrn. lock latency) y3eBmm y o03up ma je
3aKJby4aBaE pecypca jemHa OJf OCHOBHX moTpeda y
BUILIICHUTHUM OKpykewuma. RabbitM(Q je mnoka3zao
HajOoJbe pesynTare Koj Maje BEeJIMYMHE MOopyKa, JIOK je
KOJI Cpe/ilbe M BEJIMKE BEIMYMHE MOpYyKa MOKa3ao BeoMa
joure pesynrare. Pasnor 3a merose JomMje pesynrare
MOJKE Ce TPaXHUTH y ToMe ja je RabbitMQ dokycupan Ha
MPOIECHPame MOpyKa y Irpymnama (eHriL. batches) kako ou
ce 1o0oJbIIA0 MPOTOK Ha yIITPO Kammema. NATS Opokep
MOpyKa, Mako HHUje I0Ka3ao Hajoosbe pesynirare HU y
JEIHOM TecTy, OMO je KOH3UCTEHTaH y pe3yJITaTuMa.

1347

7.2. TIpotok mopyka

VY tabenu 3, mpukazaHu cy OpoKepH opyKa COPTHPAHH IO
pesynTaTMa Koje cy OCTBapHJIM y CBAKOM TECTy MEpera
IPOTOKa Cllakba M KOH3yMHpama IHopyka. Pesynratu cy
KoJ 00a mpeaMeTa Mepermha O WACHTHIHHU.

Tabena 3. TabenapHu puKa3 pe3yiaTara MPOTOKa Clamka
1 KOH3YMHpama Mmopyka

i, Cpenma Benmka
mopyka mopyka
Bpoj mopyka | 1k | 10k [100k| Ik | 10k [100k| 1x | 10k |100x

RabbitMQ | 2 | 2 |2 |1 | 1T |1 |1 /]1]1
NATS 1 (1|1 |2|2|2|2]|2]|2

RocketMQ

EBanyamujoM pesynirara Mepema NPOTOKa MOpyKa ce
MOXe 3aKJbyuuTH Ha je Apache RocketM(Q mokazao
yOeIUPMBO Hajrope pesynrate y o0a mocMarpaHa ciaydaja
mpoToka mopyka. O6janrmeme 3a 0BaKBO MTOHAIIAKkE O ce
Morino mpoHahm y Tome mTO RocketM(Q dyBa CBaky
MOPYKY Ha IUCK, JIOK TO HHje MpeneuHICAHO TOHAIIAkEe
Koa ocrana nBa Opokepa mopyka. NATS je mpukazao
M3y3€THO J0Ope pe3ysare ca BpJIO BHCOKHM IPOTOKOM
ropyka Koj Majie BeiauuyuHe rnopyka. Ca apyre crpase,
RabbitM(Q nmpukazao je KOH3UCTCHTHE U HajOOJbE
pesyirare KOJ CBHX Mepema 3a Cpelby U BEJIHKY
BEJIMYMHY TOpyKa INTO j€ W JIOTHYHO Y3€BUIM y 003Hp
ETOBY YCMEPEHOCT Ha 00pajty y rpyrama.

8. 3akmyuak

Y oBoM pany, u3BpiieHo je nopeheme NATS, RabbitMQ n
Apache RocketM(Q Opokepa Tmopyka Kpo3 HHUXOBE
nepdopMaHTHE U HerlephopMaHTHE KaTteropuje. Y oKBUpY
nepopMaTHUX KaTeropuja, akleHAT j¢ CTaBJbCH Ha
Kallllbelhe M IMPOTOK MOpyKa, Kao JBE Haj3HAuYajHUje
Kareropuje koj Opokepa mopyka. Kako 0m ce tectupano
IITO BWIIE BapHjalMja pealHUX ClieHapuja Kopuihema
camMHX Opokepa, cBaku OpoKep MOopyKa TeCTHpaH je Kpo3
JIBa TIapamMeTpa TeCTHpama — BEIHYMHA W Opoj MopyKa.
3apax nobujama mTo 00jeKTUBHUJUX PEe3yNTaTH, KpeHpaH
je mocebaH amaT y MPOTpaMCKOM je3mKy Python xoju
omoryhaBa WHCTaHIMpame TMpUMaolla W TeHepaTopa
MOpyKa Ha OCHOBY KOH(HTIYpalMOHHX Iapamerapa Tecta
nepunucanux kpo3 JSON xoudurypaumonu daji,
Oerexee MEeTPHKa, IbUX0BO UyBambe, Kao M Mapcupamy y
CMHCJICHE pe3yiTaTe KOju ce MOTY 3aIlUcaTH U TyMaduTH.
CBH YMHHMONM anaTa OMIM Cy TOKPEHYTH Ha BHPTYEIHO]
MalMHn Azure TnatpopMe Ha KOjoj Cy TECTOBH U
u3BpiaBady. OHO HITO ce€ MOXKE 3aKJbYYUTH U3 KPajibe
aHaM3e pe3yiraTa Mepema jecTe Ia HHjeIaH oOf
rmocMaTpaHux Opokepa TOpyKa HHUje HIeajaH 3a CBe
cuerapuje ymorpede. Ilpunmmkom omabupa Kopumhema
JEIHOTr O] TOCMaTpaHWX OpoKepa MOopyKa, Mpernopyka
ayTopa jecrte Ja ce MPBEHCTBEHO cariiesia rnephopMaHTHA
KaTeropuja Koja je OMTHHUja 3a CUCTEM KOjHU Ce pa3Buja, Kao
U OuYeKMBaHa BeJM4YMHA Mopyka. Ha ocHOBy oBa Ba
rapameTpa MoXe ce HallpaBUTH ciiejicha MaTpuia outyKa:

1. BuTHOCT — MUHUMAJIHO KallllEeHE TIOpYyKe
a. Mana BesimunHa nopyka — RabbitMQ
b. Cpenma u BenMKa BETWYHHA TOpyKa —
Apache RocketMQ
2. BuUTHOCT — MaKcHMajaH MPOTOK MOpyKa
a. Mara BennunHa iopyka — NATS
b. Cpenma u BelHMKa BENWYHHA MOpyKa —
RabbitMQ

Y oBOM pajy, akIeHaT je CTaBJbeH Ha W3BpIIABAE Ha
JEIHO] MAIlIMHU KaKo OW Ce MCKJbYYMO YTHIAj Kalllhermha
Mpexke Ha meppopmance. Crora O6m Oyayhwm mpaBair
pa3Boja Morao OwWTH Mepeme nephopMmaHcH Opokepa
NOpyKa Y TUCTPHOYHUPAHOM OKPYIKEHY.

9. Jluteparypa

[1] L. Magnoni, "Modern Messaging For Distributed
Systems," 2015.

[2] K. S. E. Philippe Dobbelaere, "Kafka versus
RabbitMQ," 2017.

[3] "Oficijalna veb stranica NATS dokumentacije,"

[Online]. Available: https://docs.nats.io/nats-
concepts/overview.

[4] "Zvanicna dokumentacija Apache RocketMQ
brokera poruka," [Online]. Available:
https://rocketmq.apache.org/docs/. [Accessed 03
2024].

[5] S. Raje, "Performance Comparison of Message
Queue Methods," 2019.

[6] "HG Insights," [Online]. Available:
https://discovery.hgdata.com/. [Accessed 05
2024].

[7] "Benchmarking Apache Pulsar, Kafka, and
RabbitMQ," 21 08 2020. [Online]. Available:
https://www.confluent.io/blog/kafka-fastest-
messaging-system/. [Accessed 05 2024].

[8] O. Kuzmanovic, "Programski kod koris¢en za
izvSavanje testova".

[9] Y. Z. A. G. Y. Guo Fu, "A Fair Comparison of
Message Queuing Systems," IEEE Access, 2020.

[10] A. Shi, "DZone," [Online]. Available:
https://dzone.com/articles/apache-rocketmq-how-
did-we-lowered-latency. [Accessed 10 2024].

Kpatka Ouorpadpuja:

Ormen Kysmanosuh pohen je 1998.
ronuie 'y HoBom Camy. OcHOBHY
mkoiy ,,CBerozap Mapkosuh Toza”
3agpmro je 2013. roamme kao
Hocwiian guriome ,,Byk Kapapuh”.
Hcre roamue ymnmcyje HpUpPOIHO-
MaTeMaTH4YKH CMep y THUMHA3Uju
»JoBaH JoBanoBuh 3Mmaj” KoOjy
3aBpmaBa 2017. rommue. IloTowm,
ynucyje @DaxkynteT TEXHHYKHX
PauynapctBo u ayromaruka. Cse

HayKa,

0JICEK
npeaBuljeHe MCIUTE MOJ0XKUO je ca MPOCEYHOM OLIEHOM
9,68.

1348

g?ﬁ Zbornik radova Fakulteta tehniékih nauka, Novi Sad

UDK: 4.9
DOI: https://doi.org/10.24867/33BE21Kasikovic

KOMPARATIVNA ANALIZA AGENTSKIH RAG PRISTUPA U KONTEKSTU
IZGRADNJE KONVERZACIONOG ASISTENTA

COMPARATIVE ANALYSIS OF AGENTIC RAG APPROACHES IN THE CONTEXT OF
BUILDING A CONVERSATIONAL ASSISTANT

Ivana Kasikovi¢, Aleksandar Kovacevi¢, Fakultet tehnickih nauka, Novi Sad

Oblast - SOFTVERSKO INZENJERSTVO

Kratak sadrzaj — U okviru rada je predstavijeno
istrazivanje i implementacija dvije verzije konverzacionog
asistenta. Fokus je na konceptu Retrieval Augmented
Generation (RAG) koji pored , ugradenog* koristi i
eksterno znanje za generisanje odgovora i interakciju sa
korisnikom. Prva implementacija koristi osnovnu
kombinaciju dobavljanja znanja i generisanja odgovora, a
zatim je razvijen slozeniji pristup sa agentima i
specijalizovanim alatima za obradu upita. Cilj je detaljno
opisati proces izrade sistema, uporediti arhitekture po
kompleksnosti, prosirivosti, performansama i relevantnosti
odgovora. Evaluacija je prvo radena rucno, a kasnije
automatizovana pomocu Ragas okvira. Na kraju su
istaknute prednosti i mane oba pristupa, primjeri njihove
primjene te prijedlozi za unapredenje i dalja istrazivanja.

Kljuéne reci: RAG, Vanilla RAG, agentski RAG, agenti,
alati, konverzacioni asistent

Abstract — As part of this paper, we present research and
the implementation of two versions of a conversational
assistant. The focus was on exploring Retrieval-Augmented
Generation (RAG), which uses external knowledge in
addition to built-in knowledge to generate responses and
interact with users. The implementation started with a
simple version that combines retrieval and generation.
Afterwards, a more advanced approach was developed
using agents and specialized tools for query processing.
The goal of the paper is to provide a detailed description
of the system development process, compare the
architectures in terms of complexity, scalability,
performance, and answer relevance. Initially, system
evaluation was performed manually, while later
performance analysis was automated using the Ragas
framework. Finally, the advantages and disadvantages of
both approaches are highlighted, along with scenarios
where each would be appropriate. The paper concludes
with suggestions for improvements and directions for
future research.

Keywords: RAG, Vanilla RAG, agentic RAG, agents,
tools, chatbot

NAPOMENA: Ovaj rad proistekao je iz master rada
¢iji mentor je bio dr Aleksandar Kovacevié, red. prof.

1. UVOD

Arhitektura sistema konverzacionih asistenata,
organizacija komponenti, veliki jezi¢ki model i jo§ mnogo
drugih stvari znaCajno uticu na ponaSanje [rezultate
pomenutog sistema. LLM—ovi [1] iako veoma mo¢ni alati
imaju ograniCeno znanje, tj. znanje na kome su se
obucavali Sto je dosta umanjivalo vrijednost
konverzacionih asistenata koji su se bazirali isklju¢ivo na
njima. Kao rjeSenje za taj problem uveden je RAG [2]
koncept, pomocu kog se stvara mogucnost da se prilikom
generisanja odgovora ukljuci i neko eksterno znanje koje
do tada nije bilo poznato velikom jezi¢kom modelu.

Brzim razvojem ove oblasti stvorene su razliCite
implementacije ovih sistema. Stoga, cilj ovog rada je da
izvr$i komparativnhu analiza izmedju najjednostavnije
verzije 1 kompleksnijeg pristupa implementiranog uz
pomoc¢ agenta i specializovanih alata, pri ¢emu smo prvo
dali detaljan opis arhitekture oba rjeSenja. Kao rezultat
imaéemo realnu sliku o tome koliko je implementacija kog
sistema kompleksna, koliko pouzdane i relevantne
odgovore mozemo ocekivati za tu koli¢inu utroSenog
vremena i na taj nac¢in ¢emo mo¢i procijeniti koja vrsta
arhitekture i implementacije bi bila adekvatna za koji slucaj
upotrebe.

U drugom poglavlju bi¢e opisane teorijske osnove RAG
sistema kao koncepta, ali i osnove jednostavnog i
agentskog RAG-a. Naredno poglavlje bavice se detaljnim
opisivanjem procesa implementacije i koraka koji su
sprovedeni kako bismo dosli do krajnjih verzija sistema.
Nakon toga slijedi poglavlje gdje smo opisali proces
evaluacije. U petom poglavlju diskutovali smo o
rezultatima sistema i data su potencijalna objasnjenja za
odredene metrike i neka ponasanja. Posljednje poglavlje
donosi zakljucak sa sazetkom istrazivanja.

2. TEORIJSKE OSNOVE

U ovom poglavlju bi¢e date teorijske osnove RAG
koncepta, kao 1 teorijske osnove oba pristupa za
implementaciju koji ¢e kasnije biti i realizovana.

2.1. Sta je RAG?

Retrieval-Augmented Generation (RAG) je
arhitektonski obrazac koji kombinuje dvije bitne
komponente, a To sy: pretraga (retrieval) relevantnih
informacija iz izvora i generacija (generation) odgovora
pomoc¢u velikog jezickog modela. Uvodenjem ovog
koncepta rijesili smo problem stagniraju¢eg znanja, niske

1349

https://doi.org/10.24867/33BE21Kasikovic

objasnjivosti 1 otvorili smo moguénost generisanja
odgovora i na osnovu domenski specificnog znanja.

2.2 Eksterno znanje i njegova integracija u RAG sistem

Eksterno znanje predstavlja osnovni benefit RAG
koncepta. Moze biti bilo koji struktuirani ili nestruktuirani

tekst, a sama procedura indeksiranja je ista i svodi se na
pretprocesiranje teksta i podjelu na manje segmente, zatim
generisanje embedding reprezentacija od tih elemenata i
cuvanje u odabranu vektorsku bazu. Nakon toga, proces
pretrage zasniva se na konvertovanju korisnickog upita u
embedding reprezentaciju i vrsi se pretraga po sli¢nost gdje
su semanti¢ki sliéni vektori nalaze blizu u prostoru [3].

2.3 Mehanizmi promptovanja

Prompt [4] je jedna od klju¢nih stavki koje uti¢u na kvalitet
generisanog odgovora. To predstavlja niz instrukcija koje
se prosljeduju velikom jezickom modelu tokom
inferencije. Za S$to bolje rezultate dobra je praksa
ispostovati karakteristike efektivnog prompta, a to su da
bude jasan i precizan, da u okviru prompta bude ukljucen
relevantan kontekst, kao i1 da instukcije budu neutralne tj.
da ne sugeriSu neki odgovor i da ne namecu odredeno
misljenje i stav.

Sa druge strane, postoje i razlicite tehnike i strategije za
unapredenje prompta posebno u slucaju RAG-a od kojih
mozemo izdvojiti instruction based promptovanje, few
shot promptovanje itd.

2.4 Vanilla RAG

Vanilla RAG predstavlja osnovni i najjednostavniji vid
RAG koncepta. Ovu implementaciju odlikuje linearan tok
obrade wupita, prvo se pokreée proces dobavljanja
relevantnog konteksta, a zatim se na osnovu toga i generise
odgovor. U nastavku ¢emo ista¢i osnovne osobine ovog
pristupa.

2.4.1 Kljuéne osobine

Karakterisicne osobine znafajne za ovaj pristup su
jednostavnost implementacije i staticka logika. To znaci da
se ovakvi sistemi poprili¢no brzo stavljaju u upotrebu i da
se svi upiti obraduju na isti nacin. Kao posljedica svega
toga mozemo zakljuciti da bi debagovanje ovakvog
sistema bilo veoma lako.

2.4.2 Nedostaci

Iako je Vanilla RAG veoma jednostavan za
implementaciju, ovo rjeSenje imamo odredenih mana,
pogotovo kada imamo kompleksnije upite. Glavni problem
je Sto nema mogucnost adaptacije logike na osnovu upita,
tako da ukoliko postavimo neki slozeni upit vrlo vjerovatno
ne¢emo dobiti adekvatan i slozen odgovor.

2.4.3 Prakti¢na primjena

Kao posljedica pomenutih osobina mozemo reci da bi ova
implementacija najbolje funkcionisala u manjim
okruzenjima gdje upiti nisu toliko Cesti i kompleksni, a
baza znanja je stati¢na i nije podlozna Cestim promjenama.

2.5 Agentski RAG

Agentski RAG [5] predstavlja napredni oblik RAG
arhitekture u kojoj klju¢nu ulogu ima inteligentni agent,
odnosno entitet sposoban za donosSenje odluka, upravljanje

kontekstom i strategijsko izvrSavanje zadataka u vise
koraka uz pomoc¢ alata.

2.5.1 Agenti

Agenti [6] predstavljaju samostalne jedinice koje imaju
sposobnost da rezonuju, donose odluke i izaberu adekvatne
alate za izvrSavanje odredenih akcija. Postoje razli¢ite vrste
agenata u zavisnosti od toga koji je njihov cilj. U okviru
ovog rada koristi¢e se ReAct agent koji moze da rezonuje
i na osnovu medurezultata moze da mijenja strategiju i
prilagodava je.

2.5.2 Alati

Alati [7] su pomoc¢ne strukture koje agent koristi tokom
procesa odlucivanja. U sustini, to je interfejs za funkcije
koje mogu da dobavljaju odredeno znanje ili izvrSavaju
neku akciju adekvatnu za obradu upita. Bitna stavka
prilikom specificiranja nekog alata je opis, na osnovu koga
inteligenti koordinator, agent zna §ta je uloga tog alata i u
zavisnosti od toga ga pozove ili ne.

2.5.3 Klju¢ne osobine

Kljuéne osobine karakteristicne za agentski RAG su
modularnost i fleksibilnost. U nastavku ¢e biti prikazano
da se cijela arhitektura ove implementacije sastoji od
komponenti, tako da je veoma prakticno proSiriti neku
funkcionalnost, zamijeniti neku komponentu. Pored toga,
ima mogucénost orkestracije slozenih zadataka i generisanje
adekvatnog odgovora i za kompleksnije zadatke.

2.5.4 Nedostaci

S obzirom da raste kompleksnost sistema, to sa sobom
povlaci neke mane kao $to je slozenost implementacije. Za
kreiranje ovakvog sistema potrebno je viSe vremena i javlja
se povecana latencija posto se izvrSava veci broj koraka.
Povezano sa tim, javlja se i problem vecih troskova
izvr§avanja.

2.5.5 Prakti¢na primjena

Upotreba agentskog RAG-a je opravdana u sistemima koji
zahtjevaju slozenije radnje i laku proSirivost sistema
dodatnim alatima. Npr. To bi bio slucaj u velikim
kompanijama koje zahtjevaju pretragu dokumentacije,
generisanje izvjestaja slanje mejlova itd.

3. METODOLOGIJA

U ovom poglavlju opisane su metode i koraci koji su
primijenjeni tokom rada na projektu, Ciji je cilj bio
istrazivanje i implementacija RAG sistema. Projekat je
obuhvatio specifikaciju dizajna i implementaciju obje vrste
RAG sistema. U nastavku slijedi detaljniji opis.

3.1 Specifikacija zahtjeva

Projekat je realizovan koriStenjem programskog jezika
Typescript i Nodej.js radnog okvira, pri ¢emu je serverski
dio organizovan upotrebom modularne monolitne
arhitekture. Korisni¢ki interfejs je razvijen u React-u sa
ciljem da omoguc¢i jednostavnu interakciju sa sistemom.

Aplikacija je odradena za imaginarnu kompaniju koja bi
imala moguénost da pretrazuje = kompanijsku
dokumentaciju u jednostavnijoj verziji sistema, a u
agentskoj verziji ta implementacija je pro$irena i pristupom
internetu 1 moguc¢noséu rijeSavanja matematickih izraza

1350

preko aplikacije. Prvo je dat opis pripreme podataka za
testiranje aplikacije, a onda ¢emo opisati i konkretno
implementaciju.

3.2 Indeksiranje dokumenata

Prvi koraci u razvoju sistema su indeksiranje dokumenata
i priprema eksternog znanja koje ¢e se koristiti za testiranje
ovih sistema. Za Cuvanje generalnog znanja odlucili smo
se za vektorsku bazu Zilliz [8]. Ovaj proces zapocCinje
ras¢lanjivanjem dokumenata na manje segmente, u nasem
slu¢aju vrSena je semanticka podjela teksta po pasusima.

Sljedeci korak je kreiranje vektorskih reprezentacija od tih
pasusa upotrebom modela za embedovanje. U ovom
slucaju koristili smo OpenAIEmbeddings, koji u pozadini
podrazumjevano koristi napredni model text-embedding-
3-small.

Posljednji korak pri indeksiranju dokumenata je ¢uvanje u
vektorsku bazu. Odabrana vektorska baza nudi vise nacina
azuriranja baze, a u ovom radu iskoristen je inkrementalni
nacin aZuriranja baze, pri cemu se tokom azuriranja unose
samo novi ili izmijenjeni segmenti, dok se zastarjeli
automatski uklanjaju.

3.3 Implementacija Vanilla RAG-a

Vanilla RAG arhitektura implementirana je kao prva
verzija konverzacionog asistenta i kombinuje proces za
dobavljanje relevantnih dokumenata i proces generisanja
odgovora. Proces dobavljanja relevantnih dokumenata
oslanja se iskljuéivo na veliki jezicki model i nema
mogucnost rezonovanja. Za implementaciju koristen je
Langchain [9] radni okvir i ChatGPT Turbo 3.5. Slika
¢itave arhitekture prikazana je na slici 1.

Ziliz

—

Relevant docs

Find relevant

User query documents

Embed user query

Prompt LM

1

Final answer

Slika 1. Arhitektura Vanilla RAG-a

3.4 Implementacija agentskog RAG-a

Agentski RAG predstavlja napredniju verziju RAG
koncepta, u kom se umjesto velikog jezickog modela kod
jednostavne verzije koristi Citav agentski sistem sa
razli¢itim alatima, Uz pomo¢ agenta ovaj pristup dobija
mogucnost rezonovanja I adaptacije logike za rjeSavanje
kompleksnih korisni¢kih zahtjeva.

Za realizaciju ovog sistema koristen je LangGraph [10]
gdje je svaki Cvor predstavljao neki korak u obradi
zahtjeva. Dok smo za definisanje alata koristili Langchain
interfejs. Detaljniji prikaz arhitekture prikazan je na slici 2.

Tools

Retrieve relevant

context with tools Grada conext

User query

no yes
Is context Generate final

valid? answer

Rewrite question

Slika 2 Arhitektura agentskog RAG-A

Na osnovu priloZzenog mozemo zakljuciti da prvi korak je
dobavljanje relevantnog znanja pomocu agenta i alata. U
ovom slucaju koristen je reaktivni agent koji planira dalji
korak u skladu sa trenutnim stanjem.

Sto se tice alata za demonstraciju rada kreirali smo tri alata,
ato su:

. Alat za dobavljanje znanja o kompaniji
. Alat za internet pretragu
. Alat za rjeSavanje matematickih izraza

Zatim slijedi korak provjere da li je kontekst relevantan,
ukoliko jeste ide se na kraj i generiSe se odgovor, a u
suprotnom pitanje se reformulise i proces se ponavlja.

4. EVALUACIJA

Pod procesom evaluacije podrazumjeva se da se ,,izmjeri*
koliko ta¢ne i relevantne odgovore sistem daje. Posto se
generalno proces sastoji od dvije faze dobavljanja znanja i
generisanja odgovora, dobra praksa je evaluirati te dvije
faze odvojeno.

U pocetku evaluacija je radena ru¢no i empirijski na
osnovu testnog skupa pitanja, a naknadno je taj proces
automatizovan upotrebom Ragas radnog okvira.

5. REZULTATI

U ovom poglavlju bi¢e dato finalno poredenje ove dvije
implementacije na osnovu tehnickih metrika koje definisu
tacnost odgovora, ali i poredenje po sekundarnim
osobinama bitnim za razvoj ovih rjesenja.

U prilogu je data tabela sa vrijednostima tehnickih metrika
dobijenih preko Ragas [11] radnog okvira.

Tabela 1. Evaluirane vrijednosti

Vanilla RAG | Agentski RAG
0.6987 0.8903
Relevantnost
konteksta
0.2951 0.2698
Pridrzavanje
konteksta

1351

0.4773 0.4833
Povraéaj
konteksta
0.7818 0.8196
Relevantnost
odgovora
0.6192 0.8684
Tacnost
odgovora
Semanticka 0.8434 0.9020
sli¢nost

Na osnovu tabele, agentski pristup ima dosta bolje rezultate
u relevantnosti konteksta, razlog za to su sloZeni upiti gdje
drugi pristup dosta bolje rezonuje i pronalazi adekvatna
dokumenta. Takode, agentski pristup se neznatno bolje
pokazao I u metrici povracaj konteksta, do toga je doslo,
jer agenti malo bolje rade u slucaju kadaa se kontekst vraca
iz viSe dokumenata. Sa druge strane, posmatrajuci
pridrzavanje konteksta jednostavniji model neocekivano
daje bolji rezultat. Razlog za to je $to agentski pristup daje
dosta informacija da $to bolje objasni koncept, ali u ovom
slu¢aju to smanjuje vrijednost ove metrike.

Sa druge strane, Sto se ti¢e metrika vezanih za generisanje
odgovora agentski pristup se dosta bolje pokazao kod
tacnosti odgovora, jer ovo rjesenje detaljnije vraca odgovor
I detalje koji naizgled ne djeluju bitni. Kao posljedica
svega toga mozemo vidjeti da agentski prisup prednjacil u
metrici semantickoj sli€nosti odgovora koji mjeri
uskladenost generisanog i referentnog odgovora. Isto
objasnjenje vazi I za dosta bolju relevantnost odgovora kod
agentskog rjesenja.

Poredeéi sekundarne osobine ovih sistema, o€igledno je da
je agentski pristup dosta kompleksniji, zahtjeva vise
vremena za razvoj | troskovi odrzavanja arhitekture su
dosta veci. Ali glavna prednost ovog pristupa je Sto je lako
prosiriv i daje bolje, relevantnije I pouzdanije odgovore.

6. ZAKLJUCAK

U radu je predstavljen razvoj i implementacija jednostavne
i agentske implementacije RAG sistema. Motivacija za
razvoj sistema je uociti prednost agenata u okviru ovog
koncepta s obzirom na brzi razvoj tehnologije. Glavni cilj
ovog rada je uporediti spomenute arhitekture, istaéi
prednosti i mane oba pristupa, kao i potencijalne prijedloge
prakti¢ne primjene.

Na osnovu rezultata mozemo zakljuéiti da jednostavnija
implementacija RAG sistema se relativno brzo postavlja,
nema slozenu arhitekturu i ima linearan tok izvrSavanja
akcija. Dok sa druge strane agentski RAG daje detaljnije

odgovore, ima sposobnost rezonovanja i znacajno
prednjaci pri odgovaranju na slozene upite. Takode,
arhitektura agentskog pristupa je lako prosiriva, ali nosi
vece troskove i kompleksnija je za razvoj. Stoga prilikom
izbora nacina implementacije RAG sistema bitno je naci
balans izmedu performansi, odrzavanja i buduéeg razvoja.

Za buduéa unapredenja, predlaze se optimizacija
promptova uz pomo¢ predlozenih alata. Takode, korisno bi
bilo da sistem ima mogu¢nost ucenja tokom konverzacija i
pamcenja dobrih praksi. Jo$ jedno ogranicenje je ogranicen
kontekst koji se $alje velikom jezickom modelu, ukoliko bi
se ovaj problem rijeSio model bi imao viSe informacija za
odgovaranje §to bi proizvelo relevantnije odgovore.

7. LITERATURA

[1] What are large language models (LLMs)?
https://www.ibm.com/think/topics/large-language-models
[maTym npucryna jyn 2025]

[2] Newhauser, Mary; (2024). Introduction to Retrieval
Augmented Generation
(RAG) https://weaviate.io/blog/introduction-to-rag
[matym mpucrtyma jyn 2025]

[3] Vector Databases: Tutorial, Best Practices & Examples
https://nexla.com/ai-infrastructure/vector-databases/
[maTym nmpucryna jyn 2025]

[4] Prompt Engineering Guide https://www.promptingguide.ai
[maTym nmpucryna jyn 2025]

[5] Whatis agentic RAG?
https://www.ibm.com/think/topics/agentic-rag [aaTym
npuctyna jyH 2025]

[6] Tahir; (2024). What are Al Agents?
https:/medium.com/@tahirbalarabe2/what-are-ai-agents-
f06ef775e78f [marym npucrtymna jyn 2025]

[7] What are tools? https://huggingface.co/learn/agents-
course/en/unitl/tools [marym npuctyma jya 2025]

[8] Zilliz 3Banmuna moxymenramwuja https://docs.zilliz.com/
[maTym nmpucryna jyn 2025]

[9] 3Banmuna nokymenranuja Langchain-a
https://python.langchain.com/docs/introduction/ [raTym
npuctyna jyn 2025]

[10] 3Banmuna nokymenranuja Langgraph-a https://langchain-
ai.github.io/langgraph/concepts/why-langgraph/ [matym
npuctyna jyH 2025]

[11] 3Banm4Ha TOKyMeHTanuja 3a Ragas pagHn okBHp
https://docs.ragas.io/en/stable/getstarted/ [maTym mpuctymna

asryct 2025]

Ivana Kasikovi¢ rodena je 03.
oktobra 2000. godine u Trebinju.
Kao nosilac diplome ,,Vuk
Karadzi¢* 2019. godine zavrSava
gimnaziju ,,Jovan Duci¢*“, nakon
¢ega upisuje Fakultet tehnickih
nauka, smer Softversko
inzenjerstvo i informacione
tehnologije. Po zavrSetku studija
u roku, upisuje master akademske
studije i iste zavrSava 2025.
godine.

1352

https://www.ibm.com/think/topics/large-language-models
https://weaviate.io/blog/introduction-to-rag
https://nexla.com/ai-infrastructure/vector-databases/
https://www.promptingguide.ai/techniques
https://www.ibm.com/think/topics/agentic-rag
https://medium.com/@tahirbalarabe2/what-are-ai-agents-f06ef775e78f
https://medium.com/@tahirbalarabe2/what-are-ai-agents-f06ef775e78f
https://huggingface.co/learn/agents-course/en/unit1/tools
https://huggingface.co/learn/agents-course/en/unit1/tools
https://docs.zilliz.com/
https://python.langchain.com/docs/introduction/
https://langchain-ai.github.io/langgraph/concepts/why-langgraph/
https://langchain-ai.github.io/langgraph/concepts/why-langgraph/
https://docs.ragas.io/en/stable/getstarted/

g?ﬁ Zbornik radova Fakulteta tehniékih nauka, Novi Sad

UDK: 4.41
DOI: https://doi.org/10.24867/33BE22Stokic

BEZBEDNOST PODATAKA U KONTEKSTU BIG DATA
DATA SECURITY IN THE CONTEXT OF BIG DATA
Aleksa Stoki¢, Fakultet tehnickih nauka, Novi Sad

Oblast - ELEKTROTEHNIKA I RACUNARSTVO

Kratak sadrzaj — U ovom radu su istrazene specificne
pretnje i ranjivosti u okviru Big Data i analizirana primena
savremenih tehnika i alata za bezbednost podataka.
Posebna paznja je posvecena principima kao Sto su
autentifikacija, enkripcija i zastita od brute force i SQL
injection napada. Takode, na primeru veb aplikacije je
prikazan primer implementacije bezbednosnih
mehanizama.

Kljuéne refi: Big Data, Bezbednost, 2FA, Jake lozinke,
Enkripcija, Brute force, SQL injection

Abstract — [In this paper, specific threats and
vulnerabilities within Big Data were explored and the
application of modern techniques and tools for data
security wa analyzed. Special attention was given to
principles such as authentication, encryption and
protection against brute force and SQL injection attacks.
Additionallz, the implementation of securit mechanisms
was demonstrasted thtough the example of a web
application.

Keywords: Big Data, Security, 2FA, Strong passwords,
Encryption, Brute force, SOL injection

1. UVOD

Big Data donosi znacajne prednosti u analizi i donoSenju
odluka, ali istovremeno predstavlja ozbiljan izazov po
pitanju bezbednosti i privatnosti korisnika. Ogromna
koli¢ina i raznolikost podataka, koja ¢esto ukljucuje
osetljive liéne informacije, povecéava rizik od zloupotrebe i
otkrivanja identiteta. Cilj rada je da analizira pretnje i
ranjovsti u okviru Big Data i prikaZe primenu savremenih
bezbedonosnih tehnika kao S$to su enkripcija,
autentifikacija 1 zastita od napada. Kao prakti¢an primer,
razvija se veb aplikacija za turisticku agenciju koja ¢ce
demonstrirati implementaciju ovih mehanizama radi
zaStite podataka korisnika.

2. BIG DATA

Big Data predstavlja jedan od najznacajnijih fenomena
savremenog digitalnog doba. Rast obima, brzine i
raznovrsnosti podataka zahteva nove pristupe njihovom
skladistenju, obradi i analizi. Dok je tradicionalna obrada
podataka ograni¢ena kapacitetom racunarskih sistema, Big
Data omogucava upotrebu masivnih i razudenih skupa
podataka kako bi se iz njih izvukle vrednosti.

NAPOMENA:
Ovaj rad proistekao je iz master rada ¢iji mentor je bio
Prof. Dr Aleksandar Kupusinac

Kljuéne karakteristike Big Data opisuju se korz koncept
“5V”: obim, brzina, raznovrsnost, verodostojnost i
vrednost. Upravo kombinacija ovih elemenata ¢ini Big
Data jedinim na¢inom da se odgovori na savremen potrebe
u oblasti kao §to su finansije, zdravstvo, industrija i
trgovina.

Razvoj cloud infrastrukture omogucio je vecu fleksibilnost
i elasticnost u radu sa velikim podacima. Koncept Big Data
as a Service (BDaaS) integriSe prednosti cloud-a i
analitickih alata, pruzajuéi organizacijama pristup
racunarskim resursima bez potrebe za sopstvenim skupim
sistemima. Medu najvaznijim tehnologijama istiCu se
Hadoop, MapReduce, Hive i Spark, koji omogucavaju
paralelnu obradu i upravljanje velikim podacima.

Big Data danas predstavlja industriju koja menja trziste
rada, stvara nove poslovne modele i podstiCe razvoj
digitalne ekonomije. Kompanije koje se oslanjaju na
podatke beleze vecu produktivnost, brzu reakciju na trzi$ne
promene i bolje razumevanje korisnika. Istrazivanja
pokazuju da organizacije orjentisane na podatke imaju
znatno veée stope rasta 1 inovacija u odnosu na
konkurenciju.

Ipak, uz brojne prednosti javljaju se i izazovi, kao §to su
bezbednost i privatnsot. Pitanja regulacije, kao i eticke
dileme u vezi sa koriS¢enjem podataka, ostaju otvorena i
predstavljaju kljuéni pravac buduéeg razvoja ove oblasti.

Zakljucno, Big Data nije samo tehnoloski ve¢ i ekonomski
i drustveni fenomen, koji znacajno oblikuje poslovanje,
nauku i svakodnevni Zivot. Njegov dalji razvoj zavisi¢e od
balansa izmedu tehnickog napretka, regulatornih okvira i
etickih standarda u kori§¢enju podataka.

3. BEZBEDNOST PODATAK U KONTEKSTU BIG
DATA

Bezbednost po dataka u Big Data okruzenjima predstavlja
kompleksnu kombinaciju metodologija, tehnologija i
dobrih praksi usmerenih na zastitu poverljivosti, integriteta
i dostupnosti podataka. Veliki obim, raznolikost i dinamika
podataka koji poticu iz IoT uredaja, senzora i drustvenih
mreza namecu nove izazove koje tradicionalni modeli
zaStita ne mogu u potpunosti resiti. Pored tehni¢kih rizika,
znacajan problem predstavlja i privatnost, jer savremene
analitike omogucavaju deanomalizaciju pojedinaca, zbog
Cega regulative poput GDRP i HIPAA propisuju stroge
standarde obrade i ¢uvanja podataka.

Istorijski gledano, zastita podataka evoluirala je od fizickih
mera 1 osnovne enkripcije, preko razvoja mreznih
protokola (SSL/TLS), do sveobuhvatnih pravnih okvira

1353

https://doi.org/10.24867/33BE22Stokic

kao Sto su GDRP i CCPA. Pored njih, medunarodni
standardi poput ISO/IEC 27001 i PCI DSS definisu
kontrole i procedure za Dbezbedno upravljanje
inforamcijama. Tehnoloski napredak doneo je i nove
mehanizme — homomorfnu enkripciju, blockchain za
integritet podataka, kao i koncepte diferecijalne privatnosti
i k-anonimnosti.

U oblasti metodologija, posebno se isticu Risk Managment
Framework (RMF), Security by Design, Zero Trust
Architecture, Data Lifecycle i procene uticaja na privatnost
(PIA/DPIA). Ovi okviri omoguéavaju sistematic¢an pristup
zastiti podataka, od inicijalnog projektovanja, preko
kontinuiranog upravljanja rizikom, do procene
usaglasenosti sa regulativom.

Tehnoloska implementacija zastite obuhvata enkripciju u
mirovanju i tranzitu, autentifikaciju i autorizaciju, zastitu
od brute force i SQL injection napada, kao i sisteme za
logovanje i pracenje anomalija. Savremene Big Data
platforme zahtevaju skalabilna reSenja koja mogu raditi u
realnom vremenu i u distribuiranim cloud okruzenjima.

Prakticne mere podrazumevaju primenu enkripcije,
segemntaciju mreze, kontrolu pristupa zasnovanu na
ulogama, analizu mreZznog saobraéaja, kontinuirano
pracenje cloud okruzenja, redovno pravljenje rezervnih
kopija i planove za brz odgovor na incidente. Podjednako
je vazna i obuka zapslenih, jer ljudski faktor cesto
predstavja najslabiju kariku. Uocavanje internih pretnji i
stalno pracenje usaglasenosti sa regulativom dodatno jaca
bezbedonosnu kulturu organizacije.

Bezbednost podataka u Big Data kontekstu nije samo
tehnicki izazov, ve¢ i strateSko pitanje koje zahteva
integraciju metodologija, tehnologija, praksi i regulatornih
okvira. Samo takav holistic¢ki pristup omogucava izgradnju
pouzdanih i odrzivih sistema koji $tite podatke, grade
poverenje i omogucavaju odgovorno koriS¢enje Big Data
analitike.

4. IMPLEMENTACIJA BEZBEDONOSNIH
PRAKSI

Intenzivan razvoj tehnologije, zajedno sa globalnom
povezanos§¢u, nametnuo je potrebu za sistematicnom
implementacijom bezbedonosnih praksi koje osiguravaju
integrtiet, povreljivost i dostupnost informacija. Ovaj rad
daje pregled najvaznijih tehnika i1 metoda koje
predstavljaju temelj moderne sajber bezbednosti, uz
poseban naglasak na primenu u Big Data i veb sistemima.

4.1. Jake lozinke i autentifikacija

Jedna os osnovnih mera zastite predstavlja upotreba jakih i
jedinstvenih lozinki, koje znacajno umanjuju rizik od
neovlas¢enog pristupa. Istrazivanja pokazuju da slozene
lozinke sa njmanje 12 karaktera, kombinacija slova,
brojeva i1 simbola, mogu izdrzati brute force napade u
vremenskom okviru od vise hiljada godina. Ipak, lozinke
same po sebi nisu dovoljne. Zato je u praksi sve
zastupljenija dvofaktorska autentifikacija (2FA), koja
uvodi dodatni sloj sigurnosti kombinovanjem faktora
znanja (lozinka), posedovanja (tokeni, mobilni uredaj) i
inherencije (biometrijski podaci). Otvoreni standardi kao
§to su FIDO, Oauth2.0, OpenID Connect i SAML

omogucavaju interoberabilnost i otpornost na phishing
napade, dok buduéi pravci ukljuéuju autentifikaciju bez
lozinki i koncepte decentralizovanog identiteta.

lako znacajno povecava bezbednost, ona nije imuna na
napade. Slabosti mogu nastati usled zloupotrebe porcesa
oporavka naloga, kompromitacije tokena ili nesigurnosti
SMS kanala. Nacionalni instituti (na primer NIST) ve¢
preporucuju izbegavanje SMS-a u sistemima visokog
rizika. Ipak, prednosti 2FA — jednostavnost, dostupnost i
visok nivo sigurnosti — ¢ine je jednim od najpouzdanijih
reSenja za zastitu digitalnih servisa.

4.2. Zastita od brute force napada

Brute force napadi, zasnovani na sistemati¢nom
isprobavanju kombinacija lozinki i kljuceva, ostaju jedan
od najrasprostranjenijih metoda kompromitovanja naloga.
lIako su jednostavni i teoretski nepogreSivi, njihova
efikasnost zavisi od duzine i sloZenosti akreditiva.
Savremeni sistemi primenjuju viSe mera zastite:
ogranicenje broja prijava, CAPTCHA mehanizme, crne
liste IP adresa, pra¢enje mreznog saobracaja kao i uvodenje
viSefaktorske autentifikacije. Korisnicima se preporucuje
upotreba jedinstvenih lozinki, mendzera lozinki i
izbegavanje nebezbednih sajtova. Na ovaj nacin brute force
napada postaju sve manje delotvorni, ali i dalje
predstavljaju ozbiljnu pretnju ako se sistemi ne odrzavaju
redovno i bezbednosno ne azuriraju.

4.3. Primena enkripcije

Enkripcija predstavlja jedan od najmoc¢nijih mehanizma
zaztite podataka, jer osigurava njihovu povreljivost ¢ak i u
sluCaju presretanja i krade. Primena obuhvata i podatke u
mirovanju i podatke u prenosu, uz poseban znacaj u
oblastima finansija, e-trgovina i e-uprave. U Srbiji je ova
oblast pravno uredena Zakonom o elektronskom
dokumentu, dok GDRP na nivou EU posebno prepoznaje
enkripciju kao preporu¢enu meru.

Najznacajniji ~ algoritmi ukljuéuju simetricni AES
iasimtriéni RSA. Simetri¢na enkripcija je brza i efikasna za
velike koli¢ine podataka, ali zahteva siguran prenos
kljuceva. RSA resava ovaj problem upotrebom javnih i
privatnih kljuceva, iako je racunarski zahtevniji. U praksi
se Cesto primenjuje hibridni pristup — AES za sadrzaj, RSA
za razmenu kljueva. Glavni izazovi odnose se na
upravljanje kriptografskim kljuc¢evima, kao i na rizike od
zloupotrebe enkripcije u ransomware napadima.

4.4. Zastita od SQL injection napada

SQL injection je jedna od najopasnijih veb ranjivosti koja
omoguéava napada¢u manipulaciju upitima ka bazi
podataka. Posledice ukljucuju neovlaséen pristup, kradu ili
brisanje podataka, pa ¢ak i eskalaciju privilegija. Klju¢ne
mere prevencije obuhvataju validiranje unosa, upotrebu
parametrizovanih upita i skladiStenje porcedura, kao i
primenu belih lista za kontrolu unosa. Redovno skeniranje
aplikacija alatima kao $to su Burp Scanner ili Acunetix
omogucéava rano otkrivanje ranjivosti. Primeri iz prakse
pokazuju da dinamic¢ko kreiranje SQL upita putem
konkatenacije string-ova predstavlja najveéi rizik, dok
parametrizovani upiti i savremeni okviri pruzaju pouzdanu
zaStitu.

1354

Implementacije bezbedonosnih praksi nije vise opcija, veé
je nuznost u digitalnom dobu. Jake lozinke, 2FA,
enkripcija, zastita od brute force i SQL injection napada
predstavljaju temeljnemehanizme za izgradnju otpornih
sistema. Medutim, svki od ovih mehanizama nosi svoja
ograniCenja 1 zahteva kontinuirano unapredenje.
Buduénost bezbednosti lezi u integraciji viSe faktora —
biometrijskih, bihejvioralnih i decentralizovanih — koji
zajedno mogu osigurati robusnije i prilagodljivije sisteme.
Samo sistemati¢nim i sveobuhvatnim pristupom moguce je
izgraditi poverenje korisnika 1 ocuvati integritet
inforamcionih resursa u sulovima stalno rastucih sajber
pretnji.

5. INTEGRISAN PRIMER IMPLEMENTACIJE
BEZBEDONOSNIH MEHANIZAMA U VEB
APLIKACUJI

U okviru ovog rada razvijena je aplikacija koja sluzi kao
ilustrativni primer integracije kljuénih bezbedonosnih
mera. lako funkcionalno zasnovana na modelu turisti¢ke
agencije, aplikacija ima primarno edukativni i
demonstrativni karakter, pokazujué¢i kako se kroz jedan
sistem mogu implementirati mehanizmi autentifikacije,
zastite podataka u prenosu i skladistenju, kao i prevencije
zlonamernih aktivnosti.

5.1. Tehnoloski stek i arhitektura

Aplikacija je izgradena primenom savremenog
tehnoloskog steka. Frontend je realizovan u React.js-u, koji
omoguc¢ava komponentni razvoj jednostrani¢nih aplikacija
i komunikaciju sa serverom preko HTTP zahteva (Axios).
Backend je izgraden u Python-u koris¢enjem Flask
framework-a, koji omogucéava izgradnju RESTful API
servisa i modularni arhitekturu. Za upravljanje podacima
koris¢enja je MongoDB NoSQL baza, pogodna za
dinamiéne strukture. Arhitektura je troslojna, sa jasnom
podelom na kontrolere (obrada zahteva), servise (poslovna
logika) i1 repozitorijume (rad sa bazom), §to doprinosi
lak§em odrzavanju i pro§irivosti.

5.2. Implementacija bezbedonosnih mehanizama

5.2.1. Provera jacine lozinki

Prilikom registracije vrSi se dvostruka provera lozinki
koriS¢enjem regulatornih izraza. Ovaj mehanizam

osigurava da lozinke zadovoljavaju minimalne kriterijume
slozenosti. Cime se umanjuje rizik od brute force napada.

Slika 1. Provera jacine lozinke na frontend delu
aplikacije

5.2.2. 2FA

Realizovana je integracija sa TOTP standardom putem
PzOTP biblioteke i prikaza QR koda pomocéu Qrcode
modula. Nakon inicijalnog podesavanja, korisnik prilikom
svkaog logovanja unosi jednokratni kod iz aplikacije kao

§to je Google Authenticator. Ovim se znatno povecava
sigurnost prijave.

Slika 2. Generisanje QR koda u Python-u

Slika 3. Servis za proveru OTP koda

5.2.3. Zastita od brute force napada

Implementirana je viSeslojna strategija koja obuhvata
globalni rate-limiting (Flask-Limiter), ogranienje broja
zahteva po kriticnim rutama (/signin, /signup), kao i
priviemeno blokiranje naloga nakon viSe neuspelih
pokusaja. Ovim se efikasno sprecavaju automatizovani
napadi i kreiranje lasnih naloga.

Slika 4. Ogranicenje na maksimum 5 pristupa za rutu

Slika 5. Logika za blokiranje korisnickog naloga na
backend delu aplikacije

5.2.4. Zastita od NoSQL injection napada

Kreiran je poseban validacioni servis koji proverava sve
unose pre slanja u bazu. Pored regularnih izraza za
verifikaciju formata, primenjuje se parametrizovaniupiti u
pymongo biblioteci, ¢ime se eliminiSe rizik od direktne
interpolacije korisnickog unosa u upit.

1355

Slika 5. Izgled validacionog servisa na backend delu
aplikacije

5.2.5. Implementacija enkripcije

Osetljivi podaci (JMBG, broj pasoSa) cuvaju se u
Sifrovanojformi koriS¢enjem simtericne enkripcije (Fernet
iz crzptography biblioteke). Tajni klju¢ se ¢uva u .env fajlu,
$to obezbeduje minimalnu zastitu od kompromitacije koda.

D37 IDEy IHKUWSSEVDBVbG JELHG SRUL4QURY N XVBL 1 ZXGR2€UX 2H2RSbyYOVY3Q10US THWLY YWOMOETy " , ©)

SPFTY3VADIMAXTQYCERVTNIHISR"

3-PSQ-0-2_1bIKx1KMNjOTe1V¥q0704K487CxvUGERXEZwXAXPALr P
Boa-PS3vSHOLN1USQVbPSCYWLPOT UNS FUZY3gi MolykcOS.

Slika 7. Izgled enkriptovanih podataka iz baze

Implementacija prikazanih mehanizama pokazuje da je
moguce izgraditi veb apliakciju koja ispunjava savremene
bezbedonosne standarde uz minimalne resurse i upotrebu
dostupnih biblioteka. Sistem je edukativno osmisljen kako
bi demonstrirao najcesc¢e nacine odbrane. Ipak, naglaSeno

je da svaki mehanizam ima svja ogranienja, pa se
preporuc¢uje kombinovanje vise mera 1 njihovo
kontinuirano unapredenje.

Integracija bezbedonosnih mehanizama u veb aplikaciji
predstavlja uslov za njihovu pouzdanu i bezbednu
upotrebu. Primer aplikacije turisticke agencije pokazuje da
pravilnom primenom validacije lozinki, 2FA, zaStite od
brute force i NoSQL injection napada, kao i enkripcije
osetljivih podataka, moguce je znaCajno umanjiti rizik od
kompromitacije sistema. Rad pokazuje da kombinacija
dobrih praksi, adekvatnog tehnoloskog izbora i edukacije
korisnika predstavlja najbolji pristup izgradnji otpornih i
pouzdanih veb aplikacija u savremenom digitalnom
okruzenju.

5. ZAKLJUCAK

U eri digitalne transformacije i eksponencijalnog rasta
koli¢ine podataka, bezbednost u Big Data okruzenjima
postaje jedan od kljucnih preduslova za ocuvanje
integriteta, poverljivosti i dostupnosti informacija. Veliki
podaci pruzaju izuzetne mogucnosti za naprednu analizu i
donosenje strateskih odluka, ali istovremeno uvode broje
izazove u pogedu zastite osetljivih informacija i otpornosti
sistema na sajber napade. Karakteristike velikih podataka
zahtevaju nove, fleksibilne i skalabilne pristupe u dizajnu i
implementaciji bezbedonosnih mera.

U ovom radu istrazeni su kljucni bezbedonosni aspekti Big
Data okruzenja, pri ¢emu su analizirane najcée$ée pretnje
kao $to su krda identiteta, neovlaséeni pristup, brute force
i injection napadi, kao 1 izazovi uporavljanja
autentifikacijom i privatno$c¢u. Teorijski okvir upotpunjen
je prakticnim delom u okviru kojeg je razvijena veb
aplikacija zasnovana na arhitekturi Flask-React.js-
MongoDB. U aplikaciji su implementirani mehanizmi kao
Sto su dvofaktroska autentifikacija, kontrola jakih lozinki,
validacija unosa, enkripcija osetljivih podataka i
ograni¢enje zahteva, ¢ime je pokazano kako se kroz
slojevit pristup moze znacajno povecati bezbednost
sistema.

