UPOTREBA VEŠTAČKE INTELIGENCIJE ZA DETEKCIJU „PHISHING“ E-POŠTE: PRISTUP ZASNOVAN NA PRIRODNOJ OBRADI JEZIKA

Autori

  • Nemanja Šepa Autor

DOI:

https://doi.org/10.24867/32OI04Sepa

Ključne reči:

Veštačka inteligencija, informaciona bezbednost, prirodna obrada jezika

Apstrakt

Ovaj rad istražuje primenu naprednih algoritama veštačke inteligencije i mašinskog učenja za detekciju „phishing“ napada analizom sadržaja elektronske pošte. Poređenjem performansi modela Naivnog Bajesa, XGBoost-a, RNN-a i GRU-a, analizirane su tačnost i efikasnost, pri čemu se razmatraju ključne prednosti i ograničenja ovih modela u savremenim sajber bezbednosnim sistemima.

Reference

[1] Jansson, K.; von Solms, R. (2011-11-09). "Phishing for phishing awareness". Behaviour & Information Technology. 32 (6): 584–593. doi:10.1080/0144929X.2011.632650. ISSN 0144-929X. S2CID 5472217

[2] Toolan F, Carthy J (2009). Phishing detection using classifier ensembles. In: eCrime researchers summit, IEEE conference Tacoma, WA, USA, 2009, pp 1–9

[3] Toolan F, Carthy J (2010). Feature selection for spam and phishing detection. E-Crime Researchers Summit, Dallas, pp 1–12

[4] Larsson, S., & Heintz, F. (2020). Transparency in artificial intelligence. Department of Technology and Society, Lund University

[5] Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82-115

[6] https://www.kaggle.com/datasets/subhajournal/phishingemails

[7] Kadhim, Ammar. (2018). An Evaluation of Preprocessing Techniques for Text Classification. International Journal of Computer Science and Information Security,. 16. 22-32

[8] Hassan Saif, Miriam Fernandez, Yulan He, and Harith Alani. 2014. On Stopwords, Filtering and Data Sparsity for Sentiment Analysis of Twitter. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14), pages 810–817, Reykjavik, Iceland. European Language Resources Association (ELRA)

[9] Khyani, Divya & B S, Siddhartha. (2021). An Interpretation of Lemmatization and Stemming in Natural Language Processing. Shanghai Ligong Daxue Xuebao/Journal of University of Shanghai for Science and Technology. 22. 350-357

[10] Cavnar, William & Trenkle, John. (2001). N-Gram-Based Text Categorization. Proceedings of the Third Annual Symposium on Document Analysis and Information Retrieval

[11] https://tita.lecturer.pens.ac.id/TextMining_SDT/03.%20Structured%20Data/NLP_%20Bag%20of%20words%20and%20TF-IDF%20explained!%20_%20by%20Koushik%20kumar%20_%20Medium.pdf

##submission.downloads##

Objavljeno

2026-01-02

Broj časopisa

Rubrika

Inženjerstvo informacionih sistema