NAMED ENTITY RECOGNITION FOR SERBIAN LANGUAGE WITH TRANSFORMER ARHITECTURE

Authors

  • Andrija Cvejić Autor

DOI:

https://doi.org/10.24867/16BE39Cvejic

Keywords:

NLP, NER, BERT, RoBERTa, natural language processing, named entity recognition

Abstract

When training neural networks for natural language processing, there are already common methods and practises tried and validated on the English language. Current research is the natural sequence of development and is focused on improving models for non English languages. In this paper, we present a model architecture used for named entity recognition of the Serbian language. The model's input is natural text. The trained model's outputs are category probability of each word for each named entity.

References

[1] Mansouri, A., Affendey, L. S., & Mamat, A. (2008). Named entity recognition approaches. International Journal of Computer Science and Network Security, 8(2), 339-344.
[2] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).
[3] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
[4] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.
[5] Krstev, C., Vitas, D., Obradović, I., & Utvić, M. (2011, July). E-dictionaries and Finite-state automata for the recognition of named entities. In Proceedings of the 9th International Workshop on Finite State Methods and Natural Language Processing (pp. 48-56).
[6] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., ... & Rush, A. M. (2019). HuggingFace's Transformers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771.
[7] Ljubešić, N., Agić, Ţ., Klubicka, F., Batanović, V., & Erjavec, T. (2018). hr500k–A Reference Training Corpus of Croatian.
[8] Ljubešić, N., & Lauc, D. (2021, April). BERTić-The Transformer Language Model for Bosnian, Croatian, Montenegrin and Serbian. In Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing (pp. 37-42).
[9] Torfi, A., Shirvani, R. A., Keneshloo, Y., Tavvaf, N., & Fox, E. A. (2020). Natural language processing advancements by deep learning: A survey. arXiv preprint arXiv:2003.01200.
[10] Virtanen, A., Kanerva, J., Ilo, R., Luoma, J., Luotolahti, J., Salakoski, T., ... & Pyysalo, S. (2019). Multilingual is not enough: BERT for Finnish. arXiv preprint arXiv:1912.07076.
[11] Martin, L., Muller, B., Suárez, P. J. O., Dupont, Y., Romary, L., de La Clergerie, É. V., ... & Sagot, B. (2019). Camembert: a tasty french language model. arXiv preprint arXiv:1911.03894.
[12] Rönnqvist, S., Kanerva, J., Salakoski, T., & Ginter, F. (2019). Is multilingual BERT fluent in language generation?. arXiv preprint arXiv:1910.03806.
[13] Šandrih, B., Krstev, C., & Stanković, R. (2019, September). Development and evaluation of three named entity recognition systems for serbian-the case of personal names. In Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019) (pp. 1060-1068).
[14] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., ... & Rush, A. M. (2019). HuggingFace's Transformers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771.
[15] Ljubešić, N., & Klubička, F. (2014, April). {bs, hr, sr} wac-web corpora of Bosnian, Croatian and Serbian. In Proceedings of the 9th Web as Corpus Workshop (WaC-9) (pp. 29-35).
[16] Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., ... & Stoyanov, V. (2019). Unsupervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116.
[17] Ramshaw, L., & Marcus, M. P. (1995). Text chunking using transformation-based learn.
[18] Kosec, M., Fu, S., & Krell, M. M. (2021). Packing: Towards 2x NLP BERT Acceleration. arXiv preprint arXiv:2107.02027.
[19] Sun, C., Qiu, X., Xu, Y., & Huang, X. (2019, October). How to fine-tune bert for text classification?. In China National Conference on Chinese Computational Linguistics (pp. 194-206). Springer, Cham.
[20] Goldhahn, D., Eckart, T., & Quasthoff, U. (2012, May). Building Large Monolingual Dictionaries at the Leipzig Corpora Collection: From 100 to 200 Languages. In LREC (Vol. 29, pp. 31-43).

Published

2022-02-04

Issue

Section

Electrotechnical and Computer Engineering