Rezultati ukazuju da ne postoji univerzalno resenje za sve
pretnje i da bezbednost mora biti tretirana kao kontinuirani
proces koji podrazumeva stalno pracenje, prilagodavanje i
unapredeje mehanizama. Posebno je istaknuta potreba za
integracijom sistema za detekciju anomalija u realnom
vremenu, primenom zero-trust arhitekture i kori§¢enjem
masinskog ucenja u otkrivanju zloupotreba.

Zaklju¢no, rad potvrduje da je bezbednost podataka

neodvojiv. deo Big Data sistema 1 da samo
interdisciplinarni pristup — koji kombinuje tehnicke,
organizacione 1 edukativne mere — moZe obezbediti

pouzdanost i
okruzenju.

otpornost u savremenom digitalnom

1356

6. LITERATURA
[1] https://cloud.google.com/learn/what-is-big-data

[2]https://www.forbes.com/sites/gartnergroup/201

3/03/27/gartners-big-data-definition-consists-of-

three-parts-not-to-be-confused-with-three-vs/

[3] https://www.turing.com/resources/big-data-

securityffwhat-is-big-data-security?

[4]https://www.keepersecurity.com/blog/2023/08/

31/what-makes-a-strong-password/

[5]https://www.techtarget.com/searchsecurity/defi

nition/two-factor-authentication

[6]https://www.fortinet.com/resources/cyberglossa

ry/brute-force-attack

[7]https://www.techtarget.com/searchsecurity/defi

nition/encryption

[8]https://www.acunetix.com/websitesecurity/sql-

injection/

Kratka biografija:

Aleksa Stoki¢ je roden 2001. godine u
PozZarevcu, Srbija. Zavrsio je Pozarevacku
gimnaziju u Pozarevcu, 2019. godine.
Fakultet Tehnickih Nauka u Novom Sadu
je upisao 2019. godine. Diplomirao je u
septembru 2023. godine, smer Primenjeno
softversko inZenjerstvo. Uspes$no je
ispunio sve akademske obaveze i polozio
sve ispite predvidene master studijskim
programom Primenjeno softversko
inzenjerstvo.

kontakt: stokic.aleksa.01(@gmail.com

1357

https://cloud.google.com/learn/what-is-big-data
https://www.forbes.com/sites/gartnergroup/2013/03/27/gartners-big-data-definition-consists-of-three-parts-not-to-be-confused-with-three-vs/
https://www.forbes.com/sites/gartnergroup/2013/03/27/gartners-big-data-definition-consists-of-three-parts-not-to-be-confused-with-three-vs/
https://www.forbes.com/sites/gartnergroup/2013/03/27/gartners-big-data-definition-consists-of-three-parts-not-to-be-confused-with-three-vs/
https://www.turing.com/resources/big-data-security%23what-is-big-data-security?
https://www.turing.com/resources/big-data-security%23what-is-big-data-security?
https://www.keepersecurity.com/blog/2023/08/31/what-makes-a-strong-password/
https://www.keepersecurity.com/blog/2023/08/31/what-makes-a-strong-password/
https://www.techtarget.com/searchsecurity/definition/two-factor-authentication
https://www.techtarget.com/searchsecurity/definition/two-factor-authentication
https://www.fortinet.com/resources/cyberglossary/brute-force-attack
https://www.fortinet.com/resources/cyberglossary/brute-force-attack
https://www.techtarget.com/searchsecurity/definition/encryption
https://www.techtarget.com/searchsecurity/definition/encryption
https://www.acunetix.com/websitesecurity/sql-injection/
https://www.acunetix.com/websitesecurity/sql-injection/

360pHUK papoBa PakynteTa TeXHUUKUX Hayka, Hoeu Cap

UDK: 621.31
DOI: https://doi.org/10.24867/33BE23Maksimovic

ITPOJEKTOBAIBE AYTOMATHUKE KJIMMA KOMOPE ITOCJIOBHE 3I'PAJE U
NHTEI'PAIIMJA CA BMS-OM (BUILDING MANAGEMENT SYSTEM)

DESIGN OF AIR HANDLING UNIT (AHU) AUTOMATION FOR A COMMERCIAL
BUILDING AND INTEGRATION WITH THE BUILDING MANAGEMENT SYSTEM

Mowmuuno Makcumosuh, [lapko Mapuetuh, @axyimem mexuuuxux nayka, Hosu Cao

Obaact — EJEKTPOTEXHUKA U PAYYHAPCTBO

Kparak caapxaj — V osom paoy npuxasano je pewerse
YNpaemsara Kauma komopom nymem BMS cucmema, ca
nocebHuUM — océpmom HaA u3bop U NOBE3UBAIE
KOMNOHeHama, paoHy JO02UKY U CUSYPDHOCHe @YHKyuje.
Jlemamno cy aumanuzupanu eiemeHmu KiuMa KoMope
nonym — GeHmuiamopd, — epejaud, peKynepamopa,
XIA0RaKa, —O0IANCUBAYA U DEeBAHMHUX CEH30pd.
Onucanu cy npuHyuny paoa u no6e3uearba KOMHOHEHAMA
Kpo3 enexmpuute weme, kao u kopuwherne EC momopa.
Obpahena je ummeepayuja ca BMS cucmemom y3
xkopuwhere Schneider Electric onpeme. Obyxsahenu cy
Kpumepujymu 3a 0e36edan pao, Kao u JI02UYKe CeK8eHYe
Peanuzosane peiejHoM mMexHUKoM, Koje npame HOPpMAalaH
U ANAPMHU PENCUM Padd KIUMAMCKE KOMOpe.

Kibyune peun: Knuma komopa, BMS, Penejna mexnuxa

Abstract — This paper presents a solution for managing
an air handling unit (AHU) through a Building
Management System (BMS), with a special focus on
component selection and interconnection, control logic,
and safety functions. Key elements of the AHU such as
fans, heaters, heat recovery units, coolers, humidifiers,
and relevant sensors are analyzed in detail. The operating
principles and wiring of components are described
through electrical schematics, including the use of EC
motors. The integration with the BMS system using
Schneider Electric equipment is elaborated. Safety
operation criteria are addressed, along with logic
sequences implemented via relay technology that govern
both normal and alarm operating modes of the AHU.

Keywords: Air kandling unit, BMS, Relay logic

1. YBOJ

KnrmMa xoMope IpezicTaBibajy LEHTPAIHH JIe0 CHCTeMa 3a
o0paay Ba3lyxa y CaBPEeMEHHUM OO0jCKTHMa, a 3aXTEBU
KOjU ce Tpe] HUX IOCTaB/bajy y Tmorieny komdopa,
eHepreTcke eukacHOCTH U 0e30€THOCTH CBE CYy CTPOXHU
[1]. nms oBor panma je mpukas nm300pa KOMIIOHEHATa:
BEHTHJIATOPa, Tpejada, peKymeparopa, OBIAXKUBAYa,
XJIaJaka u npunajgajyhux cenzopa. Odpaleno je

HAIIOMEHA:
OgBaj paag npoucrekao je U3 MacTep paga 4uju je
MeHTOp O0mo ap Jlapko Mapueruh, pea. npod.

BUXOBO EJIEKTPUYHO MOBE3UBakE U Ae(HUHHCAE JIOTHKE
pana kiuMa koMope y okBupy BMS cucrema, y3 moceban
aKieHaT Ha 0e30eqHOCHEe (YHKIUje M (PICKCHOUITHOCT
KOjy TpyXa penejHa TexXHMKa Yy KOMOWHamuju ca
CaBpEeMEHHM CEH30pHMa M aKTyaTopuMa. AHaJIM3UpaHa je
ynora EC wMoropa, ka0 W HHTerpamdja ompeme
npomus3Bohaua Schneider Electric, ca ommcom mnpumene
wuxoBux PLC ypehaja, /O mMonyna m KOMyHHKanInOHUX
nportokoia. OBakBUM MPUCTYNOM oOyxBaheHH Cy Kako
ACIIeKTH NpakTHYHE HMIUIEMEHTaldje, Tako U
KpUTEpHjyMH 0e30eIHOT W IMOY3IaHOT paja y peaHiM
YCIIOBIMA EKCIUTOATAIH]e.

2. OCHOBHA ®YHKIIUJA U TPUHIIUIIN PATA
KJIMMA KOMOPE

[MpuHuMn paga ykipydyje HEKOJIMKO OCHOBHHX (ha3a,
CIIOJbAIlIbU BAa3JyX C€ ycHcaBa Kpo3 yJa3He KaHaise Ize
ce TmpumpemMa 3a Jajpy obpany. OOpaza Ba3ryxa ce BpIIU
KpO3 pa3IMuuTe CEeKIUje yHyTap KIMMa KOMOpE ILITO ce
MOX€E BHJETH Ha OJIOK IIeMH KiIMMa MoMope ciuka .
Haxon o0pase TpeTupaHu Ba3myx ce AUCTPHOyHpa Kpo3
CHCTEM WM JUPEKTHO Yy mpocropuje. JleTassHO Cy
ONMHCaHe CeKIHje 3a Memame Bazayxa, (QuiITepcke
JEeIOMHUIE, TPejaddl U XJIaImbald, PEeKylepaTopH TOIUIOTE
(mmoyacTH W POTAlMOHM), OBNAXHUBAYM, BEHTHIATOPU
(ueHtpudyranHu ¥ akcujasiHK), Kao u npatehu ceHsopu u

KOHTPOJIHU €JIEMECHTH.

. BeHrunarop
Ountpaumja opcuca

Basgyx u3 :‘ /
npocropuje oy
Basayxy
npoctopujy
= \
\

2 \N

Opcuckn
Wanyaune
KaHan

4% Caex
C: Ba3ayx
¥

OtnapHu
_Baagyx

Xnapwak Ipejay/florpejay Notuenun
BewTunatop KaHan
notuca

Cauka 1. Bok wema Kkauma Komope ca c0jum
eleMeHmuma

JlebuHucany cy NPHHIMIN yNpaBbamba KOMIOHEHTaMa
Kao IITO Cy: YIpaBjbambe BEHTWIATOpHMa, (yHKIHja
Mpa30CcTaTa v IPOTHBIIOKAPHOT TepMOCTaTa, Kao ¥ 3Ha4aj
JIdepeHIjaTHuX CeH30pa MPUTHCKa Ha Gunrepuma. Pan

1358

https://doi.org/10.24867/33BE23Maksimovic

tTakohe oOyxBaTa M JIOTMUYKE OCHOBE YIpaBJbamba
CHCTEMOM y HOPMAIHOM U JapMHOM PEKHUMY paja.

3. BUILDING MANAGEMENT SYSTEM (BMS)

BMS IIpeICTaBJba LIEHTPAJIU30BaHU CUCTEM
ayToMaTtu3aiyje Koju oMmoryhaBsa Haa30p ¥ KOHTPOIY Hal
CTamkeM CHCTEeMa, ONITHMU3ANN]Y eHepreTcke

e(pMKACHOCTH, MHTETPUCAHO YNPABJbAkE CUTYPHOCHUM U
aIapMHUM PEKUMUMA, aHAINTHKY IojaTaka u mpaheme
yTamaja o0jekTa Ha JKMBOTHY cpenuHy. Cucrem je
MPEICTaBJbeH Kao CIIO0jeBHTa CTPYKTypa Koja oOyxBaTa
Je0 KOju CIyxd 3a mpaliele M KOHTPOIy MapaMeTapa
cucrema (SCADA), ayromarcku HUBO (KoHTposepu u 1/0
MOJIYJIM) U HHBO OIIPEME y NOJbY (CEH30pH, aKTyaToOpHu U
M3BPIIHK eneMeHTH). Ha cimnm 2 mpencTaBibeHn Cy CBU
HUBOM W HauuH KoMyHHUKanuje usmely mwux. Jlakie, Besa
MEHAIMEHT Jela W ayTOMaTWKe MpEeACTaBJbeHa je
3eNICHOM JIMHHJOM TaKo oO3HadaBajyhm ma je ped o
oJpeheHOM KOMYHHKAI[HOHOM MpPOTOKOJy, JOK IpHA
nuHEja m3Mely cioja ayToMaTHKE W OmpeMe y IOJbY
O3Ha4aBa Ja je€ Ped O CHTHAIHOM OXHYCHY
(KOHBEHIMjaJTHA CUTHAIN).

FIELD

Cruxka 2. Hugou komynuxayuje BMS cucmema

VY pany je npumemena Schneider Electric miatdopma, ca
cnenehom OTIPEMOM: PLC KOHTpOJIEpH
(SXWASPXXX10001), gurutaiHd W aHAJOTHU
yJIa3HO/M3JIa3HU MOJYJIA (SXWDI16XX10001,
SXWUI16XX10001, SXWDOA12X10001,
SXWAOV8XX10001), kao u Hanajama 3a CEH30pE |
koHTpostepe (SXWPS24VX10001). IloBesuBame je
Moryhe peasm3oBaTH KOMYHHMKAI[HOHHM IIPOTOKOJIMMA
Modbus u BACnet, xoju omoryhaBajy WHTerpanujy ca
OCTaUM mojacucTeMuMa 3rpaje. PyHKOMja ¥ HaMeHa
CBAKOT O]l IPUMEHCHUX MOJYJIA je IEeTaJbHO 00jalImheHa
C aKIEHTOM Ha MUXOBY OYHKUHM]Y Y TPHKYIUbAbY,
00paau U MPEeHOCy CUrHaia, mro oMoryhasa eukacHo u
MMpEeIrU3HO yrpaBJbamkE€ KIIMMAaTCKUM n TEXHUYKUM
ycioBuMa y o0jekty kpo3 BMS cucrem. Ympapipauka
JIoruKa o0yxBaTra KOHTPOJIy TEMIIepaType, BIa)KHOCTH,
KBaJMTETa Ba3gyXa MW pajHe CHTHaIM3alMje.
HmnnemeHTupaHe cy 3aITuTHE QyHKIHUjE ITyTEM peliejHe
TEXHUKE W JUTHTAIHE JIOTHKE, YKJbydyjyhu Hamzop
QIApMHHUX CTama, CUTYPHOCHE CHTHaje M IPELHU3HO
CEKBEHLMPAmE Paga KOMIIOHEHATA.

Monyn 3a Hamajabe (SXWPS24VX10001) mnpyxa
cTra0miM30BaHy n3Na3Hu HamoH o 24 VDC, ompemMerseH
3alITUTUHUM (yHKIMjaMa KOjeé ayTOMAaTCKH HCKIbYUY]y
Hamajike y ciiydajy npeontepehema MM KpaTKor Crioja.
[Mpy>ka moapIIKy 3a MIMPOK OICET yJa3HOT HAIOHA IITO je
3HAYajHO 3a INPUMEHE y IPOMCHJBUBHM CHEPreTCKHM
ycioBuMa. MakcuMmanHa CcHara Hamajama je 30W.
Kontponep (SXWASPXXX10001) wuma HampengHe
anropuT™Me 3a oOpady curHaira u omoryhaBa mporecuma
Kao INITO Cy peryiamyja TeMIepaTrype, IPHUTUCKA,
BJIOXHOCTH M JpPYyrHUX IlapaMeTrapa y CHUCTEMY
kuMaTu3anyje. [logpikaBa craHmapiHe KOMyHHUKAI[HOHE
nporokone Modbus, BACnet, LON mTo omoryhasa
MHTErpanujy ca pa3IniuTHM CHCTeMHUMa yHyTap BMS-a.
[Mocenyje BuIle KOMYHHUKAllMOHUX IIOPTOBA Kao IITO CY
2XEthernet, LonWorks, USB host, USB device, 2XRS-
485. TlpommpwBOCT © CKaJAOWIHOCT oOMOryhaBajy
nonaBamy 1m0 30 Momynma, a TMOTPONIKAa KOHTPOJIEpa
H3HOCH 10W. Jururamau yIIa3HO MOy
(SXWDI16XX10001) mocenyje 16 mururanHux KaHama
(6e3HamoHCKM KOHTakTH HamoHckor HuBoa 24V DC u
2.4mA). TIlorpomma wmoayna je 1.6W. Moayn
yHHBep3adHUX yinaza (SXWUI16XX10001) wuma 16
KaHaJia KOjU MOJAP)KaBajy aHaJOrHe CHHAJIC Y PacloHy OJ
0-10 VDC , 0-20mA, nurutanHe curHane 24VDC,
2,4mA, otnopanuke cursane (10Q mo 10xQ mam 10xQ go
60kQ), remneparypre yinaze (-50°C o 50°C). ITotpourma
Momynma je 1.8W. Moagyn OWTHTATHHX ~— W37a3a
(SXWDOA12X10001) mocenyje 12 kaHama uHju
KOHTAaKTH MOTY paJWTH Ha HamoHCKoM HUBOY 250VAC
mwm 30 VDC. MakcumainHsa cTpyja mo kKaHamy 2A, mTo
omoryhasa JIMPEKTHO yIpaBibambe MambUM
onrepehewnma. Ilorpomma Monyna je 1.8W. Ananorxo
m3naszHn Moxyn (SXWAOVEXX10001) mma 8 wm3masza
KojuMa ce Moxxe rerepucaru HanoHcku (0-10 VDC) nin
ctpyjan (1mA do 2mA) curnanu, notpourme 0,7W. Ceu
HaBeJeHn MoAynu ce MoHTHpajy Ha DIN muny npexo
onrosapajyhm momHOoXMja ~a KOMyHHKanujy ca
KOHTpoJepoM npeko RS485.

4. OIIEPATUBHA JIOTUKA PABMATPAHE
KJIMMA KOMOPE KK-01

Ha cmumm 3 mpukasaHa je amMKaTHBHA IIeMa KIUMa
komope KK-O1 wuwmjm pag ce 3acHMBa Ha KOHTPOIH
KJbyYHHX TapamMerapa Kao INTO Cy TeMmIeparypa,
BJIQXKHOCT, MPUTHUCAK W KBAJUTCT Basayxa. OHepaTI/IBHa
JIOTHKa CHCTEeMa 3aCHHBA CE Ha MPUKYIJbEHUM CUTHAITUMA
NPUKa3aHUM Y aIlUIMKaTHBHOj IIeMH, a Wb je
o00e30chuBambe KOMGOPHHX M EHEPreTCKU cQHUKACHUX
yCIIOBa y TIPOCTOPY.

Crnuka 3. Anauxamuena wema knuma komope KK-01

1359

[Ipuopurer cucreMa je ofpkaBame KBaJUTETa Ba3lyxa y
IIPOCTOPY, MITO CE TOCTH)KE YHOIIEHeM BehnX KOJIMYMHA
CBEXKET Ba3ayxa y cilydajeBuMa IoBehaHe 3arpibaHOCTH.
[Momro xomopa KK-01 nema Oajmac koju pasiBaja
PeLHpKyIanyjy oA peKyleparuje, YKOJIUKO je W3BYYCHH
Ba3NyX mpeBumie 3araljeH, CHCTEM CMamyje WA
3aycTaBiba paj peKkymepaTtopa. Temmeparypa Basmyxa
KOHTPOJIMILIE C€ MEPEHEM Ha M3AyBHO] PEIICTKH WIN Y
caMoOM TIPOCTOpY, a perynanujy Bpiu Pl perymarop xoju
ylpaBJba BEHTHINMA H3MEHUBada (TOIUIE WIM XJIaJHE
Boje). [lpuTmcak WM TPOTOK Bazayxa y KaHalMMa
OJIp’)kaBa C€ MEPEHEM y IIOTUCHOM U OJCUCHOM ey U
yIlpaBjbambeM Op3MHOM o0pTaja BeHTHinaTopa mytem PID
aIropuT™Ma TNpeko (QpEeKBEeHTHHUX peryjaropa WIH
mupektHo EC MoTopuMa KOjU Cy MpUMEHEHH Y
pasMmatpanoj xmMa komopu KK-01. Baxan neo cucrema
YMHE W TIApHU OBJIAKUBA4YM, KOJU CIyXe 32 JOBOhEeHme
BIQKHOCTH Ha 3a/JaTeé BPEIHOCTH HAKOH HHHUIMjaTHOT
xnmaljema Bazgyxa. llemokymaH mpomec mpaTH ce
CEH30pMMa BI@XHOCTH, y3 XHApOCTare KOjU
CUTHAJIM3MPA]y KPUTHYHE BPEIHOCTH y KaHaIy.

Pamu Oosper pasymeBama (YHKLIMOHATHE MOBE3aHOCTH
CBHX KOMIIOHEHATa KIIUMa KOMOpPE, TIOTPEOHO je CXBATHUTH
Ha4YMH Ha KOju cy ypehaju mehycoOHO moBe3aHHW W Kako
ce o0e30el)yje cUTypHOCT CHCTEMa ITyTeM XapABEPCKUX
peneja. CBU €IeMEHTH Cy TPYIHCAHH Y BUIIE OpMaHa ca
3ace0OHMM HallajarbeéM M KOMYHHKAIlMOHWM JIMHHjaMa, a
IHbUXOBA y3ajaMHa IOBE3aHOCT IMpHKa3aHa je Kpo3 OJIoK
meMy Hamnajamwa (Cinuka 4).

MPEXA
(ATPETAT)
ROAEMP
KITVMA KOMOPA
kK01
HATIAJAIE =
MPEXA
TETEHPA:
HATIOJHM KABN
CHTHATIHY KABII
| OPMAH ENEKTPOMOTOPHOT MIOTOHA
ROA-ENP
BMS OPMAH
OPMAH ENEKTPOMOTOPHOT MIOTOHA
Cnuka 4. brok wema Hanajara
1. ROA-EMP — Opman ce Hamaja U3 MpExe ca

Moryhnomhy mnpebanyBamba Ha arperaTcko Harajambe.
Arperarcko Hamajambe je HEONXOJHO 00e30emuTn 3a
MUPKYJNAIMOHY MyMIy M BEHTWI rpejavya (HM3MEbHBAY
TOIUIOTE) KaKo OW ce CIPEYMIO CMP3aBambe CUCTEMa MPU
HECTaHKY CTpyje.

2. ROM-EMP — Opman ce Hanaja u3 mpexe. Hanaja cse
CEH30pe, aKTyaTope U MoTope. 300r Mame KPUTUYHOCTH

OBHX eJleMeHaTta HHUje 1OoTpeOHO 00e30ehuBaru
arperaTcko Harajame.
3.ROA-BMS - Opman y KOME ce Hajlasu

nporpamMaOuIIHA KOHTPOJIEp U HeroBu Moaysiu. Hamaja ce
m3 ROA-EMP opmana u umma o06e30eheHO pe3epBHO

arperarcko Hamajamb€ paad KOHTHHYHPAHOT
KOHTpoJiepa 1 0e30€JHOCTH cHCcTEMA.

pana

Besa opMaHa eekTpo-MOTOpHHUX MoroHa U opMaHa ROA -
BMS y kome ce Hamase HporpaMaOHIHH KOHTPOJICPH
OCTBapyje Ce peJejHOM TEXHHKOM, CHCTEMOM YyJia3a-
n3nasa. JleraspHe nieme noBe3uBama U nHTErpanuja BMS
u EMP opmaHa npukasaHu Cy y I€TOM IOTJIaBJbY.

5. AHTET'PAIIUJA KOMIIOHEHATA
PASMATPAHE KIIMMA KOMOPE CA BMS-om

YMecTo KOMYyHUKAIlMOHUX NPOTOKOJIA, pa3MeHa CHUTHaa
n3Mel)y KOMITOHEHaTa KoMope W KoHTpoiepa y BMS
OpMaHy peanusyje ce MyTeM peliejHe TEXHUKE, CHCTEMOM
ymaza/m3naza. OBaj mpucTynm o0e36elyje moy3maHOCT,
€JIeKTPHYIHY H30JIAIH]y, ¢excuOmIHOCT npu
IIPOjEKTOBAbY JIOTHKE YNpPaBJbarkbha U JIAKy HHTETPALH]jy
ca pasmmuutuM BMS pememuma 0e3 morpebe 3a
MOJATHUM ajanTandjama. PelejHa TeXHHKa je KilacHuaH
HauuH ITOBE3MBamkba Y MHAYCTPU)jCKOj ayToMaThiy [2] rae
ce JOrnuku curHaimu ooOpalyjy mnpeko peneja paau
CUT'YPHOT ¥ MOY3/IaHOT YIIPaBJbarba.

5.1. Pesiejn kao K/by4HHU eleMeHTH HHTerpamnuje

Peneju cy enekrpomexanmuku ypehaju xoju
MpeKJanameM KOHTakaTta omoryhaBajy WIH NPEKUAajy
MPOTOK CTpyje Ka ojnpeheHnm nortpomraynma [3], mpu
yeMy ce y npojexty kopucte peneju ca 1CO n 4CO
KoHTakTHMa. [IpuMeHa oOyxBaTa NPUKYIJbamke CHTHANA
ca CEH30pa, YIpaBJbakbe aKTyaTopuMa U KOHTPOIY
6e30eqHocHUX ypehaja. 3axBasbyjyhu CB0Ojoj CTpPYKTYpH,
penejHa TexHuka oMoryhasa QuexcuOuiaHO (GopMupame
JIOTHKE pajia U eJNEeKTPUYHY 3aIITHTY, jep CBAKHW CHUTHAI
Moxxke Outm obOpahen mpe ymacka y PLC, umme ce
mosehasa moy3gaHocT u 6€30€IHOCT IENIOT CHCTeMA.

5.2. MuTerpucana onpema y kjauma komopu KK-01

MD20SR-24TS je Schneider Electric akrtyatop ca
MomeHToM on 20 Nm um moBpatHom onpyrom (Failsafe
¢ynknmja), mTo 06e30ehyje Bpahame xamy3uHe y 3a1atu
MOJIOKaj TIPM HECTaHKy Hamajama. llocemyje curHaIHE
koHTakte (TS) 3a moBpatHy WHpOPMANHjy O TIONOXKAjy.
Tun ynpassbama je apononoxajuu ON/OFF.

JKamysuna ce Hamnaja npeko Tpancgopmaropa 230/24VAC
n3 opmana ROA-BMS, a oTrBapame ce BpHIM 3aJaBambeM
JUTHTATHE KOMAaHAOM ca KOHTpoiepa. Y ciydajy
MpeKua Halajama, 3axBajbyjyhu mMmoBpaTHO] ompy3H,
XKamysuHa ce 3arBapa. Crame OTBOPEHOCTH U
3aTBOPEHOCTH TpaTH CE MPEKo MOBPATHHX CUTHAja ca
kiema S1-S2 (3aTtBopeno) u S4—S6 (0TBOpEHO), KOju ce
JIOBOJIE HA JIMTUTAJIHE ylia3e KOHTpolepa. McTu npuHImI
Ba)ku 3a 00€ >Kally3nHe — CBEXXEr' ¥ OTIIaIHOT Ba3ayXa.

Cenzopn audepeHIHjalHOT TPUTHCKAa TpaTe Imaf
NPUTUCKA Ha (UITEpUMa, BEHTHIATOPUMA U POTOTEPMY
pamy JeTeKkiMje ajJapMHUX CcTamkba M ToTpebe 3a
ogpxaBameM. Ha ¢unrepuMa ce KOpHUCTE CEH30pU
SDP910-300, mupekTHO HOBe3aHM Ha TUTHTANIHE ylase
KoHTpoJiepa 0e3 moTpebe 3a J0JaTHUM HalajambeM.
Cenzopu Ha BEHTUJIATOpUMA (SDP910-1000)
CUTHAJIM3MUPajy pPaj MOTOpa IIPEKO peneja y OpMaHy
ROM-EMP. Cenzop Ha portorepmy (SDP910-500)
almapMupa y CIy4ajy 3a4ellJbeHOCTH WM IIPOMEHE
npoTtoka. CBH CEH30pH AONPUHOCE €(PUKACHO] KOHTPOIH

1360

M 3alITUTU KJIIMMa KOMOpPE€ MYyTEM MOBPATHUX CUI'HAJIA Y

BMS.

VY cucrteMy ce KOPHUCTE€ YETHPU THIIA TEeMIEepaTypHHUX
CeH3opa:

1. OeBun cenzop (STP100-100) — mepu Temmeparypy
TEYHOCTH y Tpejady, XJIaJAmaKy u Jorpejady; IOCTaBiba ce
y 4aypy y LEBOBOJY.

2. Kanancku censop temmneparype u Biare (SHD100-T) —
MpaTH TEMIEPaTypy W BIXHOCT Yy BEHTHIALUOHUM
KaHaJIMMa; TIOTPEOHO MY j€ Hallajarbe.

3. Kanancku cenzop Ttemmepatype, Biaare u CO:
(SCD110-H) — omoryhaBa KOHTpOJy KBaJMTeTa
MTOBPATHOT Ba3ayxa pajy yIITeae eHepruje.

4. IIpocTopHu ceH3op Temmeparype u Biare (SLAXX2) —
KJbYYaH 3a MPEIU3HY peryjannjy y IpOCTOPHjH, jep MEepH
CTBapHe ycjoBe y mpoctopy u omoryhaa BMS-y na
OIITHMU3Yje pajl KIuMa KOMOpe.

CBu ceH30pH ce TUPEKTHO Be3yjy Ha BMS u omoryhasajy
e(pUKacHy U MPeUn3Hy KOHTPOIY KIMMaTH3aIHje.

[oxapun Tepmocratn RAK-TW1000.HB ce nmocrasibajy
Ha NOTHCHH M OJICUCHM KaHaJl KJIMMa KOMOpE U CITyKe 3a
JEeTeKIMjy TIperpeBama, HAKOH 4Yera MpeKko pereja
HCKJbYYY]y BEHTHIATOpE M aKTHBUPAjy anmapM. [loBe3ann
cy ca BMS-oM u MoOry akTHBHpaTH >Kaldy3HWHE, anapMme,
WIN TIPOCIECIUTH CUTHAJl CHUCTEMY 3a J0jaBy MOXapa.
[opex Tora, peneju KA3 u KA4 moBe3anm Ha
MPOTUBIOXKAPHY IEHTpalTy TMPEKUAajy Hamajamke y
cllyyajy TOKapa, 3arBapajy KiamHe M OHeMoryhasajy
HIMPEhE BaTpe KPO3 BEHTUIIAIIN]Y.

VY cucremnma Tpejamba KIMMa KOMOpa, IHPKYyJAIMOHA
IMyMITa, BEHTWI Tpejada U Mpa3ocTaT 3ajeqHo o6e36elyjy
epuKacHy KOHTPOJy TeMIepaType U 3alTUTy Of
cMmp3aBama. [lupkysianuona mymma o0e30ehyje craman
NPOTOK TOIUIE BOJIE KPO3 U3MEHUBAY, 0K BEHTHI rpejada
perynuiie KOJMYMHY BOJe M omoryhaBa aHamorHo
ynpaBJbambe. Mpa3ocTar npaTH TemIeparypy y ONn3uHu
W3MEHNBAaYa M YKOJMKO OHa IMaJHE HWCIION KPUTHYHE
BpenHoctu (ump. 5°C), akTHBUpa pesiej KOju UCKIbydyje
BEHTUJIATOpE U WIajbe curHan BMS-y wim JupekTHO
aKTHBHpPa LHPKYJAIMOHY NyYMIly W OTBapa BEHTHI
rpejaga. Ha Taj HaumH ce cmpedaBa cMp3aBame BOJE Y
rpejaay u Moryha omrehema uWHcTamamuje. Y3ajamMHa
KoopamHanja oBHX ypehaja o00e30ehyje moy3man wu
6e3beman pax HVAC cucrema 9ak M TpH EKCTPEMHO
HHUCKHMM TeMIlepaTypama.

Y oBOM cucTeMy, IPUTHCAK Y MPOCTOPHjU CE PETYIIHIIE
IyTEeM OJICUCHHX M INOTUCHUX BEHTWJIATOpa (110 1Ba O
cBake Bpcre) ca ECBlue motopuma, koju omoryhasajy
eHepreTckd edukacaH, THX u moy3gaH paa. ECBlue
MOTOPH HMMajy MHTETPUCAHY €JIEKTPOHHKY, IOJPIIKY 3a
yrnpasisame mpeko 0—10V umnmu Modbus curnana, codr-
crapt (QyHKIMjy U Oyr BeK Tpajama. Komanma 3a paj
MOTOpa MOXe ce AaTu py4Ho uiu npeko BMS-a, nok ce
nospatHe uH(opMaluje o pany U KBapy A00ujajy MpeKo
pelieBaHTHHUX KieMa. bp3uHa ce peryiuiie ClambeM
ananorHor curtana (0-10V), a mapanenHo noOBe3aHH
BEeHTWIAaTOpH omoryhaBajy paBHOMEpHY pacHojeiy
onrepehema u noeehany noysmaHoct cucrema.

Pororepm (KKO1-MR) je enexkrpomorop chare 0,5 kW
Koju 00e30ehyje KOHTHHYUpaHy pPOTALHUjy POTAIMOHOT

peKyneparopa y KIuMa KOMOPH paau e(hUKacHOT IpeHoca
TorioTe (M Biare) ca M3AYBHOT HAa YJa3sHH Bas3IyX.
VYnpaBibame ce MOKE BPIIUTH Py4HO WiH npeko BMS-a,
y3 MmoryhHocT anaorne perynanuje Opsune (0—10V),
JIOK Cce CHTHaIN Paja M KBapa IPEeHOCce IPEKo peneja Ha
cuHonTHKy 1 BMS. Hamajame porotepma o6e36eleno je
n3 opmana ROM-EMP.

6. 3BAK/bYYAK

Kinnma Kkomope cy KibydHa KOMIIOHEHTa CHCTeMa
LEHTpaJTHE KIIUMaTH3aIyje, jep omoryhaBajy
KOHTPOJIUCAHO JoBOheme, o0pamy U JUCTPHOYLIH)Y
Ba3lyxa y CKJIaJy ca 3aXTeBUMa MpocTopa W Kompopa
kopucHuka. OHe yOairyjy cBex, ¢uiarpupaH u obpalhen
Ba3lyx Yy MPOCTOP, TOK MCTOBPEMEHO M3BJIaue TOMA0 MU
3araljeH BasmyX, YAME Ce OJp)KaBa ONTHMAJaH KBAJHUTET
VHYTpaIllhe CPeIrHe.

W360p n koHpUTYparmja onpeme y kiarnma komopu KK-01
W UWHTErpandja XapIBEpCKHX KOMIIOHeHaTa ca BMS
CHCTEMOM OJi KJbYYHOI Cy 3Hadaja 3a KBaJINTETaH,
euKacaH U CUTypaH paj OBUX CHCTEMA.

[Ipumenom BMS-a omoryheHo je KOHTHHYHpPAHO
npaheme M peryiaucame NapaMerapa, IITO BOIAM Ka
3HAYajHUM YyIITeaMa CHepruje W TPOAYXKETKY Beka
ompeme. KomMOnHanuja XxapJBepcKUX OrpaHHYeHa MPEKo
peneja U codTBEpCKe KOHTPOJIE KJbYyUHA je 3a IIOCTH3amhe
BUCOKE €Heprercke e(QUKacHOCTH M MOY3JaHOCTH
cucTeMa.

7. IATEPATYPA

[1] Bemumup Yonrpanau, Aymomamuxa y namemuum
cmambeno-nocnosuum oojekmuma, 21000 Hosu
Can, Tpr Jocuteja O6panosuhia 6.

[2] Hapxo Mapuetuh, Mapko I'eniuh, Bopuc Mapuetuh,
Ilpozpamabunnu nocuuku KoHmponepu y
enexmpoenepeemuyu, PaKynareT TEXHUYKUX HAYKa,
21000 Hosu Cag, Tpr Jocuteja O6panosuha 6.

[3] Crpaxun J. I'ymasan, OcHogHu npunyunu
npojexmosarba y mpescama cpedrbe2 U HUCKO2
HanoHna, PakynTeT TeXHUUKUX Hayka, 21000 Hosu
Capn, Tpr Jocureja Obpanosuha 6.

Kparka Onorpaduja:

Momuuiio MakcumoBuh poles je y
[Hanmy 1998. roa. Jlunnomcku paj Ha
DaxyITeTy TEXHUUKUX HayKa U3 00JIacTH
ENeKTpOTeXHHUKE U padyHapCcTBa —
EneKTpoeHepreTcKyu cucTeMu 0A0paHuo
je 2022.rox.
KoHTakT:momcilo.maks7@gmail.com

Japko Mapueruh pohes je 1968.
rogune y Hosom Cany. U naswe ce
yCIenrHo 6aBu HAyYHIM
UCTPaXHUBABHMA.

1361

g?ﬁ Zbornik radova Fakulteta tehniékih nauka, Novi Sad

UDK: 4.9
DOI: https://doi.org/10.24867/33BE25Jankovic

SAVREMENI CRM SISTEMI: SALESFORCE PLATFORMA U UNAPREDENJU
POSLOVNIH PROCESA

MODERN CRM SYSTEMS: THE SALESFORCE PLATFORM IN ENHANCING
BUSINESS PROCESSES

Marija Jankovi¢, Fakultet tehnickih nauka, Novi Sad

Oblast - ELEKTROTEHNIKA I RACUNARSTVO

Kratak sadrzaj — Rad istrazuje znacaj i ulogu CRM
sistema u savremenom poslovnom okruzenju, detaljan
pregled platforme Salesforce u kontekstu digitalne
transformacije, prilagodavanja, mogucnosti integracije i
primene vestacke inteligencije u cilju unapredenja
poslovnih procesa.

Kljuéne reli: CRM sistemi, platforma Salesforce,
Integracija vestacke inteligencije, Salesforce Al
Salesforce Einstein, Agentforce

Abstract — The paper explores the significance and role of
CRM systems in the modern business environment,
providing a comprehensive overview of the Salesforce
platform’s functionalities, with a focus on digital
transformation, customization, integration capabilities
and the use of artificial intelligence to enhance business
processes.

Keywords: CRM Systems, Salesforce Platform, Artificial
Intelligence Integration, Salesforce Al, Salesforce
Einstein, Agentforce

1. UVOD

Savremena poslovna okruzenja, dinamic¢na i slozena,
izlazu preduzeca svih tipova i obima brojnim izazovima.

Razliciti sistemi, neuskladeni timovi, ru¢ni unos i
nedostatak automatizacije procesa, otezavaju obradu i
integraciju podataka, povecéavaju rizik od pojave gresaka i
gubitka informacija. Nejasnoée u pracenju poslovnih
procesa, ucinka, ciljeva, ograni¢eni analiticki uvidi,
predvidanja, propusti u personalizaciji usluga i upravljanju
povratnim informacijama, otezavaju donoSenje odluka,
smanjuju konkurentnost, ograniavaju unapredenje
strategija i negativno uticu na kvalitet usluge, zadovoljstvo
i lojalnost klijenata.

Platforma Salesforce, sa naprednim moguénostima

prilagodavanja, integracije 1 primene veStacke
inteligencije, predstavlja sveobuhvatno reSenje za
navedene rizike. Svojom fleksibilnos¢u 1 Sirokim

ekosistemom, omogucava preduzeéima transformaciju i
unapredenje poslovanja, uvodeéi inovacije u mnogim
industrijama.

NAPOMENA:
Ovaj rad proistekao je iz master rada ¢iji mentor je bila
dr Dunja Vrbaski, docent

2. PREGLED SISTEMA ZA UPRAVLJANJE
ODNOSIMA SA KLIJENTIMA

Prepoznavanje potreba, Zelja, navika, sklonosti i
ocekivanja korisnika proizvoda ili usluga u mnostvu
sakupljenih informacija, postize se upotrebom CRM
sistema (eng. Customer Relationship Management),
odnosno sistema za upravljanje odnosima sa trenutnim i
potencijalnim klijentima.

Prema Batlu i Maklanu (2015), CRM sistemi su osnovna
poslovna strategija koja integriSe interne procese i
funkcije, kao i spoljne mreze, kako bi stvorila i isporucila
vrednost uz ostvarivanje profita. Zasnivaju se na
visokokvalitetnim podacima prikupljenih informacionim
tehnologijama [1,2].

Lehtinen isti¢e (2007) da je svrha CRM sistema
upoznavanje strateSkih klijenata i ostvarivanje dugoro¢nih

odnosa sa njima, umesto usmerenja na povecanje
kratkoro¢nih prihoda [2].

Prema Pejnu (2007), CRM sistemi se definiSu kao strateski
procesi koji nastoje razvijanju odnosa, donoseci veéu
vrednost za zainteresovane strane (eng. stakeholders) [2].

Hlebovski navodi (2005) da su CRM sistemi interaktivni
procesi koji teZze da postignu optimalnu ravnotezu izmedu
kompanijskog ulaganja i zadovoljstva klijenata, Sto zavisi
od profita obe strane [2].

Kotler i Armstrong tumace (2004) CRM sisteme kao
specificne softverske programe i ujedno analitiCku tehniku
koja sluzi za integraciju i koriséenje velikih baza podataka
o pojedinac¢nim klijentima [2].

Prema Cenu i Popovi¢u (2003) CRM sistemi su poslovne
strategije koje integri$u ljude, procese i tehnologiju kako bi
se ostvarilo razumevanje klijenata. Navode da ¢e
kompanije koje uspe$no implementiraju CRM uzivati u
nagradama kroz lojalnost i dugoro¢nu profitabilnost. lako
tehnologija predstavlja kljucni element u implementaciji,
gledanje CRM sistema iskljucivo kao tehnolosko resenje
nije dovoljno. Neophodno je povezati tehnologiju sa
odgovaraju¢im poslovnim procesima i angazmanom ljudi
[3, 4].

Objedinjenjem raznih departmana, kao $to su marketing,
prodaja, usluge, drustveni mediji i njthovom medusobnom
razmenom podataka, stice se jedinstveni, jasni i detaljni
uvid, kao i bolji odnos i spoznaja korisnickog iskustva.
Centralizacija podataka u CRM sistemima doprinosi
unapredenju organizacije kompanije 1 smanjenju
administrativnih poslova.

1362

https://doi.org/10.24867/33BE25Jankovic

Integracijom sa alatima veStacke inteligencije (eng.
Artificial Intelligence, AI), moguéa je personalizacija i
predikcija interakcija klijenata, automatizacija procesa i
pruzanje uvida koji pomazu u donosenju procena. Takode,
postoji moguénost integracije sa raznim poslovnim
alatima, kao S$to su alati za potpisivanje dokumenata,
racunovodstvo, fakturisanje, ankete 1 sticanje
sveobuhvatnog pogleda na klijente i upotpunjenje
poslovanja.

Danasnji CRM sistemi implementirani su na platformama
zasnovanim na racunarstvu u oblaku (eng. cloud), S§to
omogucuje Cuvanje i pristupanje podacima o klijentima
bilo kada i sa bilo koje lokacije. Podrazumeva laku
implementaciju, bez neophodnog hardvera ili problema
oko pradenja verzija i azuriranja. Pored obezbedene
sigurnosti, plaéanje se izvrS8ava po koris¢enim
funkcionalnostima, sa prilikom za pro§irivanje u zavisnosti
od potreba [5].

Na trzistu postoji veliki broj razli¢itth CRM sistema, kao
Sto su Salesforce, Microsoft Dynamics 365, SAP,
Monday.com, Zoho, HubSpot, Pipedrive i drugi.

Koriste se u razlicite svrhe i poseduju odredene prednosti i
mane, te je razumevanje njihovih karakteristika klju¢no za
odabir pogodnog CRM reSenja i uspesnost poslovanja.

3. PLATFORMA SALESFORCE

Na vrhu globalnog trzista CRM sistema nalazi se platforma
Salesforce, menjaju¢i naCin poslovanja kompanija i
upravljanja odnosima. Cesto se pogre$no povezuje
isklju¢ivo sa prodajom i kompanijama koje se bave
trgovinom.

Platforma Salesforce prevazilazi tradicionalna resenja,
nudeéi Citav ekosistem aplikacija i servisa dostupnih na
cloud okruzenju, koji vode, optimizuju i unapreduju
poslovne procese kroz domene prodaje, usluga, marketinga
i mnogih drugih oblasti [6].

Koristi Sirok spektar tehnologija za razvoj, od specificnih
programskih jezika i alata do naprednih cloud tehnologija
i vestacke inteligencije.

Objektno orijentisani programski jezik, slican Java
programskom jeziku, a specifi¢an za Salesforce platformu,
naziva se Apex. Koristi se za pisanje kontrolera, okidaca
(eng. triggers), kao i za kreiranje kompleksnih poslovnih
logika na server strani [7].

Okvir (eng. framework) Lightning Components koristi se
za izgradnju dinamickih veb aplikacija unutar Salesforce
platforme. Dok je Aura Components stariji okvir za razvoj
korisni¢kog interfejsa, Lightning Web Components (LWC)
je moderniji, baziran na veb standardima kao S§to su
JavaScript i HTML [8].

Platforma koristi internu bazu podataka zasnovanu na
relacionom modelu, izgradenu na osnovu Oracle baze
podataka. Iako je Oracle osnova za Cuvanje podataka,
korisnici platforme nemaju direktan pristup bazi. Umesto
toga, Salesforce nudi API pozive i prilagodene jezike poput
SOQL (eng. Salesforce Object Query Language) i SOSL
(eng. Salesforce Object Search Language) za upite i
upravljanje podacima. Platforma Kkoristi multi-tenant
pristup, gde se podaci vise klijenata nalaze u istom
fizickom okruzenju, ali su virtuelno odvojeni. Na taj nacin

podaci se ¢uvaju efikasno, dok svaki korisnik sti¢e utisak
da raspolaze sopstvenom bazom podataka. Podaci se
¢uvaju u tabelama koje se nazivaju objekti. Standardni
objekti (kao $to su Account, Contact, Opportunity) dolaze
uz platformu, dok korisnici mogu kreirati i prilagodene
objekte (eng. custom objects) za specificne poslovne
potrebe [9].

Vodeci proizvodi Salesforce platforme su Sales Cloud,
Service Cloud, Marketing Cloud, Data Cloud, Commerce
Cloud, Experience Cloud, Slack, Tableau, MuleSoft,
Heroku, Einstein AI, Small Business, Net Zero, Partners i
Success [10].

Odabir pogodnog Salesforce Cloud resenja predstavlja
slozen proces i izazov, s obzirom na Sirok spektar
dostupnih opcija. Razli¢iti faktori utiCu na donoSenje
odluke, ukljucujué¢i poslovne potrebe, specifi¢nosti
industrije, veli¢inu i sloZenost organizacije, kao i tehnicke
zahteve za prilagodavanjem i integracijom. Najpre je
neophodno identifikovati osnovne potrebe poslovanja. Na
primer, kompanije koje teze poboljSanju prodaje,
korisnicke podrske ili automatizaciji marketinga, mogu se
opredeliti za reSenja koja odgovaraju tim prioritetima. Uz
to, specifinost industrije dodatno usmerava izbor i
precizniju podrsku poslovnim procesima. Takode, veli¢ina
organizacije i slozenost njenih operacija imaju uticaja.
Manjim preduze¢ima c¢esto je potrebna jednostavnija
platforma, dok veée kompanije mogu zahtevati
kompleksnija reSenja sa naprednim funkcionalnostima.
Potreba za prilagodavanjem i integracijom sa postojec¢im
sistemima predstavlja dodatni faktor koji mora biti uzet u
obzir. Ovim pristupom dolazi se do efikasnog izbora
reSenja, uzimajuci u obzir specifi¢ne potrebe i dugorocne
ciljeve organizacije [11]. Naslici 1 predstavljeni su vodec¢i
proizvodi, kao i itav Salesforce ekosistem.

Agentforce

Support
Agents Marketing
Agents

Customer 360

2! o
Sies SV Marketing B Sy

Age
Experience i1 oS
m
()

Data Cloud

Zero Copy + Ecosystem

Tableau

2

Success Partner &
Trust layer Custom apps

Einstein Al

Custom apps Flow
8 agents &Models Automation

Salesforce Platform

MuleSoft Integration

Security Analytics
vacy

& Privi

Slika 1. Prikaz ekosistema Salesforce platforme [12]

Skup specijalizovanih reSenja unutar Salesforce platforme,
prilagodenih specificnim industrijama, nazivaju se
Salesforce Industries. Ova reSenja razvijena su kako bi se
zadovoljile potrebe razliCitih sektora, nude¢i unapred
konfigurisane funkcionalnosti koje omoguéavaju brzu
implementaciju, optimizaciju poslovnih procesa i vecu
efikasnost. Izdvajaju se Automotive, Communications,
Education, Financial Services, Healthcare & Life
Sciences, Retail, Nonprofit, Manufacturing, Government,
Media, ali i mnoga druga [13].

1363

4. INTEGRACIJA VESTACKE INTELIGENCLJE U
SALESFORCE PLATFORMU

Pouzdana i prosiriva veStacka inteligencija, doboko je
integrisana u strukturu Salesforce platforme kroz pojam
Salesforce Al

4.1. Einstein Al

Proizvod, odnosno set ugradenih A/ funkcija, koji
omogucéava personalizovana, prediktivna iskustva i
generisanje sadrzaja, naziva se Salesforce FEinstein.
Primenjuje konverzacioni korisni¢ki interfejs u okviru
svake aplikacije ili radnog procesa i izgraden je na Einstein
Trust Layer sloju, sa znacajnim zastitnim mehanizmima.
Isticu se Einstein Prediction Builder, koji omogucéava
kreiranje prediktivnih modela bez potrebe za
programiranjem, Einstein Bots koji koriste vestacku
inteligenciju za automatizaciju komunikacije sa
korisnicima putem chatbot alata, dok Einstein Discovery
analizira velike skupove podataka i pruza relevantne uvide.
Koriste¢i generativnu veStacku inteligenciju, Einstein
GPT, kreira personalizovane odgovore i upite u realnom
vremenu, unapredujuci interakciju sa klijentima i
poslovnim korisnicima [14].

Tehnologija Einstein Al se moze posmatrati kao platforma,
jer je njen osnovni deo integrisan u svaki Salesforce
proizvod. Takode, prilikom koris¢enja Salesforce
platforme, brojne Einstein aplikacije se mogu koristiti kao
dodaci koje je potrebno povezati ili prilagoditi [15].
Dakle, Salesforce Einstein pruza razne prednosti za
organizacije, ukljucujuci povecanje operativne efikasnosti
kroz automatizaciju zadataka, optimizaciju procesa i brze
donosenje odluka. Omogucava prilagodavanje korisnickog
iskustva, unapredenje saradnje medu timovima, bolju
segmentaciju kupaca i doprinosi njihovom zadrZavanju.
Kontinuirano u¢i iz novih podataka, predstavljajuci kljucni
alat za povecanje produktivnosti i konkurentnosti u
poslovnom okruzenju [16, 17].

4.2. Agentforce i Al agenti

Napredna kolekcija autonomnih A/ agenata i alata,
Agentforce (ranije poznato kao Einstein Copilot), u
potpunosti su integrisani u Salesforce platformu i
namenjeni za slozene interakcije sa klijentima [18].
Dolaze sa unapred pripremljenim Sablonima, na osnovu
kojih je moguce brzo razvijanje i prilagodavanje, pruzajuci
podrsku zaposlenima i korisnicima, unapredujuéi radne
procese za bilo koju ulogu, industriju i poslovni izazov.
Podesavanjem parametara, definisanjem tema, akcija i
specificnih uputa, optimizuje se rad agenata u poslovnim
procesima. Inteligentni i proaktivni, u potpunosti su
sposobni da razumeju 1 odgovore na upite korisnika bez
ljudske intervencije. Osnovani su na masinskom ucenju i
obradi prirodnog jezika za obavljanje Sirokog spektra
zadataka, od odgovaranja na jednostavna pitanja do
reSavanja slozenih problema ili istovremeno obavljanje
viSe zaduzenja.

