TECHNOLOGICAL OPERATIONS FOR ARSENIC SEPARATION FROM DRINKING WATER

Authors

  • Boban Dakić Autor
  • Sanja Radović Autor
  • Maja Turk Sekulić Autor

DOI:

https://doi.org/10.24867/18MO01Dakic

Keywords:

Arsenic, Drinking water, Conventional technologies, Alternative technologies

Abstract

The paper presents an overview in techno­logical operations in the domain of arsenic separation from drinking water, classification of existing processes, as well as the challenges that arise in their application. Various conventional and advanced technologies are used to remove arsenic from water. The results of the paper show that with the modification of existing technologies, optimization of proces parametres, development of new, integration of existing and/or new separation technologies, more rapid and efficient reduction of arsenic in drinking water can be achieved, with lower maintenance costs of the equipment and reduction in generation of toxic waste.

References

1] Jovanović, B.M. (2011). Razvoj metoda i postupaka za uklanjanje arsena iz vode za piće, Doktorska disertacija, Građevinski fakultet, Univerzitet u Beogradu, Beograd.
[2] Kumar, R., Patel, M., Singh, P., Bundschuh, J., Pittman, Jr.C.U., Trakal, L., Mohan, D. (2019). Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: Methods, experience from, and options for Latin America, Science of the Total Environment 694: 1-21.
[3] Nikić, J. (2019). Sinteza, karakterizacija i primena sorbenata na bazi gvožđa i mangana za uklanjanje arsena iz vode, Doktorska disertacija, Prirodno-matematički fakultet u Novom Sadu, Novi Sad.
[4] Agusa, T., Fujjihara, J., Takeshita, H., Iwata, H. (2011). Individual variations in inorganic arsenic metabolism associated with as3mt genetic polymorphisms, International Journal of Molecular Science 12(4): 2351-2382.
[5] Veličković, Z. (2013). Modifikacija i primena višeslojnih ugljeničnih nanocevi za izdvajanje arsena iz vode, Doktorska disertacija, Tehnološko-metalurški fakultet u Beogradu, Beograd.
[6] Abdul, M.K.S., Jayasingheb S.S., Chandana E.P.S., Jayasumanac, C., Mangala, P., De Silva, C.S. (2015). Arsenic and human health effects: A review, Environmental Toxicology and Pharmacology 40: 828-846.
[7] Vukašinović-Pešić, V.L., Blagojević, N.Z., Rajaković, Lj.V. (2009). Comparative analysis of methods for determination of arsenic in coal and coal ash, Instrumentation Science and Technology 37: 482-498.
[8] Pap, S., Gaffney, P.P.J., Bremner, B., Turk Sekulic, M., Maletic, S., Gibb, S.W., Taggart, M.A., (2022). Enhanced phosphate removal and potential recovery from wastewater by thermo-chemically calcinated shell adsorbents. Science of The Total Environment, Vol. 814, March 2022, Article 15.
[9] Turk Sekulić, M., Bosković, N., Milanović, M., Grujić-Letić, N., Gligorić, E., Pap, S. (2019). An insight into the adsorption of three emerging pharmaceutical contaminants on multifunctional carbonous adsorbent: Mechanisms, modelling and metal coadsorption. Journal of Molecular Liquids, Vol. 284, pp. 372-382.
[10] Pap, S., Turk Sekulic, M., Bremner, B., Taggart, M.A. (2021). From molecular to large-scale phosphorous recovery from wastewater using cost-effective adsorbents: an integrated approach. Hybrid Process Technol. Water Wastewater Treat. 61-85.
[11] Mohan, D., Pittman, C.U.Jr (2007). Arsenic removal from water/wastewater using adsorbents – A critical review, Journal of Hazardous Materials 142: 1-53.
[12] Mondal, P., Majumder, C.B., Mohanty, B. (2008). Effects of adsorbent dose, its particle size, and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon, Journal of Hazardous Materials 150: 695-702.
[13] Oreščanin, V. (2013). Arsenic in water – Origin, toxic effects and methods of elimination, 275-276, Hrvatske vode Zagreb.
[14] Oreščanin, V., Kolar, R., Nađ, K. (2011). The electrocoagulation/advanced oxidation treatment of the groundwater used for human consumption, Journal of Environmental Science and Health, Part A. Toxic/Hazardous Substances and Environmental Engineering, 46(14): 1611-1618.
[15] Pio, I., Scarlino, A., Bloise, E., Mele, G., Santoro, O., Pastore, T., Santoro, D. (2015). Efficient removal of low-arsenic concentrations from drinking water by combined coagulation and adsorption processes, Separation and Purification Technology 147: 284-291.
[16] Wang, L., Condit, W.E., Chen, A.S.C. (2004). Technology selection and system design, US EPA Arsenic removal technology demonstration program round 1, EPA/600/R-05/001, Water Supply and Water Resources Division National Risk Management Research Laboratory, Cincinnati, Ohio.

Published

2022-08-08

Issue

Section

Water Treatment and Safety Engineering - TEMPUS