AN APPROACH FOR DISCOVERING CHALLENGES IN QUANTUM PROGRAMMING FROM OPEN-SOURCE REPOSITORIES

Authors

  • Vladimir Filipović Autor

DOI:

https://doi.org/10.24867/29OI01Filipovic

Keywords:

Quantum programming, Open source software, Data-mining, OpenAI

Abstract

This paper presents an approach for analyzing quantum software repositories with the aim of identifying the main challenges faced by developers when working on quantum projects. The methodology encompasses the processes of discovering, cloning, preprocessing, and classifying repositories, as well as identifying and grouping challenges. By utilizing and verifying the OpenAI model in certain steps of the analysis, it has been successfully demonstrated how artificial intelligence can be used to identify and classify challenges in quantum software.

References

[1] Shor, P. W. (1998). Quantum computing. Documenta Mathematica, 1(1000), 467-486.
[2] M. A. Nielsen and I. L. Chuang. Quantum computation and quantum information. Cambridge university press, 2010
[3] Almudever, C. G., Lao, L., Fu, X., Khammassi, N., Ashraf, I., Iorga, D., ... & Bertels, K. (2017, March). The engineering challenges in Quantum programming
[4] De Stefano, M., Pecorelli, F., Di Nucci, D., Palomba, F., & De Lucia, A. (2022). Software engineering for quantum programming: How far are we?. Journal of Systems and Software, 190, 111326.
[5] Openja, M., Morovati, M. M., An, L., Khomh, F., & Abidi, M. (2022). Technical debts and faults in open-source quantum software systems: An empirical study. Journal of Systems and Software, 193, 111458.
[6] Li, H., Khomh, F., & Openja, M. (2021, September). Understanding quantum software engineering challenges an empirical study on stack exchange forums and github issues. In 2021 IEEE International Conference on Software Maintenance and Evolution (ICSME) (pp. 343-354). IEEE.
[7] Fingerhuth, M., Babej, T., & Wittek, P. (2018). Open source software in quantum computing. PloS one, 13(12), e0208561.
[8] Gottesman, D. (2002). An introduction to quantum error correction. In Proceedings of Symposia in Applied Mathematics (Vol. 58, pp. 221-236).
[9] Van Meter, R., & Devitt, S. J. (2016). The path to scalable distributed quantum computing. Computer, 49(9), 31-42.
[10] Murillo, J. M., Garcia-Alonso, J., Moguel, E., Barzen, J., Leymann, F., Ali, S., ... & Wimmer, M. (2024). Challenges of Quantum Software Engineering for the Next Decade: The Road Ahead. arXiv preprint arXiv:2404.06825.
[11] Lorensuhewa, S., Pham, B., & Geva, S. (2002). Keyword-based Text Matching Approach for Design Style Recognition. In Proceedings First International Workshop on Knowledge Discovery in Multimedia and Complex Data (KDMCD'2002) (pp. 51-58). http://db. cs. ualberta. ca/kdmcd02/.
[12] McCallum, A., & Nigam, K. (1999). Text classification by bootstrapping with keywords, EM and shrinkage. In Unsupervised learning in natural language processing.
[13] Meqdadi, O., Alhindawi, N., Alsakran, J., Saifan, A., & Migdadi, H. (2019). Mining software repositories for adaptive change commits using machine learning techniques. Information and Software Technology, 109, 80-91.
[14] React documentation. Dostupno: https://react.dev/ [Pristup: 5.5.2024]
[15] Github API documentation. Dostupno: https://docs.github.com/en/rest [Pristup: 5.5.2024]
[16] Linguist documentation. Dostupno: https://github.com/github-linguist/linguist/blob/master/docs/how-linguist-works.md [Pristup : 1.6.2024]
[17] Pygments documentation. Dostupno: https://pygments.org/docs/ [Pristup:3.6.2024]
[18] Kitaev, A. Y. (2003). Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1), 2-30.
[19] Knill, E. (2005). Quantum computing with realistically noisy devices. Nature, 434(7029), 39-44. Link
[20] Fowler, A. G., Mariantoni, M., Martinis, J. M., & Cleland, A. N. (2012). Surface codes: Towards practical large-scale quantum computation. Physical Review A, 86(3), 032324
[21] Franklin, D., & Chong, F. T. (2004). Challenges in reliable quantum computing. Nano, quantum and molecular computing: implications to high level design and validation,
[22] Harris, R. J., McMahon, N. A., Brennen, G. K., & Stace, T. M. (2018). Calderbank-Shor-Steane holographic quantum error-correcting codes. Physical Review A, 98(5), 052301.
[23] Hoefler, T., Häner, T., & Troyer, M. (2023). Disentangling hype from practicality: On realistically achieving quantum advantage. Communications of the ACM, 66(5), 82-87.
[24] Berberich, J., Fink, D., & Holm, C. (2024). Robustness of quantum algorithms against coherent control errors. Physical Review A, 109(1), 012417.

Published

2024-12-25