IzvrSavanje Al agenata se odvija kroz Cetiri faze. Prva faza
predstavlja prikupljanje podataka iz razliCitih izvora u
realnom vremenu. Druga faza je donoSenje odluka
koristec¢i napredne modele masinskog ucenja. Treca faza je
izvr§avanje radnje, §to se moze odnositi na odgovaranje na
korisni¢ki upit, obradu zahteva ili prosledivanje slozenog
problema ljudskom agentu. Poslednja, Cetvrta faza je

uCenje i1 prilagodavanje = svakom interakcijom,
usavrSavajuci algoritme radi poboljSanja tacnosti i
efikasnosti. Sposobnost kontinuiranog ucenja omogucava
AI agentima da ostanu efikasni i relevantni, cak i kada se
ocekivanja korisnika i poslovna okruzenja menjaju.
Istovremeno mogu obradivati vise korisnickih interakcija,
smanjuju¢i vreme odgovora i povecavajuéi efikasnost
korisnicke podrske. Dostupni su u bilo koje vreme, bez
uticaja na vremensku zonu ili radno vreme, nude
mogucnost skalabilnosti, konzistentnu i pouzdanu podrsku,
kao i personalizovane interakcije.

Sa Agentforce platformom, unapred definisani agenti se
mogu brzo implementirati u brojnim oblastima, kao §to su
prodaja, marketing, usluge i slicno.

Agent Service Agent zamenjuje tradicionalne chatbot alate
reSavajuéi Sirok spektar pitanja u vezi sa domenom
korisnicke podrske, bez potrebe za unapred programiranim
scenarijima. Agent Sales Development Representative
omogucéava kontinuiranu interakciju sa potencijalnim
kupcima, odgovara na njihova pitanja, upravlja
prigovorima i zakazuje sastanke koriste¢i podatke iz
dostupnih izvora, pruzaju¢i prodajnim timovima priliku da
se posvete gradenju dubljih odnosa sa klijentima. Agent
Sales Coach nudi personalizovane sesije za vezbanje
prodajnih vestina prodajnim timovima, uz prilagodene
govore i odgovore, koriste¢i Salesforce podatke i
generativnu veStacku inteligenciju. Agent Merchandiser
pomaze menadzerima u oblasti e-trgovine u postavljanju
sajta, definisanju ciljeva, promocijama, kreiranju opisa
proizvoda i pruZanju uvida zasnovanih na analizi podataka.
Agent Buyer Agent unapreduje B2B kupovine tako Sto
pomaze kupcima da pronadu proizvode, obave kupovinu i
prate narudzbine putem poruka ili prodajnih portala. Agent
Personal Shopper funkcioni$e kao digitalni savetnik na
sajtovima e-trgovine ili aplikacijama za razmenu poruka,
nudeéi specifiéne preporuke proizvoda i pomo¢ prilikom
pretrage. Agent Campaign Optimizer automatizuje ceo
zivotni ciklus kampanja koriste¢i vestacku inteligenciju za
analizu, generisanje, prilagodavanje 1 optimizaciju
marketinskih kampanja prema poslovnim ciljevima.
Platforma za izgradnju i prilagodavanje A/ agenata naziva
se Agent Builder. Olaksava konfiguraciju definisanih
agenata ili izgradnju novih za bilo koju ulogu, industriju ili
poslovni slucaj, koriste¢i alate kao §to su Flows, Prompts,
Apex i MuleSoft API [19, 20, 21, 22].

Kroz studije slu¢aja u radu, analizirani su izazovi i
problemi sa kojima su se susreli luksuzno odmaraliste
Turtle Bay Resort 1 svetski Sampionat Formula 1,
postignuti rezultati i unapredenje korisni¢kog iskustva
koriséenjem Salesforce Al tehnologije [23, 24].

5. ZAKLJUCAK

U ovoj studiji istrazivan je Sirok spektar moguénosti,
primene i uticaja platforme Salesforce, sa posebnim
naglaskom na integraciju vestacke inteligencije, koja
predstavlja znacajni iskorak u unapredenju savremenog
poslovanja i transformaciji poslovnih procesa.

Koris¢enjem navedenih tehnologija unutar Salesforce
platforme, postize se automatizacija 1 optimizacija
zadataka, S§to doprinosi povecanju efikasnosti i
profitabilnosti. Omogucava se brze i preciznije donosenje
odluka, uocavanje obrazaca i1 pravljenje predikcija.

1364

Pra¢enjem prethodnih interakcija, postize se
personalizacija, unapredujuci korisni¢ko zadovoljstvo i
produktivnost. Takode, generisanje sadrzaja u realnom
vremenu poboljSava celokupno iskustvo. U skladu sa
priznatim industrijskim standardima, moze znacajno
uticati na proces razvoja softverskih reSenja, podizuci nivo
ekspertize programera i kvalitet koda. Smanjuje se rizik od
pojave greSaka, povecava efikasnost rada, otkrivaju
bezbednosne ranjivosti u ranoj fazi razvoja, kao i
temeljnije razumevanje slozenih delova koda, rezultiraju¢i
brzim i pouzdanim napredovanjem. Neprekidnim uenjem
iz novih podataka postize se kontinuirano poboljanje i
prilagodavanje, Cime se odrzava relevantnost i
konkurentnost na trzistu.

S obzirom na brz napredak vestacke inteligencije, pred
Salesforce platformom stoji ogroman potencijal za dalji
razvoj i primenu, koji ¢e oblikovati buduc¢nost poslovnih
procesa i strateskih odluka i podi¢i ih na potpuno novi nivo.

6. LITERATURA

[1] F. Buttle i S. Maklan, "Customer Relationship
Management: Concepts and Technologies",
ResearchGate, 2015,
researchgate.net/publication/290447911 Customer Relati
onship Management Concepts and Technologies,
pristupano: decembar 2024.
[2] A. Chrom¢éakova i H. Starzycznd, “Customer
Relationship Management in Small and Medium-Sized
Enterprises of the Moravian-Silesian Region: Qualitative
Research”, 2019, aak.slu.cz/pdfs/aak/2019/02/04.pdf,
pristupano: decembar 2024.
[3] L. Chen i K. Popovich, “Understanding Customer
Relationship Management (CRM): People, Process and
Technology”, Emerald Insight, 2003,
emerald.com/insight/content/doi/10.1108/1463715031049
6758, pristupano: decembar 2024.
[4] H. Gil-Gomez, V. Guerola-Navarro, R. Oltra-Badenes
iJ. A. Lozano-Quilis, “Customer Relationship
Management: Digital Transformation and Sustainable
Business Model Innovation”, Tandfonline, 2020,
tandfonline.com/doi/full/10.1080/1331677X.2019.167628
3, pristupano: decembar 2024.
[5] Salesforce, “CRM: What Is CRM (Customer
Relationship Management)?”,
salesforce.com/eu/crm/what-is-crm, pristupano:
septembar 2024.
[6] P. Pathak, “Research Paper on Salesforce
Technology”, 2024, ijarsct.co.in/Paper15215.pdf,
pristupano: decembar 2024.
[7] Salesforce Developers, “Developers: Apex Developer
Guide”, developer.salesforce.com/docs/atlas.en-
us.apexcode.meta/apexcode, pristupano: oktobar 2024,
[8] Salesforce Developers, “Developers: Get Started with
Lightning Web Components”,
developer.salesforce.com/docs/platform/lwc/guide,
pristupano: oktobar 2024.
[9] Integrate.io, “The Salesforce Database Explained”,
2023, integrate.io/blog/the-salesforce-database-explained,
pristupano: oktobar 2024.
[10] Salesforce, “All Salesforce products. One integrated
platform.”, salesforce.com/products, pristupano:
oktobar 2024.

[11] Synebo, “How to Choose the Right Salesforce
Cloud?”, synebo.io/blog/15-types-of-salesforce-
clouds, pristupano: oktobar 2024.

[12] Salesforce, “Salesforce Platform: Explore the
Salesforce Platform”, salesforce.com/platform,
pristupano: septembar 2024.

[13] Salesforce, “Industries”, salesforce.com/industries,
pristupano: septembar 2024.

[14] Salesforce, “Arificial Intelligence: Salesforce
Artificial Intelligence”, salesforce.com/eu/artificial-
intelligence, pristupano: oktobar 2024.

[15] N. Saini i H. Sharma, “Salesforce Einstein: Artificial
Intelligence for Customer Success Platform”, 2020,
ijsret.com/wp-
content/uploads/2020/06/IJSRET_V6_issue3 402.pdf,
pristupano: januar 2025.

[16] Salesforce, “Artificial Intelligence: Salesforce
Artificial Intelligence”, salesforce.com/artificial-
intelligence, pristupano: oktobar 2024.

[17] Atrium, “What is Salesforce Einstein? Your 2024
Guide to Einstein Al Products and Capabilities”,
atrium.ai/resources/what-is-salesforce-einstein-your-
2024-guide-to-einstein-ai-products-and-capabilities,
pristupano: oktobar 2024.

[18] Salesforce, “Artificial Intelligence: Copilot is now

Agentforce”, salesforce.com/artificial-

intelligence/einstein-ai-assistant, pristupano: oktobar

2024.

[19] Salesforce, “Agentforce: What Are Al Agents?
Benefits, Examples, Types”,
salesforce.com/agentforce/what-are-ai-agents,
pristupano: oktobar 2024.

[20] Salesforce. “Frequently asked questions”,
salesforce.com/products, pristupano: oktobar 2024.

[21] Salesforce, “News & Insights: Salesforce Unveils
Agentforce - What Al Was Meant to Be”,
salesforce.com/news/press-
releases/2024/09/12/agentforce-announcement,
pristupano: oktobar 2024.

[22] Salesforce, “Agentforce”, salesforce.com/agentforce,
pristupano: oktobar 2024.

[23] Salesforce, “Turtle Bay Resort elevates hospitality
with Al-driven personalization”,
salesforce.com/customer-stories/turtle-bay-delivers-
better-experiences-Al, pristupano: avgust 2025.

[24] Salesforce, “Agentforce will help Formula 1 speed
up service response by 80%”,
salesforce.com/customer-stories/formula-one,
pristupano: avgust 2025.

Kratka biografija:
B | Marija Jankovi¢ rodena je u Novom

' 4 Sadu 1999. godine. Osnovne

e % akademske studije zavrSila je 2023.
godine na Fakultetu tehnickih nauka u

bl Novom Sadu. Master rad na Fakultetu

tehnickih nauka iz oblasti Elektroteh-

nike 1 raunarstva — Elektronsko

poslovanje odbranila je 2025. godine.

kontakt:

jankovicmarijal 5@gmail.com

1365

360pHuK papoBa PakynteTa TeXHUUKUX Hayka, Hoeu Cap

YIK: 4.3
JOM: https://doi.org/10.24867/33BE26Zubovic

KOPUII'REIBE TECTUPAIbLA HA IPHOJ KYTHJU 3A IIOKPETAIBE
AYTOMATCKHUX TECTOBA HA TB IPUJEMHUKY

USING BLACK BOX TESTING TO RUN AUTOMATED TESTS ON A TV BOX

JoBan 3y6oBuh, @axyimem mexuuukux nayka, Hoeu Cao

Oobaact: PAUYHAPCKE TEXHUKE U
PAYYHAPCKA KOMYHUKALINJA

Kpartak caap:kaj — AyroMmaTu3aimja mporeca TeCTHpamba
Koju Om wmHavue OWo oxpalleH PydHO MOXKE Aa YIITEOH
MHOTO BpeMEHa M paJHHX CaTH, II0CEOHO aKo ce
ayTOMaTCKH TECTOBM MOTY IOKpeTaTu mpeko Hohu. Ako
ce omoryhu reHepucame M3BeliTaja, Ha npuMep Ekcen
Tabese, TeCT HHKemep Tpeba caMo J1a UX MPOBEPH YjyTPY
U TIpociieid mporpamepuMa u Bohama TumoBa. [locao
nocraje joumr OpXH W epUKAaCHUjU aKo ITIOCTOJU PajHU
okeup (enr. framework) koju mpyxke YyHHBep3aJIHE
¢yHKIMje 3a pyKoBame Hajuemhe TECTHpaHUX
(YHKIIMOHATHOCTH, Ka0 IITO cy oOpaja CInMKe M 3ByKa
WM KOMYHHKAIIMOHHM TPOTOKONH. Taj pagHH OKBUp ce
MOJKe TIPHJIArOJUTH 32 paslinuuTe ypehaje u ammmkanyje,
KOje Cy pasBHjaId MOTIYHO pasIHYUTH THMOBH H
kommanuje. OBaj pam caapkd ONHC mpriarohaBama
moctojeher pagHOr OKBHpa 3a ayTOMaTH3aIHjy Iporieca
TecTupama Ha TectupaHoM TB npujeMHHKY, 1ITO
YKJby4yj€ TECTHPame CTAOMIHOCTA U (DYHKIIMOHATHOCTH
nocrojehux amiuKanuja u camor ypehaja.

Kibyune peun: CucreMcko TecTHpame, AYTOMATCKO
Tectupame, [loTpolauka eIeKTpoHHKa, TECT U3BEITa]

Abstract - Automating the process of testing which would
otherwise be done manually can save great amounts of
time and working hours, especially given that automated
tests can be run during night hours. If generating files
that summarize test reports is included, for example, an
Excel table, the test engineer only needs to check them out
in the morning and forward them to developers and team
leads. This job becomes even faster and more efficient if
there is a a framework that provides universal functions
for handling the most tested functionalities, such as sound
and image processing, or communication protocols. That
framework can be adjusted for various applications and
devices, developed by completely different teams and
companies. This paper contains a description of adapting
the existing framework for automation of the test process
on the tested TV box, which includes testing of stability
and functionality of existing apps and the device itself.

Keywords: System testing, Automatic testing, Consumer
electronics, test report

HAIIOMEHA:
Ogaj pag mpoucTekao je U3 MacTep paja 440 MEHTOpP
je 6mo np Nnnja bammyesnh, pea. npod.

1. YBO/J,

Cpaka arutikanuja Mopa OUTH JIeTaJbHO UCTECTUpaHa Ipe
HETro IITO ce momake MymTepuju. OBaj mporec ce MOXe
OJIpaANTH py4HO, rne he omabpaH THM JbyOu Y3€TH
JTAJbUHCKH, TacTaTypy, Hajuuiy 3a urpy (eHr. joystick)
WM HEKU JIpyTH KOHTPOJIEpP 32 Ty CHenU(PHUINYHY CBPXY
u npehm pasHe TecTHE ClieHapHWje jemaH mo jemad. To
Mopa J1a ce ypaJd BHILIE ITyTa Ja OW ce OCHTYpajo 1a je
cBaka MoryhHOCT ()yHKIIMOHATTHA U CTa0WITHA.

Haxanoct, oBaj mporec je maigeko ox omrumanHor [1].
OH 3axTeBa JOCTa JbyId KOjuMa Tpeba MyHO paJHUX
catn. He camo TO, Hero tecrep HakOH Tora Mopa mIa
CaKylmu CBE pe3yjiTaTe M HanpaBH M3BEIITaj, IITO
oIIy3uMa J0JaTHO Bpeme [2].

30or TOra, ayromarusaluja TECTHOI IIpolieca je BeoMa
e(rKacHa TIpH CMambHBaby JbYICKOT (hakTopa, a y3 To ce
npouec cana Moxe ob6aButH npeko Hohu. Takohe, MHOTH
MPOrpaMCKH je3WLM HyJe pa3He OMOIMOTEeKe y3 Koje ce
MOT'y F€HEpHCaTH CBU MOTPEOHH W3BELITAjH, Ha IPUMEDP Y
Majkpoco¢pt Excen Tabenu. Mory ce nonaté n naroreke
ca JAeTajbHUjUM mpahemeM mapameTapa Kao IITO CY
nckopumhenoct RAM memopmje, CPU-a, nuHamMmdke
Memopwje (eHr. heap) 1 Benmu4rnHE BUPTYESIHE MEMOPH]E.

Jasse yHampeheme Om Omina WMIUIEMEHTanuja pagHOT
OKBHpa y KOM Ou Ouiie cakyrubeHe QpyHKIHMje 3a IpoBeEpy
Hajuemrhe TecTUpaHWX (YHKIMOHATHOCTH, Kao INTO Cy
NPUCYTHOCT M KBAJIUTET 3ByKa U BHEa, KOMYHHKaIHje ca
IWBHHAM ypehajem, TeHepucameM HU3BEIITaja. Y OBOM
pany ¢okyc he 6utn Ha npunarohemy mocrojeher paxHor
OKBHpa 3a ayTOMaTu3allijy TeCTHOr mnpoieca Ha TB
MPUjEMHUKY O]l TECTHPAEM, IITO YKIbYyUYje TECTUPAHE
CHUCTEMCKUX M KOPUCHMUYKUX alljIMKalyja, Kako U
MOHAaIIamka caMor ypehaja.

Ocrarak pama je CTpyKTyupaH Ha cienehn HaywmH: Y
MIOTJIaBJbY 2 Cy ONHCAHM M3a30BH Ca KOJUM C€ CyOodaBaMo
npu npuiarohaBamy nocrojehier pagHOr OKBHpa 3a 3a
cneuuduyHy npuMmeny. Y nornaiby 3 he Outu ommcaHo
MPEAJIOKEHO pellehe Koje he caapkaTh CBe achekTe
armkanuje win ypehaja koje Tpeba mOKpUTH. Y
noriaspy 4 he OMTH MpUKa3aHH Pe3yNTaTH U HAYWH Ha
Koju Tpeba na ce Tymade. Konauno, y nornasmy 5 he
OUTH KpaTak 3aKJby4aK LIENOr paja.

2. 13A30BH ITPU TIPUJIIATOBABABY
MMOCTOJERET PA/THOT' OKBHUPA
CIIEHU®UYHOM IMPOJEKTY

IMocrojehu panuu oxBup je pasBujen Ha PT-PK
WHCTUTYTY H YCHCIIHO [PUMEHEH Ha MHOTHM

1366

npojektuma. Mako pagHM OKBHpP IIpyXa YHHBEp3aJHE
¢yHKIMje 3a 3a YecTo TecTHpaHe (QYyHKIHNOHAIHOCTH,
CBaKM TIIpOjeKaT 3axTeBa Ipwiaroheme mapamerapa
¢yHkmja 3a cnenuduuny ynorpedy y ToMm npojekry [3].
YHyTap npojexTa, napamerpu ce Hehe MEemhaTH CBaKH IIyT.
3aro Ou OWII0 KOPHCHO HANHCATH IMoce0aH MoAeT Y KOM
he ce mamasutm MomudukoBaHe (YHKIUjEe W3 PaTHOT
OKBHpa ca IapamMeTpuMa CIenu(pUIHNM 3a Taj MpojeKarT.
Taj moxyn he OuTH yKJbydeH y CBakM TECT M Tako he
nperneqHoct u Oynyhe onpxaBame Koma OWTH MHOTO
JIaKIe.

VY cnyuajy TB mnpujemHrka moj TecTHpamem, Tpebahe
HaMm (yHKIHWje 3a MpoBepy NMPUCYTHOCTH 3BYKa W BHJEa,
YHUTamkhe TPEHYTHE MO3UIHMje U YKYIHE Jy>KHUHE caiapxkaja
ca expaHa, 00pajia CIIMKe 3a Ipero3HaBame Iporpec 6apa,
nojaTaka o Jorah)ajuma, KOHTpPOJIA Ha EKpaHy U BOJHYA.
IITo ce TMYe caMUX TECTOBa, UTepalHja He Tpeda xa ce
HACTaBU aKO MajJHe IpoBepa OHJIO KOjer O] TECTUPAHUX
acmekatra. Y CympoTHOM, Bpeme he ce HemoTrpeGHO
MOTPOIIUTH Ha TECTHpama HEeKUX IpYyrHx aclekara 3a
WTepanyjy Koja je cBejenHo mana. IlpucycTtBo 3Byka H
BUziea Tpeba Ja Oyae MPOBEPEHO MPBO jep HEMa CMHUCIIA
tectupati TB amnmkanyje WiM MpUjeMHUKa ako Hema
ciuke win 3Byka. JloOpa uieja Ou Omiia qa ce To TecTupa
JIBa MyTa MO UTEpaIHju, 300T CUTYPHOCTH.

Image Generate
Processing [l jTest Report]
|] L] L] L] a
Sound Sending Generate [Execute testilll Import test
Processing emails Excel report plan cases

Cmuka 1. Hujacpam xoju npuxazyje pasziuuume mooyine
npucymue y pacHoMm oKeupy

3. MPEJJIO’KEHO PEHIEIBE

VY oBoM peliewny, cBe GyHKIHMje Cy TpynHcaHe y 0a3HOM
MoyIy 3a ypehaj mox Tectupamem.

[IpBu kopak je Ouo cakymbame 0a3ze CHUMaKa eKpaHa Ha
KOjUMa ce BHJC CBH IOAANM Koje hemMo TpaxkuTu.
KoopanHate OoBHX MOJaTaka ce Jajbe KOPUCTE Kao
pedepeHTHE Y 1a/bUM TecTOBHMA. TECTOBH KOjU Cajipie
MpoBepy 3ByKa Hemajy 0a3y mogaraka jep 3BYK Bapupa
MIPEeBHIIE O CHUMKa /10 cHUMKa. HajBepoBaTHmje je ma he
Ce TPaKUTH Iporpec Oap, MOYETHO U KPajie BpeMe HEKOT
norahaja, nume norahaja, Opoj KaHaa, TPEHYTHY MO3HUIIH]Y
U HEeKe MoceOHe KOMaHIEe KOje Ce MPHKa3yjy Ha CKpaHy.
Kana cy onpelhene koopauHate CBUX elieMeHaTa koju he
Ce TPETPaXKUBATH, HAMUCATH CMO (DYHKIHjE 332 FUXOBO
NPENo3HaBAbE.

Jpyru Kopak je mpoydaBame JIOT JATOTeKe Aa OUCMO
HaIUTH KOjH TEeKCT Tpeba &a mpeTpaxyjeMo na Oum ce
nobaBuile TpeHyTHa IIO3MIMja, Opoj KaHama, WMeEHa
AKTUBHOCTH WM OWJIO KOjU OPYTH acmeKT KOju Hac
3anuMa. Kajma cMO ofpeimiu IITa TavyHO TPAKHMO,
Hammcaiau cMo (QyHKIHje Koje he mpeTpakxuBaT Taj TEKCT
y TECTOBHMA.

Takohe cy Ham Tpebane (yHKIMje 3a MPETPAKUBAE
onpeheHNX AKTUBHOCTH, [ETEKTOBamkhe MPUTHCHYTUX
nyrmuha Ha Ja/bUHCKOM YIpaBjbady M TOTBpAC JAa je
aTIMKalyja yCIeHO MOKPEeHyTa.

Haxkon Tora cmo nomanu Hekonuko (yHKIHja 3a nmpaheme
MOHaIlaka aruuKanuje u ypehaja, jep xemumo na
3ayCTaBHMO TECTHpamhe M MOHOBO IOKpeHeMo ypehaj ako
HEIITO KPUTHYHO KpeHe 1o 31y. OBe ¢yHKuuje he Outn
KOPHCHE U 3a TeHeprcame KOHAYHOT TecT m3BemTaja. OHe
yKIby4yjy npaheme nomymeHoctd RAM memopuje, CPU-
a, JMHAMUYKE MEMOpHje W BEJIWYMHE BHUPTYEIHE
Memopuje. Paguum oxBup Beh cagpxu QyHkuuje 3a
TeHepUCamke H3BEIITaja, I1a HHUje IMOTPeOHO J0/AaBaTH
HoBe. Takohe campxkm ommujy 3a mymrame Behe
KOJIMYMHE TECTOBA OJjelTHOM, KOjU C€ MOTY IyCTUTH U
npeko Hohu. Ha TecT nmXemepy je Ja MpOLECHH KOIHKO
TECTOBa Ce MOXKE M3BPIIUTH Ipeko Hohw. Huje mpobmem
aKo ce MyCTH TIPEBHIIE TECTOBA jep Pe3yNTaTH TOTOBHUX
TECTOBa MOT'Y Ja Ce TIperjiefiajy oK ce 4eKajy IMpeoCTallu.
Baxxnuje je ma ce He IMyCTH MpeMalo TECTOBA, jep ce OHOa
HenoTpeOHO ry6om Bpeme. [lok ce mperiienajy pesyiraTd
M3BPUHICHUX TECTOBA, HOBA Irpyna TECTOBA MOXKE 6I/ITI/I
MyLITeHa y M03aJuHH, aKo Cy cBH Beh mymTeHu tectoBu
3aBpILEHH.

Jour jenHo xopucHo yHanpeleme Beh mpucyTHO y pagHOM
OKBHpY je MOoryhHOCT ciama eJIekTpoHcke nore (eHr. E-
mail) ca cBUM MOTpeOHNUM JaToTeKama CBHMa Koje Ou Ta
CJICKTPOHCKA IIONITA HMHTEpecoBaja. MeHalIMeHT
YIJIABHOM JKEJM CaMo Tabeily ca KOHAYHUM pe3ylTaTHMa,
JOK MpOrpaMepH BEPOBATHO JKeJie NeTaJbHUjU W3BELITa],
ma ce Mejn Tpeba MpUiIarogUTH Ha OCHOBY TOTa. Y3€BIIH
CcBe rope HaBeleHo y o03up, I[lajToH je omabpan kao
HAjOOBM jE3WK 3a HMIUIEMEHTalWjy jep Beh caapxku
Benuku Opoj Oubnmorexka W jgokymenrauuje. Jlaswe,
palHu OKBHUD je HjeajaH 3a TeCTUpambe Ha IPHOj KyTHjH-
TECTUpame y KOM HHje MOTPeOHO 3HATH Ta4yHO IITA
aruiMKanyja paau, Beh caMmo mmTa aa ce ouekyje OX e,
IITO je WJACATHO 3a TECTHpAamE IMpojeKaTa KOjU HHUCY
OTBOPEHOT KOJa.

VY OBOM PaJHOM OKBUPY MPaKTHYHO HEMa KOPHCHHYKOT
nHrepdejca, Beh ce cBe paam mpeko TepMuHaia. TecToBn
1 pagHU OKBHp Tpeba na OyAy Ha MCTO]j JIOKAHjH, M Kaaa
ce pagHH OKBHp TOKpeHe, ommuje he ce mpukazatu y
TepMuHay. Moxke ce Oupatm wm3mely Buime Tpymna
TECTOBA, KOje Ce MOTYy MPHJIArOJUTH MO JKeJbU, a OHJA ce
Moxe Ouparu Aa i he OMTH MyIITEH jelaH WINM CBU
TECTOBM W3 Tpyme. 3a mymTame mpeko Hohw, Tpeba
MYCTHTH LENy TPYIy, a 3a UCIUTHBAIE IOjeANHAYHOT
TecTa, caMo OH Tpeba J1a OyJie myIITeH.

4. PE3YJITATH

Pesynraté cy CBH CakyIUbeHH Yy jemHOM Qoiaepy H
cagpke WU3BEIITAaje O YCHCHIHOCTH TecTa, npahieHuM
napaMeTpuma, JIOT [aToTeKe, Kao W ayIuo W BHUIEO
CHHMKE M3 TPEHyTaKa Kaja ce JCCHJIO HEIUTO IUTO HHje
oyekuBaHO. JlaToTeka Koja CaipKH CyMapaH Hperiien
cBera npaheHor TecTy je Takolje MpHCyTaH y BUAY €KCell
Taberne.

Tect umkemep Tpeba aa Oyne oOydeH jAa 4duTa JIOT
JATOTeKe 3a Tpojekar wiu ypehaj y mnutamy, jep je
yIJIaBHOM MporpaMep Taj KOju CTaBJba JIOTOBE 3apaj
ucriutuBawa [4]. OBo je ox Bemwke mnomohu jep

1367

JIpacTHYHO ckpaliyje BpeMe Koje mporpamepy Tpeba na
mponalje mTa ce AeCUI0 y CIy4ajy Ipemike.

Cnuka 2. Tepmunan y Kom mecm uHdicersep Modice 0a
oupa usmelhy paznuuumux epyna mecmosa, u oa au he
nycmumu je0aun uiu cée mecmosge u3 00abpawe zpyne

VY cnenehem Hm3y cHMMaka ekpaHa (cimke 3-6) ce He
BHUJIC CBE TeHEpUCaHe TaTOTEKe, alli ce BHIM JOBOJBHO Ja
MOXeE J1a C& CXBATH KOJIMKO je U3BELITa] ACTaJbaH.

Ti E]] iZ B 16

Crnuxka 3. IIpuxasz mecmuux pesyimama

Pictures 20-Feb-2411:22
Videos 5

[an_pids.bxt

[ave_denied.bet

(3 bugreport-UHDHybridSTE-10.0.9-2024-0...

[&f com_jio_stb_catv_dumpsys_data.bct

(& CPU_IDLE MEMORY.txt

(& CPU_LOAD_MEMORY.txt

[&f cpu_temp.tet

[5f DALVIK_HEAP_com jio_stb_catw.txt

[Zf dumpsys_meminfo_oom.tet

[extended_pid_info.tct

=] iwaptf_communication.log

[1avA_HEAP_comjio_stb_catv.txt

B messure_memory.xisc

[&f Memory_consumption.txt

[5f MEMORY_Free RAM.txt

[NATIVE_HEAP_com_jio_stb_catv.bct

[pid_info.et

5] stability_Navigate within_app.log

[Stability_Navigate_within_app_execution. TXTFile

[top_datatet 2 TXT File

(& vMm_SIZEtxt 20-Feb-24 11:29 TXTFile

File folder
File folder
TXT File

TXT File

zip Archive
TXT File

TXT File 4KB
TXT File 2K8B
TXT File 0KB
TXT File
TXT File
TXT File

Text Document
TXT File
XLSX Worksheet
TXTFile
TXTFile
TXT File
TXT File

Text Document

Cmuka 4. @ondep Koju cadpoicu cee 2enepucane
damomeke u uzgewmaje

Cnuka 5. I'paghux roju noxasyje uckopuuwhenocm RAM
MeMopuje moKom epemena

Cnunak 6. Tabena xoja npukasyje uckopuwhenocm RAM
MeMopuje MOKOM umepayuja y3 peMeHcKe 03HaAKe

5. 3AK/bYYAK

Y oBOM paay Cy MpHKa3aHe pa3IMYdTe aanTaluje
mocrojeher IlajToH pagHOT OKBHpa KOjH TOMake IIPH
ayTOMaTH3allMji ILIENOKYIIHOI TECTHOT mpoueca 3a TB
MpHUjeMHUK Ha TecTupampy. Ca 0BUM pememeM, mporiec hie
OuTH TOTOB Mpeko HOhH, a TeCcT MHKemepa he W3BeITaj
YeKkaTH CIpeMaH YjyTpy, a eJNeKTpPOHCKa IomTa ca
norpeOHUM npatorekama he Owutu mnocnaru. Cana
nporpaMepy M TECT HHXEHEPU MOry Ja Mpoydye Te
JaTOTeKe M ONTHMHU3Yje TIpojeKaT MHOro Opxke u
epukacHuje. AKO je TpoLeC YCIEIHO ayTOMaTH30BaH,
PYYHO TECTHpamE CE MOXKE CBECTH Ha HCTPaKHBAYKO
urpamke ca ammKandjoMm wid ypehajem, ma Oum ce
onpel)eHr UBUYHU CITydajeBH Takol)e MOKPHIIH.

6. JUTEPATYPA

[1] D. Marijan, V. Zlokolica, N. Teslic, V. Pekovic and
T. Tekcan, "Automatic functional TV set failure detection
system," in IEEE Transactions on Consumer
Electronics, vol. 56, no. 1, pp. 125-133, February 2010,
doi: 10.1109/TCE.2010.5439135

[2] M. Katona, I. Kastelan, V. Pekovic, N. Teslic and T.
Tekcan, "Automatic black box testing of television
systems on the final production line," in IEEE
Transactions on Consumer Electronics, vol. 57, no.
1, Pp- 224-231, February 2011, doi:
10.1109/TCE.2011.5735506

[3] Divya Kumar, K.K. Mishra, The Impacts of Test
Automation on Software's Cost, Quality and Time to
Market, Procedia Computer Science, Volume 79, 2016,
Pages 8-15, doi: 10.1016/j.procs.2016.03.003

[4] Nagabushanam, Durga & Dharinya, Sree &
Vijayasree, Dasari & Sai Roopa, Nadendla & Arun,
Anugu. (2022). A Review on the Process of Automated
Software Testing. 10.48550/arXiv.2209.03069.

Kparka Onorpadmuja:

Josan 3y6oBuh pohen je y ComGopy 2001.
roxune. OcHOBHe cTyauje Ha DakynTeTy
TEXHUYKHX HayKa u3 oOnactu PauyHapcTBO
U ayToMaThKa — PadyHapcka TeXHUKa 1
padyHapcke KOMyHHKAI¥je 3aBpILIHO je
2023. roguHe.

Konrakr: jovanzubovic2001@gmail.com

1368

g?ﬁ Zbornik radova Fakulteta tehniékih nauka, Novi Sad

UDK: 004.42:004.738.12
DOI: https://doi.org/10.24867/33BE27Janosevic

JEZIK SPECIFICAN ZA DOMEN MAKROA ZA TASTATURE
KEYBOARD MACRO DOMAIN SPECIFIC LANGUAGE

DusSan JanoSevié, Fakultet tehnickih nauka, Novi Sad

Oblast - ELEKTROTEHNIKA I RACUNARSTVO

Kratak sadrzaj — U radu je predstavijena implementacija
Jezika specificnog za domen (DSL) makroa za tastature,
kao i analiza domena makroa za tastature. Opisan je alat
koji koristi ovaj domen i implementiran koristeci
programski jezik Python i paket textX za parsiranje
gramatike jezika specificnog za domen, kao i za samo
Citanje skripti napisanih datim jezikom specificnim za
domen. Glavni cilj projekta jeste napraviti jednostavni alat
za pisanje makroa za tastature koji je intuitivan i zahteva
nizi nivo programerskog znanja.

Kljuéne redi: DSL, textX, Python, alat, makro

Abstract — The paper presents a domain-specific language
(DSL) implementation of keyboard macros, as well as an
analysis of the keyboard macros domain. A tool using this
domain is described, implemented using the Python
programming language and the textX package for parsing
the grammar of a domain-specific language. The main goal
of the project is to create a simple tool for writing macros
for keyboards that is intuitive and requires a lower level of
programming knowledge

Keywords: DSL, textX, Python, tool, macro
1. UVOD

Makroi za tastaturu predstavljaju unapred definisane
nizove komandi koji omogucavaju automatsko izvrsavanje
vise radnji na racunaru jednim pokretom ili prec¢icom. lako
su svi makroi precice, nisu sve precice makroi, razlikuju se
po slozenosti. Precice obicno aktiviraju jednu funkciju dok
su makroi kompleksniji i aktiviraju vise radnji [3].

U savremenom racunarstvu makroi su postali neizostavan
deo svakodnevnog rada na racunaru, narocito kod
naprednijih korisnika koji Zele da optimizuju svoj rad i
povecaju svoju produktivnost. Pored makroa na tastaturi
Cesto se koriste i makroi vezani za mis$ [3].

Bitan su aspect kod korisnika raCunara koji imaju
ponavljaju¢e radnje a vremenom su se prosirili i na video
igre.

Uvodenjem kompleksnijih softverskih sistema raste i
potreba za kompleksnijim makroima, posebno onima koje
korisnici sami mogu definisati. Istrazivanje sprovedeno na
uzorku od 82 korisnika pokazalo je da postoji snazna veza
izmedu stepena svakodnevnog koriéenja raCunara i
upotrebe makroa [3].

NAPOMENA:
Ovaj rad proistekao je iz master rada ¢iji mentor je bio
dr Igor Dejanovié, red. prof.

2. ISTORIJSKI RAZVOJ
2.1. Formatiranje teksta

Precice su nastale pre pojave racunara, jo§ na mehanickim
pisa¢im masinama. Prva znacajna implementacija precica
bila je na Remingtonovoj pisac¢oj masini koja je koristila
taster Shift za promenu veli¢ine slova. U digitalnom obliku
poznate su jo§ i preéice za kopiranje, lepljenje i seCenje
teksta [1].

Do 1980-ih precice su postale standardna funkcionalnost.
Uvedena je preCica Ctri+Alt+Del 1981. Godine dok su
Alt+Tab 1 Undo pojavili u kasnijim verzijama Windows
operativnog Sistema

2.2. Makroi

Pojam makroa u racunarskom smislu potice iz 1960-ih
kada su koris¢eni u asemblerskim jezicima kao makro
instrukcije koje smanjuju koli¢inu izvorne programske
logike. Tokom 1980-ih makroi se pojavljuju u alatima
poput SmartKey i ProKey.

2.2.1. Period 1980-ih

Pojavljuju se prvi makroi u programima za tabelarne
proracune, kao $to je lotus 1-2-3. Microsoft office uvodi
jednostavne makroe kroz alat WordBasic. Prvi program za
snimanje pokreta misa i tastature zove se Autolt.

2.2.2. Period 1990-ih

Microsoft pravi VBA alat za automatizaciju u Office
programima. Makroi se pocinju koristiti u video igrama
gde jedno dugme moze pokrenuti vise radnji. Program
Macro Express omoguéava pravljenje makroa bez znanja
programiranja.

2.2.3. Period 2000-ih

Alati kao $to su AutoHotKey i RPA pro§iruju svoju primenu
makroa na poslovne zadatke. Automatizacija polako
prelazi iz licne upotrebe u poslovne tokove rada.

2.2.4. Period 2010-ih

Makroi se sele u cloud okruzenja. Selenium omoguéava
automatizaciju web zadataka. Pocinje integracija vestacke
inteligencije za prepoznavanje elemenata i pokretanje
makroa.

2.2.5 Period 2020-ih

Microsoft uvodi Power Automate u Windows. Makroi se
Siroko primenjuju u industriji i uslugama, Al alati kao
ChatGPT i Copilot pojednostavljuju kreiranje skripti. V'BA
i dalje ima snaznu ulogu a sigurnosni problemi su velikim
delom reseni [2, 4].

1369

https://doi.org/10.24867/33BE27Janosevic

3. POSTOJECA RESENJA
3.1. Macro Recorder

Komercijalni alat za snimanje i automatsko izvrSavanje
akcija miSem ili tastaturom. Razvila ga je kompanija
Bartels Media. Ima vizuelni interfejs i podrsku za OpenAl
odnosno ChatGPT. Nije potrebno programersko
predznanje [5].

3.2. Macro Express

Softverski alat jo§ iz 1990-ih. Omogucava kreiranje
slozenih makroa bez programiranja. Imao je viSe verzija
gde su glavne promene po verzijama bile: Verzija 3 je
uvela uslovno izvrSavanje, petlje i okidac¢e makroa. Verzija
4 dobila je bolju podrsku za Windows operativni sistem i
lakse uredivanje makroa. Verzija 5 dobila je novi interfejs
i 64-bitnu podrsku, pored toga dodatno je optimizovana.
Najnovija verzija, pod brojem 6, dobila je integraciju sa Al
alatima i cloud servisima, poboljSanu stabilnost i placala se
samo jednom. Poseduje probni period i portabilnu verziju
alata [6].

3.3. AutoHotKey

Besplatan 1 open-source jezik za automatizaciju na
Windows operativnom sistemu. Podrzava kompleksne
skripte za tastaturu, mi$ i rad sa prozorima i fajlovima.
Jednostavan je za napredne korisnike ali moze biti
zahtevan novim korisnicima [7].

3.4. Pulover’s Macro Creator

Besplatan alat baziran na AutoHotKey alatu ali sa
vizuelnim interfejsom. Omogucava lako kreiranje makroa
bez pisanja koda. Ogranicen je na Windows platformu [8].

3.5. Windows Power Automate

Windows-ov alat za naprednu automatizaciju poslovni
procesa. Radi i u cloudu i na deskop-u. Integrisan je u
Windows operativni sistem, besplatan je i podrzava RPA
funkcionalnosti. Ve¢a mo¢, ali i kompleksnost u odnosu na
druge alate [9].

4. KORISCENI ALATI

Opisani su alati kori§¢eni za izradu projekta I opisani su
razlozi izbora. Projekat je raden uz pomo¢ Python
programskog jezika verzije 3.12, biblioteke koje su
koriS¢ene su textX za definisanje jezika i parsiranje koda,
pynput kao alat za Citanje i aktivaciju tastera i pyautogui
kao alat za dobijanje podataka sa ekrana radi aktivacije
automatskih makroa.

4.1. Python

Predstavlja interpretirani, jednostavni i svestran jezik
pogodan za automatizaciju, analizu podataka, masSinsko
ucenje 1 web razvoj. Ima veliku zajednicu, bogate
biblioteke 1 pogodan je za brz razvoj softvera. Mana mu je
$to je sporiji od ostalih programskih jezika [10].

4.2. textX

Python biblioteka koja sluzi za kreiranje domenskih jezika
i parsiranje teksta na osnovu definisane gramatike.
Omogucava lako generisanje Python klasa iz gramatike i
nudi jednostavan nacin za obradu korisnicki definisanih
jezika. Zasnovan je na PEG parseru S§to osigurava
nedvosmislenost prilikom ¢itanja ulaza [11].

4.3. Pynput

Python biblioteka koja omogucava kontrolu i sluSanje
ulaza sa tastature i misa. Podrzava sve glavne operativne
sisteme i pogodna je za makroe jer omogucava simulaciju
i presretanje tastera. Dobro radi u multi-threading
okruzenju ali ne podrzava Citanje sadrzaja sa ckrana i
zahteva ru¢no mapiranje specijalnih tastera [12].

4.4 Pyautogui

Biblioteka koja sluzi sa automatizaciju misa i tastature kao
i za Citanje sadrzaja sa ekrana. Podrzava glavne operativne
sisteme, ali moze Citati sliku samo sa glavnog ekrana i ne
moze sluSati ulaz sa tastature. Pogodna je za jednostavne
automatizacije i simulacije unosa [13].

5. META MODEL MAKROA ZA TASTATURE

U ovom poglavlju opisan je domen makroa za tastature, sa
naglaskom na pojmove koji ¢ine osnovu za definisanje
jezika specifiénog za domen. Centralni elementi su
dogadaji koji pokrecu makroe i akcije koje se iz tih
dogadaja izvrSavaju. Akcije mogu biti jednostavne ili
kompleksne, ukljucujuéi petlje, uslovno izvrSavanje, pauze
i funkcije radi ponovne upotrebe koda. Svi ti elementi
objedinjuju meta-model koji definiSe koncepte, njihove
veze i ogranicenja.

Cilj je omoguditi korisniku da fleksibilno i apstraktno
kreira makroe bez nepotrebnog ponavljanja.

5.1 Vizuelizacija meta-modela

Color HA-Fa-t0-9]16}
Comparatof

righi Click lenClick [Cliel [aA]l

A
\

polorOffset

[oy | [caomet] | o

Ke:
key INT | [effser: INT
i ol "\

p_itera
agigulueyibutc
min - Attribute
~a
atributes 09
ara

paramerseig]

Slika 1. Meta-model jezika za makroe za tastature
6. Interpretiranje

Najbitniji deo samog alata. Opisuje samo izvrSavanje
skripte. Pre nego Sto otpocne izvrSavanje skripte, textX
model se svodi na Python klase koje su ru¢no napisane za
odredenu upotrebu, odnosno ne koriste se Python klase
koje generiSe textX, samim tim je i gramatika odredenog
oblika.

Deo pokretanja pre samog interpretiranja se svodi na
ucitavanje meta-modela, zatim ucitavanje odredenih
skripti, odabir skripte i svodenje te skripte na Python
model. Nakon toga otpocinje interpretiranje skripte.

1370

6.1 main.py

Glavni fajl projekta, sadrzi main() funkciju od koje
otpocinje izvrsavanje. U njoj se prvo ucitavaju sve makro
skripte iz projektnog direktorijuma funkcijom
load _macros(). Nakon Cega se vrsi provera cikli¢nosti
pomocu klase Checker. Zatim se izabrana skripta $alje na
izvr§avanje kroz funkciju interpret(). Sam meta-model se
ucitava pre pocetka rada funkcija.

6.2. Definicija cli alata

DefiniSe drugi nacin pokretanja skripti preko komandne
linije umesto pokretanja skripte kao Python projekta.
Ulazna tacka je cli.py odakle se poziva definicija skripte iz
fajla #ype_macro.py, koja ucitava meta-model i definiSe
funkcije za ucitavanje i1 izvrSavanje makro skripte.
Korisnik samo navodi putanju do Zeljene skripte kao
argument komandnog alata.

6.3. Checker klasa za proveru cikli¢nosti

Veoma bitna klasa u projektu. Sluzi za proveru cikli¢nosti
poziva makroa, odnosno da li mozemo u¢i u beskonacnu
petlju poziva makroa. Ova pojava je potencijalno opasna
jer moze dovesti do gubitka kontrole nad raCunarom. Zato
je u sam alat ugraden bezbednosni makro za zaustavljanje
svih akcija (4/t+F12).

Glavna funkcija je detect cycle() koja primenjuje
algoritam dubinske pretrage (DFS) nad stablom poziva. Za
svaki makro proverava se da li aktivira drugi makro, i ako
je tako taj odnos se prati rekurzivno. Ako tokom pretrage
naidemo na makro koji je ve¢ bio u putanji pretrage,
otkrivena je cikli¢nost i algoritam vraéa upozorenje.

Ako nijedan put ne odvede do takve situacije, makro se
belezi kao bezbedan i iskljucuje se iz narednih provera.
Ovakva provera obezbeduje stabilnost sistema i sprecava
slucajne beskonacne petlje u automatizaciji.

6.4. Python klase modela

Selekcija u kojoj se posebno opisuju sve klase domena u
Python obliku, opisuju se njihovi atributi kao i funkcije
koje poseduju date klase.

Nakon §to se sam model uéita preko klase MacroGroup
koja sustinski poseduje celokupnu skriptu sa makroima,
celokupna stabla koja predstavljaju makroe se svode na
klasu FullMacro koja strukturu stabla svo ina listu akcija.

6.5. Raspetljavanje

Raspetljavanje je proces svodenja stabla akcija jednog
makroa na listu akcija. Na pocetku modela, svaki
pojedinac¢ni makro poseduje stablo akcija koje obuhvata
izvrSavanje makroa. Ovaj oblik nije bas pogodan za
izvr§avanje i moze se raspetljati zbog jednostavnosti. Na
slici 2. prikazan je primer jednog stabla makroa.

Slika 2. Primer stabla akcija jednog makroa

Nakon §to se izvrsi raspetljavanje, dobice se instanca klase
FullMacro koja ¢e u sebi sadrzati raspetljanu listu akcija
koje su se nalazile u stablu (Slika 3.).

’ FullMacro }—»

Slika 3. Primer raspetljane sekvence akcija preko klase
FullMacro

key_sequence

sequence: MacroCommand]

6.6. Interpreter

Sve pocinje od funkcije interpret() koja pokreée slusanje
sa tastature ili sluSanje specificnog piksela na ekranu u
zavisnosti od tipa makroa, svako slusanje makroa poseduje
svoju zasebnu nit. Ako je makro zasnovan na tasterima,
koristi se funkcija listen_to_macro(), a ako reaguje na boju
piksela poziva se funkcija listen to pixel(), niti koje su
zasnovane ovim funkcijama zovemo nitima slusacima.

Dok se slusaju dogadaji, odvojena nit iz paketa pynput prati
kada je taster pritisnut ili otpuSten i u zavisnosti od toga
puno odnosno prazni set pritisnutih tastera. Kada se ispune
uslovi za pokretanje makroa, nit slusa¢ ¢e pokrenuti novu
nit koja ¢e izvravati pritiske tastera definisane makroom
koji je aktiviran preko funkcije
execute_macro_sequence().

6.6.1. Multi-threading pojasnjeno

Do sada su spomenute niti koje su prisutne kod
interpretera, ovde su definisani odnosu izmedu njih kao i
detaljniji opis tih niti.

Glavna nit prati pritiske tastera, ova nit poti¢e iz paketa
pynput. Sluzi da ubacuje odnosno izbacuje tastere iz seta
pritisnutih tastera.

Niti slusaci su niti koje se pokrecu u isto vreme kada i
glavna nit. Ove niti prate sadrzaj seta pritisnutih tastera i
proveravaju da li je ispunjen uslov za pokretanje makro
sekvence akcija.

Niti radilice su niti koje se instanciraju u nitima slusacima.
Kada je uslov za aktivaciju makroa ispunjen, instancira se
nova nit radilica koja ¢e izvr$avati akcije datog makroa, za
to vreme, nit slusac nastavlja da slusa. Ovo znaci da jedna
nit slusa¢ moze da instancira vise istih niti radilica.

Slika 4. Primer modela funkcionisanja niti interpretera

7. PRIMERI SKRIPTI DEFINISANI JEZIKOM

U ovom poglavlju opisani su konkretni primeri kori§¢enja
skripti napisanih za kori$¢enje uz pomo¢ alata opisanog u
ovom radu.

1371

7.1. Otvaranje programa i pustanje muzike

Ova skripta sadrzi vise funkcija koje pomazu pri apstrakciji
odredenih sekvenci akcija i pomazu pri jednostavnije
pisanju. Skripta poseduje makroe za otvaranje Web
pretrazivaca Opera, makro za otvaranje programa za video
igre Steam [14] kao i dve varijante preéica za pustanje
muzike, jedna varijanta preko browsera, druga preko
aplikacije za muziku Spotify.

Slika 5. Pomoc¢ne funkcije za skriptu otvaranja programa
i pokretanja muzike

W
m m

Slika 6. Makroi za pokretanje muzike i specificnih
programa uz pozivanje pomocnih funkcija
7.2. Skripta za video igru Path of Exile

Pokazuje pravu mo¢ makroa z video igrama, sadrzi dva
makroa koja slusaju specifi¢ne pozicije piksela na ekranu.
Ukoliko koli¢ina zivotnih poena ili koli¢ina magije heroja
u igri padne ispod odredenog nivoa, odnosno promeni se
boja piksela bara, aktivirace se specifi¢an makroa da taj bar
napuni.
Pored toga sadrzi i jednostavan makro za aktivaciju vise
magija preko precice.

heal(): 1

mana(): 5

Slika 7. Primer skripte za slusanje barova za igru Path of
Exile[16] za aktivaciju moci

8. ZAKLJUCAK

Makroi predstavljaju unapred definisane sekvence akcija
komandi koje znac¢ajno ubrzavaju rad na ra¢unaru. Njihov
razvoj je prosao dug put. Od mehanickih precica do
modernih alata koji mogu koristiti veStacku inteligenciju.
Glavna prednost makroa je usteda vremena, pritiskom
nekoliko tastera mogu se pokrenuti sloZzene radnje, §to je
posebno korisno u profesionalnom okruzenju.

