AUTOMATIC SUMMARIZATION OF CRYPTOCURRENCY NEWS
DOI:
https://doi.org/10.24867/16BE42OgrizovicKeywords:
machine learning, transformer, automatic text summarizationAbstract
This paper utilizes several popular transformer models to perform automatic text summarization of cryptocurrency news. The model’s input is a sequence of tokens representing the content of the news, while the model’s output is a sequence of tokens representing a summary of the input. The title of each piece of news was used as the label. The paper discusses the steps for further performance improvements.
References
[1] BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
[2] Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).
[3] Qi, Weizhen, Yu Yan, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang, and Ming Zhou. "Prophetnet: Predicting future n-gram for sequence-to-sequence pre-training." arXiv preprint arXiv:2001.04063 (2020).
[4] Cachola, Isabel, Kyle Lo, Arman Cohan, and Daniel S. Weld. "TLDR: Extreme summarization of scientific documents." arXiv preprint arXiv:2004.15011 (2020).
[5] Van Noorden, Richard. "Global scientific output doubles every nine years." Nature news blog (2014).
[6] Raffel, Colin, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. "Exploring the limits of transfer learning with a unified text-to-text transformer." arXiv preprint arXiv:1910.10683 (2019).
[7] Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." In Advances in neural information processing systems, pp. 5998-6008. 2017.
[8] Rush, Alexander M., Sumit Chopra, and Jason Weston. "A neural attention model for abstractive sentence summarization." arXiv preprint arXiv:1509.00685 (2015).
[9] Bengio, Yoshua, Réjean Ducharme, Pascal Vincent, and Christian Janvin. "A neural probabilistic language model." The journal of machine learning research 3 (2003): 1137-1155.
[10] Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." arXiv preprint arXiv:1409.0473 (2014).
[11] Fan, James, Raphael Hoffmann, Aditya Kalyanpur, Sebastian Riedel, Fabian Suchanek, and Partha Talukdar. "Proceedings of the Joint Workshop on Automatic Knowledge Base Construction and Web-scale Knowledge Extraction (AKBC-WEKEX)." In Proceedings of the Joint Workshop on Automatic Knowledge Base Construction and Web-scale Knowledge Extraction (AKBC-WEKEX). 2012.
[12] Mani, Inderjeet. "Summarization evaluation: An overview." (2001).
[13] Callison-Burch, Chris, Miles Osborne, and Philipp Koehn. "Re-evaluating the role of BLEU in machine translation research." In 11th Conference of the European Chapter of the Association for Computational Linguistics. 2006.
[14] Zhang, Jingqing, Yao Zhao, Mohammad Saleh, and Peter Liu. "Pegasus: Pre-training with extracted gap-sentences for abstractive summarization." In International Conference on Machine Learning, pp. 11328-11339. PMLR, 2020.
[15] Wu, Jeff, Long Ouyang, Daniel M. Ziegler, Nissan Stiennon, Ryan Lowe, Jan Leike, and Paul Christiano. "Recursively Summarizing Books with Human Feedback." arXiv preprint arXiv:2109.10862 (2021).
[2] Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).
[3] Qi, Weizhen, Yu Yan, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang, and Ming Zhou. "Prophetnet: Predicting future n-gram for sequence-to-sequence pre-training." arXiv preprint arXiv:2001.04063 (2020).
[4] Cachola, Isabel, Kyle Lo, Arman Cohan, and Daniel S. Weld. "TLDR: Extreme summarization of scientific documents." arXiv preprint arXiv:2004.15011 (2020).
[5] Van Noorden, Richard. "Global scientific output doubles every nine years." Nature news blog (2014).
[6] Raffel, Colin, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. "Exploring the limits of transfer learning with a unified text-to-text transformer." arXiv preprint arXiv:1910.10683 (2019).
[7] Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." In Advances in neural information processing systems, pp. 5998-6008. 2017.
[8] Rush, Alexander M., Sumit Chopra, and Jason Weston. "A neural attention model for abstractive sentence summarization." arXiv preprint arXiv:1509.00685 (2015).
[9] Bengio, Yoshua, Réjean Ducharme, Pascal Vincent, and Christian Janvin. "A neural probabilistic language model." The journal of machine learning research 3 (2003): 1137-1155.
[10] Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." arXiv preprint arXiv:1409.0473 (2014).
[11] Fan, James, Raphael Hoffmann, Aditya Kalyanpur, Sebastian Riedel, Fabian Suchanek, and Partha Talukdar. "Proceedings of the Joint Workshop on Automatic Knowledge Base Construction and Web-scale Knowledge Extraction (AKBC-WEKEX)." In Proceedings of the Joint Workshop on Automatic Knowledge Base Construction and Web-scale Knowledge Extraction (AKBC-WEKEX). 2012.
[12] Mani, Inderjeet. "Summarization evaluation: An overview." (2001).
[13] Callison-Burch, Chris, Miles Osborne, and Philipp Koehn. "Re-evaluating the role of BLEU in machine translation research." In 11th Conference of the European Chapter of the Association for Computational Linguistics. 2006.
[14] Zhang, Jingqing, Yao Zhao, Mohammad Saleh, and Peter Liu. "Pegasus: Pre-training with extracted gap-sentences for abstractive summarization." In International Conference on Machine Learning, pp. 11328-11339. PMLR, 2020.
[15] Wu, Jeff, Long Ouyang, Daniel M. Ziegler, Nissan Stiennon, Ryan Lowe, Jan Leike, and Paul Christiano. "Recursively Summarizing Books with Human Feedback." arXiv preprint arXiv:2109.10862 (2021).
Downloads
Published
2022-02-04
Issue
Section
Electrotechnical and Computer Engineering