CUSTOMER COMPLAINTS MANAGEMENT SYSTEM IN THE FIELD OF FINANCE
DOI:
https://doi.org/10.24867/05BE41NikolicKeywords:
sentiment mining, complaints classification, big data, distributed environmentAbstract
This paper presents the customer complaints management system in the field of finance. The system is based on a large number of complaints, with the primary goal of providing the ability of automatic management to the company, by predicting complaints which are likely to be disputed and the number of expected complaints for the following month. The final goal of the system is to reduce the number of unsatisfied customers of the specific company. Since this is a big data problem, the whole system is running in a distributed environment.
References
[1]https://www.consumerfinance.gov/data-research/consumer-complaints/ [pristupljeno 16.7.2019.]
[2]https://hadoop.apache.org/ [pristupljeno 15.7.2019.]
[3]https://spark.apache.org/ [pristupljeno 15.7.2019.]
[4]https://restfulapi.net/ [pristupljeno 16.7.2019.]
[5]https://angular.io/ [pristupljeno 16.7.2019.]
[6]https://dev.socrata.com/foundry/data.consumerfinance.gov/s6ew-h6mp [pristupljeno 16.7.2019.]
[7]https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html [pristupljeno 16.7.2019.]
[8]https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html [pristupljeno 15.7.2019.]
[9]Clayton J. Hutto / Eric Gilbert, Vader: A parsimonious rule-based model for sentiment analysis of social media text, In: Eighth international AAAI conference on weblogs and social media, 2014.
[10]https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.over_sampling.SMOTE.html [pristupljeno 16.7.2019.]
[11]https://xgboost.readthedocs.io/en/latest/ [pristupljeno 16.7.2019.]
[12]https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html [pristupljeno 16.7.2019.]
[13]https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html [pristupljeno 16.7.2019.]
[14]Jacob Devlin et al, Bert: Pre-training of deep bidirectional transformers for language understanding, arXiv preprint arXiv:1810.04805, 2018.
[2]https://hadoop.apache.org/ [pristupljeno 15.7.2019.]
[3]https://spark.apache.org/ [pristupljeno 15.7.2019.]
[4]https://restfulapi.net/ [pristupljeno 16.7.2019.]
[5]https://angular.io/ [pristupljeno 16.7.2019.]
[6]https://dev.socrata.com/foundry/data.consumerfinance.gov/s6ew-h6mp [pristupljeno 16.7.2019.]
[7]https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html [pristupljeno 16.7.2019.]
[8]https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html [pristupljeno 15.7.2019.]
[9]Clayton J. Hutto / Eric Gilbert, Vader: A parsimonious rule-based model for sentiment analysis of social media text, In: Eighth international AAAI conference on weblogs and social media, 2014.
[10]https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.over_sampling.SMOTE.html [pristupljeno 16.7.2019.]
[11]https://xgboost.readthedocs.io/en/latest/ [pristupljeno 16.7.2019.]
[12]https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html [pristupljeno 16.7.2019.]
[13]https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html [pristupljeno 16.7.2019.]
[14]Jacob Devlin et al, Bert: Pre-training of deep bidirectional transformers for language understanding, arXiv preprint arXiv:1810.04805, 2018.
Downloads
Published
2019-11-06
Issue
Section
Electrotechnical and Computer Engineering