U radu je prikazano kako su alati za makroe evoluirali i
kako se danas koriste u alatima poput AutoHotKey-a n
Macro Express-a. Cilj projekta bio je da se napravi
jednostavan, ali mocan alat prilagoden pocetnicima ali
dovoljno fleksibilan za napredne korisnike. Fokus je
stavljen na lako¢u upotrebe, mada to ogranicava rad na
slozenijim skriptama.

Projekat takode ukljuCuje proveru postojanja rekurzije
medu makroima kao i multi-threading mehanizam za
paralelno izvrSavanje, §to omogucava bolje performanse.

Primeri upotrebe pokazuju primenu u svakodnevnom radu
iigrama.

Unapredenja ovog alata obuhvataju prosirenje sa grafickim
interfejsom, kontrolu misa, kao i prebacivanje alata na neki
drugi programski jezik zbog performansi. Takode
interesantno prosirenje bila bi podrska za viSe racunara,
odnosno kontrola vi$e ra¢unara sa jednog glavnog.

9. LITERATURA

[1] https://www.taskade.com/blog/history-keyboard-
shortcuts-productivity, mpuctym 26. ®ebdpyap 2025.

(2]
https://en.wikipedia.org/wiki/Macro_(computer_science)
[3] Peres, S. C., Tamborello, F. P., Fleetwood, M. D.,
Chung, P., & Paige-Smith, D. L. (2004). Keyboard
Shortcut Usage: The Roles of Social Factors and
Computer Experience. Proceedings of the Human Factors
and Ergonomics Society Annual Meeting, 48(5), 803—-807.
https://journals.sagepub.com/doi/abs/10.1177/154193120
404800513

[4] https://www.digit.in/features/general/digit-mag-the-
origin-of-software-macros-53206.html, mpuctyn 1. Mapt
2025.

[57 https://www.macrorecorder.com , npuctyn 1. Mapt
2025.

[6] https://www.macros.com , mpuctyn 1. Mapt 2025.

[7] https://www.autohotkey.com , mpuctym 1. Mapt 2025

[8] https://www.macrocreator.com , mpuctym 8. MapT
2025.

[9] https://learn.microsoft.com/en-us/power-automate ,
mpuctym 8. Mapt 2025 .

[10] https://www.Python.org/about/ , mpuctym 18. Ampuin
2025.

[11] https://textx.github.io/textX/ , mpuctym 18. Ampun
2025.

[12] https://pynput.readthedocs.io/en/latest/ , mpuerym 17.
Maj 2025.

[13] https://pyautogui.readthedocs.io/en/latest/, npuctyn
18. Maj 2025.

[14] https://steam.fandom.com/wiki/Steam , npucrtym 29.
Jyn 2025.

[15] https://en.wikipedia.org/wiki/Spotify, mpuctym 29.
Jyn 2025.

[16] https://www.pathofexile.com, mpuctyn 29. Jyn 2025.

Kratka biografija:

Dusan Janosevi¢ roden je u Majdanpeku
2001. godine. Master rad na Fakultetu
tehnickih nauka iz oblasti Elektrotehnike i
racunarstva — Softversko inzenjerstvo
odbranio 2025. godine.

Kontakt: dusan.janosevic123@gmail.com

1372

https://www.taskade.com/blog/history-keyboard-shortcuts-productivity
https://www.taskade.com/blog/history-keyboard-shortcuts-productivity
https://en.wikipedia.org/wiki/Macro_(computer_science)
https://journals.sagepub.com/doi/abs/10.1177/154193120404800513
https://journals.sagepub.com/doi/abs/10.1177/154193120404800513
https://www.digit.in/features/general/digit-mag-the-origin-of-software-macros-53206.html
https://www.digit.in/features/general/digit-mag-the-origin-of-software-macros-53206.html
https://www.macrorecorder.com/
https://www.macros.com/
https://www.autohotkey.com/
https://www.macrocreator.com/
https://learn.microsoft.com/en-us/power-automate
https://www.python.org/about/
https://textx.github.io/textX/
https://pynput.readthedocs.io/en/latest/
https://pyautogui.readthedocs.io/en/latest/
https://steam.fandom.com/wiki/Steam
https://en.wikipedia.org/wiki/Spotify
https://www.pathofexile.com/
mailto:dusan.janosevic123@gmail.com

JHEL 7

/A

36o0pHuK papoBa PakynTteTta TeXHUUKMX Hayka Hoeu Capn

UDK: 004.42:004.738.12
DOI: https://doi.org/10.24867/33BE29Bjelica

N3PAJA KOMITAJJIEPA YIIOTPEBOM PACTEMO BUBJIMOTEKE
COMPILER DEVELOPMENT USING THE RUSTEMO LIBRARY

Mapko bjenmuna, @axyimem mexnuuxkux nayxa, Hosu Cao

Oobaact - PAYYHAPCTBO U AYTOMATHUKA

Kpamax cadprcaj — YV osom pady je y3 ocionay Ha
oubnuomexy Rustemo, uzepahen komnajrep Pacmu,
HA36aH MAKo jep je umniemeHmupau y npocpamcKom
jesuky Rust. V pady je oama meopujcka ochosa 3a cee
¢ase komnajruparea Koje cy peanuszogarve y Pacmujy, a
Mo Cy NIeKCUYKa, CUHMAKCHA U CeMAHMU4Ka aHaiusd, ca
Hajeelium ¢hokycom ma cummaxcuy ananuszy. Pacmu ce
cacmoju 00 1eKCU4K02 aHanu3amopa (UMnIemMeHmupanoz
PYUHO U uzeenepucanoz nomohy Rustemo bubruomexe),
CUHMAKCHOZ2 AHAIU3AMOpa (UMNAEMEHMUPAHO2 PYUHO U
uzeenepucanoz Rustemo Oubnumexom), cemMaHmuuxoe
aHanu3amopa u esanyamopa.

Kibyune peuu: Komnajnep, Rustemo, Rust, nexcuuxu
AHAIU3AMOp, CUHMAKCHU — AHATU3AMOD, CEeMAHMUYKU
aHanu3amop, eeanyamop.

Abstract — The paper presents a compiler, named Rasti,
developed witth the Rustemo library. Compiler name
Rasti was chosen, because it is implemented in the Rust
programming language. This work provides the
theoretical foundation for all phases of compilation
realized in Rasti, namely lexical, syntax and semantic
analysis, with the greatest focus on syntax analysis. Rasti
consists of a lexical analyzer (implemented manually and
generated with Rustemo), a syntax analyzer (also
implemented manually and generated with Rustemo), a
semantic analyzer and an evaluator.

Keywords: Compiler, Rustemo, Rust, lexical analyzer,
syntax analyzer, semantic analyzer, evaluator.

1. YBOJ

VY cBujery padyHapcTBa, KOMIajjep je NporpaM Koju
MIPEBOAM M3BOPHHM KOJl HAIMCaH HAa BHCOKOM HHBOY Y
LWJBHU KOJ TOTO/aH 33 M3BPIIABamE Ha pavyyHApy WIH
BHUPTYEIIHO] MamIMHU. VI3BOpHU KOI MOXE OWTH HAIMCaH
y mporpamckum jesuiuma nonyt C, C++, Rust, Java,
Python wnn vak y acemOnepy. L{usbHM KOI MOXKE OWUTH
HEKH JIPYTH ITPOrPaMCKH je3uk (Hajuerhe HUKEr HUBOA Y
OJTHOCY Ha W3BOPHH), MAIITHMHCKU KOJI, aceMOuiep, 0ajTKo.
win Heka mehydopma.

[Ipomtec kommajnmpama Ce€ CacToju O HEKOIHUKO

y3acronHux ¢asza, npu yemy cBaka (aza mma ozapehen
3aj1aTaK, a 1o Cy:

HAIIOMEHA:
Ogaj pax npoucTeKao je U3 MacTep pajga YMju MEHTOP
je 6uo np Urop Jejanosuh, pea. npod.

JIeKCHYKa aHalli3a, CHHTAKCHA aHalh3a, CEeMaHTHYKa
aHajM3a, TeHepHcambe Meljykona, onTHMH3andja W Ha
Kpajy reHepucame IUJBHOT KOAA.

VY okBHpYy OBOT pajaa mpeacTaBibeH je Pactu, kommajnep
n3rpalleH y mporpamckoMm je3suky Rust, y3 momoh
oudimorexe Rustemo [1]. Pokyc je Ha TEOPHjCKO] OCHOBH
KOMIajiupaka W NPaKTHYHO] WMIUICMCHTAIjH
JIEKCUYKE, CHHTAKCHE M CEMaHTHYKE aHaIH3e. Y MPOjeKTy
JICKCHYKa aHaIn3a je pealnn30BaHa Ha [Ba HAYMHA, a TO CY
PYYHOM HMIUIEMEHTAIljOM U TEHEpUCameM IOMOohy
Rustemo 6ubmmorexe. CIMYHO TOME CHHTAaKCHA aHAIN3a
je peamm3oBaHa PyYHOM HMIUIEMEHTAIjOM Iapcepa ca
PEKYpP3UBHUM CITyCTOM U ayTOMAaTCKU U3reneprucanum LR
napcepoM Ha OCHOBY IpociujeljeHe rpamatuke Rustemo
OouOaMoTend. 3aTHM CEeMaHTHYKa aHajgu3a obOpaljyje
CHUHTaKCHO cralio 1o0MjeHO of mapcepa, IpoBjepaBa
JIOTMYKY MCHPABHOCT M Tpajyl HOBO cTabyo. HakoH Tora,
eBaJlyaTop MIpOJa3Hu Kpo3 CTa0JI0 HACTAaJO CEMaHTHYKOM
aHANM30M U M3BpLIaBa Hapeaoe.

Pactu mnoapikaBa paj ca H3pa3UMa KOjU caJpike
HyMepHuKe U OyJIoBe BPHjEAHOCTH, Ka0 U KOMOWHOBame
UCTUX Ca apUTMETHYKUM, JIOTHYKUM, PENAlMOHUM U
yHapHHM oneparopuMa. Takole, moapkane cy ciexaeche
HapenOe: JAeKiapanyja IPOMjCHJBMBHX, JOjjena
BPHjEAHOCTH, TIETJbE U yCIOBHE Hapeaoe.

Pan je crpykrypupan y uerupu aujena. IlpBu numo
IIpe/ICTaBsba HABEJCHU YBOJ Y KOjEM je YKPaTKO ONHMCaH
KOHLIENT KoMIajiaepa M Koje ¢a3ze mma, Takohe mar je
Kpatak ocBpT Ha Pactu. Y npyrom nmjeny je TeOpHjcKu
Mperyies] OCHOBAa KOMIIajiepa W ommc (¢a3a JIEKCHUKE,
CHHTaKCHE W CEMaHTHYKe aHamm3e. 3atuM y Tpehem
ogjerny je OTIHCaH Pactn, Kpo3 EroBe
(YHKIMOHAJIHOCTH, apXUTEKTYpy U pa3lhKe Koje
M3reHePUCaHH U PYYHO UMIUIEMEHTHPaHH napcep Hoce. 1
Ha Kpajy y YeTBPTOM JIHjelly AAaT je 3aK/bydaK y KOjeM Cy
pasmatpane moryhe npuMjere u Oyayhu npasity pa3soja.

2. TEOPUJCKE OCHOBE

2.1. IIpouec koMnajaupama

3a ycmjemHo pjelraBame mpodieMa M3 IMOCIOBHOT
JIOMEHA, HEOIIXOIHO je TMPEIM3HO AePHUHUCamhE MpodiieMa
y3 kopumihewe oarosapajyher jesuka. Jlok 3a
KOMYHHKaljy Mel)y Jsbyamma KOpHCTH c€ TUpPUPOJHU
je3uWK, padyHapu HUCY y MoryhHoctH ga ra
MHTEPIIPETHPajy Ha Ha4YMH, HA KOjU TO JbyaHu pane. 300r
TOra je MOTpeOHO KOPHCTHTH je3UK KOjH padyHapH MOTY
Ja pasymHjy ¥ (opmanuzoBaTtu NpobieM y ckiagy ca
MIPaBHIIMIMA TOT je3HKa.

1373

https://doi.org/10.24867/33BE29Bjelica

300r CJI0KEHOCTH MAILIMHCKOT je3KKa 3a Jby/Ie, Pa3BUjeHH
Cy IpOTrpaMCKH je3unyu Koju oMoryhaBajy jeIHOCTaBHU]jY
KOMYHHKAIMjy ca padyHapuMma. VI3BOpHU KOJ HANHCaH y
HEKOM IIPOTPaMCKOM j€3UKy C€ HE MOXEe IMPEKTHO
M3BpIIaBaTH Ha padyHapy, jep padyHap pasyMHje caMo
WHCTPYKIHje Y MAITUHCKOM Koay. 300T Tora moTpedHo je
NPEBECTH HW3BOPHH KOI Yy OOJHMK KOjH padyHap MOXe
pasymujeTd U U3BpIUTH. Taj mpeBox 00aBjba KOMIIajiep,
KOjH Kao yia3 IpHXBaTa W3BOPHU IpOrpaM, a Kao u3Ja3
TeHepHIlle LWJBHU KOX, M Taj IHpolec ce 30Be
KOMIIajJTUpambe.

CBakoM TPOrpaMCKOM je3UKy MOTpebaH je MpeBOIuiaLl,
allil HeKH je3WM HHCY IIOTOIHU 3a CBE 3aJaTke, Ia ce y
HEKMM JOMEHHMa jaBjba MOTpeda 3a KpeupameM HOBHX,
npmiarohernx jesmka. To Cy je3umu crenupuyHu 3a
nomMeH (enr. Domain-specific languages), OCMUIIUBCHH 3a
pjemaBame npobiieMa Y KOHKPETHOM JIOMEHY W 3a 4Hujy
U3rpaglby je MOTpeOHO pasyMHujeBame Ipolieca
KOMIITajJIupama.

2.2. Komnajiepu u MHTepnperepu

IIpBu kopak y pjemaBamy mOpobiemMa U3 TOCIOBHOT
JOMeHa, (DOPMYJIMCAHOT TEPMHHOJIOTHjOM HPOrPaMCKOT
jesuKa, jecte mMpeBohee H3BOPHOT Yy H3BPIIHA KOI.
Hauun npeBohema Moxke 1a ce pa3iuKyje y 3aBHCHOCTH
Jla JIM ce KOpHCTe KOMIIajliepy WK UHTeprperepu [2].

KoMnajimepn y NOTIYHOCTH MNpeBOAE H3BOPHH KOI Y
V3BPIIHU KON, KOjH je 3aTHM CIIpeMaH 3a IIOKpeTambe.
OBaj mpuctyn omoryhaBa onTuMH3aLujy Kojaa MpHje
U3BpIlIaBamba, IITO Pe3y/Tyje OpIKUM pasoM Iporpama.

Wnrepriperepu o0palyjy kox — HMHCTPYKIHjy MO
HHCTPYKIH]jy, O0e3 cTBapama u3BpIHe garoreke. Criopuju
MIPHUCTYTI, anu oMoryhasa 60Jby AMjarHOCTHKY TpoOiieMa,
YIpaBo 3aTo IITO CE MPOrpamM MpaTu TOKOM M3BpILIABaba.

2.3. ETane komnajaupama

Kommnajnupame je ClokeH Hpolec KOjUu Ce CacToju U3
BuIle y3acTonHux (asza. Te ¢ase ce aujenc Ha IBHjC
r7aBHE eTame, a TO Cy aHali3a M CHHTE3a, Kao IITO je
MpHUKa3aHo Ha CIUI 1.

V380pHH
Kon

Erana |
ananuze
TNekcuaka CrnTakcuika CemarTiika
4

ananu3a ananuza ananuza

v

MehypenpesenTauuja TaGena cumdona

| -
Erana |
cuireze
TeHepucawe
TeHepucane OnTumMzauuja
mefiyrona > vona R

P N
WzBpWHA
xon
AN 7

Cnuxka 1. I' pagpuuku npurxaz komnajniuparea

Etanma ananuse wim npeamu auo (eHr. frontend)
KoMmItajiiepa oOpaljyje M3BOpPHHM KOJA M TpeTBapa ra y
MmehypenpeseHnranujy, Kao WTO je alCTPaKTHO CUHTAKCHO
crabmo. OBa eranma ykibydyje Tpu (ase: JeKcuuka,

CHHTAKCHA M CCMaHTHYKa aHaju3a, KOje MpOBjepaBajy
HCIPABHOCT KOJIa IpeMa MpaBUiinMa je3ukKa.

Erana anammze wim
KOMIIajiiepa KOPHUCTH
TeHEPUCAE N3BPIIHOT KOJa.

3ammu auo (eHr. backend)
MehypenpeseHTamujy 3a

OBe erame HHUCY cTporo pasaBojeHe, Beh wmelhycoOHO
capaljyjy myrem Tabene cumOojia, Koja dyBa IOAATKE O
UAeHTU(UKATOPIMA W Wrpa KIbYy4Hy YOy
KOMIIajJINpamy.

2.4. JIekcMYKa aHaJIn3a

Jlexcnuka ananm3za je mpBa (pasa KoMmajnmupama, 9dju je
3aJaTak J]a YUTa U3BOPHH KOJ KapakTep 10 KapakTep U
mperBapa ra y HHM3 TokeHa. OBaj mpomec o0aBiba
JIEKCUYKH aHATU3aTOP WIIH JIEKCep KOjH:

e [Ipemno3Haje lekceMe U KJIACH(PHUKYje UX MO TUITY
rpanehu TokeHe of1 BbHX.

e [lpeckade HEmoTpeOHE €IEMEHTe IMOMYT
KOMEHTapa H IpasHor mpocropa (oBo je
OIIIMOHO, jep TOCTOje je3WIH TIje yBIadema
nMajy 3Haueme).

e [lamTy no3uiyjy TOKEHa y KOXY, pajyl JIaKIIer
JIOIMpama IPelKe YKOINKO Ce IECH.

e TIpamm Tabemy cumOoma ca
HWHACHTHU(QHUKATOpUMA.

nojamuMa o

e IlpuwjaBpyje TpemiKy, YKOJIHKO HE MOXE ma
Mpero3Ha yJIa3Hu CUMOOIT.

Jlekcuuka aHanmu3a je jenuHa (asza Koja paau TUPEKTHO ca
KapaKkTepuMa, CBe HapeaHe (ase paje ca TOKCHUMA.

2.5. CHHTaKCHA aHAJIN3a

CuHTakcHa aHanm3a je npyra (aza Kommajmupama Koja
ClWjeny HAKOH JIeKCHMYke aHamm3e. CIMYHO Kao INTO
CHMHTaKCca TPUPOJHOT je3WKa MpoydaBa NpaBHUiIa Koja
onpehyjy Kako ce pujeuyd KOMOWHY]Y Y PEUYCHHUIIC, TaKO
rpaMaTHKa MPOTPaMCKOT je3WKa TpeJCTaB/ba CKYIl
npaBwiia Koju JAe(UHMIIE, KaKO C€ TOKEHH MOry
KOMOWHOBATH J1a OM ce JOOHO HCMIPaBHO CTPYKTYpHPaH
KOJI.

TokoMm oBe (asze, CHHTAKCHH aHAIIM3aTOP WIM Iapcep Ha
OCHOBY TOKEHa, JOOMjeHHX M3 JIEKCHYKE aHaju3e,
IpoBjepaBa Ja JM IUXOB PENOCIHjen y CKIagy ca
rpaMaTHKOM je3MKa, pUTOM Tpajehu cuHTakcHO cTabdio
(3]

CuHTakcHO cTabio mnm crabno mapcupama (CHT. parse
tree) jecte XHjepapxHjcKa CTPyKTypa Koja oJpaxaBa
opraHu3zaldjy Koja |y CKIagy ca rpaMaTuKoM
nporpamckor jesuka. dopMupa ce TOKOM CHHTaKCHE
aHanu3e M CIOy)Kd Kao OCHOBa 3a HapenHy a3y
KOMIIajJIupama, [ITO j& CEMAHTHYKA aHAIn3a.

EnemeHTH cHMHTaKCHOT cTaba:

e UpopoBu crabma MOry OWTH TEpPMHHAIN HIIH
HETEpMUHAIIH.

e Kopujen cradia je moyeTHr CUMOOI rpaMaThKe.

e JlucroBu crabna cy yBUjeK TEpMUHAIH, jep ce HE
MOTY JaJbe pacUJIaHUTH.

1374

VY 3aBUCHOCTU OJf HAYMHA U3rpPajihe CUHTAKCHOI cTabia,
OJHOCHO MpaBla y KojeM mapcep ce Kpehe NpHiInKom
IIpeno3HaBama CTPYKTYpe Iporpama, MOCTOje JABa THIA
CHHTaKCHE aHaJl3€e, a TO Cy CHHTAKCHA aHaJIM3a HaHIKe
(eHr. fop-down parsing) W CHHTaKCHa aHaIN3a HABUIIIC
(eHr. bottom-up parsing).

2.5.1. CHHTaKCHA aHAJIN3a HAHHKe

CuHTaKCHa aHaNM3a HAHIDKE j€ TMIPUCTYII MapCUpamy KOju
3al0YMEbE O]l IOYETHOI HEeTepMHHAJa TpaMaTHKe U
MOKyIIaBa Jla KOHCTPYHIIEe CHHTAKCHO cTablio mpema
JIOEMM JIUCTOBHMA, OJHOCHO TePMHUHAIMMA. AHAIN3aTOP
NOKYIIaBa Jla YCKJIaqH yJa3He TOKeHe ca MpOoIyKIujaMa
rpamaTtHke, NMpuUMjermyjyhn mpaBuiia Tako Ja TeHEpHIIe
ylla3HU HHU3. Y CBakoM KOpaky, OJjIyKa O IpHMjeHH
MpaBWJia JJOHOCH CE€ Ha OCHOBY IpPEIyBHIHOT CHMOOJIA
(enr. lookahead) [4].

Haj3actynssenuju napcepu Koju KOPUCTE OBY METOAY CY:

e Jlapcep ca peKyp3UBHHM CIyCTOM (pyd4HO
MMIUIEMEHTHpPaH napcep y Pactujy).

e LI(1) mapcep.

OBaj mpucTyN HUje OTIOPaH Ha MOjaBy JHjeBe peKyp3uje
y TpaMaTHIH.

2.5.1.1. Pexyp3uBHHu cniycT

TexHuka pEKyp3UBHOT CIycTa IPEACTaB/ba MPUCTYII
CHHTAaKCHO] aHalW3W HaHWXKe, IpU KOjeM Ce CBaKu
HETePMUHAJIHA CHMOOJ TrpaMaTUKe pealnsyje Kao
3aceOHa pexyp3uBHa (yHKuMja. Ha ocHOBY mpenyBHAHOT
cumbona, oBe (YHKIMjE CEICKTHBHO IIPUM|CHY]Y
onrosapajyha mponykmujcka mpaBwia. TepMHHAIHU
cUMOOJIH ce TUPEKTHO Iopelie ca TPEHYTHHM YJIa30M, a y
CITydajy HelOKJIalama jaBJba Ce CHHTaKCHA TPEIKa.

2.5.2. CHHTaKCHA aHAJIM3a HABHIIIE

AHanu3a HaBHIIE IpeACTaB/ba IPOLEC KOHCTPyHCaa
CHHTAKCHOT cTabja 3a JaTH yJIa3HH HU3 TOKEHa, rojasehu
o4 HICroBUX JIMCTOBA W IMOCTYIHO CBO}IehI/I ra Kka
KOpHUjeHy, OHOCHO Ka IOYETHOM CHUMOOJY TIpaMaTHKe.
TokxoM oBor mpoleca, y CBakOM KOpaKy aHalu3e, HEKU
MOAHU3 yJla3a KOjU OJroBapa AECHOj CTpaHH IpaBHiIa
rpamMaTHKe 3aMjeryje ce FlheTOBOM JIMjE€BOM CTPAHOM. AKO
Cy OBH ITOTHM30BY M3a0paHy Ha IpaBUJIaH HAYHH, ITPOIIEC
napcupama OJroBapa OOpPHYTOM TOKY Kpajiker JECHOT
n3BOhema, Tje ce MPOIYyKIHje IPUMEY]y O JIHCTOBA Ka
KopHjeHy ctabia

2.5.2.1. Ananu3a HaBHIlIe MpedanuBameM U cBohembeM

AHanu3a HaBuIIIe TpedalUBamkEM U CBOljemeM (eHr. shifi-
reduce parsing) je ONIITH OOJHMK CHHTAKCHE aHaJH3e
HaBHIIE KOja I'pajJyd CHHTAKCHO CTalJI0O OJ] JIUCTOBAa Ka
kopujeny []. OBaj mpuctyn KOpHCTH cTeK 3a npaheme
MapyjaTHuX pe3yiTata o0pajie U uMa JIBHje MeTo/Ie:

e [IpeGanuBame (eHr. shift), MeTona Koja ynasHe
cumbOoIre mpedairyje Ha CTeK.

e Caoheme (eHr. reduce), MeTOAa KOja CEKBCHILY
cuMmOoIa 3aMjemyje HETEPMHHAIOM, TTPHMjEHOM
HEKOT ITPOIYKIMOHOT [PaBHIIA.

Llwb je Ha Kpajy Aa CTEK CaApKU caMo MOYETHH CHUMOOII
rpamMaTHKe, YUMe ce TOTBplyje CHHTaKCHa HCIIPaBHOCT
yna3a. OBy TexHHKy kopucTe cBu LR mapcepu.

2.5.2.2. LR napcep

LR mapcepu mpencTaBipajy Kiacy mapcepa 3a aHAIU3y
HaBUIIIE KOjU KOPUCTE TEXHUKY TpedaIuBama U CBohema.
Hazus LR o3nauasa:

e L cioBo 03HauaBa yWTame yia3a ca JHjeBa Ha
necHo (eur. Left-to-right).

e R cnoBo o03HauaBa KOHCTpyHCame OOPHYTO
Kpajibe JecHo u3Bolheme cTadna (eur. Rightmost
derivation in reverse).

LR mapcepu noHOCE O/uTyKe TOKOM aHanu3e Kopucrehn
CTEK ¥ Tabeiy aHajm3e, Ha OCHOBY KOjuX yTBplyjy na nu
Tpeba HACTABUTH 4YHTame Yyja3a, CBECTH IpEIro3HaTe
cuMOoIie, MPUXBATUTU yJa3 WM MPUjaBUTH CHHTAKCHY

IPELIKy.
2.6. CeMaHTHYKA aHAJIH3A

CemaHTHUKa aHanW3a je 3aBpllHa (asza erame aHaimuze y
mpouecy KoMmmajiupama. JloK CHHTaKkCHa aHain3a
npoBjepaBa CTPYKTYpy Koma TMpeMa TpaMaTHullH,
CeMaHTHYKa aHaJIW3a IPOBjepaBa JIOTMYKY HCIPaBHOCT
nporpama. tbeH 1mIP je ma ocurypa Ia cy CBH
HACHTU(PHUKATOPH UCTIPaBHO Ae(HUHUCAHU, Ja C& KOPUCTE
y CKJIaIy ca CBOjHUM THUIIOBHMA, M JIa Ce TOIITYjy MpaBmiia
Kao ILITO Cy BUAJBUBOCT U IIpaBa IPUCTYIIA.

Hexke on Hajuemthux ceMaHTHYKHX IpelaKa:
e Hecnarame tunosa (eHr. type mismatch).
o Kopumiheme HeeKIapuCaHIX MPOM]jEHIBUBIX
e Bumecrpyka gexiapainyja y HCTOM OIICETYy.
e [Ipuctyn mpoMjeHJbUBOj BaH H-EHOT OTICeTa.

e Hecnarame mmehy QopmamHUX M CTBapHHX
napamarepa (QyHKIIH]e.

CeMaHTHUYKa aHalU3a C€ MOXE HW3BOJUTH TOKOM WIIH
HAKOH CHHTAaKCHE aHalu3e. JeIHOIPOJa3HH KOMIajiepu
BpIIE CHHTAKCHY W CEMaHTHYKy aHaIM3y Y jeJHOM
mponazy, MTO je eQHKacHO, JOK BHIICHPOJAa3HU
KOMIIajiepu OfBajajy oBe Kopake paau Behe
¢urekcubmmHOCTH M O0JbE€ TOAPIIKE 33 CIIOXKEHE
CTPYKTYpE Iporpama, 0Baj MIPUHITUI j€ UMIUIEMEHTHPAH y
Pactujy.

3. CIEHU®UKAILINJA CUCTEMA

3.1. ®yHKIHOHAJIHOCTH CHCTEMA

[lpojekar ~ Pactm mpexncraB/ba MUMIUIEMEHTALHU]y
KOMIIajjiepa HaIUCAHOT O] HyJIe y NMPOTrPaMCKOM je3UKY
Pact. IlogpxaBa mapcupame W eBalyaldjy H3pasza ca
HYMEPHUYKUM U OYJIOBUM BPHjEAHOCTUMA, aPUTMETHYKHUM,
JIOTUYKUM, PENALMOHUM U YHAPHHM OIlepaTopuMa, Kao u
pan ca 3arpamama. [lopexm Tora, oOyxBaTa OCHOBHE
MporpamMcke KOHCTPYKIHje Kao IITO Cy Jojjena,
KOHCTaHTe, YCJIOBHE Hapeade, IeT/be U YIHEeKICHU
0JIOKOBH KOJ1a.

1375

3.2. ApxuTtekTypa

[Ipojekar Pactm mpencraBba MMIUIEMEHTALU]Y
KOMIIajiiepa 3a UMIIepaTHBaH IPOrpaMcKH je3uk. [ako He
MpaTH y NOTIYHOCTH KiacuuHe Qa3e KOMIajInparma,
CacToju ce o[BUIIIE KOMIIOHEHTH, KOje Cy IpHKa3aHe Ha
CIIVIIH 2.

ApXuTeKTypa NpUKa3aHa Ha CIMLH 00yxBaTa:

e PydYHO HMIUIEMEHTHpAH JIeKCep KOjU y4YHTaBa
TEKCT y pajHy MEMOpPH]y U TEHEpHUILle TOKEHe
o0palyyjyhu ra kapakrep 1o Kapakrep.

e PyyHo wuMIUIEMEHTHpaH Tmapcep KoOju TIpanu
CHHTaKCHO cTalll0 METOAOM PEeKyp3HBHOT
crycra.

e Jlekcep wm3reHepucan Pactemo OHOIHOTEKOM,
KOjU YYWTaBa TOKEH II0 TMOTpeOM U paau
e(puKacHHje O]l PYYHO NMIDIEMEHTHPAHOT, jep He
JIPKH [IHjeNH KO Y PaTHOj MEMOPHjH.

e LR mapcep usrenepucan Pacremo 6ubnmmorekom.

e CeMaHTHYKH aHAJIM3aTOP MpPOJIA3d Kpo3 CTadIo
mapcupama M Besyje Tra CeMaHTHYKUM
npaBUiiama, [Ipy YeMy Irpajy HOBO cTabJio.

e HakoH ycmjemHe — ceMaHTHYKe aHaHU3e,
eBajlyaTop O0OWIa3M HOBO C€Tabjio, H3BpIIaBa
HapenOe, eBalynpa M3pa3e W Kpajibu pesynTar
MIpHKa3yje KOPUCHHKY.

e JlWjarHOCTHKA KOja MPUKYIJba JOTOBE M TPEIIKe
YKOIIMKO ce Jiece y CBUM (ha3aMa KOMIIajIupama.

o
napcen

L[Pewnzunuu cayer)

| | e
paToTeka ‘aHanu3aTop

(napcep Pacremo

Ry

Crnmka 2. Apxumexmypa npojexma

I

[(o—
i

[, |
\ J

3.3. Paziuke u3mel)y u3renepucaHor u py4Ho
HMILIEMEHTHPAHOT Napcepa

Hajseha pasmuka umsmelly LR mapcepa u mapcepa ca
PEKYP3UBHUM CIIyCTOM JIEXKH Y IPUCTYMy napcupamy. LR
mapcep BPIIM CHHTAKCHY aHaaM3y HaBWIIC U OOUYHO Ce
ayTOMAaTCKM TEHEepHIlle, JOK Mapcep ca PEKyp3UBHUM
CIycToM 00aBJba aHATU3y HAHWKE W IHUIIE Ce PYYIHO. Y
OBOM TIOTJIaBJbY Oulie pa3smaTpaHe KOHKPETHE pPa3lIuKe
m3Meljy OBUX mapcepa IMITICMEHTHPAHUX Y MPOjEKTy.

PyuyHa wuMmnieMeHTaija mnapcepa ca PEeKyp3UBHHM
CIyCTOM je jeqHOCTaBHa M e(ukacHa 3a jeJHOCTaBHE
rpamMaTvKe, ajlld Mame MPOIIUpUBA M OCjeTJbUBa Ha
rpamaTHyKe MpobiieMe Kao IITo je JujeBa pekypsuja. Ca
Ipyre crpane, w3reHepucanu LR mapcep mpyxka 060Jby
HNOAPIIKY 3a MpOIIMpeHha W ayTOMAarcKy JEeTEKIH]y
rpamMaTHYKuX KOH(IMKATA, ITO JONPHHOCH CTaOWIIHOCTH
Y JIAKIIO] OAP>KUBOCTH IPOjEKTa.

EduxacHoct je y o0a ciyyaja ajgekBaTHa TPEHYTHO]
rpamatiny, anu LR mpueryn je mpukiagHuju 3a Jasbu
pa3Boj u cioxeHuje rpamaruke. O0je MMIUIEMEHTaIM]je

HyJe CIMYaH HHMBO JMjarHOCTHKE, KOjy YHUHE
nH(OpPMaTHBHE OPYKE U TPELIKE.

4. 3AK/bYYAK

Pax mpencraBjra mpukaz mpoleca M3Tpalmbe

JETHOCTaBHOT KOMIajiiepa 3BaHOT PacTu, HammcaHOT y
MPOTPaMCKOM je3WKy Rust y3 TOAPIIKY OHOIHOTEKe
Rustemo. OCHOBHa MOTHBAllMja 3a pealH3alMjy pajia
6mna je OoJpe pasyMujeBame IMpoIeca KOMIIajanpama H
y4ere HOBOT IPOTPaMCKOT je3HKa.

Ha camoM mouerky pama gaTe Cy TEOpHjCKE OCHOBE O
TOME IIITA j€ TO KOMIIajjiep, MPOIeC KOMITajIupama U Koje
pasiiuKe UMa y OJTHOCY Ha MHTepIIpeTepe. 3aTUM OlHcaHa
je eTama aHajHW3e¢ KOjy YHMHE JIGKCHYKa, CHUHTAKCHA H
ceMaHTHYKa aHanu3a. [loceOaH akIeHAT CTaBJbEH je Ha
CHUHTAaKCHYy aHaJIH3Yy, TAje ce oOpaljyjy MeTosie CHHTaKCHe
aHaNM3e HaHIDKE 1 HaBUIIE.

Y npyroM amjeny paga ommcaHa je crenudukanyja
cHucTeMa, Koja 00yxBata (pyHKIIHOHAITHOCT H apXUTEKTYPY
Pactmja. Y okBHpY TOT IOTJIaBJba JATO j€ U 00PA3TIOKEHE
pasnuka usmehy W3TeHEPUCAHOT u py4HO
UMIUIEMEHTHPAHOT Iapcepa.

TpenyTHa wuMIUIeMeHTalja PacThja mpyxka CTaOHIHY
OCHOBY 3a Oyayhm pa3Boj u yHampujeheme.
[MoreHuujanHn mpaBuM Jajber pas3Boja YKIbYUY]Y
(GYHKIHOHATHO TPOLIMPEHE MPOrpaMCKOr je3uKa, Kao
mTo je yBoheme (YHKIHMja, CTPYKTypa WM Kiaca, IITO
omoryhaBa mpaheme CaBpeMEHHMX MPOTPAMCKHX
cranmapma. Takohe, Moke ce HAIOTPAaIHMTH HPOILEC
KOMIIajJIupama, JoaBambeM (aza Kao MTO Cy reHepHrcame
Mehykoma, onTHMH3aLMja M KpEeUpame LUJBHOT KOoJa.
Ilopex Tora, mpocTop 3a Hampemak jecte wmoryha
UMIUIEMEHTAIHja HeKe O]l TEXHUKa OIOPaBKa O Ipelraka
y JIEKCHYKO] M CHHTAaKCHO] aHAJIU3H, IUTO JONPUHOCU
pobycHocTi Kommajiepa. CBH OBH MPAaBIU JOMPHHOCE
CBEYKYITHOM KBAJIUTETYy KOMIajiepa U pPa3BOJHOM
MOTEHIIUjaJly IPOrPaMCKOT je3uKa.

5. JUTEPATYPA

[1] Pacremo (eHr. Rustemo) dubanorexa -
https://www.igordejanovic.net/rustemo/
(mocseenmu mpucty: 05.05.2025)

[2] Komnajnepu u nHTEpIIpETEPH -
https://www.spiceworks.com/tech/tech-
general/articles/compiler-vs-interpreter- 1 2-critical-
differences-to-know/

(mocsbenmu npuctym: 05.05.2025)

[3] Aho, A. V., Lam, M. S., Sethi, R., Ullman, J. D.
Compilers: Principles, Techniques, and Tools. 2.
u3name. Boston: Addison-Wesley, 2006.

[4] Cooper, K. D., Torczon, L. Engineering a
Compiler. 3. n3gamwe. Cambridge, MA: Morgan
Kaufmann, 2022.

Kparka Onorpaduja:

Mapxko Bjennua polhen je y TpeOumy
1999. romume. Macrep pax Ha
QakynTeTy TEXHHYKHX HayKa W3
oGyacti PadyHapcTBO M ayToMaTHKa —
EnexTpoHCKO mOCIOBame je oAb0paHno
2025. ronuHe.

KoHTakT: marko.bjelical 9@gmail.com

1376

https://www.spiceworks.com/tech/tech-general/articles/compiler-vs-interpreter-12-critical-differences-to-know/
https://www.spiceworks.com/tech/tech-general/articles/compiler-vs-interpreter-12-critical-differences-to-know/
https://www.spiceworks.com/tech/tech-general/articles/compiler-vs-interpreter-12-critical-differences-to-know/
mailto:petarns99@yahoo.com

g?ﬁ Zbornik radova Fakulteta tehniékih nauka, Novi Sad

UDK: 4.9
DOI: https://doi.org/10.24867/33BE30Vulin

JEZIK ZA OPIS PRAVILA ZA IGRE SA KARTAMA
A LANGUAGE FOR DESCRIBING CARD GAME RULES
Ana Vulin, Fakultet tehnickih nauka, Novi Sad

Oblast - ELEKTROTEHNIKA I RACUNARSTVO

Kratak sadriaj — U radu je predstavljen dizajn i
implementacija jezika specificnog za domen (DSL)
namenjenog opisivanju pravila za igre sa kartama. Sistem
obuhvata textX parser, interpreter u Python-u, kao i veb
klijent sa podrskom za interaktivnu vizuelizaciju. Cilj je
omoguciti lako kreiranje igri sa kartama bez potrebe za
programerskim znanjem.

Kljuéne refi: DSL, textX, Python, WebSocket,
vizualizacija, igre sa kartama
Abstract — The paper presents the design and

implementation of a domain-specific language (DSL)
intended for describing the rules of card games. The system
includes a textX parser, a Python-based interpreter, and a
web client with support for interactive visualization. The
goal is to enable easy creation of card games without the
need for programming knowledge.

Keywords: DSL, textX, Python, WebSocket, visualization
card games

1. UVOD

Kartaske igre predstavljaju jedan od najrasprostranjenijih
oblika druStvene zabave, ali i pogodan model za
proucavanje i implementaciju razli¢itih pravila, strategija i
interakcija. Njihova struktura — sa jasno definisanim
fazama, pravilima i uslovima pobede — ¢ini ih idealnim
kandidatom za formalizaciju kroz DSL. Cilj ovog rada je
razvoj i implementacija DSL reSenja koje omogucava
jednostavno, fleksibilno i prosirivo definisanje i pokretanje
razli¢itih kartaskih igara.

Predlozeno resenje — CardGame DSL — omogucava
korisnicima da tekstualno opiSu pravila igre koristeci
specijalizovanu DSL gramatiku, a sistem automatski
generiSe 1 izvrSava logiku igre, ¢ime se ubrzava razvoj i
olakSava ucesc¢e osobama bez programerskog znanja.

Sistem koristi fextX za definisanje i parsiranje DSL
sintakse, dok je izvr$na logika realizovana u Python-u kroz
specijalizovan interpreter. Klijentska aplikacija je
razvijena u JavaScript-u sa HTML i CSS podrskom, a
komunikacija klijent—server odvija se u realnom vremenu
putem WebSocket-a, ¢ime je omogucena modularnost i
ponovna upotreba sistema.

NAPOMENA:
Ovaj rad proistekao je iz master rada ¢iji mentor je bio
dr Igor Dejanovié, red. prof.

2. TEORIJSKE OSNOVE
2.1. Jezici specifi¢ni za domen (DSL)

Jezik specifican za domen [1] je jezik napravljen za
reSavanje problema u odredenom domenu. Na primer,
HTML je DSL za opisivanje veb stranica, a SOL DSL za rad
sa bazama podataka. Nasuprot DSL-u se nalazi jezik opSte
namene (GPL — General Purpose Language) koji ima
Siroku primenu u razliitim oblastima razvoja softvera
(Python, Java,..)

2.1.1. Apstraktna i konkretna sintaksa

Apstraktna sintaksa [2] — logicka struktura koda bez detalja
koji nisu bitni za razumevanje. Najcesce se koristi u vidu
stable apstraktne sintakse (AST — Abstract Syntax Tree).

Konkretna sintaksa — nac¢in na koji korisnik unosi
programski kod ili model. Moze biti tekstutualna, graficka,
tabelarna.

U okviru tekstualne konkretne sintakse definiSe se
gramatika. Predstavlja formalizovani skup pravila koji
definiSe dopustive nizove karaktera i njihove medusobne
odnose.

2.1.2. Parsiranje

Proces parsiranja uzima tekst u konkretnoj sintaksi i
pretvara ga u strukturu u apstraktnoj sintaksi (AST).

2.1.3. Interpretacija i kompajliranje

Postoje dva glavna nacina izvrSavanja koda ili naredbi —
interpretacija 1 kompajliranje/generisanje koda.
Interpretacija — izvorni kod ili neka njegova reprezentacija
(npr. AST) se direktno €ita i izvrSava od strane interpretera.
Kompajliranje ili generisanje koda — proces stvaranja koda
napisanog u nekom jeziku u niz instrukcija ili masinski kod
koji procesor moze direktno izvrsiti.

2.2. Igre sa kartama

Igre sa kartama [3] predstavljaju raznovrstan oblik
drustvenih igara i sve viSe se koriste u obrazovanju. Mogu
se klasifikovati prema svrsi i pravilima, npr. igre na srecu,
strateske, pamcenja i opazanja, socijalne i edukativne igre.

3. SPECIFIKACIJA SISTEMA

3.1. Jezici specifi¢ni za domen (DSL)

Glavni cilj sistema jeste da omoguci lako i brzo kreiranje
kartaske igre koriste¢i unapred definisan skup pravila i to
na nacin koji je intuitivan i pristupacan i osobama bez
programerskog znanja.

1377

https://doi.org/10.24867/33BE30Vulin

3.2. Postojeca reSenja

Postojeca resenja kao $to su biblioteka Cardamom.js [4] i
Construct 3 [5] podrzavaju razvoj kartaskih igara.
Cardamom.js omoguéava rad sa kartama. Spilovima i
rukama kroz funkcije za kreiranje, mesanje i upravljanje.
Construct 3 pruza vizuelni, objektno orijentisan sistem za
razvoj 2D igara bez pisanja koda.

3.3. Arhitektura obrade i interpretacije DSL-a

Jezik CardGame je eksterni DSL. Osnovna komponenta
sistema je Game Parser, koji na osnovu definisane
gramatike parsira specifikaciju koja opisuje igru. Parser
vr§i osnovnu validaciju specifikacije (.gme fajla) i1 kao
rezultat vra¢a model koji se nakon toga prevodi u interni
CardGame Model ¢ija je uloga semanticka validacija.
Interpreter predstavlja glavni deo sistema i vrsi tumacenje
pravila igre na osnovu modela, omogucéavajuéi njihovu
primenu i izvrSavanje. Na slici 1 je dat Sematski prikazan
put od .gme fajla do igre.

8-0--B-=

.gme file CardGame CardGame Interpreter CardGame
Parser Model

Slika 1: Arhitektura obrade i interpretacije DSL-a
3.3.1. Meta-model

Meta-model se sastoji od elemenata: Game, Rules, State,
Transition, Action, CardCount, Card, EnumValue, Rank,
Suit 1 drugih pomo¢nih klasa kao $to su ParamlList, Param.
Svaka klasa ima svoje atribute i medusobne relacije.

3.3.2. Parser

Za obradu specifikacija napisanih u CardGame DSL-u
koristi se biblioteka fextX, koja omoguéava definisanje
gramatike i automatsko generisanje parsera.

3.3.3. Model

Radi postizanja veée stabilnosti, podaci dobijeni iz parsera
se ne koriste direktno nego se transformisu u interni model.
Interni model (slika 2) predstavlja skup specijalizovanih
klasa dizajniranih da reprezentuju elemente igre sa svim
potrebnim svojstvima 1 pravilno implementiranom
logikom.

CardGame

(Rules i

min_players: int
max_players: int
rounds: int
table_cards_visible: bool
next_player_in_round
condition: str

name: str

rules: Rulas

cards: List]CardCount)
states: List(State)

1
I

to_dict()

~To.- game_winner: str
to_dict() J
CardCount : l 1
card: Card |
score: int 1 & Stete ‘
count: int ;) name: str

action: Action

to_dict() . transitions: ListTransition)

== =
to_dict()

Card 1
rank: str Transition
score: int 1
—]_) nextState: str
| condition: bool

count: int
to_dict()

to_dict()

Slika 2: Dijagram klasa internog modela

3.3.4. Interpreter

Interpreter je centralni deo sistema razvijen u Python-u
koji, koristeci biblioteku fextX, tumaci specifikacije igara
definisanih u CardGame DSL-u iupravlja logikom i tokom
igre. Integrisan je u backend Flask aplikaciju organizovanu
po kontroler-servis-repozitorijum arhitekturi, uz kori§cenje
WebSocket protokola za realnovremensku komunikaciju sa
frontend-om. Stanja igre, potezi i rezultati se Cuvaju u
relacionoj bazi podataka, §to omogucéava kontinuitet
partije. Sistem je dizajniran tako da omoguci proS$irivost i
ponovnu upotrebu, bez potrebe za dodatnim kodiranjem pri
definisanju novih igara

4. IMPLEMENTACIJA SISTEMA

4.1. Tehnologije

Ovaj sistem kombinuje textX, Python, Flask, PostgreSOL,
WebSocket, HTTP, JavaScript, HTML i CSS za izradu
interaktivnog DSL-a i veb aplikacije. Backend upravlja
igrom i komunikacijom u realnom vremenu dok frontend
dinamicki generiSe interfejs.

4.1.1. textX

TextX [6] je meta-jezik za definisanje gramatika DSL-a u
Python-u. U ovom reSenju koristi se za parsiranje
CardGame skripti i generisanje AST.

4.1.2. Python

Python [7] je dinamicki jezik pogodan za obradu teksta,
integraciju i backend aplikacije. Kori$éen je za parser,
backend server i upravljanje bazom podataka.

4.1.3. Flask
Flask [8] je backend framework za Python, pogodan za veb

aplikacije. U sistemu CardGame omoguéava HTTP
zahteve, upravljanje stanjem igre 1 WebSocket
komunikaciju.

4.1.4. WebSocket

WebSocket [9] je protokol koji omoguéava dvosmernu
komunikaciju u realnom vremenu. Ovde se koristi za
razmenu poruka izmedu igraca, bez potrebe za ucestalim
HTTP pozivima.

4.1.5. HTTP

HTTP [10] je osnovni protokol za komunikaciju izmedu
klijenta i servera. U sistemu se koristi za ucitavanje
stranica, prijavu i registraciju korisnika.

4.1.6. PostgreSQL

PostgreSOL [14] je objektno-relaciona baza podataka
poznata po stabilnosti i skalabilnosti. U CardGame resenju
sluzi za skladistenje korisni¢kih podataka, rezultata i stanja
partija.

4.1.7. HTML, CSS, JavaScript

HTML [11] definise strukturu veb interfejsa i sadrzaja
aplikacije. CSS [12] odreduje izgled veb stranice,
ukljucujuéi boje, fontove 1 razmeStaj elemenata.
JavaScript [13] omogucava interaktivnost i dinamicko
azuriranje veb interfejsa. U ovom reSenju upravlja
WebSocket komunikacijom, generisanjem HTML sadrzaja
i reagovanjem na korisnicke akcije.

1378

4.2. CardGame DSL i gramatika

CardGame DSL je realizovan kao eksterni tekstualni DSL.
CardGame, osnovni element gramatike, prikazan je na
slici 3. Sadrzi ime igre kao i blokove rules, states i cards
koji opisuju pravila, stanja i karte
CardGame:

‘game' name=ID

rules=Rules

states=States

cards=Cards

Slika 3: Element gramatike CardGame

Element Rules prikazan je na slici 4 i predstavlja pravila
koja ukljucuju broj igraca, broj rundi, nacin izbora sledeéeg
igraca i kriterijum za pobedu.

Rules:
‘rules’
*min_players' min_players=INT
'max_players' max_players=INT
‘rounds’ rounds=INT
('table_cards_visible' table_cards_visible=BOOLEAN)?
'next_player_in_round_condition' next_player_in_round_condition=NextPlayerCondition
*game_winner' game_winner=GameWinner

Slika 4: Element gramatike Rules

Element States prikazan na slici 5 predstavlja stanja
odnosno logicke faze igre koje sadrze akcije i tranzicije ka
drugim stanjima.

States:

'states’
states+=5State
i
State:
'state’ name=ID

Ydo

transitions+=Transition#

action=Action

Slika 5: Element gramatike States

Element Action prikazan na slici 6 predstavlja radnju koja
se izvr$ava u okviru odredenog stanja. Svaka akcija ima
svoj jedinstveni naziv (name=ID) kao i opcionalni deo ('(’
params=ParamList ')')? koji predstavlja parametre akcije
koji mogu, a ne moraju biti prisutni.

Action:

name=ID ('(' params=ParamList ')')?

Slika 6: Element gramatike Action

Element Transition prikazan na slici 7 predstavlja

tranziciju koja pokazuje u koje sledece stanje igra prelazi.

Sastoji se od kljucne reci then nakon Cega sledi naziv

slede¢eg stanja, a zatim sledi opcioni deo ('if’

condition=BOOLEAN)?. Ovaj deo je opcion jer se mogu

javiti razli¢iti scenariji:

1. Ako nema definisanih tranzicija to je kraj igre

2. Ako postoji samo jedna tranzicija bez uslova, prelaz u
sledece stanje se odvija automatski

3. Ako postoji viSe tranzicija sa uslovima, prelaz se odvija
u prvo stanje ¢iji je uslov ispunjen

4. Ako postoji viSe tranzicija bez uslova, sledece stanje
zavisi od igraca ili nekog spoljasnjeg faktora

Transition:
'then’ nextState=[State] ('if' condition=BOOLEAN)?

Slika 7: Element gramatike Transition

Element gramatike Cards prikazan na slici 8 predstavlja
karte. Svaka karta (Card) je definisana preko ranga i boje,
a navodi se i broj njenog pojavljivanja, kao i koliko poena
vredi (CardCount).

