OBLIGATION DETECTION IN ENGLISH CONTRACTS

Authors

  • Marko Žužić Autor
  • Aleksandar Kovačević Fakultet tehničkih nauka Supervisor

DOI:

https://doi.org/10.24867/17BE23Zuzic

Keywords:

Obligation detection, Legal domain, Language models, NLP, Text classification, BERT

Abstract

This paper presents a system for obligation detection in english contracts. The classifier trained to solve the problem accepts sentences from contracts as an input and outputs information on whether they are considered obligations, or not

References

[1] Octavia-Maria S ̧ulea, Marcos Zampieri, Shervin Malmasi, Mihaela Vela, Liviu P. Dinu, Josef van Genabith, “Exploring the Use of Text Classification in the Legal Domain”, ASAIL, oktobar 2017.
[2] Vladimir Zolotov, David Kung, “Analysis and Optimization of FastText Linear Text Classifier”, IBM Watson Research
[3] Ilias Chalkidis, Manos Fergadiotis, Prodromos Malakasiotis, “Large-Scale Multi-Label Text Classification on EU Legislation”, Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, jul 2019
[4] Asaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Lilion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin, “Attention Is All You Need”, NIPS 2017, Long Beach, CA, USA
[5] Ilias Chalkidis, Manos Fergadiotis, Prodromos Malakasiotis, Nikolaos Aletras, Ion Androutsopoulos, “LEGAL-BERT: The Muppets straight out of Law School”, oktobar 2020.
[6] TextCat Ensemble Model, spaCy: https://spacy.io/api/architectures#TextCatEnsemble
[7] V. Srividhya, R. Anitha, “Evaluating Preprocessing Techniques in Text Categorization”
[8] Somuya George K, Shibily Joseph, “Text Classification by Augmenting Bag of Words (BOW) Representation with Co-Occurence Feature”, IOSR/JCE, volume 16, Issue 1, Jan 2014.
[9] Shahzad Qaiser, Ramsha Ali, “Text Mining: Use of TF-IDF to Examine the Relevance of Words to Documents”, International Journal of Computer Applications, Volume 181, Jul 2018.
[10] Piotr Bojanowski, Edouard Grave, Armand Joulin, Tomas Mikolov, “Enriching Word Vectors with Subword Information”, Transactions of the Association for Computational Linguistics, 2017.
[11] Birol Kuyumcu, Cuneyt Aksakalli, Selman Delil, “An automated new approach in fast text classification (FastText): A case study for Turkish text classification without preprocessing”, NLPIR 2019, jun 2019.
[12] Corinna Cortes, Vladimir Vapnik, “Support-Vector Networks”, Machine Learning, 20, 273-297, 1995.
[13] I. Rish, “An Empirical Study of the Naive Bayes Classifier”, jan. 2001.
[14] Ashish Chaturvedi, Santosh Yadav, Mohd. Abuzar Mohd. Haroon Ansari, Mahendra Kanojia, “Comparative Multinomial Text Classification Analysis of Naïve Bayes and XGBoost with SMOTE on Imbalanced Dataset”, septembar 2021.

Published

2022-04-08

Issue

Section

Electrotechnical and Computer Engineering