STRATEGIES FOR DEALING WITH MISSING VALUES

Authors

  • Sreten Petrović Autor

DOI:

https://doi.org/10.24867/13BE10Petrovic

Keywords:

strategies, missing values, algorithms, machine learning, prediction, mobile applications

Abstract

This paper deals with the presentation of strategies for dealing with missing values and showing their advantages, disadvantages and efficiency in combi­nation with machine learning algorithms while predicting the popularity of mobile applications.

References

[1] D. B. Rubin, “Inference and missing data”, Biometrika 1976.
[2] https://www.kaggle.com/parulpandey/a-guide-to-handling-missing-values-in-python (pristupljeno u septembru 2020.)
[3] Z. Zhang, “Missing data imputation: focusing on single imputation”, 2016.
[4] H. Kang, “The prevention and handling of the missing data”, 2013.
[5] J. Zhang, D. Chen, “Interpolation calculation made EZ”
[6] Jasmina Đ. Novaković, “Rešavanje klasifikacionih problema mašinskog učenja”, 2013.
[7] G. Lee, T. S. Raghu; “Determinants of Mobile Apps Success: Evidence from App Store”, 2014.

Published

2021-07-01

Issue

Section

Electrotechnical and Computer Engineering