Cards:
‘cards’
cards+=CardCount

CardCount:
‘card' card=Card 'appears’ count=INT 'times, worth' score=INT ‘points’

Card:
rank=Rank 'of" suit=Suit

Slika 8: Element gramatike Cards
4.3. Parsiranje i model

Parsiranje .gme datoteka realizovano je uz pomo¢ fextX
parsera. Parsirani podaci se transformisu u interni model
koji vrsi dodatnu semanticku validaciju. Interni model
predstavlja skup Python klasa koje definiSu strukturu igre.
Ovaj model je osnova za interpretiranje logike igre.

4.4. Interpreter i povezivanje komponenti

Interpreter napisan u Python-u tumaci pravila i upravlja
tokom igre. On je integrisan u Flask backend, koji kroz
WebSocket komunicira sa frontend-om. Ovo omogucéava
dinamic¢ki tok igre bez ulitavanja stranice. Stanja igre i
rezultati Cuvaju se u PostgreSQOL bazi podataka.

4.5. Frontend i korisnicki interfejs

Frontend je razvijen u HTML/CSS/JavaScript
tehnologijama. Koristi WebSocket za interaktivnu
komunikaciju i prikazuje tok igre u realnom vremenu.
Sistem omogucava registraciju, prijavu, pregled postojeéih
igara i igranje igre sa protivnikom.

4.6. Pomoc¢ne funkcionalnosti

Sistem sadrzi niz funkcionalnosti za podrsku korisnicima
kao Sto su syntax highlighting, podrska za snippet-e i
automatska vizualizacija grafa prelaza stanja.

4.7. Konfiguracija i primer upotrebe sistema

Za pokretanje sistema instalirati Python 3.6+, Flask,
PostgreSQL, PyCharm ili VSC. Klonirati repozitorijum
https.//github.com/vulinana/card _game_dsl.git. U
PyCharm-u, dodati interpreter iz foldera card game dsl.
Dodati .gme fajl u gme/games. Nakon prijave, u glavnom
interfejsu bi¢e dostupna novododata igra.

5. PRIMER SKRIPTE U CARDGAME DSL-u

Igra memorijskih karata namenjena je za dva do Cetiri
igraca, a cilj je pronaci Sto vise parova istog ranga. Sastoji
se od pet rundi u kojima se igraci smenjuju, dok se karte
postavljaju licem nadole. Pobednik je onaj sa najvise
poena. Osnovna pravila definisana CardGame DSL-om
prikazana su na slici 9.

game memo_caras
rules

min_players 2

max_players 4

rounds 5

table_cards_visible false
next_player_in_round_condition circle_order
game_winner highest_score

Slika 9: Osnovna pravila igre memorijskih karata

1379

https://github.com/vulinana/card_game_dsl.git

Na pocetku igre, na sto se nasumicno postavlja osam karata
(deal _table cards). Igra¢ koji je na potezu (next_player)
bira dve karte (action_phase). Ova logika implementirana
je kroz stanja prikazana na slici 10.

states

state deal_table cards
do deal_table cards(8)
then any matching_table_cards

state next_player
do next_player
then action_phase

state action_phase
do select_table_cards(2)
then reveal

Slika 10: deal_table_cards, next_player i action_phase

Karte se okrecu (reveal) i proverava da li su istog ranga
(matching cards). Ako nisu, vracaju se licem nadole
(flip_back), a ako jesu, igraCc dobija poene
(calculate _points) i karte se uklanjaju
(remove_selected cards). Prikaz stanja dat je na slici 11.

state reveal
do reveal_selected_cards
then matching cards

state matching cards

do selected cards_match{rank)

then flip_back if false

then mark matching cards for scoring if true
state flip_back

do reset_table cards visibility

then next player ’

state mark matching cards_for_scoring
do mark_matching cards for scoring
then calculate points

state calculate_points
do calculate_points
then remove_se

r

Slika 11: reveal, matching cards, flip_back,
mark_matching cards_for scoring, calculate points i
remove_selected cards

Sistem proverava da li na stolu postoje parovi
(any_matching table cards). Ako postoje, igra nastavlja
sa slede¢im igracem (next_player), a ako ne, pocinje nova
runda (new_round). Nakon provere broja rundi
(rounds_remaining), igra se zavrSava odredivanjem
pobednika (game end) ili ponovnim deljenjem karata
(deal _table cards). Prikaz stanja dat je na slici 12

state any matching table cards
do any_matching_table cards(rank)
then next_player if true
then new_round if false

state new_round
do new_round
then rounds_remaining

state rounds_remaining
do check_if_rounds_remaining
then deal table cards if true
then game_end if false

state game_end
do determine_game winner

Slika 12: any matching table cards, new round,
rounds_remainning i game_end
Na kraju je potrebno jo§ definisati karte koje se mogu
pojaviti u toku igre, kao i broj njihovog ponavljanja i broj
poena koji nose (slika 13).

cards|

card 5 of hearts appears 4 times, worth @ points
card 14 of hearts appears 4 times, worth 10 points
card 13 of hearts appears 4 times, worth 16 points
card 5 of diamonds appears 4 times, worth © points
card 13 of diamonds appears 4 times, worth 15 point:
card 1@ of clubs appears 6 times, worth 18 points
card 7 of clubs appears 4 times, worth @ points
card 6 of clubs appears 6 times, worth @ points
card 11 of clubs appears 4 times, worth 15 points

Slika 13: Karte koje se mogu pojaviti u igri

6. ZAKLJUCAK

Razvijeni sistem pruza efikasno resenje za dizajn kartaskih
igara, zasnovano na dostupnosti i jednostavnosti.
Deklarativni pristup omogucava intuitivno definisanje
pravila, toka igre i ponasanja igraca, ¢ime se uklanja
potreba za poznavanjem programskih jezika i sistem
postaje dostupan Sirokom spektru korisnika.

Dalji razvoj sistema omogucava dodavanje funkcionalnosti
koje bi unapredile korisnicko iskustvo, kao $to su:

1. ProSirenje skupa interpretiranih akcija

2. Vizuelni editor pravila — graficki interfejs za
kreiranje i uredivanje pravila bez pisanja DSL koda.

3. Automatska dijagnostika greSaka -
prepoznavanje nelogicnih mehanika uz predlog
reSenja.

4. Simulacija testnih partija — automatsko izvodenje
viSe partija radi analize funkcionalnosti igre.

5. Interaktivni debugger pravila — korak-po-korak
interpretacija pravila i lakse otkrivanje gresaka.

LITERATURA

1] https://en.wikipedia.org/wiki/Domain-
specific_language (pristupljeno u maju 2025.)

2] https://en.wikipedia.org/wiki/Abstract syntax tr
ee (pristupljeno u maju 2025.)

[3] https://gambiter.com/cards/classified-
index.html?utm_source=chatgpt.com
(pristupljeno u junu 2025.)

[4] https://marianpekar.github.io/Cardamom.js/
(pristupljeno u maju 2025.)

[5] https://www.construct.net/en
(pristupljeno u maju 2025.)

[6] https://textx.github.io/textX/

[pristupljeno u avgustu 2025.)

[7] https://www.python.org/doc/
(pristupljeno u maju 2025.)

[8] https://flask.palletsprojects.com/en/latest/
(pristupljeno u maju 2025.)

[9] https://developer.mozilla.org/en-
US/docs/Web/APT/WebSockets API
(pristupljeno u maju 2025.)

[10] https://developer.mozilla.org/en-
US/docs/Web/HTTP (pristupljeno u maju 2025.)
[11] https://developer.mozilla.org/en-
US/docs/Web/HTML (pristupljeno u maju 2025.)
[12] https://developer.mozilla.org/en-
US/docs/Web/CSS (pristupljeno u maju 2025.)
[13] https://developer.mozilla.org/en-
US/docs/Web/JavaScript
(pristupljeni u maju 2025.)
[14] https://www.postgresqgl.org/about/
(pristupljeno u junu 2025.)
Kratka biografija:

Ana Vulin rodena je u Sremskoj
Mitrovici 2000. god. Master rad
na Fakultetu tehnic¢kih nauka iz

oblasti Elektrotehnike i
raCunarstva - Softversko
inzenjerstvo, odbranila je
2025.god.

kontakt: sm.vulinana@gmail.com

1380

https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://gambiter.com/cards/classified-index.html?utm_source=chatgpt.com
https://gambiter.com/cards/classified-index.html?utm_source=chatgpt.com
https://marianpekar.github.io/Cardamom.js/
https://www.construct.net/en
https://textx.github.io/textX/
https://www.python.org/doc/
https://flask.palletsprojects.com/en/latest/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://www.postgresql.org/about/
mailto:sm.vulinana@gmail.com

g?ﬁ Zbornik radova Fakulteta tehniékih nauka, Novi Sad

UDK: 4.633
DOI: https://doi.org/10.24867/33BE31Petric

METODE OTKLJUCAVANJA MOBILNIH TELEFONA
METHODS FOR UNLOCKING MOBILE PHONES
Jelena Petrié, Fakultet tehnickih nauka, Novi Sad

Oblast - ELEKTROTEHNIKA I RACUNARSTVO

Kratak sadrZaj — Ovaj rad se bavi forenzickim
metodama otkljucavanja ekrana Android i iOS uredaja,
uz analizu savremenih bezbednosnih mehanizama i
izazova koje oni postavijaju. Analizirani su operativni
sistemi i bezbednosne arhitekture pametnih telefona, kao i
postojeci pristupi zaobilazenja biometrijske
autentifikacije, lozinki i Sablonske zastite uz primenu
forenzickih alata. Posebna paznja je posveclena
prakticnom testiranju otpornosti biometrijskih sistema i
istrazivanju karakteristicnih obrazaca za zakljucavanje,
uz osvrt na eticke i pravne aspekte prikupljanja dokaza.

Klju¢ne refi: digitalna forenzika, mobilni uredaji,
zastitni mehanizmi, metode otkljucavanja

Abstract — This paper deals with forensic methods for
unlocking the screens of Android and iOS devices, along
with an analysis of modern security mechanisms and the
challenges they pose. Smartphone operating systems and
security architectures were analyzed, as well as existing
approaches to bypassing biometric authentication,
passwords, and pattern protection using forensic tools.
Special attention is paid to practical testing of the
resilience of biometric systems and research of
characteristic locking patterns, with a focus on the ethical
and legal aspects of evidence collection.

Keywords: digital forensics, mobile devices, protection
mechanisms, unlocking methods

1. UVOD

Otkljucavanje ekrana predstavlja bitan korak u procesu
prikupljanja dokaza tokom forenzicke istrage, jer ovaj ¢in
omogucéava direktan pristup podacima u njihovom
originalnom 1 neizmenjenom obliku. Uspe$nim
otkljuéavanjem izbegava se upotreba riziénih i
potencijalno destruktivnih metoda zaobilazenja zastite,
koje mogu ugroziti integritet ili pravnu prihvatljivost
dokaza.

Zadatak ovog rada je da istrazi forenzicke metode koje se
koriste za otkljuavanje ekrana pametnih telefona i da
putem izvedenih zaklju¢aka demonstrira postojece
metode na odabranim uredajima. Rad je iskljucivo
edukativnog karaktera i nema za cilj podsticanje ili
promociju zloupotrebe stecCenih znanja, ve¢ prvenstveno
unapredenje razumevanja metoda otklju¢avanja mobilnih
uredaja u kontekstu digitalne forenzike.

NAPOMENA:
Ovaj rad proistekao je iz master rada ¢iji mentor je
bio dr Stevan Gostoji¢, red. prof.

2. FORENZIKA MOBILNIH UREDAJA

Forenzika mobilnih uredaja predstavlja specifiénu granu
digitalne forenzike, usmerenu na prikupljanje i analizu
podataka pohranjenih na mobilnim uredajima ili
prenosenih putem celularne mreze [1].

2.1. Izazovi forenzike mobilnih uredaja

Brza evolucija mobilnih tehnologija i1 kratak -ciklus
razvoja proizvoda doveli su do velikih razlika u hardveru,
softveru i strukturama ¢uvanja podataka izmedu razlicitih
proizvodaca i verzija operativnih sistema mobilnih
uredaja. Ova raznovrsnost, u kombinaciji sa sve
naprednijim bezbednosnim mehanizmima stvara ozbiljne
izazove prilikom prikupljanja dokaza u forenzickim
istragama.

2.2. Proces forenzicke istrage

Forenzicka istraga je proces koji obuhvata identifikaciju,
prikupljanje, Cuvanje, pregled, analizu i1 prezentaciju
dokaza kori§¢enjem pravno i nau¢no prihvaéenih metoda i
alata.

2.3. Forenzicki alati

U situacijama kada je telefon zaklju¢an obicno je
neophodna upotreba specijalizovanih tehnika ili alata za
zaobilazenje zastitnih slojeva kako bi se na bezbedan i
legalan nacin doslo do trazenih informacija. Forenzicki
alati su softverske i hardverske tehnologije koje se koriste
u istrazi kao pomoéna sredstva prilikom pristupa, obrade i
ekstrakcije podataka sa razli¢itih uredaja.

2.3. Jailbreaking i rooting

Najces¢e koris¢eni postupci za sticanje najviseg nivoa
privilegija nad mobilnim operativnim sistemima ukljucuju
procese root-ovanja na Android platformama i jailbreak-a
na i0S uredajima. Primena ovih metoda nosi velike rizike
po integritet digitalnih dokaza 1 =zahteva paZljivo
izvodenje i strogo postovanje forenzickih principa.

3. OPERATIVNI SISTEMI MOBILNIH TELEFONA

Zbog brojnih mehanizama zastite koje implementiraju
savremene mobilne platforme, alati i metode koji su
efikasni na jednom sistemu Cesto nisu primenljivi na
drugom zbog specifi¢nosti arhitekture i nivoa otvorenosti
platforme.

3.1. Tipovi operativnih sistema

Tehnike za zaobilazenje zakljucanog ekrana cCesto
ukljuCuju slozene procedure koje zavise od hardvera i
verzije operativnog sistema. Prema statistici [2] za mesec
avgust 2025. godine, trenutno trziStem mobilnih telefona
dominiraju dva operativna sistema, Android 1 iOS.

1381

https://doi.org/10.24867/33BE31Petric

3.2. Zastitni mehanizmi

Zastitni mehanizmi mobilnih telefona obuhvataju skup
mera 1 tehnologija dizajniranih da zaStite uredaj i
privatnost korisnika od krade i drugih oblika zloupotrebe.

3.2.0. Mehanizmi zaklju¢avanja ekrana

Mehanizmi poput PIN-a, lozinke, Sablona i biometrijske
autentifikacije se razlikuju po kompleksnosti i nivou
bezbednosti koji mogu da pruze korisniku u zastiti
podataka.

3.2.1. Zastita naloga i enkripcija

Enkripcija podrazumeva pretvaranje svih podataka na
telefonu u necitljiv format, koji se moze desifrovati jedino
putem odgovarajuéeg kriptografskog kljuca. Na starijim
modelima implementirana je full disk encryption (FDE),
dok se na novijim modelima koristi file-based encryption
(FBE).

3.2.2. Izolacija aplikacija

Sandbox predstavlja izolovano okruzenje u kome
aplikacije mogu nesmetano da obavljaju svoje funkcije,
ali bez direktne interakcije sa drugim aplikacijama ili
kritiénim komponentama sistema.

3.3.i0S8
Za razliku od otvorenijih platformi, iOS sistem
ograniava pristup resursima, C¢ime se umanjuje

mogucénost neautorizovanog pristupa podacima. Postupak
za otklju¢avanje ovih uredaja zahteva upotrebu naprednih
forenzickih alata i tehnika, kao i detaljno poznavanje
arhitekture sistema. U pojedinim slu¢ajevima, posebno
kod novijih modela, saradnja sa proizvoda¢em moze biti
neophodna kako bi se osigurala forenzicki prihvatljiva i
tehnicki izvodljiva obrada digitalnih dokaza.

3.3.0. Arhitektura

Arhitektura je zasnovana na viSeslojnom modelu koji
obuhvata Cetiri osnovna sloja: Cocoa Touch, Media, Core
Service i Core OS.

3.3.1. Bezbednost sistema

Apple je razvio bezbednosni model koji objedinjuje
hardverske 1 softverske komponente u cilju zaStite
korisni¢kih podataka i ouvanja integriteta operativnog
sistema. Ovaj nivo zaStite predstavlja znacajan izazov u
forenzickim istragama, posebno kada je uredaj zakljucan i
nije jailbreak-ovan jer onemogucava pristup kriticnim
sistemskim podacima i aplikacijama bez odgovarajucih
autorizacija.

3.3.1.0. Sigurnosno pokretanje procesa

Potpisivanje koda je proces digitalnog potpisivanja
izvr$nih fajlova ili softvera kako bi se verifikovala
autentiCnost 1 integritet programa u cilju sprecavanja
instalacije neproverenih aplikacija.

3.3.1.1. Bezbedna enklava

Bezbedna enklava predstavlja izolovano okruzenje unutar
iOS uredaja, koje funkcioniSe nezavisno od glavnog
procesora i poseduje sopstevni memorijski kontroler i
kriptografske funkcije. Njen dizajn se zasniva na principu
separacije privilegija.

3.3.1.2. Zastita podataka

Apple primenjuje enkripciju celog diska, kojom Sifruje
kompletan sadrzaj uredaja, ukljucujuci sistemske i
korisni¢ke podatke. Operativni sistem definiSe dva
kljucna stanja: before first unlock (BFU) i after first
unlock (AFU). Klju¢nu ulogu u sigurnosti igra jedinstveni
UID kljug, ugraden u bezbednu enklavu.

3.4. Android

Zbog otvorene prirode Android platforme, uredaji mogu
biti podlozni zloupotrebama, narocito ukoliko ne dobijaju
redovna bezbednosna auzuriranja. U takvim sluc¢ajevima,
zlonamerne aplikacije mogu iskoristiti poznate ranjivosti,
kompromitovati izolovano oktuzenje i steknuti
neovlas¢ene privilegije, Sto dovodi do ugrozavanja
sigurnosti sistema.

3.4.0. Arhitektura

U osnovi arhitekture se nalazi Linux kernel, koji
predstavlja temelj Citavog sistema. Iznad njege nalaze se
Hardware Abstraction Layer, Android Runtime i
Application Framework.

3.4.1. Bezbednost sistema

Bezbednosna arhitektura u velikoj meri se oslanja na
Trusted Execution Environment ili Secure Element
okruzenja. Savremene verzije Android-a podrzavaju
ugradenu enkripciju podataka za razliku od ranijih verzija
koje cCesto nisu imale podrazumevano omogucéeno
Sifrovanje diska, niti su posedovale druge naprednije
bezbednosne mere zastite.

3.4.1.0. Sifrovanje diska

FBE deli skladi$ni prostor uredaja na dva odvojena
kriptografska prostora: Credential Encrypted i Device
Encrypted prostor.

3.4.1.1. Trusted Execution Environment

Trusted Execution Environment predstavlja izolovano
hardevrsko okruZenje dizajnirano za bezbedno Cuvanje i
obradu osetljivih podataka, kao $to su korisnicke lozinke,
kriptografski kljuevi 1 biometrijske informacije.
Kriptografski kljucevi nikada ne napustaju ovaj prostor u
nesifrovanom obliku.

3.4.1.2. Sigurnosni moduli

Samsung Knox predstavlja sveoubuhvatan bezbednosni
okvir integrisan u odredene Android uredaje, koji
obezbeduje zastitu od hardverskog do aplikacionog sloja
sistema. U kontekstu otkljuavanja ekrana ima bitnu
ulogu u zastiti biometrijskih i autentifikacionih podataka,
koji se ¢uvaju u izolovanim okruzenjima kao $to su Knox
Vault i TrustZone.

3.5. Prikupljanje dokaza

Tipovi metoda koje se koriste u istragama su rucna
ekstrakcija, logicka ekstrakcija 1 fizicka -ekstrakcija,
prikupljanje iz oblaka i prikupljanje iz celularne mreze.
Svaka od ovih metoda ima svoje prednosti i ogranicenja, a
izbor odgovarajuée tehnike uslovljen je nivoom pristupa
samom uredaju kao i tipom informacija koji je od interesa
za istragu.

1382

3.5.0. Forenzicke metode akvizicije podataka

Metoda rucnog prikupljanja je izvodljiva jedino ako je
uredaj funkcionalan i otklju¢an. Logicko prikupljanje ne
zahteva dublju intervenciju sa hardverom ili operativnim
sistemom uredaja, ali je najées¢e ograni¢ena ukoliko nije
moguce dobiti autorizaciju za pristup. Fizicka ekstrakcija
je najbolji izbor kada je potreban potpun pristup svim
podacima ali je za njeno izvodenje potrebna visoka
ekspertiza.

3.5.0.0. JTAG i Chip-off

Tehnike fizicke ekstrakcije poput JTAG i Chip-off mogu
se koristiti i za pokusaj zaobilazenja zaklju¢anog ekrana.
JTAG se koristi za ekstrahovanje slike memorije,
ukljucujuéi i fajlove koji sadrze podatke o PIN-u, Sablonu
ili enkripcionim klju¢evima

3.5.0.1. Android Debug Bridge

Android Debug Bridge (ADB) je alat koji omogucava
komunikaciju izmedu racunara i mobilnog uredaja putem
USB-a i pod specijalnim uslovima, moze da se korsti za
otkljuavanje ekrana starijih Android modela kada Sifra i
Sablon nisu poznati.

3.5.1. Evolucija zaStitnih mehanizama

Evolucija zastitnih mehanizama na mobilnim uredajima
znacajno je ograni¢ila forenzicke moguénosti za
prikupljanje dokaza i tradicionalni pristupi postaju sve
manje efikasni u situacijama kada je uredaj zakljucan i ne
postoji moguénost saradnje sa korisnikom.

4. METODE OTKLJUCAVANJA TELEFONA

U ovom odeljku razmatrane su razliite metode
otklju¢avanja telefona koji koriste biometrijsku
autentifikaciju, Sablon ili lozinku. Primeri uspesnih
slu¢ajeva otkljuavanja, opisani u ovom delu rada,
preuzeti su iz strucne literature i nau¢nih radova.

4.1. Spoofing metode i biometrijska autentifikacija

Spoofing napad je napad tokom koga se lazira identitet
odnosno biometrijski parametar korisnika kako bi se
prevario sistem 1 dobio pristup uredaju. U cilju
spreCavananja ovih napada, savremeni operativni sistemi
se oslanjaju na razli¢ite tehnike detekcije zivosti.

4.1.0. Vrste senzora za prepoznavanje otiska prsta

Postoje tri vrste senzora koji se ugraduju u mobilne
uredaje i to su: opticki, kapacitativni i ultrazvuéni. Svaki
od ovih senzora ima razli¢it stepen otpornosti na
prepoznavanje replika.

4.1.0.0. Metode kloniranja otisaka prstiju

Istraziva¢i i forenzicki struénjaci pokazali su da je
mogucée izraditi vestacke otiske prstiju koris¢enjem
materijala kao §to su silikon, lateks ili ¢ak glina.

4.1.1. Tehnologija skeniranja lica

Postoje dve vrste skenera za prepoznavanje lica koji
koriste mobilni uredaji i to su 2D i 3D skeneri.
Najpoznatiji primer je Apple Face ID koji koristi 3D
tehnologiju skeniranja.

4.1.1.0. Metode replikacije facijalnih karakteristika

Spoofing napad nad ovim mehanizmom se moze izvesti
upotrebom fotografija visoke rezolucije, videa ili Cak
izradom kvalitetnih 3D maski.

4.1.2. Tehnologija skeniranja mreZnjace

Skeniranje mreznjace koristi infracrvenu kameru za
skeniranje jedinstvenog obrasca Sarenice oka korisnika.
Ova autentifikacija se pokazala manje prakticna u
poredenju sa drugim oblicima autentifikacije zbog Cega je
i slabo zastupljena kod komercijalnih telefona.

4.2. Brute-force metode oktlju¢avanja ekrana

PIN-ovi, lozinke i obrasci mogu biti podlozni napadima
grubom silom koji se svode na sistematsko nagadanje i
isprobavanje svih mogu¢ih kombinacija unosa.
Sprovodenje ove tehnike je skoro nemoguée na modernim
uredajima zbog mehanizama koji definiSu dozvoljen broj
pokusaja i koris¢enje vremenskog intervala za kaSnjenje
izmedu pogresnih unosa.

4.2.0. Alati za automatizaciju procesa pogadanja

Kako bi se proces ru¢nog unosa kredencijala optimizovao
i kako bi se izbegle bezbednosne prepreke, u forenzickim
istragama se koriste alati poput IP Box 3, Atiny85 i
GrayKey-a.

4.3. ZaobilaZenje zaklju¢anog ekrana Android uredaja
5.11 starijih verzija

U ovom odeljku su opisane metode zaobilazenja
zakljuCanog ekrana koje se oslanjaju na iskori$¢avanje
slabosti u korisnickom interfejsu starijih modela.

4.3.0. Postupak “rusenja“ ekrana

Ovaj napad zahteva fizicki pristup uredaju i1 ukljucuje
unos dugog niza znakova u polje za lozinku putem
funkcije hitnog poziva, §to dovodi do ruSenja interfejsa i
omoguéava pristup bez unosa ispravne lozinke.

4.3.1. Forgot pattern/password opcija

Na uredajima sa operativnim sistemom Android verzije
4.4, funkcija forgot password/pattern omogucéavala je
korisniku da resetuje Sablon za otkljuCavanje pomocu
validnog email naloga.

4.4. Otklju¢avanje mobilnih uredaja preko Cloud
naloga

Ovaj metod je koristan jer omogucava otkljuc¢avanje
mobilnih uredaja direktno sa cloud naloga korisnika.

4.5. Metode socijalnog inZenjeringa

Ova tehnika se ne oslanja na hardverske ili softverske
alate, ve¢ na manipulaciju ljudima kako bi se dobio
pristup osetljivim informacijama. Zastupljeni oblici ovog
napada su phishing, vishing, pretexting.

4.5.0. Shoulder surfing

Shoulder surfing je tehnika koja podrazumeva direktno ili
inderektno posmatranje korisnika dok unosi svoje podatke
za autentifikaciju kao §to su pin kod, $ifra ili obrazac.

5. DEMONSTRACIJA I DISKUSIJA

U ovom odeljku su demonstrirane odabrane metode
otkljucavanja ekrana na testnim uredajima.

1383

5.1. Izrada silikonskog otiska prsta

Proces kreiranja laznog otiska se odvijao u nekoliko
iteracija, tokom kojih je izveden zakljuak da je
najkvalitetnija replika u ovom eksperimentu dobijena
upotrebom silikona RTV i parafin voska. Na slici 1.
prikazan je krajnji rezultat replikacije koja iako verna
originalu, nije uspela da prevari sistem koji koristi
kapacitativni senzor.

Slika 1. Otisak prsta od silikona

Zagrejan vosak je prvo izliven u plitku metalnu posudu i
posle izvesnog vremena kada je podloga postala dovoljno
tvrda, na njoj se mogao utisnuti $ablon pravog otiska.
Zatim je dodat tanak sloj jestivog skroba i silikona. Nakon
$to se smesa stvrdnula, posuda je ubaéena u kljuéalu vodu
kako bi se materijali prirodno razdvojili usled razlike u
temperaturi topljenja silikona i voska.

5.2. Otkljucavanje fotografijom lica

Testni uredaj Redmi 7A sa Android verzijom 9 koji
koristi 2D tehnologiju skeniranja lica, uspe$no je
otkljuan sa slikom korisnika. Slika je bila visokog
kvaliteta i lice je jasno prikazano na fotografiji.

Rezultati studije [3] pokazali su veliki potencijal upotrebe
vestacke inteligencije i slika dostupnih na drustvenim
mrezama korisnika kako bi se izradio virtuelni avatar koji
moze da prevari sisteme sa naprednijim tehnologijama
skeniranja.

5.3. Rekonstrukcija Sablona

Sprovedena anketa imala je za cilj da prikupi testni skup
Sablona zakljucavanja ekrana kako bi se uocile i uporedile
karakteristike najces¢ih odgovora. Na slici 2. je prikazan

deo rezultata.
7 (=)))]
D O O @] 9
(ON @) (N,
(3 ® ON &b O

& 7 L

oG oxe) :
2//(3 O l i O®O O &
Zoco O > ox

Slika 2. Deo rezultata ankete

O O D @ 4
O & O D

Od 42 uzorka, 11 figura je bilo jedinstveno nad datim
skupom $to dovodi do zakljucka da je Cetvrtina ispitanika
koristila Sablon koji se nije naSao kao zastita ekrana ni na
jednom uredaju ostalih korisnika. Trend koji je primecen

kod ovih podataka jeste da u priblizno 80% slucajeva
korisnici su izabrali pocetak crteza da bude u levom
gornjem uglu i da su oblici L i N bili ucestal izbor.

5.4. Otklju¢avanje preko ADB-a

Otkljucavanje ckrana Redmi 7A, ili bilo kog drugog
uredaja, preko ADB-a nije uvek izvodljivo jer zavisi od
viSe preduslova koji moraju biti ispunjeni pre nego S§to
dode do zakljuc¢avanja. Na telefonu je potrebno omoguéiti
rezim za programere i uspostaviti komunikaciju radne
stanice 1 testnog uredaja putem verifikacije racunara
prilikom povezivanja. Zatim ako je ovo ispunjeno,
potrebno je izvrsiti set komandi za brisanje odredenog
fajla koji bi omogucio pristup telefonu bez unosa lozinke.
Ovaj postupak je bio ucinkovit na starijim verzijama
Android-a ali usled napredne zaStite sistema uvedene od
verzije 9 1 kasnije, ovaj metod se pokazao neucinkovit na
testnom uredaju.

3. ZAKLJUCAK

Rad wukazuje da nema univerzalnog reSenja za
otklju¢avanje mobilnih uredaja. Umesto toga, potrebno je
proceniti svaki slucaj ponaosob, uz izbor metode koja
balansira izmedu efikasnosti, ocuvanja dokaza, tehnickih
mogucnosti i pravne validnosti.

Predlozi za dalja istrazivanja se odnose na primenu
saznanja i tehnologija iz oblasti masinskog ucenja i
vestacke inteligencije u predikciji biometrijskih Sablona i
obrazaca korisnickog ponasSanja, kao i u optimizaciji
napada grubom silom. Moze se izdvojiti 1 orijentacija ka
razvoju naprednih softverskih alata za analizu ranjivosti u
Secure Boot-a i USB protokola, uz potencijalnu primenu
masinskog ucenja za automatizovano otkrivanje slabosti.

7. LITERATURA

[1] Prof. dr Stevan Gostoji¢, Fakultet tehnickih nauka,
Novi Sad, predmet Digitalna forenzika, Uvod u
digitalnu forenziku (predavanja 2023, lekcija 1)

[2] Mobile operating systems popularity statistics,
https://gs.statcounter.com/os-market

share/mobile/worldwide (pristupljeno u septembru
2025.)

[3] Yi Xu, True Price, Jan-Michael Frahm, Fabian
Monrose. Virtual U: Defeating Face Liveness
Detection by Building Virtual Models from Your
Public Photos, USENIX Security Symposium 2016.

Kratka biografija:

Jelena Petri¢ rodena je u Novom Sadu
2000. Diplomirala je na Fakultetu tehnickih
nauka 2023. godine. Master rad na
Fakultetu tehnickih nauka iz oblasti
Elektrotehnike i ra¢unarstva odbranila je
2025. godine

kontakt: jelena.petric@uns.ac.rs

1384

mailto:jelena.petric@uns.ac.rs

R

L

yss 360pHMK pagoBa PaKkynreTa TeXHUUYKMX Hayka, Hosu Cap

UDK: 004.42:004.738.12
DOI: https://doi.org/10.24867/33BE33Stojkic

JE3UK CIIEHUPUYAH 3A JIOMEH BU3YAJIM3AIINJE JESUKA

A DOMAIN-SPECIFIC LANGUAGE FOR THE VISUALIZATION OF LANGUAGES

Papuma Crojkuh, @axyrimem mexnuuxux nayka, Hosu Cao

Oobaacrt -[TPUMEIBLEHE PAUYHAPCKE HAYKE U
NH®OPMATHUKA

Kparak caap:xkaj — ¥V osom pady onucan je mexcmyantu
OOMEHCKU je3uKk HamereH OeuHucary eusyanuzayuje
jesuxa kpeupanux — nomohy Oubauomexe textX.
Ilpeocmasmwene cy ynompebmene mexwonocuje u
OKpYdHcerba, KAo U OCHOBHU NOJMOBU 6€3aHU 34 je3uKe
cneyugpuune 3a domen u epagpoge. [am je npecneo
nocmojeliux peutersa y 080j obaacmu, KAo0 U KLYUHU
denosu umniemenmayuje camoe viewX jesuxa u
excmensuje 3a Visual Studio Code. Pao cadpoicu u
NPaKmu4an npumep ynompebe u GuU3yaiHO2 NpUKasd, a
3a6puiasa ce O0CEPMOM HA NOCMUSHYmMe Yumese U
MmocyhiHocmu oamez pasgoja peutersa.

Kibyune peum: Jesuyu cneyuduunu 3a OoMmeH,

excmensuje 3a VS Code, epag, suzyenuzayuja

Abstract — This paper describes a textual domain-specific
language designed for defining the visualization of
languages created using the textX library. It presents the
technologies and environments used, as well as the basic
concepts related to domain-specific languages and graphs.
An overview of existing solutions in this field is provided,
along with key parts of the implementation of the viewX
language and the Visual Studio Code extension. The paper
also includes a practical usage example and a visual
representation, concluding with a review of the achieved
goals and possibilities for further development of the
solution.

Keywords: Domain-Specific code

extensions, graph, visualization

Languages, VS

1. YBOJ

[Iporpamu 1 MoJieNM MMCAHU Ca TEKCTYaTHOM CHHTaKCOM
Cy 4YeCTO HEMperjieAHH M TElKO pa3ymJbuBU. JlomaTHu
npoOsieM ce jaBjba ako JbYAW HHUCY YIIO3HATH Ca CaMHUM
MI0jMOBHMa M JIOMEHOM TIpo0OJieMa M je3MKOM Ha KOjeM je
mucad nporpaM. Taja je TemKo YyTBPAWTH CBE OAHOCE U
KJbYYHE JIeTajbe y Iporpamy ¥ Mojely. JeqaH on HaunHa
ma ce mpeBasmhy moremkohe y mpencTaBu Mojena H
nporpama jecte Bu3yalu3aluja, MoMolly Koje MOXeMo
NPE/ICTABUTH CBE KJbYyUHE €JIeMEHTE U IhHUX0Be Mel)ycobne
penanuje, ITO JONPHHOCH TMOTHYHHjEM W 00JbeM
pasyMeBamy MoJiena.

HAIIOMEHA
Ogaj pag nponcTeKao je 3 MacTep pajga Yuju MEHTOP
je ouo np Urop [dejanosh, pea. npod.

VY 3aBHCHOCTH OJf MOTHBa M moTpeba, pasiHKyjy ce
pasnH4MTe BH3YENHE penpe3eHTauuje. Heke o mHX cy
rpaduKOHH, qHjarpaMu, Mpexe, rpadOBH U MHOTE JApYyTe.
['maBHUM M3a30B KO BU3yaH3alHje MOJENA je KaKo jacHO
MpHUKAa3aTh CTPYKTYpE MoAaTaka y o0uky rpada. JenHo ox
OCHOBHUX ITUTaba jeCTe TEHEPHYHOCT Peliekha, Kako Ou ce
OMOFth/IHO NMpUKA3Balk€ Pas3IMdYUTUX MOJCIa IMHUCAHUX
Ha FICTOM j€3UKY Y3 MOTYhHOCT 1a KOPUCHUK MaHHMITYJIHIIIE
CcaMMM NPHUKa30M JaTOT MOJIea.

OCHOBHU MOTHB OBOT pajia jecTe HaJOTpajmha je3nka 3a
OIKC BH3yaJiU3alldje MOoJielia MMMCAHNX Ha je3UIMa KOju
cy pasBujern momohy fextX OuOIHOTEKe, Kao W
[I0jeTHOCTAaB/bCHE IIEPCIEeKTHBE CaMOr Mojerna.
Texcryannu jesuk ViewX pa3BHjeH je Kao OAroBop Ha
notpedy 3a jeTHOCTaBHH]jOM M jaCHHjOM BH3YaJIU3allljoM
JIOMEHCKUX MOJIelIa. Je3UK je pean30BaH Kpo3 MacTep paj
Ha Qakynrery TexHn4ykux Hayka y Hosom Canmy. ViewX
CITy’KH 32 IUPEKTHO JeUHUCAke MPaBIiIa BU3yaTH3allije
eleMeHaTa, a pa3BHjeH je IMmoMmohy fextX OumOImOTEKe.
[Tomohy mpaBwmiia ce MOTY OIUcaTH OCOOMHE, CTPYKTypa H
eneMeHTH rpada, Kao ¥ HaYWH Ha KOjH C€ OHHU MPHUKA3Y]y.
KommieTHO pememe je OCTBapeHO Kao EKCTeH3Wja 3a
Visual Studio Code emutop, MOTIIOMOTHYTO third-party
oubIroTeKama, Python OKPYKEHEM U yIoTpeOoM viewX
jesuka 0.

JemHa on HajBaXXHHUjUX NPEAHOCTH pEIICHA OMMCAHOT y
OBOM pajly jecTe KOHIICNT OJ[Bajarba calipikaja MOJENa OJ
HaYMHA EroBe Bm3yanusanuje. Caapxaj YMHH camy
CTPYKTYpy M IIOJAaTKE MOJENa, JOK HauWH IIpUKasa
nebunuine viewX monen, omoryhasajyhu ekcuOHIHOCT
npuka3sa. To 3Hauu Ja ce jeqan MoJiesl MOXKe pUKa3aTy Ha
BHIIIC PA3IMYNTHX HAYMHA Y 3aBHCHOCTH O] MOoTpede, 0K
Ce HCTOBPEMEHO BHIIE pPA3IMYUTAX MOJela MOXE
MPEJICTABUTH Ha UCTH HauyuH. OBaKaB MpUCTYIT 00e30ehyje
NPUIAroAJBUBOCT U YHUBEP3ATHOCT Y BU3YaIHU3ALUjH, IITO
j€ KJbyY 3a IIUPOKY NPUMEHY W JAKIly UHTEPHPETAIH]y
CJIOKEHUX CHCTEMA.

2. TEOPHJCKE OCHOBE

Jesumm crermduuam 3a gomen (DSL) cy mporpamMcku
JE3WIIM MU3ajHUpaHHM 3a pelllaBambe NpodjeMa y jacHo
neunucaHoj obxacth. OHH HyJAe jeAHOCTaBHHU)Y
CHHTAaKCy U Behy e(rKacHOCT yHyTap CBOT IOMEHa, ajlu Cy
Mambe (QrekcuOmIHY 011 je3uka omure HameHe (GPL), koju
Cy YHUBEP3WIHM M [PUMEHUBUA Y Pa3IU4YUTUM
KOHTEKCTHUMA.

[pumepu DSL jesuka cy HTML (cTpykTypa Beb CTpaHHIIa)
u SOL (pax ca 6a3ama mojaraka), 1ok cy Tunuaau GPL
jesuntu Python wu Java. Ilpegnoct DSL-a je 'y
npuiaroheHocTH TEPMHHOJOTHMjU W moTpebama

1385

https://doi.org/10.24867/33BE33Stojkic

cnenuduuHe 00JacTH, MTO yOp3aBa pa3Boj U CMamyje
norpedy 3a TEXHUYKNM 3HameM. MaHa je Mama MoryhHocT
IIOHOBHE YIIOTpeOe U Texe oAprkaBame y oxHocy Ha GPL
jesuke 0.

I'pad je matemaTruka crpykrypa G = (V, E) rne je V ckyn
ygopoBa, a £ ckyn uBuma. Moxe OWUTH YCMEpeH,
HEeyCMEepeH WIIH TOHJIepUcaH. Y pauyyHapCcTBY ce KOPUCTH
32 MOJEJNIOBakE€ OJHOCA, IIONMYyT MpPEXHUX Be3a,
JPYUITBEHUX MpeXa WIH CTPYKType IojaTaka.
Buzyanuzanuja rpadoBa osakiaBa aHaJU3y, ajli H3a30BH
YKJbYUyjy MpETPIaHOCT MpUKa3a M PACIOpe] YBOPOBaA,
mTo ce pemasa (QUITpUpameM, XHjepapXujCKUM
NPUKa3MMa W AITOPUTMHMA 3a ayTOMATCKU PacIloper.
Pempesenranuja rpadoa oOndHO ce ocTBapyje momohy
MaTpulle cyceacTBa (Op3a mpoBepa Bese, Behia moTpomrma
MeMOopHje), TUCTEe CyceCcTBa (erKacHa 3a peTke rpadoBe)
WIM JucTe TpaHa. [padoBu Hajmaze mpUMEHy Yy
pauyHapcTBy KpO3 ONTHMHU3AIM]y Mpexka, aHalu3y
JpYUITBEHUX Mpexka, 0a3e mojaraka M alropuTMe
npetpare 0.

3. KOPUI'REHE CO®TBEPCKE TEXHOJIOTHUJE

Visual Studio Code (VSC) je enurop Kozia KOjH IOgpKaBa
BEIMKH OpoOj TMPOTpaMCKHX je3WKa W eKCTeH3Wja. Y3
WHTETpUCAaHH TepMHUHAN, Gif MOIPIIKY W ayTOMAaTCKO
JOBpIIaBake KoXa, oMoryhaBa mNpoxyKTHBaH pajx Ha
pazmmuutuM wiatdhopmama (Windows, MacOS, Linux).
Marketplace Hynan XwujbaZe eKCTEH3Hja, Kao IITO CYy
Prettier, ESLint w Python, Koje OpOLIMPY]Y
¢dyHkIroHanHoct exuropa 0.

Python je drnexcuOwian W JaK 3a y4yeme INPOTPAMCKHU

jesuK, MOTOIaH 3a 00jeKTHO-OpPHjeHTHUCAHO,
(GYHKUMOHAIHO M TPOLEAYPaTHO MPOTpaMHparbe.
Juunamuyka THOM3andja W Oorata craHmapaHa

6ubnroTeka, y3 MOAPIIKY 3a makeTe monyt NumPy, SciPy
u Pandas, anne Python norogHuM 3a Hay4YHE aruTUKaIHje,
MAIIMHCKO YYeHhe M aHaIMu3y MOojaTaka. JeIHOCTaBHOCT
cuHTakce omoryhaBa Op30 pa3BUjakbe W TECTHPAE
aTuTuKaImja.

textX je anart 3a Kpeupame je3uka CruenuGUuIHuX 3a JOMEH
(DSL) y Python-y. Kopuctu PEG rpamatuky u Arpeggio
mapcep 3a ayTOMaTCKO T€HepHcame napcepa M MeTa-
Mozmena. OwmoryhaBa Mopaymnapusaiujy rpaMaTHKa,
KoH(pUrypalujy napcepa, MOCTIPOLECHpame MoAenaa U
BH3YJIU3AIH]Y GraphViz-om. 3axBaspyjyhu
jemHOCTaBHOCTH, fextX je MOTOJaH 3a pasBoj CIOKEHUX
aruIMKalyja ¥ CUMyJIalyja ca MpriiaroheHuM jesuuma.

Cytoscape.js je OubmuoTeka 3a BHU3yaIM3alH]y U
MaHMIyJIanujy rpagosumMa y BeO okpyxemy. [lonpxasa
ycMepeHe, HEyCcMepeHe W TeXHHCKe rpadose,
WHTEPaKTUBHOCT, JAWHaMUuke uaMene u WebGL/Canvas
penzaepoBate. OMoryhapa npuiarol)apasme cTuIa YBOpoOBa
W UWBHIA, Ka0 ¥ TPOIIHpEeHe (YHKIMOHATHOCTU
JOZIATLMIMA 33 aHAJIM3Y MpEXa U arOpHTMe.

Jinja2 je Python maOJOHCKH MEXaHHW3aM 3a TCHEPHCAE
quHaMudkor HTML-a u npyrux TekcTyaaHux Qopmara.
Monpxasa placeholder-e, merspe, ycioBe, Quiurepe U
Makpoe, IITO OJlaKIaBa O/BOjeH IpHKa3 IojaTaka Ol
JIOTHKE aruiikanyje. bp3o pernepyje cioxeHe nradiione u
WHTerpHIIe ce ca BeO okBHpmMa Kao mrto cy Flask u
Django.

4. ITPETJIEJ CTAIBA Y OBJIACTH

CaBpeMeHn coTBEPCKHU CHCTEMH ITOCTA]y CBE CIIOKECHU]H,
IITO 3aXTeBa HalpeJHe ajare 3a BU3yalIHu3alujy u
yIpaB/batbe HUXOBUM KOMIIOHEHTaMa. AnaTh 3a
BH3yaln3alyjy oMmoryhasajy 60ospe pazymMeBame mogaTaka
1 eQUKacHUje YIpaBJbamke CIOXKEHHM CTpyKTypama. Ox
rpaQUUKUX eauTOpa 10 CHCTeMa 3a BH3yalIU3alujy
BEJIMKUX TrpadoBa, OHU IPYKajy Kperpame Mpuiaro)eHnx
uHTepdejca, BU3yeIn3allijy MojaTaka y peaTHoM BpeMeHy
U HHTEpaKUHjy ca eJIeMeHTHMa. Y OBOM IIOIJIaBJbY
npenacTaBibenu ¢y Graphiti, Sirius, Gephi u Neo4j Bloom.

4.1. Graphiti

Graphiti je OKBHp 3a BU3yalH3alHjy IpadUuKuX €IUTOopa
y Eclipse oxpyxemy, omoryhaBajyhm nako Kpeupame
rpa¢pmukux objekara Kao MITO Cy YBOPOBH WM WBHIIE.
Wnrerpanuja ca EMF-om omoryhaBa Tpanchopmaiujy
TEKCTYyaJIHUX WM TaOelapHUX T0/laTaka y WHTEPaKTHBHE
rpaduuke npukaze. [Ipumena je y UML nujarpamuma,
BPMN npomecuMa W BH3YAIHM3alWjU apXUTEKType
codraepa 0.

4.2. Sirius

Sirius omoryhaBa kpeupame npuiiaroheHux rpapuukux
Mozena crneumupuuHux 3a gomeH (DSL) y Eclipse
oKkpyxemwy. KopucHuim Mory neuHUCATH CTaTHYKE U
JUHAMHYKE MOJieJle, Ka0 W HWHTEPaKTHBHE TIIpHKaze Y
peanHoM BpeMeHy. dekcnOniaH je 3a paj y HHAYCTPHUjH,

HUH)XEHEPUHTY, ¢uHaHCHjama u Hay4YHUM
UCTpaXMBamBHMMa, y3 HHTErpanujy ca EMF u GMF 0.
4.3. Gephi

Gephi je open - source anat 3a BU3yaJIM3alldjy U aHAINA3Y

rpadoBa, MOCEOHO TOroJaH 3a COIUjaIHE MPEKeE,
OouonHpopmMaTKy u Benuke mnonarke. Owmoryhasa
HHTEPAKTHBHY MaHHUITYJIAIH]y rpadoBuMa,

npunarohaBame 0o0ja, BeIMYMHE M OOJIMKa YBOpOBa M
aHauM3a MeTpHKa Kao IITO Cy IEeHTPAIHOCT U
knactepm3annja. OrpaHndemne je odpaga BeoMa BEITNKUX
rpadosa 0.

4.4. Neo4j Bloom

Neo4j Bloom BuzyenHo npukasyje rpagose y Neo4j 6a3u
nojaraka. [Ipyxa fnHaMHU4YaH U HHTEPAKTUBAH MPHUKa3, ca
Moryhnomhy mnpunarohaBama wu3riena rpadosa u
HCTpakuBama pernamuja m3Mmel)y usoposa. Hajmoromuuju
je 3a momatke Beh y Neo4j, a 3a HampenHy aHAIUTHKY
motpebad je Cypher 0.

5. UIMIVIEMEHTALINJA

OBO TIOrJIaBJbE OMHUCYjE KJbYUYHE JEI0BE UMILUICMCHTAIH]C
excrensuje 3a Visual Studio Code, woja omoryhara
WHTEPAKTUBHY BH3yalu3aljy rpadoBa W YIpaB/bame
MonenuMma. Pemiewme je peanmmzoBaHo y TypeScript-y,
UHTETpUCaHO ca Python Monmymuma nipeko textX u Python-
shell, mro omoryhaBa kpenpame rpamaruke viewX jesuka
3a OMuc layout-a v eneMeHata rpagda.

ApXHTEKTypa peniemha KOMOUHYje BUIlIe KOMIIOHEHTH:

e BrowserSync — CHHXpOHH3Yje W3MEHE Yy peasHOM
BpemeHy m3Mel)y BuIe KimjeHaTa, 00e30elyjyhu
JEeTHONWYaH MPUKa3.

1386

e Socket.io — omoryhaBa NIBOCMEpHY KOMYHHKalHjy,
IIPY YeMy ce KIIMjeHTH PEeTUCTpPYjy Y cobe u nodujajy
CBe TIOpYyKe O cTamy Irpada, 9uMe ce MocTIKe ciabo
cnperiyTa ® (uekcuOwiHa KJIMjEHT-CEpBEp
apXUTEKTypa.

e C(Cytoscapejs — 3a TpUKa3 ¥ HHTEPAKIHU]y ca
rpagoBuMa, yKJbydyjyhum Kpeupame mnoarpagosa
CJIOKEHUX YBOpPOBa M npuiarol)ene o0irke 4BOpoBa.

Python cxpunte xopucte Jinja2 mabioHe 3a TeHEPHCAHE

HTML-a wu layout-a rpadoBa, a uHTErpanmja ca

€KCTCH3H]OM omoryhasa BUX0BO JTUHAMUAYKO

u3BpIIaBame. Pemiewe je cross-platform (Windows wu

Linux) ca muHamMuukuM mpenos3HaBambem OC-a pamu

aKTHBHpama 0JroBapajyher BUPTyeIHOT OKpYKema.

Kpo3 mpommpema viewX jesmka W HMHTEpakOWjy ca
Cytoscape.js, eKCTeH3H]ja oMOryhaBa ONTHUMH30BaH MPHKa3
rpagoBa ca CKpUBambeM U IPUKAa30M IIOTOMaKa CIIOKEHUX
YBOpOBa, JeduHHCambe O0JIMKa YBOPOBA IIOJIUTOHUMA U
(rekcuOMIHY BU3yenH3alMjy Koja pearyje Ha H3MCHE
MoJlenia y peasiHoM BpeMeHy. OBo omoryhasa JyropouHy

(YHKIIMOHATHOCT M TNPWIATOJJBUBOCT pellemna
Pa3IMYUTHM CLICHApHjUMa Paja.

6. IEMOHCTPAIIJA

[Mpommpema peanm3oBana y viewX eKCTEH3WjH

MpeCcTaBJbeHa Kpo3 mpumMep mnpumene mini BPMN je3ux
3a MOJIENOBame MOCIOBHUX mporeca. BPMN (Business
Process Model and Notation) je cTaHmapAU30BaH
rpapMYKy HOTAIM]CKU CHCTEM 3a OIMC MOCIOBHUX TOKOBA,
oMoryhaBajyhu KoMyHUKanujy wu3mely TEXHUYKHX U
MOCIIOBHHUX KOpHCHHKA. L[ib prMepa je IeMOHCTpUpaTu
MOryhHOCTH eKCTEH3Wje 3a BHU3yalH3alHjy Mojea
KpenpaHux nmomohy oubnmoreke fextX.

ViewX omoryhaBa neduHmcame 00JHMKAa YBOPOBA KpPO3
KOOpJIMHATE IIOJIUroHa, 00jy M BenuuuHy. Ha mpumep,
eHTuTeT Human MoXe ce omucaTH Kao IOJMTOH ca
nehUHUCAaHUM Taykama, 00jOM M CTpeliiaMa Ka JIpyrum
enrurerniMa (Ciuka 1):

view Human as polygon {
shape-polygon-points: 0.04-0.88, 0.09 -0.84, ..., -0.09 -0.88
background: gray
width: 400
height: 400

link {to: Human.action {arrow: black 2 triangle}}

Cnuxka 1. Busyanuzayuja weopa Human xao nonueon

Excrensuja omoryhaBa geduHucame pacmopena
enemenata rpada. Ha npumep, grid layout opranmsyje
eneMeHTe y Mpexy (Cnuka 2):

layout {
name: grid
rows.: 3
cols: 5
animate: true
animationDuration: 300
fit: true

avoidOverlap: true

/

Kupac,_Zapocinje Akciu

Neuspesna Ieporuka

Uspesna_lsporuka
Besplaing Jsporka

Filen Pelhe ‘

[v

i}

Naplata sporke }4 | Odati At ‘

Obavesti_Korisnikai

Provera Dostugrast Resursa Odebir_Naplate
> @
{ ”> B

Postar_lsporicuje
Obavest Korisnika lakmxmlumslmke

E & @ Nsmi_lkn*ﬂ_)(dmims

Cnuka 2. Grid layout epaga

ViewX nopgp:kaBa MpUKa3 CI0KEHUX YBOPOBA U HUXOBUX
noromaka. KipyyHa ped show mnpukaszyje CBE MOTOMKE
CJIO’KEHOT YBOpa, Kao IITO je TPUKa3aHo Ha CIUIH 3.

view Student as diamond child of Professor show {

label: Student.name {font: 15}

Prof1

EUEEYY
® & o
Prof2 TV & u

§28
s
2
Vsn

"o

O o

s}o

s
sz
s

S14

$16
) S sw ST 4 s15 ©

4

Crnuka 3. Crnoorcenu 46oposu ca nomomyuma

Pagu onTuMuzanMje, CI0OXKEHH YBOPOBH MOTy Ce
npukazaru 6e3 moromaka (Cnuka 4), a moarpad moromaka
ce TeHepHuIle y MoceOHOM MPO30Py MCIOJ TIaBHOT Tpada
(Cnuka 5).

1387

<<

Cnuka 4. Buzyanuzayuja ciosicenoe 4gopa 6e3 nomomaxa

ors
s1
S15 sS2
sS14 s3
sS13 sS4
s12 s5
S11 se
s10 sS7
s9 s8

Cauka 5. Buzyanuzayuja nodepagha cnosicenoz ygopa

7. 3AK/JbYYAK

Ja Ou ce 0BO pellemhe M3JBOJUIIO KAO YHUBEP3AIHO W
cBeOOYXBaTHO, HEONXOAHA je IEroBa JojAaTHa
HaJorpaama. TpeHyTHO je BH3yanu3aldja peanu3oBaHa
kao 2D mpoctopHa pemnpeseHTanuja. Kao jenno on
Moryhux yHanpelhema u3nBaja ce yoheme 3D mpocTopHe
penpesenTanyje rpada, koja O oMmoryhnia HHTYUTHBHH]E
pasymeBame W Behm HMBO netasba. Ha Taj HaumH Om ce
NpeBa3uIIa OrpaHHuYera Koja NpoW3WiIase U3
JIBOIMMEH3HOHAITHOT NTPUKa3a.

VY OKBHpPY OBOT palia pea30BaHO je pelIeHhe Koje ce
W37Baja o1 1ocTojehux TUME IITO HyJH Pa3IniuTe HUBOC
BU3yallU3aLije U CTEIeHe NeTalbHOCTH rpada. OMoryheHo
je ONTHMH30Bame IMpHKa3a AeQUHUCAmHEM CIOXKCHUX
YBOPOBA U KpEUpPameM MoArpadoBa, MITO 3HATHO CMAKkYje
KONMMYMHY WH(pOpMaIyja y jeOHOM TpUKa3y W THUME
nosehaBa mpernienHoct. [loceban 3Hauaj uma yBoheme
MeXxaHHu3ama KOju KOPUCHUKY oMoryhagBajy Ja caMoCTaHO
yIpaBjba MPUKA30M, OMJIO KPO3 IPHKA3 CaMoO CIOKEHUX

YBOPOBa, OMJIO KPO3 HUXOBO EKCIUIMIUTHO pa3BHjambe Y
noceOHNM noArpadoBUMa.

Kpeunpame nprIaro)eHux obnnka YBOPOBA,
cneuuduKkayja u3riiea W aHUMalWja MPeICTaBIbajy
nonaTHe HYHKIIMOHATHOCTH Koje oborahyjy pememe. OBe
ocobOuHe, y KOMOMHALM]H ca aKJbUBUM U300pOM HOBHJHX
U CTaOMIHMjUX Bep3Mja KOMIIOHEHTH, JOIPHHOCE
JIYTOBEYHOCTH W TMOY3MAHOCTH peliera. OnTUMHU3aluja
npukasa rpaga MOCTHIHYTa je HE caMO KpO3 YIIpaBJbambe
HHBOOM JeTajba, Beh M Kpo3 NpHMEeHy anropurama
pacmopehuBama eneMeHata koju omoryhaBajy Behy
YHUTJBUBOCT M CTPYKTYPUCAHOCT BU3yaJIH3allje.

Pememe mpyxka BHCOK CTCNECH TNPHIATOMAJBUBOCTA U
cn000/ie Y Kpeupamy U yIpaBJbakby BU3yaTU3aIHjoM. Y
OynyhHOCTH, TpomHpeHe (QYHKIMOHAIHOCTH KpO3
rpaUuKy CHHTAKCy M WHTETPAIM]y BHIIE Pa3THUHTHX
OoubnmoTeka 3a mpukas rpadoBa mpenacTaBibahe 3HadajaH
KOpak Ka yHanpelhemy.

Hako pemiewme He moapkaBa 3D ¢opMy, OHO ce UCTHYEC
¢dexcubmnHomhy, crabwnHomhy wu MoryhHomhy
onTHUMHU3AIMje, MPYXajyhn KOpUCHUIIMMA anaT 3a 1y0Jsbe
pa3yMeBambe CII0KEHHUX CTPYKTYPa U lbUXOBHX Peallyja.

8. JUTEPATYPA

[1] Macrep pan — “Tlogpiika BU3yanu3aIiju je3uka
KpeupaHuX yrnorpedom fextX OHOIHOTEKE y OKBUPY
Visual Studio Code emutopa”, lanmnen Kymdo,
Qaxynrer TexHnukux Hayka y HoBom Cany, 2018

[2] Martin Fowler: “Domain-Specific Languages”,
Addison-Wesley Signature Series, 2010

[3]1 “Graph theory”, Wikipedia, cnoboana
CHIIMKIIOTICIIV]a,
https://en.wikipedia.org/wiki/Graph theory,
(mpuctymbeHo y neneMopy 2024.)

[4] https://en.wikipedia.org/wiki/Visual Studio_Code,
(mpuctymbeHo y neneMopy 2024.)

[5] https://eclipse.dev/graphiti/,

(mpuctymbeHo y neremopy 2024.)

[6] Sirius - https://www.eclipse.org/sirius/ (IpHCTyIIbEHO
y neuemoOpy 2024.)

[7] https://gephi.org/users/supported-graph-formats/,
(mpuctymbeHo y meriemopy 2024.)

[8] https://neodj.com/product/bloom/,

(mpuctyspeno y netemopy 2024.)

Kparka Onorpaduja:

Paguma Crojkuh je pohen 24.01.2000.
roguHe y 3BOpHHMKY, bocHa u
XepuerouHa. OcHOBHY 1IKoiy “JlecaHka
MaxkcumoBuh” y Yernomneky 3aBpiino je
2015. romuue. Ucte romunHe ymmcyje
TUMHa3Wjy, ommutd cmep, y JY
Cpenmormmkoncku nenrap “Ilerap Kounh”
3Bopank. [Tommme 2019. rumuasnjy
3aBpIIaBa kao Hocwial Bykose numiome.
dakynTeT TeXHHYKHX Hayka, cMep PadyHapcTBO M ayToMarnka,
ynucyje 2019. romune y Hoom Canmy, rame 2023. roauue
3aBpllIaBa OCHOBHE aKaJIEMCKE CTYyHje.

1388

https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Visual_Studio_Code
https://eclipse.dev/graphiti/
https://www.eclipse.org/sirius/
https://www.eclipse.org/sirius/
https://gephi.org/users/supported-graph-formats/
https://neo4j.com/product/bloom/

ﬁ% #ﬁj 360pHuK papoBa PakynTteTa TeXHUUYKMX Hayka, Hoeu Cap

UDK: 004.42:004.738.12
DOI: https://doi.org/10.24867/33BE34Kanjuh

ONNTUMMU3ALINIA YETBOTA KOPUIIREILEM TPAHC®OPMEP MOJIEJIA
OPTIMIZATION OF A CHATBOT USING TRANSFORMER MODELS

Haha Kawyx, @axyimem mexnuukux nayka, Hosu Cao

Obaact — EJJEKTPOTEXHUKA U PAYYHAPCTBO

Kparak canpxkaj — [uws paoa je onmumuszayuja
KOHGep3ayujckoe uemboma 3a OOMeH Ocucypared
Kopuwheroem ancopumama npupoone obpade jesuxa u
mparcgopmep moodena, konkpemno BERT modena, paou
bomez pazymesarba jesuxa u mepmMuHa CneyuduuHux 3a
ocucyparwe. YV ucmpadicusary je uembom o06OyyeH u
mecmupan y nopehery ca LSTM modenom, npu uemy cy
excnepumeHmanuu pesynimamu nokazaimu 0a BERT mooden
Odaje bOome pezyimame 3002 c80je ChOCOOHOCMU
paszymesarsa wupez KOHmMeKcma y YRumuma KOPUCHUKA.
Osa cnocobrocm omoeyhasa uyembomy Oa npeyusHuje
UHmMepnpemupa Cl0JdCceHe U KOHMEKCMYyaiHo bozame
yhume, wmo je nOCEOHO BANCHO 3a NPYXHCAIbe MAUHUX U
nOY30aHUX UHGOpMayUuja y 0oMeHy ocuzypard.

Kibyune peun: wembom, mpancgopmep modenu, BERT,
LSTM, npupoona obpada jesuka, 8enuxu je3uuxku Mooeu

Abstract — The goal of this thesis is to optimize a
conversational chatbot for the insurance domain using
natural language processing algorithms and transformer
model, specifically the BERT model, to enhance
understanding of language and insurance-specific
terminology. In the research, the chatbot was trained and
tested in comparison with the LSTM model, with
experimental results showing that the BERT model
performs better due to its ability to understand broader
context in user queries. This capability allows the chatbot
to interpret complex and contextually rich queries more
accurately, which is especially important for providing
precise and reliable information in the insurance domain.

Keywords: chatbot, transformer models, BERT, LSTM,
natural language processing — NLP, large language
models

1. YBOJ

NmmiemenTamyija 4er60oTa JOHOCH HH3 MPETHOCTH.
[IpBeHcTBEHO, 4eTOOTOOM MOTY MOOOJBIIIATH KOPHCHUYKO
HCKYCTBO TMpYyXamkeM Op3ux M TayHUX OJAroBOopa Ha
3axTeBe KIHMjeHaTta, OWIIO Ja ce pagu O 3axTeBUMa 3a
uHpopmanmjama, o0pamu oxapeheHHX WM TpyKamy
MOJpIIKE Yy peasHoM BpemeHy. Ilopen tora, OHuM
omoryhasajy yITeny pecypca u BpEeMeHa,
ayroMaTusyjyhm pyTHHCKe 3amatke M cMamyjyhu
noTpedy 3a AUPEKTHUM JbYICKUM aHT)KOBAHHEM.

HAITIOMEHA:

OBaj paag npoucrekao je U3 MacTrep paaa 4Yuju je
MeHTOp 0o Ap Munan Ceuyjcku, ped. npogecop.

C o063mpom Ha TO ma LSTM, xao BpCTa PEKypEeHTHHUX
HEYPOHCKMX Mpexa, 4eCTO HHUje y CTamy Ja yXBaTu
JIOBOJAHO IIMPOK KOHTEKCT, CBe je Behu wuHTEepec 3a
BUXOBY 3aMeHy paxd yHampehewma neppopmaHcu
KOHBEP3allMjCKUX CUCTeMa. Y OBOM paay HUCIHTYje ce
no0oJpIIatbe KOHBEP3aIMjCKOI' CHUCTEMa IPHUMEHOM
Tparchopmep moxena, koHKpeTHO BERT mopena. BERT
MOJEN TpyXa HampegHe (YyHKIHMje Koaupama ca
JIBOCMEpHOM TaXHOM, MmMTO oMmoryhaa Oosbe
pa3yMeBambe 3HaUCHha PEUH Y KOHTEKCTY IIeIe PeUEHHIIE.

Ilwp oBor pasa je ma TMOKake KaKO CE€ CHCTEM MOXKe
YHaIpeaAuTH KopuimhemeM CaBpeMeHHX TpaHchopMep
Mozena, kKao M Ja ymnopenu pesyarare LSTM w BERT
MoJena.

Hako caBpemenu mpuctynu nonyt Retrieval-Augmented
Generation — RAG owmoryhaBajy dyerOoToBMMa 1a
npuctyne oOMMHUM 0a3zama 3Hamba M TeHEpUIly aKypHe
OJIrOBOpE, HHXOBA IIPHUMEHAa MOXKe OWTH OrpaHHYeHa
JOCTymHOImNY KBaJHTETHO CTPYKTYHPaHHX HoOJaTaka U
NIPUXBATJ/BUBUM BPEMEHOM OJ3uBa. 300T TOra je y OBOM
pany m3abpaH MPUCTYN ABOCTEIEHOT OJUTyYMBama, KOjH
KOMOWHYje MOZEN BHCOKOT on3uBa (eHr. high recall
model) W MoIen BUCOKE NpPEHU3HOCTH (€HT. high
precision model). Mopien BUCOKOT 0/131Ba je AM3ajHUPaH
na uneHtudukyje wmTo Behum Opoj pereBaHTHUX
KaH/Iu/1aTa 3a OJJrOBOP Ha YIUT U3 KOpIlyca. YTIIaBHOM ce
3a W3JBajarkb¢ PCJCBAHTHUX KaHAWIATa OWpajy
CTaTHCTHYKHA MOJEIH 300T CBOje Op3uHE U e(h)UKACHOCTH.
Ca npyre crpaHe, IWJb Mojella BUCOKE IPEHU3HOCTH
jecte a uAeHTHU(]UKYje HajaJeKBaTHHUjE IUTAmE O CBUX
M3[IBOjCHUX HAjOOJbMX KaHAWAATa W N1a CC HA Taj HAYHH
KOPUCHUKY TpyXH ozrosapajyhu oarosop. Y oBom
KOpaKy 4YecTo ce KOpHcTe apxurekrype momyT LSTM u
BERT wmopnena. Ha commm 1 ce Hamasm OJOK Amjarpam
JIBOCTEITHOT OTyYUBAmbA.

corpus

high

high

|-D_

recall precision

model 1 model 2

Cnuxka 1. Brok oujazpam 0gocmenenoe 00nyyusarsa
2. JEOUHULIUJE

Y 0BOM cerMeHTy je aaro ofjallmerme HajOUTHUjHX
TEOPUjCKUX TI0jMOBA W aJropUTaMa KOjU C€ KOPUCTE 3a
u3pany yerbora.

1389

https://doi.org/10.24867/33BE34Kanjuh

2.1. Moaes BHCOKOT O3HBAa

VY nHacraBky he ykpaTko OWTH ONMHCaHW OCHOBHH KOpAIlH
3a WUMIUIEMEHTAIHjy MOJIeNla BHUCOKOT OJII3WBa, 00pama
TEKCTa U BEKTOpHU3aIHja.

2.1.1. Cremunr

CremuHr (eHr. Stemming) je mporec o0paje TeKCTa Koju
nojipazyMeBa CBOheme peid Ha OCHOBHHU HJIM KOPCHCKH
oOmuk. Insb cTeMuHTra je I0jeHOCTAaBJbUBAE pEUr
YKIIamambeM Mpedrkca WM cyQukca, aan y3 3apiKaBame
OCHOBHOI oOnmka. Heke on NpegHOCTH CTEeMHHTa Cy
CMamkelkhe pEeUHHKa, NO00OJpINamke Mperpare M Opke
mponecupame. Ca apyre cTpaHe HEKE OJ MaHA jecy
MOTEHIHjaJIHO MIPEKOMEPHO PEAyKOBame, 3aTHM H3a30BH
CTEMHHI METOJAE 3a IOjeAWHE je3uke, Kao CBolhewme
Pa3IMIUTUX PE€YM Ha HNCTU KOPCH IITO 4YECTO MOXKE
JIOBECTH [0 KOH(Yy3Wje y 3amalpma Kao IITO Cy
TeHEePHCAkE TEKCTA.

2.1.2. JlemaTuzanuja

Jlematuzanuja (eHr. Lemmatization) je mpouec cBohema
peuYu Ha OCHOBHHU OOJIMK WJIM OOJIHMK U3 PEYHHKA, MO3HAT
Kao Jiema. 3a pasjiuKy OJf CTEMUHra KOjU jEeJHOCTABHO
yKiIama npedukce win cy(ukce, remarusaimja y3uma y
003up MOPQOJNOMKY aHAIN3y peYr W WMa 3a LOHb
onpehuBame mWeHOT oOcHOBHOT oOmmka. IIpenHocTm
kopumhema JeMmaTu3almje jecy OoJbe 3ampKaBame
CEeMaHTHYKOT 3Hauerha, MoOOoJbIIake mpeTpare u 0osbe
pasymeBame jesuka. Ca japyre crpaHe, Jemaru3aiidja
MOX€E 6I/ITI/I TMONPUINYHO CJIOXKEHA M 3aXTCBaA IO IMUTALY
pecypca, a Takohe moxke jgohm u g0 rydutka ompelheHux
MOPQOIOMKUX HH(POPMALH]ja TPUIMKOM CBOhEHa peuH.

2.1.3. N-rpamu

N-rpamMu TpeicTaBibajy y3acTONIHE HHU30BE OJ H
eneMeHara ozpeljeHor ckyma, mpu 4emy eNeMEHT MOXKe
OouTh ped, KapakTep WM 4ak (oHema, y 3aBUCHOCTH O]
KOHKpETHOT TpoOieMa. Y KOHTEKCTy oOpaze IpHUpOIHOT
jesuKa, n-rpamMu ce Hajuemrhe OJHOCE Ha CEKBEHIIE PEUH.
N-rpamu Oenexe JOKaIHHU 3ajeJHUYKH KOHTEKCT pe4d U
MOTY TPYXXUTH KOpPHCHE YBHIE Yy OJHOCE M obpacie
yHyTap Tekcra. JemaH oj HemocTaraka jecte Taj Ja
Kopuinheme n-rpamMa MOXKE JIOBECTH IO PETKOCTH
rojiaraka, a 300r (MKCHe BENUYMHE [TPO30pa OrPaHUYCHU
Jla yXBaTe IUPU KOHTEKCT.

2.1.4. Y4ecTajaocT TepMHUHA

VYuecranoct Ttepmuna (enr. Term frequency — TF),
NpeACTaB/ba jelaH OJ HajjeJHOCTaBHMjUX HadMHA
BEKTOpH3aIlije TEKCTYaIHUX MojaTaka. TF je OCHOBHH
KOHIIENT y OOpagW TMPHUPONHOT je3nka KOju MepHu
(peKBeHINjy TI0jaBJbMBakba TEPMHUHA y JOKyMeHTY. Kanma
ce mpuMmemyje TF Kao METona BEKTOPH3alldje, CBaKH
JIOKYMEHT C€ TpeICTaB/ba Kao BEKTOp uHja Jy)KHHA
oxroBapa Opojy jeAMHCTBEHHX TEPMHUHA y IEJIOKYITHOM
kopmycy. CBaku eIeMEeHT BEKTOpa IIpejcTaBba
¢pexBeHunjy oarosapajyher TepMuHa yHyTap Aaror
nokymeHTa. OBaj HaYMH BEKTOpHU3alMje je moroaaH 300r
CBOj€ jeTHOCTaBHOCTH W (DIISKCUOMIIHOCTH Y TPUMEHH, a
takole je 10Oap ¥ 3a MCTHLAKE 3HaYaja TEPMHHA YHYTap
nokyMeHTa. Heka orpaHuuema OBe METOJE jecy Ta IUTO
nonespyje Behe TexuHe peduMa Koje ce 4ecTo T0jaBibyjy,

a Takohe He y3uma y 003Mp IIMPU KOHTEKCT, I1a MOXE
nohu o ryouTka nHdopmanyja.

2.1.5. YuecTajocT TepMHHA — MHBEP3HA Y4eCTAJI0CT
HA HUBOY JOKYMEHTa

VYuectanocT TepMHUHa - HHBEP3HA yUYECTaJIOCT HA HUBOY
nokymenTa (eur. Term Frequency — Inverse Document
Frequency, TF-IDF) je MeToma BeKTOpH3alHjeé TEKCTa
Koja KOMOWHYyje JOKanHy (pexBeHIHjy TepMHUHA (EHT.
Term Frequency - TF) ca rio0amHOM 3HauajHOIINY
TepMHHa y Kopmycy (eHr. Inverse Document Frequency —
IDF). TF KOMIIOHGHTa HarjaliaBa 3HA4YajHE TEPMUHE
YHYyTap mojequHavHor fokymenTa. Ca npyre crpane, /DF
KOMITOHEHTa HMa YJIOTy Ja CMamd BaXXHOCT YECTHX
TEpMHHA KOjU C€ T0jaBibyjy y ILeioMm kopmycy. Osa
MeToJa MOXe OHTH TOrofgHa 3a WICHTU(UKAIHN]Y
KJbyYHHX pEYd y JOKYMEHTy, a Takohe M cMmamyje
BaXHOCT HEMH()OPMATHBHUX TEPMHUHA KOjU C€ UeCTO
[10jaBJbYjy y meJoM Kopirycy. Hekn on HemocTaTaka oBe
METOJIe jecTe He y3UMame y OO3up pemociiefia pedd y
JIOKyMEHTY, Ka0 ¥ HEJJOCTaTaK KOHTEKCTa ¥ CEMaHTHUYKOT
pasymeBama. OBa MeTona HE y3UMa y 003U CIIOKEHH]E
je3udke eleMeHTe NONyT CHHOHHMMA, BHUILIE3HAYHOCTH
peuu uTx.

2.1.6. Word2Vec

OcHoBHH 1MIb Word2Vec wetone jecte HW3BIaYeHe
CEMaHTHYKNX WH(OpMaIMja U OPYyTUX OUTHHUX OCOOHMHA
u3 peun. Word2Vec xopuctn KOHTEKCTHE HH(pOpMAIHje
peunr kako OM Hay4yHno HHXOBE BEKTOPCKE
penpesentanuje. Mneja je ma ciomgHe peunm Oymy
MPEJCTaBIbeHE y BEKTOPCKOM MIPOCTOpPY jeaHa Onm3y
npyre. Word2Vec pamu 1O CIMYHOM TPUHIUIY Kao
aytokozepu. Ilocroje nBa mpucryna paga ca Word2Vec
meromoM. [IpBu jecte kopumheme mpeTpeHHpaHOT
MojJena uYuMe ce Jo0uja Bemuku Opoj peud, anu
HEJOoCTaTaK je IITO YeCcTO MOJEI HUje CIelUjaau30BaH 3a
JIOMEH HaJl KojuM ce paau. Jpyru mpucryn noxpasymea
TpeHUpame MojeNa, 4YuMe J00HjaMo MOJIENn KOju je
crenyjaau3oBal 3a ojpeheHH JOMEH, alu MaHa OBOT
NpUCTyNIa jecTe HemoBosbHO peun. Kopumheme
Word2Vec noBomm 10 TOra 1a BEKTOpPU TEHEPUCAHU
IMOMONy OBOT aNropuTMa MMajy CBOjCTBO Ja 3aapiKe
ceMaHTHUKe omHoce u3Mmel)y peum, Takolje omoryhaa
e(MKacHO padyHame CIMYHOCTH pedn rnmomohy Merpuka
yaajbeHocTH. Hemocrarak je Taj 1ITO KBalUTET
BEKTOPCKUX PpEIpE3CHTAllMja 3aBHCTH O] BCIMYMHE U
KBaJIUTETA KopIyca, kao u To mro Word2Vec y3uma y
003up caMo JIOKaJTHA KOHTEKCT OKO PEYH.

2.2. MopeJ1 BUCOKe NPEU3HOCTH

Y mHacraky he OuTm ommcaHa — apXUTEKTypa
TpanchopMepa, IHHXOBa TMPETHOCT Yy OJHOCY Ha
PEKypeHTHE HEYpOHCKe Mpexke, a Takohe he Outh m
ommcaH HaYMH QyHKIHOHHUCama BERT monena.

2.2.1. Ilpeanoctn TpaHcdopMepa y OIHOCY HaA
peKypeHTHe HeypOHCKe Mpeike

Tpauchopmepu (eur. Transformers) cy jeman on
HAjCaBPEMEHUJUX M HAjHANPEIHHjUX MOJeNa BEIITaukKe
HHTCIUIeHIMje KOju oMmoryhaBajy pasyMeBame U
reHepHcame TEKCTa Ha HAYWH CIMYaH 40BeKy. [Ipe mux,
PEKypEeHTHE HEYPOHCKE Mpeke Cy mojaatke oOpaljuBaie

1390

CEKBEHLUJaJIHO H TO je JIOBENO JI0 mpobiieMa crope o0yke
n rybutka wuHpopManMja Ha JY)KUM CEKBEHIaMma.
Tpanchopmepn perraBajy oBe IMpobieme Kopucrehn
MeXaHW3aM TaXmbe, Koju omoryhaBa Moxmeny na
HCTOBpeMeHo obOpaljyje cBe menoBe TekcTa U Gpokycupa ce
Ha KJby4He eJeMeHTe 6e3 003Hupa Ha BHXOBY yJaJbeHOCT

[1].
2.2.2. Apxutektypa Tpancgopmepa

Kana je y nutamy apxuTektypa Tpanchopmepa, OHU ce
cacToje oX ZBa OCHOBHA Jesa: Kozepa u aexonepa. Oba
IIOMEHyTa JeJla C€ cacToje OJf HEKOJHIWHE IPyTux
cllojeBa, a y HaCTaBKy pajaa Ouhe JeTasbHO ONHMCaH CBAaKU
JIe0 3ajelH0 ca HeroBuM ciojeBuMa. Ha cnmmu 2 je
NpHUKa3aHa apXUTEKTypa TpaHcdopmep mMoena.

Cutput prababiitios
.

—
Add & Norm il
4‘7 - T -
MLPs

Add & Narm

Decoder

Add & Norm —
e
Multi-head

Altention

[un]

Encoder

Add & Norm .

Masked Multi-head
Allajnljun

Pasitional encoding '—-ﬁ—
L

Embeddings
—

Multi-head
Attention |

Poaitional encading I—b—cj

Embeddings

Input sequence

Cnuka 2. Apxumexmypa mpancgopmepa

Target sequence

Jeman cmoj koxepa (eHr. encoder) ce cacToju O Clioja
BUIIICTJIABHE TaXkE, JBa CI0ja HOpMalu3almje,
JIBOCJIOJHE TIOTITYHO ITOBE3aHE MpPEXKeE, a y3 CBE TO I0CTOje
n pe3ugyaHe KoHeknuje. OBakBHX ciojeBa nma N. Yia3
Y KOZIEp jeCy BEKTOPHCAHE peyH ca JI0JaTUM ITO3UIIHOHIM
eMOeTMH3MMa KOjU Cy HEONXOJHHU Kako OM MOIeN WMao
“HPOPMAIIH]y O TIO3UITHjaMa PEUH.

Mexanmn3am naxme (€HT. attention mechanism) je TIaBHA
enemeHT TpaHnchopmep apxurektype. OH omoryhasa
MOJieNly 1a o0pand BHIIE MaXHke Ha Je0 YJIa3HHX
rmojaTaka KOju CaapXH 3HadajHuje HH(poOpMaije U aa
MIOCBETH Mame MNaXmke OCTaTKy ynasza [2]. VYV mpaxcw,
00WYHO ce He 100Mjajy noOpu pe3ynTaTH KOpUITNeHEeM
JemHOr cloja, 1ma ce M3 TOr pasjora oOMYHO M3pavyyHaBa
BUIIE CJIOjeBa MAXIkEe Yy Napajeld W pe3yiTaTH ce
KOHKaTeHHpajy. BumernaBna naxma (eHr. Multi-head
attention) TIpEACTaBJba MEXaHHM3aM KOJU CIy)KH 32
MOMEHYTO MapaJieIHO U3pavyHaBambE.

CrojeBr HOpManu3alyje TOMaxy Yy OIpKaBamy
cTaOMITHOCTH TOKOM TpEHHWHTa, CMamyjy TpodieM
HecTajarba WM eKCIUIOAMpama TIpajujeHTa, [OMaxy
00J/0] TCHEpaIM3alMju MOJeja, a Takohe MOMaxy
MOJIENy J1a C€ IPUIIarOH Pa3IMIuTHM CcKajaMa yiasa [2].
PesunyanHe KoOHeKIMje UMajy KJbYYHY VyIOTY Y
noOoJplaty €(PUKACHOCTH TPEHHpama M CMameby
pH3HKa O]l HECTajara WM EKCIUIOOUpamba TPaaujeHTa y
nybokum monenuma. One omoryhaBajy 1na cBe
nH}OpMalHje ocTaHy O4yBaHe TOKOM TPEHHPAba.
IMotnyHO TOBe3aHa Mpeka MMa 3a Wb Ja JOAATHO
00pajau mojgaTke v Hay4Yd KOMIUTKCHE W HEIWHEeapHE Be3e

n3mely monmaraka. OHa ce yrilaBHOM cacToju OJ J1Ba
CKpHBeHa clioja U ReL U akTHBannoHe QyHIKH]E.

Wzna3 u3 cnoja kogepa je CKyIl BEKTOpa, PU YeMy CBaKd
MpeCcTaBiba yha3HH Hu3 oboraheH koHTekcTOM. OBaj
M3J1a3 ce KOPUCTH Kao ya3 y nekozep tpanchopmepa.
JHexonep (eHr. Decoder) je npakTHYHO UCTH KOJEP, OCHM
IITO CaipXW NOMAaIHU CJOj BUIIETJIaBHE MNaXXHke Koja
pamu Haa wmanazoMm koxepa. Llwb nekoxepa jecrte na
KOMOMHYje u3J1a3 KoJiepa ca [MJbHOM CEKBEHIIOMH IIPaBU
npeasulama, OMHOCHO J1a IpeaBUIH cieaehu TokeH. bpoj
clojeBa JeKoJiepa je yrIIaBHOM HCTH Kao M Opoj ciiojeBa
Kozepa.

2.2.3. Besnku je3nyuku Mojesn

Benuku jeswmuku mopenu (eHr. Large language Models —
LLM) cy peBOIyLIHOHHCAIT KOMYHHKAIH]jy Ca CHCTEMUMa
MAaIIHHCKOT yuema oMoryhaBajyhn obaBipame 3amaTaka y
peasHOM BpeMeHy Ha OCHOBY HpUpPOAHOT je3uka. OBH
MOIenHu, KOju caapKe MIIHjapAe Iapamerapa,
TPEHHPAHH CYy HA OIPOMHHMM KOJWYMHAMA TEKCTYaJTHUX
nojiaraka, YuMe CTUYy IIUPOKO pa3yMeBame CBeTa. 3a
00yKy ce KOPHUCTH CaMOHAaJIJeNaHO yueme (eHr. self-
supervised learning), koje omoryhaBa pamx ca
HEO3HaUeHWM ToAalyMa W T00oJblIaBa CIOCOOHOCT
reHepucama Tekcra [2]. HakoH mnoderkor TpeHHpaHja
MOJIENI MOTY pellaBaTH 3a1arke kopucrehu zero-shot n
few-shot TexHHKa, Koje UM OMOryhaBajy aa M3BpIIaBajy
3aJaTKe ca Mayuo Wi 0e3 npuMmepa. MHXemepuHr ynura
(eHr. prompt engineering) U TeXHHKa JIAaHALl MUCIH (€HT.
chain of thought — CoT) omoryhaBajy mnpemu3Huje
onroBope U 00Jbe pelIaBame CIOKEHHjUX IpodieMa. 3a
cneuuduyHe 3aJaTke y pa3UYUTUM O00JacTHMa, OBU
MOJIC/IH 3aXTEBajy JOAATHO H000yYaBame Ha JOMCHCKUM
NoJialuma.

2.2.4. BERT

BERT (enr. Biderectional Encoder Representations from
Transformer) je Bpcta TpanchopMmepa, TIe je KJbydHa
WHOBaIMja MPUMEHa OWAMPEKUMOHOr TpeHupama. OBaj
NPUCTYI TPeHUpama Mojena y oba cMepa JOBOOH JO
pesyirara Koju TIOKa3yjy Ja je3WYKH MOJeNI Ha OB3j
HayMH MOXX€ HMMaTd IyOJbe pasyMeBambe KOHTEKCTa M
TOKa je3WKa HETO MOJEN TPeHHpaH y jeJHOM cMepy. 3a
pa3IMKy OJ OCHOBHOT Mopena TpaHcopmepa, BERT
kopuctd camo kozaep. Komep BERT mogmena obOpabyje
YUTaBy CEKBEHIly peud onjenHoM. OBa KapaKTEpUCTHKA
omoryhaBa Mozeny na pasyme ped y KOHTEKCTY CBHX
OKOJIHUX peuYd, Kako C JieBa, Tako M ¢ JnecHa. BERT
KOpUCTH JiBe crenuduyHe cTpaTervje TpeHHpama:
MO/IeTIOBaha MaCKUPAHOT je3uKa W mpenBuhame HapeaHe
peuenue [3].

MopnenoBame MacKUpaHOr je3WKa IOapa3yMeBa la ce
15% peun y Hu3y 3aMeHH ca [MASK] TOKEHOM, a MOJEIN
3aTMM TIOKyIlaBa Ja NPEIBHIAM T€ PEYd Ha OCHOBY
koHTeKcTa. Oko 80% 3aMEmEeHNX pedn je O3HAa4YeHOo ca
[MASK], 10% ce 3amemyje CcIyd4ajHUM pedynMa, a
npeoctanux 10% octaje HerakHyTo. OBaj HpPHUCTYH
OMaXkeé MOJENy Ja Haydyd KOHTEKCT, HE caMo
npensulame MACKHPaHUX PEdl, TaKO MITO ra IPHUMOpaBa
Jla pasymMe Kako c€ MacKHpaHe W HEMacKupaHe pedu
nosesyjy. IlpenBubame ce mocTiKe —J0/AaBakbEM
KJIACH(PHUKAMOHOT CJI0ja U IPUMEHOM softmax (QyHKIHje
Kako Ou ce m3padyHana BepoBaTHoha 3a cBaky ped. OBa

1391

MeToJ1a oMoryhaBa Mojienry 00Jbe pa3yMeBame KOHTEKCTA,
HMAKO TpEHUpame Moxke Outm cnopuwje. Ha cimmm 3 je
MpHUKa3aHa ONKCaHa CTpaTeruja TPCHUPAmbA.

)] N
i — 1 r r
1 r 1 r r

Lo) (o] (o J (o) (o)

l I I I !
e e e o e
[w w2 [(ws] [] [ws |

I & & & &

Crnuka 3. Cmpameeuja mpernuparsa nomohy mooenosara
MACKUPAHoe je3uxa

Crapreruja npensuhama cnenehe pedenmue y BERT
MOZENy KOPHCTH IIapoBe pEYCHHIA Kako O Mouen
Hay4Ylo Ja OApeIH Ja JIM Apyra peuyeHUIa y mapy Clenu
IPBY Y OPHIMHAJIHOM TEeKCTy. Y IIOJIOBHHH CIIy4ajeBa,
Jpyra pedeHHuIa je 3aucra cieneha, ok y octamux 50%
cilydajeBa Jpyra pedyeHHUIlAa je HaCyMHYHO H3abpaHa U
00MYHO HHje MOBE3aHa ¢ MPBOM. 3a 00paay OBHX IIapoOBa,
[CLS] token ce monaje Ha moueTak, [SEP] Ha kpaj cBake
pedeHuIle, U CBaKOM TOKEHY Ce Joiaje eMOeIuHr KOoju
O3Ha4yaBa IHETOB II0JIOXKA] W PEYEHHIy KOjoj INpHIIaa.
Oga crpareruja nomaxke BERT mozexny na 0osbe pazyme
KOHTEKCT M ojHoce m3Mely peuennnma. Ha ciummm 4
IprKa3aHa je o0paja yiasa 3a OlucaHy CTpaTerujy.

(o)) e)))
e Elll]) e e

LDH-MDDLDEE]
EEEEEEEEE R

Cmuka 4. Obpaoda ynaza 3a cmpamezujy npedsuharba
cnedehe peuenuye

Jla 6u BERT yTBpIyo Aa v je Apyra pedyeHuIa oBe3aHa
ca TpPBOM, [IEO0 HHU3 IPOJa3d Kpo3 TpaHchopmep, Npu
gemy ce m3na3 [CLS] Tokena Tpanchopmuiie y BEKTOp 3a
Knacuukanyjy. Sofimax 3aTuM U3padyHaBa BepoBaTHOhY
MOBE3aHOCTH pedeHHna. MopenoBame MacKHpPaHOT
jesuka m mpenBubame cienehe pedeHmiie TpeHHpajy ce
HCTOBPEMEHO Kako OW ce MHWHHMH30Baja 3ajeIHUYKa
¢yHknmja r1youTka. OBaKBO YIAPYKEHO TPEHUPAHE
omoryhaBa BERT mojeny 00Jbe pa3yMeBame KOHTEKCTa U
CTPYKTYpE je3HKa.

Kako 6u BERT Ouo ycnemian npH peniaBamy pazinduTHX
Je3WUYKHX 3aJaTaka, yIJaBHOM je JAOBOJAHO JOJATH Malld
CJI0j HAa OCHOBHH MO/IEII.

3. KOPUIII'REHU CKYIIOBU ITIOJATAKA

Input [lasl [my (dog (is

Sentence
Embedding

Transformer
Positional
Embedding

3a morpedy TecTHpama pazIMYMTHX ~MoJeNa Y
KOMYHUKAaIlMjH ca KOPUCHUIIMMA, KOpWUIINEH je CKYII
mojaTaka KOjH C€ cacTOju O]l TMHUTama W OATOBOpA
Be3aHWX 3a ocurypame. OBaj CKym moparaka JOOWjeH je
y3 JomyliTeme KIHjeHTa. 3a aoTpeHupaBame BERT
Mojena wuckopuithen je Semantic Textual Similarity

Benchmark cxyn nonaraxa [4], koju je yjenHo U jenaH ox
Hajuemrhe KkopumheHHX CKymnoBa 3a IPOHATAKCHE
CIINYHUX TTUTAbA.

4. PE3YJITATU U JMCKYCHJA

Haj6ospm pe3ydTraTté mpu TecTHpamy MOJENa BHUCOKOT
omsuBa J00WjeHH Cy KOpUIINEHEM IPETPEHUPAHOT
Word2Vec wmopmena y3 CyMHpame BEKTOpa pedd U
SYKIMJICKY YAAJbEHOCT 32 MEPEHE CIMIHOCTH.

3a Mozen BHCOKE MPEIHU3HOCTH, udje je yHampeheme
yjeIHO M IIMJb OBOT HUCTPa)KMBarbha, CIIPOBEICHO je U
KBaHTHTaTHBHO u KBJIUTaTUBHO TECTHUpabE
nepdopmancu cujamckor LSTM w BERT monmena Ha
UCTOM TECT CKYIy KOjU jeé CIIOMEHYT Yy TIPETXOIHOM
nornasby. KBaHTHTaTHBHA aHanW3a je IOKasala Ja
LSTM w4ecto HHje ycmeBao na OOyXBaTH CBE KJby4YHE
aclleKTe KOPHCHWYKOT YIHTa, IITO j€ IOBOJHMIO MO
Bpahama JEIMMHUYHO pENCBAHTHUX HWIH MOTIIYHO
HETaYHHUX NHTamka, 10 je BERT mocturao 3Ha4ajHO 00Jbe
METPHKE MPEUU3HOCTH W TadyHOCTH. KBanuTaTUBHO
mocMatpano, BERT je, 3axBasbyjyhu 60/beM pasyMeBamy
KOHTEKCTa, JIOCJIEJHO IPOHANa3M0 CEMaHTHUYKH
HAjIpUOIIDKHU]ja MUTakba, IITO je PEe3yATHPAIO 3HATHO
aJIeKBaTHUJUM W TOY3/JaHHJUM OJrOBOpUMA Y PpEaTHUM
CIICHApHUjIMA.

5. 3AKJbYYAK

HmmiemenTamyuja TpanchopMep Mozaena 3a 4deTdoTa y
JOMEHY OCHTypama 3Ha4ajHO Mo0oJbIIaBa Ta4HOCT,
Op3MHY M YKYITHO KOPHCHHYKO HCKYCTBO Yy OJHOCY Ha
MIPETXOAHO HUMILJIEMEHTHPaHU LSTM mpuctym.
Tpaucopmepn omoryhasajy 6056y 00pasy KOMIUIEKCHUX
W JYrMX YIUTa, WITO je O BEJUKOr 3Hauyaja Kako y
OCUTypamy, TaKO M Y JPYruM obnactuma. Y LUy Jajbe
NPUMEHJBUBOCTH Y pPEATHHUM YCJIOBUMa U JlaJbeM
yHanpehewy cucrema Mmoryhe je wunTerpucatu RAG
METONOJIOTHjy, a Takohe ¥ TPUMEHHUTH pPazIHYuTe
MEXaHU3ME 3alITUTE MOoJaTaka Kako Ou ce JOOHIIO joIl

Hampenuuje, QuekcuOmiHuje W 0Oe30enHMje penieme
KojuM OWM ce J0JaTHO YHAalpeguao KOPHCHUYKO
HCKYCTBO.

6. JUTEPATYPA

[1] Ferrer, J. (2024) How transformers work: A
detailed exploration of Transformer
architecture, DataCamp.

[2] Nyandwi, J. (2023) Ai Research Blog - The
Transformer Blueprint: A holistic guide to the
transformer neural network architecture, Deep
Learning Revision

[3] Horev, R. (2018) Bert explained: State of the
art language model for NLP, Medium.

[4] https://paperswithcode.com/dataset/sts-

benchmark
Kparka Onorpaduja:
Haha Kamyx pohena je y Bpbacy 2000.
roguHe. Macrep pag Ha Dakynrery
| TEXHUYKHX Hayka u3 obnactn

i / EnekTpoTeXHHKEe M padyyHapCTBa Oa0paHmIia
je 2025. rogune.
koHTakT: nadjakanjuh00@gmail.com

1392

mailto:nadjakanjuh00@gmail.com

Zbornik radova Fakulteta tehni¢ckih nauka, Novi Sad

UDK: 4.4
DOI: https://doi.org/10.24867/33BE35Trivunovic

SAMOOBNAVLJAJUCI KOD NA AWS PLATFORMI

SELF HEALING CODE ON AWS PLATFORM

Dragana Trivunovi¢, Fakultet tehnickih nauka, Novi Sad

Oblast - ELEKTROTEHNIKA I RACUNARSTVO

Kratak sadrzaj — Ovaj rad istrazuje mogucnost resenja
samoobnavijajuceg koda koji koristi AWS platformu i
generativnu veStacku inteligenciju. Mogucnosti koje
otvara slozeno resenje koda koji se samoobnavlja se
ogleda u smanjivanju utroSenog vremena razvojnog
inzenjera i brzom detektovanju greske u softveru i njenom
otklanjanju. Glavni servis koji je centar arhitekture ovog
reSenja je servis generativne vestacke inteligencije koji se
koristi za sugestiju, dopunu, ispravku, pojasnjenje,
optimizaciju, transformaciju i poboljsanje softverskog
reSenja.

Kljuéne reci: Cloud, AWS, Generativni Al

Abstract — This paper explores the feasibility of a self-
healing code solution utilizing the AWS platform and
generative artificial intelligence. The potential of a
complex self-healing code solution lies in reducing the
time spent by software engineers, enabling quick error
detection in the software, and facilitating error
correction. The core service at the heart of this
architecture is a generative Al service, used for
suggesting, completing, correcting, clarifying, optimizing,
transforming, and enhancing the sofiware solution.

Keywords: Cloud, AWS, Generative Al

1. UVOD

Era naprednog razvitka vestacke inteligencije dovela je
do, nekad nezamislivih, tehnickih reSenja. Primena
ovakvih resenja je u velikoj meri olakSala niz zadataka u
razvoju softvera. Optimizacija i automatizacija su kljucni
faktori koji izdvajaju reSenja sa primenom vestacke
inteligencije smanjujuéi cenu realizacije, utroseno vreme i
potrebne resurse za razvoj softvera. Pomo¢ koju vestacka
inteligencija pruza prilikom razvoja i odrzavanja
softverskih reSenja omogucdila je smanjenje vremena koje
je potrebno da se pronade i popravi greska (engl. bug). U
trci za napredna reSenja veStacke inteligencije i
masinskog ucenja, sa svojim inovativnim pristupom,
istice se AWS (Amazon Web Services) kompanija. Nacini

koris¢enja veStacke inteligencije unutar njihovih
proizvoda dovode do poboljsanog iskustva korisnika,
povecane produktivnosti zaposlenih, kreativnijeg

marketinga i optimizovanih procesa unutar kompanije.
Ovaj rad istrazuje AWS Self healing kod, analizirajuci
njegovu arhitekturu, funkcionalnosti i prakti¢nu primenu.

NAPOMENA:
Ovaj rad proistekao je iz master rada ¢iji mentor je
bio dr Srdan Vukmirovié, red. prof.

Na AWS platformi se mogu koristiti ve¢ istrenirani
modeli vestacke inteligencije i infrastruktura napravljenih
servisa. Osim fokusa na vestacku inteligenciju koji ¢ini
samo jedan deo ponudenih reSenja, na AWS platformi
postoji Citav niz softverskih reSenja koji Cine
infrastrukturu AWS-ovog ,,oblaka* (engl. Cloud). Usluge
koje se pruzaju su skladiStenje i arhiviranje podataka,
procesuiranje podataka, izgradnja API interfejsa, privatni
VPN, elastiéno balansiranje opterecenja nadolazeéeg
saobracéaja na veb sajtu, razne analitike i metrike podataka
koris¢enjem Big Data tehnologija, implementiranja
politike sigurnosti, identiteta i saglasnosti, itd.

U ovom radu ¢e biti obradeni neki od servisa koji su
iskoriS¢eni u stvaranju reSenja za kod koji ima moguénost
samoobnavljanja, detekcije gresSaka i podizanja ispravaka
koda u izvorni kod.

2. AMAZON WEB SERVICES

U poredenju sa klasi¢nim racunarstvom, AWS kao pionir
ideje racunarstva u oblaku 2000-ih godina, donosi novosti
koje su zauvek izmenile racunarstvo. Najveci benefiti se
ogledaju u skalabilnosti, gde manje firme imaju
mogucnost da plac¢aju samo onoliko koliko im u datom
trenutku treba, te sa povecanjem obima posla poveéaju i
obim AWS-ovih usluga. U proslosti su firme koristile
privatne centre podataka sa privatnim hardverom i
serverima, koji su u poredenju sa servisima na ,,oblaku‘
bile izuzetno skuplje. Skaliranje na AWS-u moZze da bude
i automatizovano i brzo, te je ovakav vid poslovanja
mnogo pogodniji. U danaSnje vreme sve modernizovane
firme i kompanije koriste reSenja raCunarstva u oblaku

[3].

2.1. AWS servisi

AWS takode nudi svojim korisnicima razvijeni sistem za
implementiranje politike sigurnosti, saglasnosti i
identiteta. Postoje servisi za nadzor sistema koji
povecéavaju sigurnost. Stiti svoje korisnike od ispada
sistema stavljaju¢i akcenat na pouzdanost svojih usluga.
AWS garantuje dostupnost korisnickih aplikacija
pruzanjem usluga na 80 zona dostupnosti i vise od 25
globalnih regija, §to ga ¢ini odlicnim izborom za
kompanije koje posluju globalno. Pruza razvojne alate za
softver koji su laki za koriS¢enje i omogucava brzo
podizanje korisnickih aplikacija i veb sajtova. Postoje
nekoliko tipova razvojih modela racunarstva u oblaku [3].

U modelu infrastrukture kao servisa, korisniku je

omogucéeno kori$éenje racunarske

1393

https://doi.org/10.24867/33BE35Trivunovic

infrastrukture u vidu virtuelne platforme kao §to su
virtuelne masine i serveri zaskladiStenje i upravljanje
podacima. Primeri modela infrastrukture kao servisa u
AWS-u su servisi poput Elastic Computing 2, Simple
Storage Service — S3, Relational Database Service — RDS.

Softver kao servis je model koji se fokusira na
dostavljanje aplikacije korisniku preko interneta. AWS ne
pruza gotova Softver kao servis reSenja, ali pruza
moguénost svojim korisnicima da naprave svoje
samostalne aplikacije bazirane na ovom modelu.

Platforma kao servis je model koji pruza platformu, alate i
razvojna okruzenja softverskim inZenjerima za razvoj
softverskih resenja. Primer je Content Delivery Network —
CDN servis koji predstavlja mrezu povezanih servera koji
ubrzavaju ucitavanje veb stranica za aplikacije koje su
orijentisane na podatke. Takav jedan servis je AWS-ov
CloudFront. Platforma kao servis je implementirana kao
model u servisima za balansiranje protoka podataka.
Elastic Load Balancing — ELB je servis koji omogucava
distribuciju opterecenja aplikacije na serverima zarad
poboljSanja skalabilnosti aplikacije. Jo§ jedan primer
ovog modela se nalazi u Amazon CloudWatch servisu
koji sluzi za monitoring podataka i aplikacije, preko
konstrukcije log datoteka i raznih metrika.

Back-end kao servis je model koji pomaze razvojnim
inzenjerima da se fokusiraju na front-end deo aplikacije.
U ovom modelu je serverski deo aplikacije ve¢ napravljen
i umesto korisnika upravlja bazom podataka,
skladiStenjem podataka, autentikacijom korisnika,
notifikacija na aplikaciji, veb-hostinga, itd. Primer ovog
modela na AWS-u je AWS Amplify. Ovaj model
omogucava front-end inzenjerima da konstruiSu full-stack
aplikacije.

Funkcija kao servis je model raunarstva u oblaku gde je
fokus stavljen na pokretanje funkcija kao odgovor na neki
dogadaj, bez potrebe da se konfiguriSe kompleksna
infrastruktura virtuelnih masina i upravljanje operativnim
sistemima i procesima odrzavanja veb servera. Sa ovim
modelom, veb server se moze podeliti na funkcionalnosti
koje se mogu automatski skalirati. Sa ovim modelom,
placa se samo kada se funkcionalnost iskoristi, a ne po
satu ili koli¢inskom najmu kao kod ostalih modela.
Primer ovog modela je AWS Lambda servis. Ovaj servis
izvrSava kod na visoko dostupnoj infrastrukturi za obradu
podataka i vr$i administraciju svih resursa za obradu,
ukljucujuéi i administraciju operativnog sistema i servera.
Takode, ovaj servis automatski skalira i1 potrazuje
potrebne resurse za obradu podataka.

3. AWS SELF HEALING CODE

Pod pritiskom brzog razvoja, programeri i menadzeri su
cesto suoceni sa izborom troSenja vremena na popravke
greSaka koda koji je ve¢ u produkciji, ili ostavljanjem
greSke i problema u ,back log“-u gde se gomila kao
tehnicki dug. Prvi izbor znaci viSe utroS$enog vremena i
novca, a drugi izbor dovodi do nezadovoljnih klijenata i
loseg korisnickog iskustva.

Resenje do kojeg su dosli inzenjeri iz Amazon AWS
kompanije je kod koji ima mogucnost introspekcije na
osnovu prijavljenih greSaka na aplikaciji, moguénost

ispravke koda i podizanja te ispravke na izvorni kod.
Kljuéni deo ovog resenja je generativni model veStacke
inteligencije koji nadopunjuje i ispravlja kod.

3.1. ARHITEKTURA RESENJA

Ovo reSenje je napravljeno kombinovanjem Amazon
CloudWatch-a, AWS Lambda i Amazon Bedrock servisa
kako bi kreirali sveobuhvatan sistem koji automatski
otkriva i popravlja greske radi poboljSavanja pouzdanosti
aplikacije i celokupnog korisni¢kog iskustva. U ovom
sistemu, ispravlja¢ greSaka se povezuje sa CloudWatch
evidencijom zapisa greSaka aplikacije preko Lambda
pretplate. Svi zapisnici koji sadrze greske aplikacije Salju
se na obradu, gde Lambda funkcija kreira prompt,
ukljuCujuc¢i pracenje steka (engl. ,stack™) i relevantne
datoteke koda, a zatim ga Salje u Amazon Bedrock
(Claude vl model) da generise ispravke koda. Izmenjeni
kod se zatim $alje u kontrolu izvora (Git) i kreira zahtev
za povlacenje za pregled i primenu [6].

Ovakvo reSenje pruza niz funkcionalnosti: Automatsko
otkrivanje pracenja steka (greske): Implementira pretplate
na CloudWatch evidencije za automatsko filtriranje i
otkrivanje tragova steka; Pracenje greSaka: Automatski
prati stanje obrade greSaka u Amazon DynamoDB,;
Deduplikacija: Deduplikuje tragove steka da bi se izbegla
suviSna obrada; Kreiranje zahteva za povlacenje: Integrise
se sa sistemima kontrole izvora za automatsko kreiranje
zahteva za povlacenje, koji ukljucuju ispravke gresaka

Postoji nekoliko servisa koji se koriste u ovom reSenju a
koji su spomenuti u prethodnim poglavljima. Amazon
CloudWatch Core servis pruza podatke evidencije greSaka
za problematic¢an izvorni kod. AWS Lambda Core servis
implementira automatizaciju za brzo generisanje i
interakciju sa BedRock-om. Amazon Bedrock Core servis
pruza Sirok skup mogucénosti za izgradnju generativnih Al
aplikacija koje analiziraju, popravljaju i vrac¢aju izmenjeni
problemati¢an izvorni kod. Amazon Simple Queue
Service (Amazon SQS) servis pruza grupnu obradu i
kontrolu istovremenosti za Lambda funkciju. Amazon
DynamoDB Core servis Cuva trag steka koda sa
evidencijama greSaka i prenosi podatke. Pomocni servis
Amazon Systems Manager cCuva tajne parametre u
skladistu [12].

3.1.1. Amazon CloudWatch

Amazon CloudWatch je servis koji nadgleda aplikacije,
reaguje na promene u performansama, optimizuje
koriS¢enje resursa i pruza uvid u operativno zdravlje.
Prikupljanjem podataka preko AWS resursa, CloudWatch
daje uvid u performanse celog sistema i omogucéava
korisnicima da podese alarme, automatski reaguju na
promene i steknu jedinstven pogled na operativno
zdravlje. CloudWatch je kao servis napravljen po modelu
Platforma kao servis.

CloudWatch funkcioniSe tako S$to akumulira metriku i
evidenciju iz AWS resursa, analizira te podatke i pruza
vizuelne prikaze i upozorenja. Sastoji se od 3 glavne
komponente: deo za pracenje i prikupljanje metrike koji
prikuplja podatke iz resursa, dugoro¢no skladiStenje tih
podataka u CloudWatch-u, kao i vizuelizacije i alarme na
osnovu uskladistenih podataka.

1394

3.1.2. AWS Lambda

Moguce je koristiti AWS Lambda za pokretanje koda bez
obezbedivanja ili upravljanja serverima.

Lambda pokrece kod na racunarskoj infrastrukturi visoke
dostupnosti i obavlja svu administraciju racunarskih
resursa, ukljucujuéi odrzavanje servera i operativhog
sistema, obezbedivanje kapaciteta i automatsko skaliranje
i evidentiranje. Sa Lambda-om, sve $to treba da uradite je
da unesete svoj kod u jednom od jezika izvodenja koje
Lambda podrzava [1].

Kod se organizuje u Lambda funkcije. Lambda usluga
pokrece funkciju samo kada je to potrebno i automatski se
podesava. Pla¢a se samo vreme koje je utroSeno na
pokretanje i izvrSavanje funkcije — nema naknade kada
kod nije pokrenut.

Lambda je idealna raCunarska usluga za scenarije
aplikacija koje treba brzo da se povecéaju i smanje na nulu
kada nisu trazene.

Kada se koristi Lambda, odgovornost je na inzenjeru
samo za njegov kod. Lambda upravlja racunarskom
flotom koja nudi balans memorije, CPU-a, mreze i drugih
resursa za pokretanje vaseg koda. PoSto Lambda upravlja
ovim resursima, nije moguce prijaviti se da bi se
izraunale instance ili prilagodili operativni sistem na
predvidenim vremenima izvodenja. Lambda obavlja
operativne i administrativne aktivnosti u korisni¢ko ime,
ukljucuju¢i upravljanje kapacitetom, pracenje i
evidentiranje korisnickih Lambda funkcija [2].

3.1.3. Amazon DynamoDB

DynamoDB je bez-serverska, NoSQL, potpuno
upravljana baza podataka sa jednocifrenim milisekundnim
performansama na bilo kojoj skali. Kao baza podataka bez
servera, placa se samo ono §to se iskoristi. DynamoDB
skalira na nulu, nema hladnih pokretanja, nema
nadogradnje verzije, nema prozora za odrzavanje, nema
zastoja odrzavanja. Ova baza podataka nudi Sirok skup
bezbednosnih kontrola i standarda uskladenosti. Za
globalno distribuirane aplikacije, DynamoDB globalne
tabele su multi-regionalna, multiaktivna baza podataka sa
SLA dostupnoséu od 99,999% i povecanom otpornoscu.
Pouzdanost DynamoDB-a je podrzana upravljanim
rezervnim kopijama 1 oporavkom u trenutku. Sa
DynamoDB tokovima, moguéa je izgradnja aplikacija
vodenih dogadajima bez servera [4] [9].

3.1.4. Amazon SQS

Amazon Simple Queue servis (Amazon SQS) nudi
siguran, izdrZljiv 1 dostupan red podataka koji omogucava
integraciju i odvojanje distribuiranih softverskih sistema i
komponenti. Amazon SQS nudi uobiéajene konstrukcije
kao $to su redovi za ,,mrtve” poruke i oznake za alokaciju
troskova. Pruza genericki API za veb usluge kojima se
moze pristupiti koriste¢i bilo koji programski jezik koji
podrzava AWS SDK [10].

Amazon SQS razdvaja i skalira distribuirane softverske
sisteme i komponente kao uslugu cekanja. Obicno
obraduje poruke preko jednog pretplatnika, §to je idealno
za tokove posla gde su prevencija narudzbine i gubitka
kriti¢ni. Za §iru distribuciju, integracija Amazon SQS-a sa

Amazon SNS-om omogucava razgranati obrazac za
razmenu poruka, efektivno prosledujuéi poruke vecem
broju pretplatnika odjednom [8].

3.1.5. Amazon Bedrock

Amazon Bedrock je servis koji omogucava da dostupnost
osnovnih modela veStacke inteligencije visokih
performansi (engl. Foundation Model) iz vode¢ih startapa
vesStacke inteligencije i Amazon za korisni¢ku upotrebu
putem objedinjenog API-ja. Moguée je birati izmedu
Sirokog spektra osnovnih modela vesStacke inteligencije
kako bi se pronasao model koji je najprikladniji za
korisnikov slucaj upotrebe. Amazon Bedrock takode nudi
Sirok skup moguénosti za izgradnju generativnih Al
aplikacija sa bezbednosScu, privatnos¢u i odgovornom
vestackom inteligencijom. Koriste¢i Amazon Bedrock,
moguce je da se lako eksperimentiSe nad i procenjuju
osnovni modeli za korisnicke slucajeve upotrebe, privatno
da se prilagodavaju korisnickim podacima koristec¢i
tehnike kao $to su fino podeSavanje i proSirena generacija
preuzimanja (RAG) i prave agenti koji izvrSavaju zadatke
koriste¢i sisteme korisnikovog preduzeca i izvore
podataka.

Amazon Bedrock je reSenje bez servera, gde je moguce
privatno prilagoditi osnovne modele sopstvenim
podacima i lako i bezbedno ih integrisati i primeniti u
aplikacije koriste¢i AWS alate bez potrebe za
upravljanjem infrastrukturom i njenom izmenom [11].

4. PRINCIPI ARHITEKTURE
SAMOOBNAVLJAJUCEG KODA

AWS-ovi inzenjeri su pioniri sistema za kod koji se sam
obnavlja, pronalazi greske (engl. bag) i sam podize
zahteve za ispravku originalnog koda.

Arhitektura ovog reSenja pomaze softverskim
kompanijama da postave sistem za otkrivanje i
evidentiranje greSaka, generisanje ispravki greSaka i
kreiranje zahteva za promenom koda. Svaka kompanija
koja kreira softver neizbezno mora da uravnoteZzi
reSavanje greSaka, a istovremeno se takmici sa pritiskom
razvoja proizvoda 1 funkcionalnosti. Greske mogu
odvratiti paznju programera, pogorsati korisnicko
iskustvo 1 uzrokovati pogresne pokazatelje. Ovo idejno
reSenje pomaze softverskim kompanijama da
implementiraju automatizovani sistem koji otkriva i
ispravlja greske kako bi poboljsao pouzdanost aplikacija i
poboljsao celokupno korisni¢ko iskustvo.

Resenje za kod koji se sam popravlja je zasnovano na 6
osnovnih stubova najboljih arhitektonskih praksi za
dizajniranje sistema u oblaku.

AWS Well-Architected Framework opisuje kljuéne
koncepte, principe dizajna i najbolje arhitektonske prakse
za projektovanje i pokretanje radnih opterecenja u oblaku.
Ovi principi i1 koncepti su opisani detaljnije u radu [7].

8. ZAKLJUCAK

Inovativan pristup inzenjera iz kompanije Amazon nam je
donelo resenje koje ¢e, ukoliko se dobro podesi i iskoristi,
dovesti do smanjivanja tehnickog duga i do olakSavanja i
ubrzavanja toka razvoja aplikacije. Nacin na koji je
iskoriséen generativni model veStacke inteligencije je

1395

doveo do automatizacije velikog dela posla programera, a
to je pronalaZenje i ispravak gresaka u kodu.

Ovo reSenje smanjuje troskove razvoja softverskih
reSenja, poboljSava produktivnost timova, obezbeduje
visok nivo sigurnosti i pouzdanosti,

Potrebno je imati u vidu da je ovo reSenje dostupno samo
u odredenim AWS regionima i da se troSkovi mogu
znacajno razlikovati u zavisnosti od obima upotrebe i
konkretnih potreba korisnika. Pazljivo planiranje i
pracenje trosSkova, uz koriS¢enje AWS alata kao S$to je
Cost Explorer, omogucava korisnicima da maksimiziraju
koristi od ovog sistema uz minimalne finansijske rizike

Na kraju, ovakve vrste reSenja predstavljaju buducnost
razvoja softvera, gde automatizacija 1 veStacka
inteligencija igraju klju¢nu ulogu u poboljSanju kvaliteta
softverskih reSenja 1 korisnickog iskustva. Ovakve
tehnologije su ve¢ krenule da transformisu nacin na koji
timovi softverskih inzenjera rade, smanjujuéi tehnicki dug
i omogucavajuéi brze i efikasnije reSavanje problema.

9. LITERATURA

[1] Funkcija kao servis [na mrezi]. Dostupno na:
https://www.ibm.com/topics/faas (Pristupljeno u junu
2024. godine)

[2] Lambda Servis [na mrezi]. Dostupno na:
https://docs.aws.amazon.com/lambda/latest/dg/welcome.h
tml (Pristupljeno u junu 2024. godine)

[3] Proizvodi AWS-a [na mrezi]. Dostupno na:
https://aws.amazon.com/products/ (Pristupljeno u junu
2024. godine)

[4] AWS nacini
Dostupno na:
https://www.educba.com/aws-storage-services/
(Pristupljeno u junu 2024. godine)

[5] O bazama podatala [na mrezi]. Dostupno na:
https://docs.aws.amazon.com/whitepapers/latest/aws-
overview/database.html (Pristupljeno u junu 2024.
godine)

[6] Self healing code uputstvo [na mrezi]. Dostupno na:
https://aws.amazon.com/solutions/guidance/self-healing-
code-on-aws/ (Pristupljeno u junu 2024. godine)

[7] Principi arhitekture na AWS-u [na mrezi]. Dostupno
na:

https://aws.amazon.com/architecture/well-
architected/?wa-lens-whitepapers.sort-
by=item.additionalFiclds.sortDate&wa-lens-
whitepapers.sort-order=desc&wa-guidance-
whitepapers.sort-by=item.additionalFields.sortDate&wa-
guidance-whitepapers.sort-order=desc (Pristupljeno u
junu 2024. godine)

[8] Cloudwatch [na mrezi]. Dostupno na:
https://aws.amazon.com/cloudwatch/ (Pristupljeno u junu
2024. godine)

[9] DynamoDB [na mrezi]. Dostupno na:
https://aws.amazon.com/dynamodb/ (Pristupljeno u junu
2024. godine)

[10] Simple Queue Service [na mrezi]. Dostupno na:
https://docs.aws.amazon.com/AWSSimpleQueueService/
(Pristupljeno u junu 2024. godine)

[11] Bedrock [na mrezi]. Dostupno na:

skladiStenja podataka [na mrezi].

https://docs.aws.amazon.com/bedrock/
junu 2024. godine)

[12] Self healing code [na mrezi]. Dostupno na:
https://aws-solutions-library-samples.github.io/ai-ml/self-
healing-code-on-aws.html (Pristupljeno u junu 2024.
godine)

(Pristupljeno u

Kratka biografija:

Dragana Trivunovi¢
rodena je 21. oktobra
1998. godine u Sremskoj
Mitrovici. Osnovnu skolu
"Caki Lajos" zavrsila je u
Backoj Topoli, a
gimnaziju, opsti smer, je
zavr§ila u srednjoj Skoli
"Dositej Obradovi¢" u
Backoj Topoli. Skolske
2017/2018 godine upisuje
Fakultet tehnickih nauka u Novom Sadu, na studijski
program Primenjeno softversko inZenjerstvo. Osnovne
akademske studije zavr$ila je skolske 2022/2023, posle
kojih upisuje master studije, takode, na studijskom
programu Primenjeno softversko inzenjerstvo.

1396

https://www.ibm.com/topics/faas
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://aws.amazon.com/products/
https://www.educba.com/aws-storage-services/
https://docs.aws.amazon.com/whitepapers/latest/aws-overview/database.html
https://docs.aws.amazon.com/whitepapers/latest/aws-overview/database.html
https://aws.amazon.com/solutions/guidance/self-healing-code-on-aws/
https://aws.amazon.com/solutions/guidance/self-healing-code-on-aws/
https://aws.amazon.com/architecture/well-architected/?wa-lens-whitepapers.sort-by=item.additionalFields.sortDate&wa-lens-whitepapers.sort-order=desc&wa-guidance-whitepapers.sort-by=item.additionalFields.sortDate&wa-guidance-whitepapers.sort-order=desc
https://aws.amazon.com/architecture/well-architected/?wa-lens-whitepapers.sort-by=item.additionalFields.sortDate&wa-lens-whitepapers.sort-order=desc&wa-guidance-whitepapers.sort-by=item.additionalFields.sortDate&wa-guidance-whitepapers.sort-order=desc
https://aws.amazon.com/architecture/well-architected/?wa-lens-whitepapers.sort-by=item.additionalFields.sortDate&wa-lens-whitepapers.sort-order=desc&wa-guidance-whitepapers.sort-by=item.additionalFields.sortDate&wa-guidance-whitepapers.sort-order=desc
https://aws.amazon.com/architecture/well-architected/?wa-lens-whitepapers.sort-by=item.additionalFields.sortDate&wa-lens-whitepapers.sort-order=desc&wa-guidance-whitepapers.sort-by=item.additionalFields.sortDate&wa-guidance-whitepapers.sort-order=desc
https://aws.amazon.com/architecture/well-architected/?wa-lens-whitepapers.sort-by=item.additionalFields.sortDate&wa-lens-whitepapers.sort-order=desc&wa-guidance-whitepapers.sort-by=item.additionalFields.sortDate&wa-guidance-whitepapers.sort-order=desc
https://aws.amazon.com/architecture/well-architected/?wa-lens-whitepapers.sort-by=item.additionalFields.sortDate&wa-lens-whitepapers.sort-order=desc&wa-guidance-whitepapers.sort-by=item.additionalFields.sortDate&wa-guidance-whitepapers.sort-order=desc
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/dynamodb/
https://docs.aws.amazon.com/AWSSimpleQueueService/
https://docs.aws.amazon.com/bedrock/
https://aws-solutions-library-samples.github.io/ai-ml/self-healing-code-on-aws.html
https://aws-solutions-library-samples.github.io/ai-ml/self-healing-code-on-aws.html

360pHUK papoBa PakynteTa TeXHUUKUX Hayka, Hoeu Cap

UDK: 621.3
DOI: https://doi.org/10.24867/33BE36Nesic

PA3BOJ CO®PTBEPA HA RISC-V APXUTEKTYPHU CA ®POKYCOM HA RPC
NMIIVIEMEHTALIINJY

RISC-V SOFTWARE DEVELOPMENT WITH FOCUS ON RPC IMPLEMENTATION

Mapuja Hemuh, @akyimem mexnuuxux nayxa, Hosu Cao

Ooaact — EJIEKTPOTEXHUKA U PAYYHAPCTBO

Kparak caap:kaj — Osaj pad npeocmasma Oemasmah
onuc coghmeepcke apxumekmype U UMHIEMEHMAyuje
Mexanusma yoasmeHux noszusa npoyeoypa (Remote
Procedure Call — RPC) y oksupy yepahenoz cucmema
3acuosanoe Ha RISC-V apxumexmypu. Pao 0oxkymeHmyje
KOMNAEMAaH npoyec noousarsa cogmeepa Ha HOBOM Huny,
00 npeobumue uHUYUjanU3AYUje — Xaposepa 00
YCnocmasmbara QYHKYUOHAnNHe — KOMYHuKayuje — ca
CHODAWILUM CUCHIEMUMA.

Kmbyune peun: Paszsoj cogpmeepcroe okpyacera, RISC-
V, FreeRTOS, RPC

Abstract — This thesis presents a detailed description of
the software architecture and implementation of the
Remote Procedure Call (RPC) mechanism within an
embedded system based on the RISC-V architecture. It
documents the complete process of bringing up software
on a new chip, from the initial hardware initialization to
establishing functional communication with external
sSystems.

Keywords: Software Bring-Up, RISC-V, FreeRTOS,
RPC

1. YBOJ

Wneja ynassenor nozusa npouenype (RPC), Kojy cy npBH
myT yBenu Birrell nu Nelson 1984. ronune, npeacTaBbana
j€ BETMKHU KOpak Halpe] y AUCTpuOyupaHoj oopanu. OHa
oMmoryhaBa Jja ce mpouenype y npouecuMa Ha yJIaJbeHUM
padyHapuMa Mo3WBajy Kao Ja cy MPOLeAype Y JOKATHOM
agpecHoM mpoctopy. RPC cucteM ympaBjba OCHOBHUM
MEXaHU3MHMa — KOJIMPAmhEeM U JEKOAUPABEM M01aTaKa,
CllambeM TopykKa U 00e30ehuBameM Ja ce MO3UB IOHAIIA
Kao peryniapas nosus ¢yskmmje [1].

RPC wmopen koMmyHHKanuje u3aOpaH je Kao OCHOBHHU
MexaHuzaMm uHrepakuuje usmely host-a u Wi-Fi HaLow
4yHIna 3acHOBaHOT Ha SweRV EH 1 apXuTeKkTypu.

HAITIOMEHA:

OBaj pag npouncTeKao je U3 MacTep paja Ydju MeHTOP
je 6mo np Ipeapar Teogoposuh, Banp. mpod.

OcCHOBHA MOTHBAIIFja 332 0Baj U300p JIEKH y OTPEeOH 1a
Ce CJOXCHE oOmepalyje ca CTpaHe Ahost-a HWHHUIHPA)Y
jemHoCcTaBHUM (YHKUHWjCKAM MO3UBHMA, a Ja Ce IIPU TOME
H30I1Yjy JeTaJbu low-level KOMYHUKAIH]e,
CHHXPOHHU3aLHje u yIIpaBJbamba
MeMopujoM.immnementupann RPC MexaHH3aM NpHIiaga
kareropuju Hardware-Level RPC (Chip-to-Chip, On-
Board), woukperno SPI/[2C RPC tumy. Wako uun
UHTepHO KOopucTH AXI mpotokon, knacudukainmja ce
onpehyje mpema croJeamimbeM — HHTEpdejcy U
KOMYHHKAI[HOHHM KapakTepucTukama. 3 mepcrekTuse
CHOJBAIILET /0St-Ta, KOMYHUKaIHja Ce peau3yje Kpo3
cranmapaae SPI TpaHcakuwmje tae host (master) maibe
KOMaHIe Koje (YyHKIMOHMINY Kao yOaJbeHU IT03HBU
npouenypa ka Wi-Fi HaLow aniy (slave). IlITo ce True
KOMYHHUKAI[IOHOT MoJieNia HyJu KOMOMHAIHWjy CHHXPOHE
1 aCHHXPOHE KOMYHHKaLlHje.

wmb pana je mpuka3 KOHKPETHOT peliea pa3BHjeHOT Y
WHJTyCTPUJCKOM KOHTEKCTY 3a Wi-Fi HalLow uwnm, koje
oMoryhaBa KOMyHHKalujy usMmelly unmma ¥ CIIoJballliber
host ypehaja.

I'maBHU mpoOneMu perraBaHd y OKBHUPY OBOT IPOjeKTa
o0yxBaTajy MHHLOWjaIn3anujy u bring-up codtBepa Ha

SweRV EHI mnponecopy 3acHoBaHoM Ha RISC-V
ApPXUTEKTypH, MOPTOBAlkE OMEPATUBHOI CHUCTEMa
FreeRTOS wa 1weHy miaardopmy, pasBoj RPC

MeXaHHW3Ma 32 TpaHCIApeHTHY KOMYHHKalujy usmely
yrpal)eHOr 4uma W CKCTEPHOT Aost-a, MMIUICMEHTAIU]y
SP] KOMYHUKallMOHOT CJi0ja Ca CHHXPOHHW3ALMjOM U
yIpaBJbakhbeM TpeKHINMa, pas3Boj host crpane RPC
KOMyHMKaIlfje, Kao ¥ ONTUMH3ALM]y pecypca W
MEMOPHjCKHX 3aXTe€Ba CUCTEMA.

2. COOTBEPCKA U XAPJABEPCKA IIVIAT®OPMA

Ileo cucreM ce cacroju W3 JBa MPOIECOPa, O KOjUX je
jenan HalLow modem muponecop koju Hymu Wi-Fi
¢ynkmonanaocty. Ja 6 Ta (yHKIMOHAIHOCT ocTana
M30JI0BaHa, ocTayie (PYHKIMOHAIHOCTH CY JI€0 WHTEPHOT
host ipotiecopa, SweRV EHI. Y oBOoM pany je ommcaH
BEroB pa3Boj. Ynm mpezcrasipa crenvjann3oBany Wi-Fi
HalLow craHnmy Koja mpuMa KOMaHJE OJ CIIOJhAIEBHX
host-oBa ipexo SPI unrepdejca.

1397

https://doi.org/10.24867/33BE36Nesic

oA PORT

m s
s

Cnuxa 1. Jujacpam cucmema

Ha cmmmm 1 je mpukasaH 1e0 CHCTEM 3ajeHO ca
TPOIIECOPOM.

VeeR EH1 Core Complex

D—> JTAG
Master l:ﬂl;selg's

Debug Bus DMA Slave
Master Port

64-bit AXI4 64-bit AXI4 64-bit AX14

LSU Bus

64-bit AXI4

or or or or
AHB-Lite AHB-Lite AHB-Lite AHB-Lite

Cnuka 2. Apxumexmypa SweRV EHI Core Complex-a

Kao miro je mpukazano Ha ciuim Crnuka 2, SweRV EHI
Core Complex canpxu RV32IMC jesrpo ca mparehum
KOMIOHeHTaMa kao mro ¢y DCCM, ICCM, I-Cache, PIC
n Debug wnrepdejc, xao u Bume AXI4/AHB-Lite
nHTepdejca 3a croJballmke KOHEKIH]e.

Cuctem ocuM UHTEPHOT host u HaLow modem niporiecopa
canpxu jomr u SPl-to-AXI, UART wn QSPI wmonyne.
KomyHukanuja ox ekcrepHOr host-a 0 4una ce OfBHja
npeko SPI-to-AXI monmyna Koju omoryhasa
KOMYHHMKAIMjy Tako mTo SP/ CUTHaIM OJ CIIOJHAIIEHET
KoHTposiepa (urp. STM32) OuBajy KoHBepTOBaHH y AXT
npoToKoJ, mpociehenn Ha AXI maructpany, a 3aTHM
mpeko DMA mopra npuctynajy DCCM wmemopuju 3a
pasMeHy mopnaraka. KoMmyHHMKamuja ox 4Mma Ka
eKCTepHOM /0st-y (QYHKIHOHHIIE y CYIPOTHOM CMEpY -
CHTHaJ Koju Tmpouecop emuryje npeko LSU BUS-a ce
pyrtHupa kpo3 AXI marucrtpany u mnojaBibyje ce Ha GPIO
MOPTOBMMa 3a Jiajbe npocichuBame ekcTepHOM host-).

FreeRTOS je m3abpan Kao orepaTuBHU cucteM 3a Wi-Fi
HaLow dnm, mTo mpeacraBjba JIoTHUaH m300p 3a OBY
BpPCTY yrpaljeHuX aruiMkaruja. Y THTamby je ONepaTUBHHU
CHCTEM y peaHOM BPEMEeHY OTBOPEHOT KOJa, TU3ajHUpaH
noceOHO 3a MUKPOKOHTpoJIepe U yrpalene mpormecope ca
OTpaHUYCHUM XaPJIBEPCKHM PECypcuma.

N30op meme heap 4 3acHOBaH je Ha HEHOM HACATHOM
OJTHOCY nmely JICTEPMHHUCAHOT MOHAIIIAmkA,
OTHOPHOCTH Ha (parMeHTalrjy U KOMIATHOMIHOCTH ca
RISC-V (SweRV EHI) oKpyXemeM.

[onemaBame OKpyKema ykibydyje uHcranaujy RISC-V
GNU Toolchain-a. RISC-V GNU Toolchain npencrasipa
KOMIUIETHO OKpYKeHhe 3a pa3Boj, kKoje odyxara GCC
kommajnep, Binutils, GDB debugger wu Newlib C
craniapaHy Oubnuorexy [2]. 3a noapuiky SweRV EHI

jesrpy, anar je konpurypucat ca rv32imc apXuTeKTypoM
n ilp32 ABI-jem.

[IpuiavkoM yCHEIIHOr KOMIIajupamka TIeHEepUIly ce
cienehu u3BopHU Qajinosu firmware.elf, firmware.disasm
u firmware.map. 3a nebaroBame kKoja kopuinheH je J-
Link anantep npeko JTAG untepdejca.

3. IOPTOBABE FREERTOS-A HA SWERV EH1

IloproBame omepaTuBHOT cucremMa FreeRTOS Ha
mporiecop SweRV EHI apxutextype RISC-V obyxBata
aJlanTanyjy BHEroBUX OCHOBHUX MEXaHH3aMa, Kao IITO Cy
3aMeHa KOHTEKCTa, pyKOBamkbe MNpeKuauMa U
KOH(Hrypammja CHCTEMCKOT TajMepa, y CKIamy ca
crenupUIHOCTUMA IIMJbHE XapABepcKe riaTdopme.

IloproBame FreeRTOS-a ©Ha SweRV EHI mnounme
YKIJbyYHBAmEM HM3BOPHUX (PajiioBa KOjU CaJp:Ke OCHOBHE
RTOS dyskumonannoctn wu crneuupuanor RISC-V
aJlanTalMoHoOr cjioja. 3aTUM ce KoHdurypwine trap
handler, uHULIUjANN3Yje CE CUCTEM MPEKUIA U Pagd Ce
HHTErpanyja eKCTepHUX IpeKHa.

FreeRTOS kepHen ce ociama Ha MEPHOAWYHE TMPEKHIE
tajmepa (RTOS tick) 3a nmpebannBame KOHTEKCTa U3Mely
task-oBa, npaheme BpeMEHCKUX MHTEpBalla U YIIPaBJbambe
timeout MEXaHU3MHUMa.

Y ¢dysxkumju vPortSetupTimerInterrupt() ce BpmHn
KoHOuUrypamuja tajMepa. Y moptoBamy FreeRTOS-a 3a
SweRV EHI jesrpo, vPortSetup TimerInterrupt() KOpUCTH
Low Power Controller (LPC) ka0 HW3BOp CHCTEMCKOT
tajmepa. LPC vMa COTNICTBCHM UHTEPHH TajMep KOjH je Y
OBOM Cilyuyajy KOH(UIypHCaH Aa akTHBUpPA NPEKH] Ha
cBakux 1000 MUKpOCEeKyHIN.

Taxole ce y linker ckpuntu nedunume IRQ stack koju ce
KOPHCTH 32 yIPaBJbatbe MPEKUIIMA.

HakoH ycremHo M3BpLICHEe HHULMjaIH3aldje CHCTEMa,
KoHQUrypaluje TNpeKuaHe JIOTHKE U IOKpeTama
scheduler-a, w3Bpmena je mposepa paga FreeRTOS
OKPY)XeHa Kp03 KpeHparmbe U U3BPIIABae BUILE fask-0Ba
ca Pa3IMYUTHM IMPUOPUTETHMA M (YHKIMOHATHOCTUMA.
I'maBHa QyHKIMja atuMKalWje WHUIHjaU3yje OCHOBHH
alIMKaTUBHU fask W mokpehe task 3a xomyHHKauujy,
HaKOH uvera ce mosuBa vIaskStartScheduler(), ynme ce
yhpasJbambe cucteMoM mnpeaaje RTOS-y.

4. RPC IN3AJH

Hujarpam cucrema koju BUaWMO Ha ciuiu | je Wi-Fi
Halow ca cmuke 3. Oun mpecraBmwa Wi-Fi HaLow
CTaHuIly. 3aTHM je HalpaBJbeHa MOJpIIKA Ja Ce CTaHHIA
npeko SP/ mpoToKoiia MOXKe KOpPHUCTHUTH mpeko STM
MHUKpOKOHTposiepa win 1npeko RPi Compute Mopmyna.
Cmuka 3 mpukasyje umnm moBesan ca STM
MHUKpOKOHTposiepoM. Wi-Fi HalLow mpucTynHa Tadka je
nocTaBJbeHa nopen wux. Ciuka 4 mpuKasyje YuIl NOBEe3aH
ca RPi Compute Module 4 10 nnodom.

CucteM kopuctu nocBeheH MEMOPHJCKH PErHOH KOjU
CIIy’)KH Kao JeJbeHa meMopuja usMmely host mporecopa u
JIOKAJIHOT MUKPOKOHTpoJiepa. Kiby4HH acniekT cucrema je
XapJiBepCKa TpaHCianuja aapeca. EkcrepHu host yBek
nume Ha angpece nodeBmm on 0x00000000 u3 cBoje
nepcrnektuBe, anu SP/ slave KOHTpojep ayTOMaTrcKu
TpaHCIIHpa Te ajpece y CTBapHE PU3HUKE aapece JIOKATHE
meMmopuje. OBo omoryhaBa host mporecopy na BHIH

1398

JieJbeHy MEMOpHjY Kao KOHTHHYHMpaH OJIOK MOYEBIIN O]
HyJIe, JIOK CE 3alpaBo IIPUCTYNa OMII0O KOM MEMOPHjCKOM
PErHOHY MUKPOKOHTpOJIEpA.

Cnuka 4. Kongueypayuja ca Raspberry Pi Compute
Module

Ha cmumm 5 mnpukasaH je mojegHocTaBibeH RPC
MEXaHHU3aM CHUCTEMa.

Host Chip
(RPYSTM32) (SWERV EH1)

SPI Write

Y

Interrupt

A

RQ P “TOP_GPIO_OUT |= IRQ_MASK

SPI Read

\J

(Processed Data

Cnuxka 5. [lojeonocmasmen oujacpam RPC mexanusma

KoMyHHMKallMOHH — TNPOTOKOJ KOPHCTH (piieKcHOHIaH
MexXaHW3aM MaKoBama mojaraka. Ha ciuim 6 ce Buau
(dbopmar nmakera.

Kw naxera napamerpa 1

A 26ama 26ajma
Bermwuuria TNopaum napauerpa 2
2 6ajra = M Gajrosa

swwe napamerapa

Crnuxka 6. @opmam nakema

I[Ipn ynmcy mnomataka on cTpaHe host mpouecopa
ayTOMaTCKHl C€ TeHepHuIle NpeKu] Koju obaBemTaBa
JIOKQJIHU CHCTEM O MPUCTHUTIINM ITOJIallMa.

[lo mpujeMy mpekuaa, CUCTEM BpIIM aHAIU3Y caipxkaja
RX buffer-a, unentudukyje BpCTy 3axTeBa M I03MBa
omroeapajyhm Mexanuszam oOpame. Hakon obpane,
pesyaratu ce ynucyjy y TX buffer nmn async TX buffer.
3atuM ce y inferrupt status CTPyKTypu Oenexu naa je
pes3yiTaT NOCTyNaH 3a 4hTame U ceryje ce outr GPIO
perucrTpa Ja CHUTHAIM3Upa Ja je IIoJaTaK ClpeMaH 3a
YHUTame.

[a 6u xomyHukanuja m3mely excrepHor host-a u RISC-V
ypna Owia Tmoy3gaHa M euKacHa, HEONXOAaH je

MeXaHW3aM CHHXpOHHM3alHje KOoju o0e cTpaHe
nHdopMuIe KaJa Cy MOJAIM CIPEMHH 3a IPHjEeM HIN
obOpamy. OBaj cucTteM KOPHUCTH KOMOWHAIH]Y

xapasepckor SPI mpekupa, FreeRTOS notudukammja,
GPIO curnana u cemaopa Ha CTpaHu host-a.

User input waiting for data
¥
packing data pass data 1o application task
r hd
send data process data
h A
wail for IRQ ¢ signal data is ready to be
in that function read

Y

read data

Cnuka 7. /lujacpam moka nooamaxa

RPC cucreM Ha 4nIy peann3oBaH je Kpo3 naBa FreeRTOS
task-a:

e RPC task, xoju je oOroBopaH 3a IpHjeM
monataka mpeko SPI wHTepdejca, mapcupame
yla3He Mopyke M mpociehuBame MoAaTaka Ka
ATUTMKAITIOHOM CJIOjY

e APP task, xoju je mocBeheH n3BpiaBamy JIOTHKE
Ha OCHOBY IIPUMJbCHE KOMaH[E

OBakBO pa3/Bajame OATOBOPHOCTH ocurypasa naa je RPC
task yBeKk clpeMaH Jia pearyje Ha HOBHM npekuna. Hakon
IITO TNPUMH [OJAaTKE H YIaKyje HX Y CIPYKTypy
data_packet t, on ux mnpocnelyje APP task-y npeko
message queue-a. O0paJa KOMaHAE Ce BPIIM HE3aBUCHO,
omoryhasajyhu napanenaHy KOMYHHUKAIH]y u
U3BPILABAIHE.

1399

Ha crpanu excrepHor Aost-a Takolje nocroje 2 task-a. CLI
nnrepdejc omoryhasa kopucHunMMa 1a nHALMpAjy RPC
M03MBE NPEeKo KoMmaHjaHe JmHuje. OBe (QyHKIMjE IIajby
MoJJaTKe Ka YMITy U 3aTUM 4YeKajy pe3yirTaT. Y UCTO Bpeme
IpYyTHU task dexa onroBop o crpaHe yuma. OyHKOHje ce
HAaKOH cllama ONoKupajy ceMadopoM [OK HE CTHTHE
OJIFOBOp HAaKOH Yera ce UCTH mpounta. CBaka (yHKIHja
nMa cBoj cemadop.

5. PA3BOJ HA HOST CTPAHHU

IIpBu neo pasBoja cucrema oOyxBaTao je Kpewpame SPI
Linux npajepa. OBo je omoryhwio OUpeKTHYy ®
epuxacHy KoHTpoiy Hany SPI xomyHukamujom. RPC
CHCTEM je TIPBU IyT MMIUIEMEHTHpaH Ha Raspberry Pi
Compute Module 4 10 Board-y, 360or noapuike 3a spidev
uaTepdejc 'y Linux OKpyXkemy, INITO je 3Ha4ajHO
TI0j€THOCTABMIIO UMILIEMEHTAIH]y TPOTOTUIIA.

30or AXI mpoTokona, adpece Ha Koje Ce INajby WIH
YUTajy TOJAlH MOpajy OWTh ymHOXkakK 4. A 300r Tora
Kako je mmIuieMeHTHpaH SPI, Opoj momaTaka KOju ce
majke Mopa Outu nesmuB ca 4, 300r Tora ce Joiaje
padding. Y cmd_parser Momyiy MOXKe ce BHICTH Ja je
notpeOHO moTmyHO 32-OMTHO mHcame 3a CBe
TpaHCaKLHUje, Ka0 M Ja ce CTPOro 3axTeBa IIOPaBHAHE
anpeca Ha 4 0Oajta [3,4].

Kao curnan 3a 3aBplIeTak TpaHCHAKLHje HUMILIEMETHPAaH
je interrupt MexaHmszam Ha Raspberry Pi ctpanu, e
cetoBame Omra GPIO peructpa o3HauaBa Kpaj oOpaze
HojaTaka.

6. YHAKPCHA IIVIAT®OPMA U ITPOIIIUPEBA

Nako o6e miardopme kopucre uctu SP/ mpoToxon,
nMIuteMenTanyje Ha STM32 n Ha Linux-y ce CyIITHHCKH
pa3iuKyjy y TOTJIeAy HadWHA OpTaHM3allfje M PyKOBama
SPI TpaHcakujama.

Y wummnemenraumju Linux SPI npajsepa kopucTe ce
kepHen cepBucu. CuHXpoHM3anMja wu3Mely mo3uBa
¢yHKIMja W OIroBOpa XapjABepa ce€ YIpaBiba Kpo3
completion mechanism. Jlok ce 3a STM32 mnardopmy
kopucte RTOS xepuen cepucu. KoHKpeTHO
CHUHXPOHU3AaITMOHU MCXaHU3MHU KOje OH HYJIU.

VY okBupy pasBoja RPC cucrteMa, ycnoctaBibeHa je Host
6ubmmoTeka peanmnzoBaHa kao Git submodule, koja
omoryhasa aTncTpaxoBame 3ajeTHUIKIX RPC
(YHKIIMOHATTHOCTH ¥ FHUXOBO JIAKO JeJbemhe m3Mely
pas3mmuuTHX Tpojekata u rargopmu. OBaj MeXxaHH3aM
oMoryhaBa Jia ce y BHIIIE HE3aBHCHHX IpOjeKaTa KOPUCTH
uctu uHTEepdejc, nok ce maardpopmu crenuduuHe
UMITIEMEHTAIMje MOTY MPHIATOAUTH WM 3aMEHUTH Oe3
yTHIaja Ha OCTAaTaK CUCTEMA.

7. ACKOPUIITREWE PECYPCA

3a amamm3y wuckopuimhema MeEMOpHje TPHMEHEHH CY
anatu riscv64-unknown-elf-nm un elf-size-analyze, xoju
oMoryhaBajy wuaeHTudukanujy HajBehinx mnorpoayda
MeMOpHje U Mpelu3Ho npoduincamwe ELF dajna.
YTBpheHo je ma cekmmja rodata 3ay3mMa 3Ha4yajaH N1eo0
DCCM-a, wmTo je y3pOKOBaIO MpeKopadcwme
PacIoIoKUBE MEMOPHjE TOKOM KOMIIHJIALIHU]E.

[IpobmemM je pelieH penokanujoM rodata CeKuuje y
ICCM, wiro je noppkaHo apxutekrypom SweRV EHI, n

CMambemheM BelIMYMHE Sfack-a y CKIaly ca pealHuM
norpedama.

OBMM onTuMHu3anMjamMa [OCTUTHYTO je edukacHuje
kopuiiheme pecypca U OU4yBaHa je CTAOUITHOCT CUCTEMA.

8. 3AKJbYYAK

Y oBoM pany ycnenso je peanuzoBaH RPC cucteM Koju
omoryhaBa cTabmiHy KoMyHHKanujy m3mel)y yrpalenor
Wi-Fi HaLow ypehaja u croJpalimer /ost-a, y3 moy31aHo
¢yHKIMOHMCake y peamHoM BpemeHy. Cucrem je
npmiaroeH orpaHuueHBUMa yrpaleHUX OKpyXema H
NOoJp)KaBa MNPOLUIMPHBOCT HA BHUILNE XapJBEPCKHX
iaTgopmu.

WNako Oe3zbenHocT HHje Omia MpHOPHUTET Yy OBOj dasm,
MOTEHINjall 3a Jajbe yHampelheme IOCTOjU yBohemeM
MeXaHu3aMa 3a ayTeHTHKAIWjy U SHKPUIILH]y IoJaTakxa.
Ykonuko Oynayhe ammukaruje Oyay 3axTeBasie MOY3IaHy
3alITUTY KOMYHHUKAllMje, CHUCTEM C€ JIaKo MOXKe
NPOLIMPHUTH TUM (PyHKIMOHaTHOCTUMA. RPC MOXe OUTH
MPOIIMPEH MEXaHW3MHMa 3a ayTeHTHKalujy ¢
muppoBame, YUME MOXKE HCIYHHTH KpHTEpHjyMe 3a
SESIP Level 3, mTo ce 4ecTO 3aXTeBa y WHIYCTPHjCKUM
arummkanjama [5].

9. JUTEPATYPA

[1] “Distributed Systems : Concepts and Design ”, by
George Coulouris, Jean Dollimore, Tim Kindberg,
Gordon Blair.

[2] https://github.com/riscv-collab/riscv-gnu-toolchain
(mpuctymbeno y anpury 2025.)

[3] https://github.com/pulp-
platform/axi_spi_slave/blob/master/spi_slave regs.sv
(mpuctymbero y ampuiy 2025.)

[4] https://github.com/pulp-
platform/axi_spi_slave/blob/master/spi_slave_cmd pa
rser.sv(npucTysbeHo y anpuiry 2025.)

[5] https://globalplatform.org/sesip/ (IpUCTYIIBEHO Y jyTy
2025.)

KpaTka ouorpaduja:

Mapuja Hemuh pohena je y Kukungu 1999. ron. ummomcku
pan Ha @akynTeTy TEXHMYKHX Hayka U3 00JiacTH
EnektpoTexHHKe W padyyHapctBa — EmOenen cucteMun

aropuTMu onopanuia je 2022. roguxe.
KOHTaKT: nesicmarijal23@gmail.com

1400

https://github.com/riscv-collab/riscv-gnu-toolchain
https://github.com/pulp-platform/axi_spi_slave/blob/master/spi_slave_regs.sv
https://github.com/pulp-platform/axi_spi_slave/blob/master/spi_slave_regs.sv
https://github.com/pulp-platform/axi_spi_slave/blob/master/spi_slave_cmd_parser.sv
https://github.com/pulp-platform/axi_spi_slave/blob/master/spi_slave_cmd_parser.sv
https://github.com/pulp-platform/axi_spi_slave/blob/master/spi_slave_cmd_parser.sv
https://globalplatform.org/sesip/

V7

36o0pHMK papoBa PaKkynrera TeXHUYKMX Hayka, Hoeu Cap

VIK: 4.3
JIOU: https://doi.org/10.24867/33BE37Miskovic

YHAINIPEBEILE MODBUS CUMYJIATOPA 3A PEAJIMCTUYHY CUMYJIALINJY
YPEBAJA Y CUCTEMUMA 3A YIIPAB/JBAIE EHEPT'UJOM (EMS)

ENHANCEMENT OF A MODBUS SIMULATOR FOR REALISTIC SIMULATION OF
DEVICES IN ENERGY MANAGEMENT SYSTEMS (EMS)

Annpea MumkoBuh, @axyrmem mexnuukux nayka, Hosu Cao

Crynujcku nporpam —- PAYYHAPCKA TEXHUKA "
PAYYHAPCKE KOMYHUKALIUJE

Kpartak caapxkaj — Tema ooz paoa jecme ynanpeherve
Modbus cumynamopa, paszeujenoe y yunsy mecmupared
cucmema 3a ynpasmarbe enepeujoM. Ynanpehere ce
oeneda y moeyhnocmu cumynayuje paoa ypehaja xoju
yuecmeyjy 'y cucmemuma ynpagasared — eHepeujom,
Kopucmehiu cmamuuke U OUHAMUYKe — CUMYIAYUje.
Passujeno peuiterve omoeyhasa mecmuparse
@yuxkyuonannocmu u nepgopmancu cucmema 0e3
nompebe 3a puszuukum ypehajuma.

Kbyune peun: Cumynamop, Modbus,

YAPA6/barea eHep2ujom, cumyrayuje

cucmemu

Abstract — The topic of this thesis is the improvement of a
Modbus simulator, developed for testing energy
management systems. The improvement is reflected in the
ability to simulate the operation of devices involved in EMS
systems, using both static and dynamic simulations. The
developed solution enables functionality and performance
testing without the need for physical devices.

Keywords: Simulator, Modbus,
systems (EMS), simulations

energy management

1. YBOJ

KoHnenT cumynaropa npecraBiba KJbydaH anaT y pa3Bojy
U TECTHPaly PA3IMYUTHX cUcTeMa. [JTaBHU pasjor jecte
jep omoryhaBa mpElU3HO MOMACIOBAKE W aHAIU3Y
NoHaIlIama ypehaja y KOHTPOJMCAHUM YCIOBHMa U
HAMEPHO M3a3BaHMM OKOJHOCTUMA. Y CaBpeMEHHM
CUCTEMHUMa YIIpaBJbamka CHEPTrujoM, paj ca ypehajuma umje
j€ TMoHaIame PeIBUIUBO MTPECTaBIba H3a30B, UMajyhu y
BHUJy OTpaHUYEHy JOCTYIMHOCT WJIN BUCOKY LieHy [2]. Kao
OJI'OBOp Ha OBaj M3a30B, pa3BHjeH je Modbus cumynaTtop
KOjH OIOHAIla peaJuCTH4YHa IIOHamama ypehaja y
CHCTEMy yIpaBibama eHeprujoM. Cumynatop omoryhasa
HCTOBPEMEHO TECTHpare BEIHKOT Opoja ypehaja u mpyxa
MOTyhHOCT WCIUTHBama pa3IHYNTHX CIEHapHja, 0e3
motpebe 3a pr3nukuM ypehajuma. Y 0BOM paay OmIHCaH je
pa3Boj m yHampeherme HaBENEHOT CHMYJaTopa, HYHjOM
UMILIeMeHTaujoM je omoryheno nerasbHuje npahemwe u
BaJHMIaIja TOHAIIaka MEpHUX ypehaja y cucremmma
yIpaBJbatba EHEPTHjOM.

HAIIOMEHA:
Ogaj pax npoucTekao je U3 MacTep pajga 4iju MEHTOP
je 6mna ap Jesena Kosauesuh, pen. npod.

2. TEOPHJCKE OCHOBE

Ha camom moueTky, moTpeOHO je yrmo3HaTH ce ca
OCHOBHHM TEOPHjCKUM NPUHIUIINMA, Y IHUJBY O0JbET
pasymMmeBama paja.

2.1. CucteM ynpasbama eHeprujom (EMS)

Energy Management System (EMS) je cucteM nu3ajHUpaH
3a mpaheme, KOHTPOIY M ONTHMHU3ALM]y NMPOHU3BOAKE U
MOTPOIIHE EHEPTHje Y Pa3InuuTHM 00jeKTHMa, Mpexama
WJIN UHIYCTPHUjCKUM HocTpojebuMma [1]. EMS unTterpurie
XapIBepcKe 1 coPpTBEepcKe KOMITIOHEHTE Kako 01 omoryhmo
e(MKacHO yIpaBJbamhe CHEPTHjOM U CMAmbEhe TPOIIKOBA,
JIOK HMCTOBPEMEHO NoOBehaBa IOY3MaHOCT W CUTYPHOCT
EHEePreTCKHX CHCTEeMa.

I'maHe dynxmmje EMS cucrema yKIby4yjy:

1. IIpaheme n npukympame nojaTaka

2. AwHanu3a ¥ BH3yeIH3alHja

3. Konrpona n ayromaTuzaiyja

4. OnruMmu3anyja v NpeJUKTUBHO YIIPaBJbahe

EMS ¢yHkumonume Tako MITO MPUKYyMJba IMOJATKE ca
pasmuuutux ypehaja (HOp. ceH3opH, mameTHa Opojuia),
oOpalyje ux kako Ou HICHTH(HUKOBAO 00pacIie MOTPOITHE
n HeeHKaCHOCTH, BH3yaslu3yje HH(pOpMaIHje Kpo3
rpagukoHe u pambopne, omoryhaBa ayToMaTcKo WM
MTOJTlyaBTOMATCKO yTIpaBibamke ypehajuMa paan cMamermha
HermoTpeOHe TMOTPOIIkbe W KOPHUCTH alIrOpHTME 32
NPEIUKTUBHO YIIPaBJbakbe KaKo OH ONTUMH30BA0 paj
cucrema 1 OanaHcupao Kopuiheme pasuuuTuX M3BOpa
eHepruje.

[Mpumena EMS-a ce jaBiba y UHIYCTPHjH, KOMEPIIHjATHIM
3rpagama, mamMeTHUM Kyhama W eNeKTpOAMCTPUOYIHjH.
[IpemHocTH ce ornenajy y cMamemy TPOIIKOBa CHEPTrHje,
nmosehamy eHepreTcke e(QUKacHOCTH, CMambCHy EMHUCH]E
LITETHUX racoBa U noBehamy Moy3aaHOCTH CUCTEeMa, Kao
1 MOryhHOCTH MHTErpalyje 0OHOB/BHBUX M3BOpa EHEPTHje
ca nocrojehum cucremom [1,3].

2.2. Ypehajuy EMS

EMS nnrerpuiie pasznnunte ypehaje xoju omoryhasajy
npaheme, KOHTPOITy M ONITUMH3AIIH]y eHepruje [S, 6]:

Vpehaju 3a Mepere U MPUKYIUbabe MoJaTaka
Komynunkanmonu ypehaju

VYpehaju 3a cKIIaaUITEeHE TOAaTaKa
VYnpasseauku ypehaju

Kopucumuku uarepdejcu

VYpehaju 3a 3amruty u 6e36e1HOCT

SNk v =

1401

VYpehaju 3a Mepeme M NPUKYIUbalE MOAaTaKa Oerexe
MOTPOLIY W TPOM3BOAIY CHEpruje, Kao M KIJby4yHE
CJIEKTPUYHE TIapaMeTpe IIONyT HamloHa, CTIpyje u
¢pekBeHnyje, npyxajyhu ocHOBY 3a NeTajbHy aHau3y
cucreMa [6]. Komynukammonu ypehaju omoryhasajy
moy3Jga"y pasMeHy wuH(popMamja usMel)y ceH3opa,
akTyaropa u co¢TBepckor aema EMS-a, xopucrehn
CTAaHJApPIU30BaHE IPOTOKOJIE M MPEKHE TEXHOJOTH]E.
VYpehaju 3a ckmaaumTeme MOAATaka YyBajy HCTOPH]CKE
nHpopManuje, mMTO omoryhaBa aHamm3y TpEHIOBa,
npaheme nepHopMaHCH U JOHOIICHE OUTYKa 3aCHOBAHUX
Ha JyropoyHuM oOpacumma. Ymparsbauku ypehaju
omMoryhaBajy ayTOMaTCKO U HOJIyaBTOMAaTCKO YIIPaBJbambe
MOTpoIIayMMa eHeprije, paay ONTUMH3ALIH]e TOTPOLIHE U
moBehama edukacHoctn. KopucHuukm wuHTEpdejcH
npyXKajy oreparepuMa IIperiie]] CTama CHCTEMa Kpo3
BH3yaNnu3alyje, onakmaBajyhn mpaheme u KOHTPOIY y
peammom BpemeHy. Ha kpajy, ypehaju 3a 3amruty u
6e36enuocT mTHTe EMS 11 OCUTypaBajy 3aIITUTY MTOJaTaKka
1 CTaOMITHOCT MH(PPACTPYKTYpeE, ITHTE KOMYHHKAIH]Y O
cajoep mpermm W omoryhaBajy mmppoBaHy
KOMYHUKAIH]Y.

2.3. Modbus npoToKoJa

Modbus je KOMyHHMKaIllHIOHH HPOTOKOJI KOjU CE HIMPOKO
KOPUCTH y HWHIYCTPHjH 3a IOBE3UBAE EJIEKTPOHCKUX
ypehaja ® ceH3opa, TMMOCEOHO Yy CHCTEeMHMa 3a
ayToMarusalMjy M YIpaBibame eHeprujoM. [IpoTokon
omoryhaBa pasmuuutuM ypehajuma kao mTO CY
KOHTPOJICpH, CEH30pH W MepHH ypehaju, ma pasMemyjy
MOAATKE Ha jeJHOCTABAH M CTaHIapJaH HaulH.

Modbus GyHKUMOHWIIE IO TPHHIWIY KIIHjEHT-CepBEp
(panmje mToO3HaTOM Kao master-slave) apXHWTEKType.
Kiujenr je obuuno ypehaj miu codTBepcka aruimkaiija
KOja MHUIMpa KOMYHHUKAIM]y, JIOK je cepBep ypehaj koju
nprMa 3axTese u Bpaha oAroBope, u To ¢y ypehaju kao mro
Cy aMETHO OpPOjHJIO, CCH30p U CITHYHHU [4].

[Mocroju Bumie Bapujantu Modbus IpoTOKONA, & y OKBHPY
OBOT paja kopumhexe cy:

1. Modbus RTU — kopuCTH CepHjcKy KOMYHHKAIH]y
1 TIOTOJIaH je 3a MHIYCTPHjCKa OKpYy>Kema 300r
JEAHOCTaBHOCTH, TOY3JaHOCTH W HUCKHX
TpomkoBa. lieanan je 3a MoBe3MBamE BEIUKOT
Opoja ypebhaja.

2. Modbus TCP/IP — pagm TpeKo Mpexka
3acHOBaHMX Ha Ethernet mporokoiny, omoryhasa
OpKy ¥ JlaKily HWHTErpalujy y caBpeMeHe
MpEKHE CUCTEME.

Modbus TpOTOKON je jeIHOCTaBaH, MOYy3JaH W JaK 3a
HMILUIEMEHTAIH]y, ITO je JOBEJO 10 TOra Jia JaHac Oyxae
jeman on Hajuemmthe KopumiheHMX TMPOTOKOJIA 3@
MOBE3MBakbe MHIYCTpUjckuX ypehaja. Omoryhasa EMS
CHCTEMHMa Ja TPEUU3HO M CTa0WIHO TPHKYIUbAjy
NOAaTKe O MOTPOIIbH, NPOU3BOAKBM M JAPYTHM
mapaMeTpuMma, INTO je KBYYHO 3a mnpaheme #
ONITUMU3AIH]Y CHCTEMA.

2.3.1. Modbus nopyxe

CBaka Modbus mnopyka uma yHampen neuHHCaAHY
cTpykTypy. [Ipumep crpykrype y RTU dopmary:

Anpeca ypehaja

OYHKIMJCKU KO

[Hopauu

Kontpona warerpurera momataka (CRC wim

LRC)

Y Modbus TCP ¢dopmary, cTpyKTypa MOpyKe YKJbydyje
MBAP (eng. Modbus Application Protocol) 3arnaBibe:

Transaction ID
Protocol ID
Length

Unit ID

¢————————— Modbus RTU N0pyKa =y

Aggeca ypehaja " -
] o kas Magaun CRG

Modbus TGP nopyka

Anceca ypehaja

Transaction 1D
e Unic 10

Protocol IR Length o xoa Menaun

Crnuka 1 - Cmpykmypa Modbus nopyxa

3. OIINC PEHIEIHA

VY oxBupy oBor paga ¢okyc je Omo Ha yHampehemy
CHMYJIaTopa, UMIUIEMEHTHpAHOr nAa Oyne TJIaBHU ajar
NPUIMKOM TECTHUpama CHCTEMa 3 YIIPaBIbathe CHEPTHjOM.
I'maBHm s yHampelhema jecTe MOTYRHOCT TecTHparmba
MOHAlllalha YUTABOT CUCTEMA y pEeajlHUM YCJIoBHMa 0e3
notpede 3a pusnukum ypehajuma.

3.1. ApxuTeKTypa cucTemMa

Mo6unHa/se6 annukauuja

\uempanna xoMnonenV ‘
=2)Y

ﬂ Bbasa nopgaraka

Cumynatop
(]
®

L

b

Cnuka 2. Apxumexmypa cucmema

Ha cnumu je mprka3aHa apXUTEKTypa CHCTeMa KOjH ce
€acToju U3 YeTHPHU OCHOBHE KOMIIOHEHTE:

1. IleHTpanHa KOMIOHEHTa — IIPEACTaBJbA
KJbYYHH €JIEMEHT apXUTEKType CUCTEMa U JielTyje
Kao MOCpPeAHMK u3Mehy CBUX OCTalMX

KoMmroHeHTH. theHa ynora je na y peaiHOM
BpeMeHy TmpuMa u oOpaljyje Tememerpujcke
M0JIaTKe, BPIIU HUXOBY BAIMAALM]Y U YIIUC, KA
u aa npocinehyje onpehene 3axTese.

2. ba3anogaraka

3. MoOnnna/Bed amnukanuja — IpeACTaBIba
JMPEKTHY Be3y KOpHCHHKa ca cucteMoM. Ciyku
Kao BH3YEJHHU U KOHTPOJIHH CII0j KOju oMoryhapa
HAJ30p, aHaNW3y W YIpaBlbamke ypehajuma.

1402

KopucHuim nmajy jacHO TpelCcTaBbeH Iperien
MOTPOLIE U IPOU3BOJLE Y PEaTHOM BPEMEHY,
Ka0 M UCTOPHjCKE To/aTKe y BUIY TpaduKoHa U
tabea.

4. Cumyaarop ypehaja — ononama pan peamHHx
ypehaja (mamerHa Opojunma, PV uHBepTepH,
Oarepujcku cuctemMu, EV mymaunm W NpyTrH) H
Tako omoryhaBa pealuCTHYHO TECTHPAE
cucreMa 0e3 morpebe 3a prsnakum ypehajuma [7,
8]. mmnemMeHTHpaH je y MPOTPaMCKOM jE3UKY
Python, xopumhemwem Pymodbus Onbdaunorexe.

3.2. Pymodbus 6ub1uorexa

Pymodbus je open-source Python 0ubnuoreka Koja
npezcTaBba UMIUIeMeHTannjy Modbus nportokona [13].
[otmyro je wammcana y Python-y u owmoryhaBa
jeImHOCTaBHO Kpeupame Modbus KujeHTa u cepBepa, MITo
je YMHH TIOTOJHOM 3a Pa3BOj CHMYJATOpa M TECTHUPAHE
WHIYCTPHjCKHX CHCTEMA.

Y okBHpY OBOT paja KopumheHa je 3a:

1. HmmnemeHTanmjy Modbus cepBepa y
CHMYJIATOpPY KOjU €MUTYje MOAATKE KOJH MOTHIY
o]l CTBapHHX ypehaja

2. JlebuHucame perucrapa y KojuMa Ce YyBajy
CHMYJIUpPaHEe BPEIHOCTH

3. OOpany 3axTeBa KJIHjeHTa

3.3. Cumyananuje

CuMynanuje NpeacTaBibajy KOHTPOJHMCAHO, HaMEPHO M
TIOHOBJEMBO M3BOleme clieHapHja paga ypebhaja y nuiby
TeCTHparma, Mepema, OINTHMHU3alMje W BepUQHKaIije
BHUXOBOI MOHANIamka. Y OKBHPY OBOT pajia, MPOLINpEHEe
CUMyJIaTopa je W3BPIICHO [OJaBamkeM CHMYyJaIuja
MoHaIIamka cTBapHuX ypehaja Tokom 24 cara. Cumynaimje
MOTy OWTH CTaTHYKE WJIM JHUHAMHYKE, Y 3aBUCHOCTH O]l
HayMHa FeHepucama MEPHUX M0/IaTaKa.

3.3.1. CraTnuke cumyJjainuje

Cratuuke cuMyllalldje ce 3aCHHBAjy Ha HU3Y YHaIpen
neuHMCAaHMX TONaTaka, KOjU Cy TNPHUKYIUBEHH ca
crBapHOr ypehaja Tokom 24 cara. MepHe BpeaHOCTH Cy
CHMMaHE CBaKe CEKyHIe Kako Ou ce 00e30eamia BHCOKA
BpEMEHCKa pe3oiTyninja nojaraka. IIpumiukom cumymnanyje,
CHUMJBCHH TOAAIM C€ IHaJby Y HCTOM PpENOCIEny
[IEHTPAIHO] KOMITOHEHTH CHCTeMa, duMe ce obOe30ehyje
BEpHA perpoAyKIHja paaa ypehaja y pearHuM ycioBuMa.

IIpemHocT OBOr MPHUCTYIAa jeCTe BEPOJOCTOJHOCT
TCHEPHCAHUX BPEIHOCTH, OK j& OrPAaHHUYCEHE Y TOME IIITO
CIIEHAPHO OCTaje HEMPOMEUB M HE MOYKE MOIPYKATH HOBE
WIIH HEOUYCKHMBAHE YCIOBE pajga. 300r Tora ce CTaTHyukKe
CUMYyJIallFje YeCTO KOPUCTE 3a TeCTUpame pana ypehaja y
HCAUTHUM YCJIOBUMA, IITO j€ KOPHCHO 3a BEepUPHKAIU]Y
OCHOBHUX (DYHKIIHOHATHOCTH CHCTEMA.

3.3.2. lunamMu4Ke cumMyJianmje

JuHaMu4Ke CHUMyNaldje MpeNcTaBibajy HampexHUju
MIPUCTYTI Y TeCTUpamy U Bepuduranuju pana ypehaja u
EMS cucrema, jep omoryhapajy reHepucame momaTaka y
CKJIaay ca neUHICaHUM CICHApUjiMa U YCIOBHMA Pajia,
a He caMo penpoaykKiujy Beh nocrojehux nogaraxa.

OcHOBHa Hjeja IMHAMUYKE CUMYJIAlMje je 1a ce KOPUCTH
KoH(}Urypamuona garoreka y JSON dopmary, y k0joj cy
Npenu3Ho JeUHHCAHM BPEMEHCKH HMHTEpBAIM U
onrosapajyhe BpemHoctu aktuBHe cHare (P) 3a cBakm
HHTEPBAJI TOKOM jeqHorT naHa. OBaj JSON dajn ciayxu Kao
ylia3 3a CHMYyJIaTop, KOjU 3aTHM, Ha OCHOBY BPEIHOCTH
aKTHBHE CHare Yy JaToM HHTEpBAly, IPHMEHOM
onroBapajyhnx Qm3mukux (GopMmyna n3padyHaBa OCTajie
pelieBaHTHE BeIMYUHE Kao mTo cy: HanoH (U), ctpyja (1),
peaxTuBHa cHara (), mpuBHAHA cHara (S), GpexkBeHnnja
(f), yKynHO yTpoIieHa Win npou3BeaeHa enepruja (E).

ITpumep Qopmyiie 3a H3padyyHaBambe HAallOHA!

U _{ U+ A*,akojed, =1
17U, — A akojed, = —1

¢
d = {—1, ako Uy, = 240V)
t 1,ako Uy, < 228V
I'ne je:
e U, — BpeJHOCT HAIMOHA Y TPEHYTHOM KOpaKy t
e d,— mpaBan npomeHe
e A" —kopak moBehama koju uzuocu 0,2V
e A —Kopak cMamema koju uzHocu 0,15V

ITpumep dopmyiie 3a n3padyHaBame CTpyje:

= —2t 2
t_Ut-cos<p 2)
I'ne je:

e P.— aKkTuBHa cHaray TpeHyTKY t

e Ui — HamoH y TPEHYTKY t

e cos¢ — dakrop cHare (Bapupa m3mehy 0,92 u
0,95 y 3aBucHOCTH 01 7I00a JaHa)

Power consumption

Power (W]

: 0000 preom preem s0500
Cnuxka 3. IIpumep cumynayuje moxom 24 cama

Power consumption

L

3000 ‘

* 2000

| T

- ’ ‘

- |

: - - - ~~
-

Cnuxka 4. IIpumep cumynayuje moxkom 24 cama

1403

4. TECTUPAILE

Tectupame je cnpoBeneHO ca LMJbEM JAa Ce IPOBEPH
TayHOCT, IOY3JaHOCT W CKalaOWIHOCT pa3BHjEHOT
cuMynaropa. 3a aHamu3ly Ccy KopumheHH yHampen
Jne(UHUCAHK CIIEHAPH]H KOjU 00yXBaTajy HOpMaJaH paj,
pan npu nosehanom onrepehemy, Kao U yciioBe y Kojuma
nonasu 1o mnopemehaja y komyHukanuju. Tectupame je
MOJACJbEHO Yy JBE Ipyle — (YHKIHOHATHO M TECTHPAHE
nephOopMaHCH.

Tabena 1 - Qynxyuonanuu mecmosu

Tect ciyyaj OuexknBanu Crartyc
pe3yJiTat
I'enepucame [omauu npare
JTUHAMHYKIX neuHICaH 4
rmojaraxka JSON cnenapuo
I'enepucame ITomamu
CTaTHYKUX oJIroBapajy v
nojiaTtaxka CHUMJBCHUM
BPEJHOCTUMA
Yurame UcnpasHo
ojlaTaKa u3 OYHMTAHE 4
perucrpa BPETHOCTH
[Nucamwe UcnpasHo
BPEIHOCTH y yHHCaHa v
perucrap BpEJHOCT
Cumynarnuja CucreM
IpeKua paaa npujaBJbyje
ypebhaja TpELIKy U He 4
emMuryje
ToJIaTKe
bp3o memame Cucrem
BPEIHOCTH YCIIEIIHO
perucrapa Oemnexu cBe v
npoMeHe 6e3
ryouraka
roJiaTaKa
Tabena 2. Tecmosu nepgpopmancu
Bpoj IIpoceuno | MakcumanHa CPU
ypebaja BpeMe JaTtenuuja | ontepeheme
013HBA [ms] [%]
[ms]
10 15 40 12
50 28 75 27
100 45 120 46
200 92 210 78

CripoBeieH! TeCTOBHY MOTBPYYjy /a pa3BHjeHH CUMYJIIATOP
HCIyEhaBa IHJBEBE MOCTaBJbeHe y pamy. OH omoryhasa
BEPHY pempoayknujy pama ypehaja, crabuiaaH mpeHOC
nojgaraka, ckamabwiaHocT Beher Opoja ypehaja u
OTIIOPHOCT Ha IPELIKe.

5. 3AK/bYYAK

Y oBOM pamy IpeicTaBbeH je pa3BOj M yHampeheme
Modbus cumynaropa ca wmoryhnomhy peanucTuaHor
omoHamama paga ypehaja y oOkBupy cucTemMa 3a
yrnpaBieambe eHeprujom (EMS). Pa3Bujern cumynaTop
ycemHo — oMoryhaBa TecTupame W BaIHOALHU)Y
¢yakmuoHamHOCTH 0Oe3 ymorpebe ¢u3mukux ypebhaja,

YMME CE¢ 3Ha4YajHO CMambyjy TPOIIKOBHU, yOp3aBa pa3Boj u
nosehaBa 0e30€THOCT TeCTHpamba.

HmnneMeHTanyja je 3acHOBaHa Ha IPOTPaMCKOM jE3HKY
Python n Pymodbus ©nbnuorenu, mro je omoryhwmio
¢drekcnOMTHY KOHPUTYpannjy MOHAIIaka CHMYIHPaHUX
ypehaja w moapmKy 3a BETUKH Opoj MapaleTHHX
MHCTaHUW. YHanpeheme ce oriiena y nBa Moryha tuma
pala cuMyJlaTopa — CTaTHYKe ¥ AWHAMHYKE CHMYyJIalyje.
Cratnuke cumyiandje omoryhaBajy —penponyKuujy
yHanpe[1e(pMHUCAHUX CKYIIOBa I0aTaKa, IPUKYIUbEHUX
ca peayiHuX ypehaja, MOrogHuX 3a TECTHPAHE y HACATHIM
ycnoBuma. JuHamuuke ~— cumynanuje Hyzxe — Behy
¢ekcubmwIHOCT, jep omoryhaBajy KOH(UTypHUCAE
cuenapuja y JSON dopmaty v JUHAMUYKO U3PAYyHABAC
pENeBaHTHUX EJIEKTPOEHEPreTCKUX NapaMerapa Ipema
¢m3nukM popMynama, MTO je MOCEOHO KOPHUCHO 3a
TECTHpamke CHUCTEMA Y NPOMEHJEUBHM HJIM SKCTPEMHHM
yCIIOBHMA.

PesynraTn uMmImieMeHTanMje MOKasyjy /1a OBaKO pa3BHjeH
CHMYJIATOp MOXE BEPHO Ja OIIOHAIIA paj BEIHUKOT Opoja
ypehaja, reHepuiie pearHCTHYHE MOAAaTKE W oMoryhu
TecTupame KibydHuX EMS QyHKIMOHATHOCTH.

4. JUTEPATYPA

[1] A. R. Al-Alj, 1. A. Zualkernan, M. Rashid, R. Gupta,
and M. AliKarar, “A Smart Home Energy Management
System Using loT and Big Data Analytics Approach,”
IEEE Transactions on Consumer Electronics, vol. 63,
no. 4, pp. 426434, Nov. 2017.

[2] Magnusson, P. S., Christensson, M., Eskilson, J.,
Forsgren, D., Hallberg, G., Hogberg, J., Larsson F.,
Moestedt A., Werner, B. Simics: A full system
simulation platform. Computer, 2002: 35(2), 50-58.

[3] V. K. Barai, S. R. Mohanty, and N. Kishor, “A review
on modeling and simulation of energy management
systems,” International Journal of Energy Research,
vol. 39, no. 10, pp. 1311-1323, Aug. 2015.

[4] "Modbus Application Protocol Specification V1.1b3,"
Modbus Organization, 2012. [Online]. Available:
https://modbus.org/docs/Modbus_Application_Protoc
ol_V1_1b3.pdf

[5] F. C. Schweppe, Energy Management Systems for
Electric Utilities. Springer, 2013.

[6] A. S. Bouhouras, P. M. Georgilakis, and D. P. Labridis,
“A comprehensive review of energy management
systems for microgrids,” Electric Power Systems
Research, vol. 122, pp. 159-168, May 2015.

[7] Park, S., Kim, H., Moon, H., Heo, J., and Yoon, S.
Concurrent simulation platform for energy-aware
smart metering systems. IEEE Transactions on
Consumer Electronics, 2010: 56(3), 1918-1926.

[8] Cen, Z. Modeling and Simulation for an 8 kW Three-
Phase Grid-Connected Photo-Voltaic Power
System. Open Physics, 2017: 15(1), 603—-612

[9] Jovanovi¢, B., Filipovi¢, J., & Baki¢, V. (2017). Energy
management system implementation in Serbian
manufacturing — Plan—-Do—Check—Act cycle approach.
Journal of Cleaner Production, 162, 1144-1156.

[10] Alahakoon, D., & Yu, X. (2016). Smart electricity
meter data intelligence for future energy systems: A
survey. IEEE Transactions on Industrial Informatics,
12(1), 425-436.

1404

https://modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
https://modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf

[11] S. K. Rathor and D. Saxena, “Energy management
system for smart grid: An overview and key issues,”
Int. J. Energy Res., vol. 44, no. 6, pp. 4067—4109, 2020.

[12] S. K. Khaitan and J. D. McCalley, “Design
Techniques and Applications of Cyber-Physical
Systems: A Survey,” IEEE Systems Journal, vol. 9, no.
2, pp- 350-365, Jun. 2015.

[13] GitHub — Pymodbus Documentation. Available:
https://github.com/pymodbus-dev/pymodbus

Kpartka ouorpagmuja:

- Annpea Mumkosuh polena je y
anmy 1999. rogune. OcHOBHE
CTyI¥je 3aBpIIMJIa je Ha
@axynTeTy TeXHHYKUX HayKa
2022. rogune. Mactep pan Ha TeMy
,» YHarnpeheme Modbus cumynaropa
38 PEATHCTUYHY CUMYJIALH]y
ypehaja y cucremrma 3a
yIpaBJbake CHEPrUjoM™
onbpanmna je 2025. roguxe.

1405

https://github.com/pymodbus-dev/pymodbus

g?ﬁ Zbornik radova Fakulteta tehniékih nauka, Novi Sad

UDK: 4.41
DOI: https://doi.org/10.24867/33BE38Rajnovic

MIGRACIJA MIKRO KLIJENTSKIH APLIKACIJA IZ VEB U DESKTOP OKRUZENJE

MIGRATION OF MICRO-FRONTEND APPLICATIONS FROM WEB TO DESKTOP
ENVIRONMENT

Teodora Rajnovi¢, Fakultet tehnickih nauka, Novi Sad

Oblast — SOFTVERSKO INZENJERSTVO I
INFORMACIONE TEHNOLOGIJE

Kratak sadrzaj — U radu je predstavijena arhitektura
mikro klijentskih aplikacija (eng. micro-frontend) i
prednosti koje ovaj pristup donosi u razvoju veb aplikacija.
Opisani su savremeni pristupi u razvoju desktop
aplikacija, pri cemu je Electron identifikovan kao
najprikladnije resenje za migraciju postojece mikro
klijentske aplikacije u desktop okruzenje. Prikazana je
softverska arhitektura konkretne veb aplikacije i proces
njene transformacije u desktop aplikaciju, uz ocuvanje
modularnosti, internet konekcije i postojeceg koda.

Kljuéne refi: Mikro klijentska arhitektura, Desktop
aplikacije, Electron radni okvir

Abstract — The paper presents the architecture of micro-
frontend applications and the advantages that this
approach brings in the development of web applications.
Modern approaches in desktop application development
are described, with Electron identified as the most suitable
solution for migrating an existing micro-frontend
application to a desktop environment. The software
architecture of a specific web application and the process
of its transformation into a desktop application are

presented, while preserving modularity, internet
connection and existing code.
Keywords: Micro-frontend architecture, Desktop

applications, Electron framework

1. UVOD

Micro-frontend arhitektura postaje sve popularniji pristup
u razvoju modernih i savremenih veb aplikacija. Ovaj
pristup omoguc¢ava podelu velikih monolitnih klijentskih
aplikacija na manje, nezavisne module, Sto doprinosi
lak§em odrzavanju, unapredenju i timskom radu. Micro-
frontend koncept koristi principe mikro-servisne
arhitekture, ali se primenjuje na frontend deo aplikacije [1].
Iako su veb aplikacije danas dominantne zbog svoje
dostupnosti preko veb pregledaca, korisnici informacionih
sistema Cesto preferiraju desktop aplikacije zbog boljih
performansi, integracije sa operativnim sistemom i vece
kontrole nad bezbednosti i privatnosti podataka.

U slucajevima kada su veb aplikacije realizovane kroz
upotrebu micro-frontend tehnologije, mogu se uoditi
znacajni benefiti u kontekstu velikih sistema koji obraduju
velike koli¢ine informacija i vrSe komunikaciju izmedu
razli¢itih komponenti. Ipak, zbog specificnih zahteva
korisnika, kao S§to su brzina, rad van mreze i direktan

pristup hardveru, javlja se potreba za migracijom u desktop
okruzenje.

Migracija micro-frontend veb aplikacije prikazana je na
primeru DevAdmin aplikacije, ¢ija je namena
konfiguracija, dijagnostika i analiza hardverskih uredaja.
DevAdmin je razvijena kao Angular aplikacija sa
modularnom arhitekturom, koja omogucava efikasno
upravljanje = komponentama i funkcionalnostima.
Korisnicima je omoguceno da podeSavaju mrezne i
bezbednosne parametre, upravljaju licencama i pristupaju
statusnim izvestajima radi reSavanja tehnickih problema.

Ovaj rad istrazuje tehnoloske aspekte te migracije, uz
ocuvanje modularne arhitekture i postojec¢eg koda, kao i
prednosti koje se postizu u pogledu performansi,
bezbednosti i korisnickog iskustva.

2. TEHNOLOSKE OSNOVE

Primer migracije micro-frontend aplikacije u desktop
aplikaciju predstavljen je na primeru Angular [2]
aplikacije, uz primenu micro-frontend arhitekture
zasnovane na Module Federation konceptu. U svrhu
odabira najpogodnijeg reSenja za migraciju iz micro-
frontend u desktop okruzenje, dat je sazet prikaz
savremenih pristupa u razvoju desktop aplikacija.

2.1. Angular

Angular [2] je TypeScript [3] radni okvir koji omoguéava
izgradnju dinamickih, single-page aplikacija kroz upotrebu
komponenti, 8ablona 1 reaktivnog programiranja.
Komponente definisu izgled i ponasanje aplikacije, dok
servisi omogucéavaju deljenje logike i podataka. Pruza
podrsku za reaktivno programiranje putem signala,
odlozeno ucitavanje komponenti radi poboljSanja
performansi, kao i sistem za rutiranja za navigaciju bez
ponovnog ucitavanja stranice. Angular CLI (Command-
line interface) olakSava razvoj aplikacija kroz brzo
generisanje elemenata, a njegova arhitektura obezbeduje
strukturiran i odrziv razvoj modernih aplikacija.

2.2. JavaScript

JavaScript je interpretirani programski jezik visokog nivoa,
uveden 1995. godine, koji omogucava manipulaciju
korisnickog interfejsa u veb pregledacima [4]. JavaScript
podrzava viSe programskih paradigmi, ukljucujuéi i
objektno i funkcionalno programiranje, i poseduje
ugradene APl (Application Programing Interface)
interfejse, za rad sa tekstom, datumima i DOM (Document
Object Model) objektima. Iako direktno ne podrzava
ulazno/izlazne operacije, okruzenja poput Node.js
prosiruju njegovu primenu van pregledaca. ECMAScript

1406

https://doi.org/10.24867/33BE38Rajnovic

standard je nastao kao posledica potrebe za prosirenjem,
unapredenjem konzistentnosti 1 standardizacijom
JavaScript programskog jezika u razli¢itim okruzenjima.

2.3. Micro-frontend aplikacije

Micro-frontend arhitektura predstavlja savremeni pristup
razvoju veb aplikacija, koji omoguéava podelu klijentske
aplikacije na manje, nezavisne i lako upravljive module
[5]. Za razliku od tradicionalne arhitekture klijentskih
aplikacija, gde je aplikacija monolitnog karaktera i zahteva
visok njivo koordinacije medu c¢lanovima tima, micro-
frontend omogucava timovima da samostalno razvijaju,
testiraju 1 primenjuju funkcionalnosti, Sto znacajno
unapreduje skalabilnost 1 brzinu isporuke novih
funkcionalnosti. Ovaj pristup je inspirisan mikro-servisima
na serverskoj strani i omogucava vecu fleksibilnost,
nezavisnu primenu i lakS$e odrzavanje aplikacija. Velike
kompanije poput Spotify, lkea i Zalando ve¢ uspes$no
primenjuju micro-frontend arhitekturu za razvoj
kompleksnih sistema [6].

Za implementaciju micro-frontend aplikacija koriste se
alati poput Webpack, Module Federation, Single-SPA i
Angular Elements. Module Federation omogucava
ucitavanje nezavisnih modula, kao §to bi na primeru veb
aplikacija za kupovinu to bile korisnicke korpe za
kupovinu ili sistem za placanje. Ovakvom arhitekturom
izbegava se dupliranje koda i omogucava se deljenje Ul
(User Interface) komponenti izmedu viSe aplikacija.
Ukoliko se ispostuju konvencije imenovanja i izoluje kod
radi izbegavanja konflikata, ova arhitektura podstice
timsku autonomiju, jer svaki tim moze da radi na svom
modulu bez potrebe za koordinacijom sa drugim timovima.

Micro-frontend arhitektura se moze organizovati kroz dve
podele: horizontalna i1 vertikalna. Horizontalna podela
podrazumeva vise modula na istoj stranici, gde se timovi
fokusiraju na tehnicke aspekte poput Ul komponenti ili
API integracije. Ovaj model je pogodan za velike timove i
poslovne poddomene, ali zahteva vecu koordinaciju.
Vertikalna podela organizuje aplikaciju oko poslovnih
funkcionalnosti, gde svaki micro-frontend predstavlja
jednu celinu koju razvija jedan tim. Shell aplikacija
upravlja ucitavanjem ovih modula i obezbeduje da se, u
datom trenutku, prikazuje samo jedan micro-frontend, Sto
je posebno korisno kod SPA aplikacija.

Kompozicija micro-frontend aplikacija omoguéava
integraciju nezavisnih modula u jedan korisnicki interfejs,
uz podrsku radnih okvira kao $to su Angular, React i
Vuejs. Web Components omogucavaju kreiranje
inkapsuliranih HTML (Hyper Text Markup Language)
elemenata, ¢ime se postize modularnost i lakSa saradnja
medu timovima.

Postoje tri micro-frontend

aplikacija:

strategije kompozicije

» kompozicija na strani servera — server sastavlja
micro-frontend module pre nego §to posSalje konacni
HTML Kklijentu, ¢ime se ubrzava ucitavanje i smanjuje
opterecenje na pregledacu. Idealna je za visoko
indeksirane ili kritiCne veb stranice, ali zahteva tesnu
integraciju sa serverom, S§to ograniCava nezavisnost
modula.

* kompozicija na strani ivice (edge) — sli¢na je
serverskoj kompoziciji, ali se izvrSava blize korisniku,

konkretno preko CDN (Content Delivery Network)
infrastrukture. Omogucava brzu isporuku sadrzaja, ali
unosi dodatnu slozenost zbog razli¢ittih CDN
implementacija i ograni¢enog broja alata za podrsku.

* kompozicija na strani klijenta — moduli se
ucitavaju i sklapaju direktno pomocu shell aplikacije. Ovaj
pristup omogucava dinamicko upravljanje, vecu
autonomiju timova i bolje korisnicko iskustvo, bez potrebe
za ponovnim ucitavanjem cele stranice.

Strategije = kompozicije micro-frontend arhitekture
prikazane su na slici 1.
B ‘
¥ T
coN < SN
\'
3 y ‘ 4
Cuent-sice Edge-side Server-side
composition. ‘composition composition

Slika 1. Metode kombinacije micro-frontend arhitektura
(6]

Module Federation je tehnologija koja je uvedena u
Webpack verziji 5 i koja omogucéava deljenje koda i
zavisnosti izmedu vise aplikacija [7]. Aplikacije se dele na
nezavisno razvijene, testirane i primenjene micro-frontend
module (remotes), koji mogu biti ili “proizvodaci”
(remotes) 1 “potrosaci” (hosts) ili imati obije uloge.
Proizvodaci izlazu svoje module, a potrosaci su aplikacije
koje koriste te module. Ovaj pristup smanjuje dupliranje
koda, poboljsava performanse i omogucava skalabilan
razvoj nezavisnih micro-frontend modula.

2.4. Savremeni pristup u razvoju desktop aplikacija

Desktop aplikacije se izvrSavaju lokalno na korisnikovom
uredaju, bez potrebe za internet konekcijom, §to im
omogucéava bolje performanse, vecu kontrolu nad
resursima i veéu bezbednost. Tako imaju prednosti u
stabilnosti 1 brzini, zahtevaju instalaciju, redovno
azuriranje i Cesto su vezane za odredeni operativni sistem
[8].

Razvoj desktop aplikacija ukljucuje razlicite tehnologije,
zavisno od potreba samog projekta. Pri odabiru tehnologije
za realizaciju migracije micro-frontend aplikacije u
desktop aplikaciju razmatrani su aspekti poput stepena
izmene koda, podrSke za slozenim funkcionalnostima i
multiplatformske podrske. U svrhu migracije i prema
datim kriterijumima razmatrane su sledece tehnologije:

* WPF (.NET) — nudi bogat skup UI elemenata,
ali je vezan za Windows. Zahteva potpun prelaz na C# i
visok stepen refaktorizacije.

o JavaFX - omogucava razvoj u Java
programskom jeziku; slaba integracija sa modernim veb
stekom. Zahteva potpunu refaktorizaciju.

* PyQT — dobar GUI alat u Python programskom
jeziku, ali zahteva napustanje postojeceg koda i ima
ogranicenja u sistemskoj integraciji.

* Flutter — namenjen prvenstveno za mobilne
aplikacije, koristi programski jezik Dart. Veliki stepen

1407

refaktorizacije i nije pogodan za kompleksne desktop
sisteme.

* Tauri — moderan i lagan okvir sa dobrim
performansama, ali manje zreo za slozene aplikacije i
zahteva prelaz na Rust programski jezik.

* PWA (Progressive Web Apps) — nizak stepen
refaktorizacije, ali ne zadovoljava uslove za offline rad sa
hardverom.

* Electron — srednji stepen refaktorizacije,

omogucava ponovnu upotrebu Angular koda. Podrzava
multiplatformski razvoj, bogate sistemske funkcionalnosti,
ali ima ve¢e memorijsko opterecenje.
Za migraciju postojece veb aplikacije u desktop okruZenje,
izabran je Electron radni okvir. Electron omogucava
ponovnu upotrebu postoje¢eg Angular koda, podrzava vise
operativnih sistema i nudi stabilnost i funkcionalnost
potrebnu za kompleksne aplikacije. Uprkos vecem
memorijskom optere¢enju, njegova zrelost i Siroka
primena ¢ine ga pouzdanim izborom.

2.5. Electron

Electron je multiplatformski radni okvir koji omogucava
razvoj desktop aplikacija koristeci veb tehnologije kao Sto
su HTML, CSS i JavaScript [9]. Izgraden je na Chromium
i Node.js projektima, S$to mu omogucava pristup
sistemskim resursima i funkcionalnostima kao S$to su
dijalozi, obavestenja i automatska azuriranja. Podrzava
Windows, macOS i Linux, ¢ime obezbeduje konzistentno
korisni¢ko iskustvo na vise platformi.
Electron aplikacije su sacinjene od dva procesa:

 glavni proces - upravlja logikom aplikacije,
prozorima, sistemskim funkcijama i zivotnim ciklusom
aplikacije.

* proces prikazivanja — upravlja veb sadrzajem
svakog prozora.
Komunikacija izmedu ovih proces se vrsi preko IPC (Inter-
Process Communication) mehanizma, S$to omoguéava
stabilnost i izolaciju procesa. Glavni proces koristi module
kao §to su BrowserWindow modul za kreiranje prozora i
app modul za upravljanje zivotnim ciklusom aplikacije.
Procesi prikazivanja koriste HTML, CSS i JavaScript za
prikaz sadrzaja, ali, iz bezbednosnih razloga, nemaju
direktan pristupa Node.js API interfejsima. Slika 2
prikazuje arhitekturu Electron aplikacije, kao i odnos
izmedu glavnog i procesa prikazivanja.

<P Electron

Main / browser process

Slika 2. Arhitektura Electron aplikacije [10]

Da bi se omogucila bezbedna interakcija izmedu proces,
Electron koristi preload skripte koje se izvrSavaju pre
ucitavanja veb sadrzaja. Preload skripte imaju pristup
Node.js API interfejsima i preko contextBridge modula
mogu bezbedno izloziti funkcionalnosti procesu
prikazivanja. Pored toga, Electron podrzava kreiranje
usluznih procesa preko UtilityProcess API interfejsa, koji
se koriste za izvrSavanje zahtevnih ili nepouzdanih
zadataka. Procesi prikazivanja komuniciraju sa usluznim
procesima preko MessagePort kanala.

3. MIGRACIJA ANGULAR VEB APLIKACIJE U
STANDALONE ELECTRON APLIKACIJU

Migracija Angular veb aplikacije u standalone Electron
okruzenje prikazana je kroz primer DevAdmin aplikacije.
DevAdmin je alat za korisnicku podrsku i analizu
hardverskih uredaja. Aplikacija omoguéava pregled
sistemskih informacija, upravljanje podeSavanjima,
generisanje izvestaja o statusu i greSkama, kao i direktnu
interakciju sa uredajima preko lokalne mreze. Zahvaljujuéi
micro-frontend arhitekturi i intuitivnom interfejsu (slika
3.), DevAdmin pruza fleksibilno i efikasno resenje za
tehnicki podrsku, a njena migracija u Electron aplikaciju
omogucava stabilniji i nezavisniji rad u desktop okruzenju.

VAR I R SR S

TivMy diDie»

Slika 3. Pregled interfejsa DevAdmin aplikacije

DevAdmin aplikacija predstavlja konkretan primer
primene micro-frontend arhitekture uz koris¢enje Module
Federation koncepta u okviru Angualr radnog okvira.
Aplikacija je organizovana kao modularna klijentska veb
aplikacije, sa dve shell aplikacije koje dinamicki ucitavaju
viSe nezavisnih remote modula. Ovaj pristup omogucava
timovima da razvijaju funkcionalnosti izolovano, uz bolju
skalabilnost 1 odrzivost koda. Migracija DevAdmin
aplikacije koriste¢i Electron omogudila bi koris¢enje
postojeceg veb koda za multiplatformsku distribuciju.
Kompozicija micro-frontend modula u DevAdmin
aplikaciji realizovana je na strani klijenta, gde shell
aplikacija dinamicki integriSe remote module tokom
izvrSavanja. Module Federation omogucava da se ovi
moduli uditaju na zahtev, ¢ime se postize fleksibilna i
prilagodljiva arhitektura. Da bi se konfigurisao Module
Federation potrebno je definisati webpack.config.js,
module-federation.config.json i default-module-
federation-config.js fajlovi, u kojima se definiSu remote
aplikacije 1 deljeni Angular moduli. Ovaj sistem
omogucava optimizaciju ucitavanja i izbegavanje konflikta
u zavisnostima, ¢ime se unapreduju performanse i
stabilnost aplikacije.

1408

Migrirana DevAdmin Electron aplikacija saéinjena je od
prozora za prijavu korisnika (slika 4) i glavnog prozora
(slika 5). Shell i remote aplikacije se mogu ucitati bilo
putem udaljene veb adrese ili direktno sa lokalnog diska.
Koris¢enjem Module Federation koncepta, omogucena je
dinamicka integracija nezavisnih modula, dok Electron
omogucava njihovo prikazivanje u odvojenim karticama ili
prozorima.

LI - o =

Slika 4. Stranica za prijavu korisnika

Slika 5. Glavni ekran sa ucitanom remote aplikacijom

Ucitavanje aplikacija realizovano je kroz dve metode:
preko loadURL metode za ucitavanje sa lokalnog servera
ili preko loadFile metode za ucitavanje kompajliranih
HTML fajlova. U drugom slucaju, micro-frontend
aplikacije se ucitavaju unutar jednog dashboard.html fajla
putem <iframe> elementa, ¢ime se simulira ponasanje shell
aplikacije. Ovaj pristup omogucava bolju izolovanost
komponenti, poboljsava performanse i bezbednost, ali
zahteva rucnu izgradnju aplikacije nakon svake izmene.

Da bi se izbegli problemi sa apsolutnim putanjama unutar
<iframe> aplikacija, implementirano je preusmeravanje
HTTP 1 WebSocket zahteva na nivou Electron sesije,
koriste¢i webRequests.onBeforeRequest metode. Ovo
omogucava da aplikacije zadrze originalnu logiku
komunikacije sa serverom, bez izmene koda. Pored toga,
upravljanje Zzivotnim ciklusom prozora i korisnickom
sesijom realizovano je kroz IPC mehanizam i localStorage,
¢ime se obezbeduje nezavisnost i izolovanost svake remote
aplikacije.

Celokupno reSenje omogucava da se postojeca veb
arhitektura lako migrira u desktop okruzenje, uz minimalne
izmene u kodu i zadrzavanje osnovnih principa micro-
frontend arhitekture. Ovakva kombinacija tehnologija
pruza fleksibilnost, stabilnost i moguc¢nost daljeg
prosirenja aplikacije u razli¢itim razvojnim i produkcionim
scenarijima.

4. ZAKLJUCAK

U ovom radu je uspeSno istrazena i demonstrirana
migracija Angular micro-frontend veb aplikacija u desktop
okruzenje uz koris¢enje Electron radnog okvira. Zbog
svoje zrelosti, podr§ke za naprednim funkcionalnostima i
mogucénosti duboke integracije sa operativnim sistemom,
Electron je odabran kao najprikladnije reSenje za
migraciju, dok su alternative poput Tauri i PWA odbacene

zbog nezrelosti tehnologije, podrske za offline rad i slabe
integracije sa operativnim sistemom. Migracija je
realizovana bez drasti¢nih izmena u postoje¢em kodu, uz
ocuvanje modularnosti i principa koje propisuje micro-
frontend arhitektura.

Tehnicke strategije ukljucuju ucitavanje remote aplikacija,
upravljanje zavisnostima, preusmeravanje HTTP i
WebSocket zahteva i komunikacije preko [IPC mehanizma.
Electron aplikacija preuzima ulogu nove shell aplikacije,
omogucujuci postepenu i kontrolisanu migraciju. lako ovaj
pristup donosi odredene izazove, kao Sto su povecana
potro$nja resursa i1 bezbednosni rizici, uz primenu
preporucenih praksi, moguce je obezbediti stabilno i
bezbedno okruZenje.

Rezultati pokazuju da je predloZeno reSenje efikasno i
odrzivo za prelazak kompleksne veb aplikacije u desktop
okruzenje, uz zadrzavanje fleksibilnosti, skalabilnosti i
agilnog razvoja. Ovakva arhitektura omogucava de se
micro-frontend aplikacije pokreu nezavisno, Cime se
zadrzavaju sve prednosti originalnog veb pristupa u
kontekstu desktop aplikacija.

5. LITERATURA

[1] Prajwal, Y., Parekh, J. V., & Shettar, R. (2021). A brief
review of micro-frontends. United International Journal for
Research and Technology, 2(8), 18.

[2] https://angular.dev (pristupljeno u septembru 2025.)

[3] https://www.typescriptlang.org (pristupljeno u
septembru 2025.)

[4] Haverbeke, M. (2018). Eloquent javascript: A modern
introduction to programming. No Starch Press.

[5] https://martinfowler.com/articles/micro-frontends.html
(pristupljeno u septembru 2025.)

[6] Peltonen, S., Mezzalira, L., & Taibi, D. (2021).
Motivations, benefits, and issues for adopting micro-
frontends: A multivocal literature review. Information and
Software Technology, 136, 106571.

[7] https://module-federation.io (pristupljeno u novembru
2025.)

[8] https://www.geeksforgeeks.org/what-is-standalone-
application (pristupljeno u novembru 2025.)

[9] https://www.electronjs.org (pristupljeno u novembru
2025.)

[10] Alymkulov, D. (2019). Desktop Application
Development Using Electron Framework: Native vs.
Cross-Platform. [Bachelor’s Thesis]. South-Eastern
Finland University of Applied Sciences.

Kratka biografija:

Teodora Rajnovié rodena je 1. avgusta
1999. godine u Zvorniku. Osnovnu
Skolu ,,Stefan Mitrov Ljubisa“ zavrsila
je u Budvi, 2014. godine. U istom gradu
je 1 zavrsila srednju $kolu ,,Danilo Kis*,
smer turisticki tehnicar 2018. godine.
Kasnije te godine, upisuje Fakultet
tehni¢kih nauka u Novom Sadu, smer
Softversko inzenjerstvo i informacione
tehnologije. Studije zavrSava u roku,
2022. godine.

1409

https://angular.dev/

Y peanusaumju 360pHuKa pagoBa PakyaTeTa TEXHUUKUX HayKa y TOKy 2025. roguHe
yyectBoBanu cy cnegehu peueHseHTu:

Ano Autrh
Anexcannap
Amnhenxosuh
Anekcannap
KoBauesuh
Anexcannap
Kynycunan
Anexcangap CenakoB
Anekcannap
CranucasibeBuh
Anekcanapa
Pangynosuh

Amnka CrapueB-Hypunn
Awnnpuja Pamera
Atuna 3enuh
Bbornan [TaBkoBuh
Bojan baruauh
Bojan Matuh
Bojan Tenapueruh
Bojan JoBanosuh
Bbopuc Arapcku
Bopuc Crojuh
Bpanko bpkipau
Bpanxo
Munocasibesuh
Hamup Bakosuh
Hanujena hupuh
Hanwujena ['pagannn
Hanujena Jlanuh
Hapko Yamnko
Hapxo Credanosuh
Hejan Ener

Hejan Pessuh
Jejan MoBpuH
Hejan Yb6aBuH
JHejana Henyunn
Hparan Anamosuh
Hparan luny
Hparan lBanosuh
[paran UBeruh
Hparan Jopanosuh
Hparau ITejuh
Hparax Pyxuh
Hparana
KoncrantnnoBuh
Hparossy6 Lllesnh
Hparo Kapkosuh
Hdyma Bpbamku

Bophe henunh
Bophe Bykenuh
Bophuje dymbanun
Topan Jeprenuh
I'opar MapuakoBuh
I'opan Casuh
Tlopan Cnanuh
I'opan CrojanoBuh
T'opan Tenuh
Tl'opaan Crojuh
l'opnana Ocrojuh
T'opnana
MunocaipeBrh
Urop [dejanosuh
Hrop Maparu

Hrop Ilemxo

Wnwuja bammheswnh
HUcunopa Bypuh
Wintean [lan

Wga llluhannn
HBan Me3seu

Wsan [Ipoxuh
WBana Jypuu

WBana Muxajnosuh
Wpana Tomuh
WBana BacusseBuh
WBana Katuh
HBana Mapaiu
MBana MuuikessuH
Jenena Artanaukosuh
Jemnunh

Jenena bopouku
Jenena UBetnh
Jenena Paguh
Jenena Paponuh
Jenena CnuBka
Jenena Crajuh
Kanman babkosuh
Jlazap KoBaueBuh
Jlunuja Kpcranosuh
Jbwpana [TomoBuh
Jbyo6uma Jlyhak
Jby6omup BynuHCKI
Marnonna [lan
Maja Typk Cexynuh
Maja IlerpoBuh
Mapuja Cunahu
Mapunako Macnapuh

Mapko Mapkosuh
Mapxko Tonopos
Mapxko Bekuh
Mama Bykypos
Mujoapar Mutomesuh
Munan Yenukosuh
Munan [Jlenuh
Munan ["aBpuh
Munan MapuskoBuh
Munan MupkoBuh
Munan Panajuh
Munan Panxos
Muian Cerenmnaig
Munan Tpusynuh
Munan Bunakosuh
Munena Kpxspenn
Mununa Bpawapuh
Munnna Munmnauh
Munuia Kucuh
Munom Cumuth
Muomn Hlenummja
Munosan Jlazapesuh
Mussa CumeyHoBuh
Musbana [Tpuna
Mussana 3ekoBuh
Muoapar MuityTHHOB
Muoapar XKuruh
Mupocnas
Hpamuhanna
Mupocnas 3apuh
Mupko Paxosuh
Mupo I'oBenapuua
Mupocnas Kipajuh
Mupocnas 3apuh
Muanen Tomuh
Munanen Pagummh
Harama
MunocaBibeBrh
Heb6ojira bpkspau
Heb6ojma I1jeBamuma
He6ojmra Pagosuh
Heb6ojira Panesuh
Hena Munuh
Kepecremn

Hemamwa Kammkosuh
Hemama Cpemuen
Hemamwa Tacuh
Henan Pymkuh

Henax CumeyHnoBuh
Hukoma JIyOypuh
Huxona Bojuosuh
IInaron CoBub
[penpar Teogoposuh
PamuBoje Junynosuh
Pagomup Kojuh
Pomana Bomikosuh-
JKuanosuh

Canppa [enujep
Cama Menuh

Cagka AnamoBuh
Crnalhana Munmmhesuh
Cnasunia Mutposuh
Crnobonan Mopaua
Crnobonan Ulynuh
Crnobonan Tabakosuh
Cphar Munuhesuh
Cphan [Tomos

Cphan Bykmuposuh
Cresan ['octojuh
CreBan
MusncaibeBruh
CreBan CTaHKOBCKH
Cy3ana [Iparanuh
Ceeriana baukamih
Csernana Hukonmmuuh
Tamapa Illkopuh
Tarjana KoBauesuh
Tatjana Koderos-
Munrymuh

Teonopa Byukosuh
Becna CrojakoBuh
Bujonera Bpxosarg
Bumma XKyruh
Bnagumup Hakosuh
Brnagunvup Unnh
Brnagumup MyueHncku
Bojun Unuh

Byk boraganoruh
Byk Bpamkosui
3opan bpyjuh

3opan Yenuh

3opan Jenmmuuh
XKesmko Jakmmh
Kemko Kanosuh
XKesko Bykosuh
XKusko ITaBnosuh

