ELECTRICITY CONSUMPTION PREDICTION USING LGBM ALGORITHM IN ML.NET AND PYTHON

Authors

  • Nemanja Simić Autor

DOI:

https://doi.org/10.24867/23BE25Simic

Keywords:

LGBM, ML.NET, Python, Machine Learning, Algorithm

Abstract

By predicting electricity consumption, electricity distribution companies can more efficiently plan the mode of use of generating plants, regular maintenance of network elements, as well as potential trade on the electricity market. Machine learning algorithms can serve as a tool for accurate consumption forecasting in power systems. Through this work, two software solutions for forecasting electricity consumption based on weather data were implemented using the LGBM algorithm in ML.NET and Python, while the prediction results were described and analyzed.

References

Zhao, Hai-xiang & Magoulès, Frédéric, „A review on the prediction of building energy consumption“, Renewable and Sustainable Energy Reviews. 16. 3586-3592. 10.1016/j.rser.2012.02.049.
[2] J. Kolter,J. Ferreira, „A Large-Scale Study on Predicting and Contextualizing Building Energy Usage“, AAAI, vol. 25, no. 1, pp. 1349-1356, Aug. 2011.
[3] Slobodan Ilić, „Kratkoročno predviđanje potrošnje električne energije u velikim elektroenergetskim sistemima“, Fakultet tehničkih nauka, Univerzitet u Novom Sadu.
[4] Sebastijan Stoja, „Arhitektura softverskog sistema za elektroenergetske proračune zasnovana na mikroservisima“, Fakultet tehničkih nauka, Univerzitet u Novom Sadu.
[5] Gama João, Rodrigues Pedro, „Stream-Based Electricity Load Forecast“, 446-453. 10.1007/978-3-540-74976-9_45, 2007.
[6] Khuntia, Swasti R. & Rueda, José & Meijden, Mart, „Forecasting the Load of Electrical Power Systems in Mid- and Long-term Horizons - A Review“, IET Generation Transmission & Distribution. 10, 2016. 10.1049/iet-gtd.2016.0340.
[7] J. W. Taylor, „An evaluation of methods for very short-term load forecasting using minute-by-minute British data“, International Journal of Forecasting, vol. 24, no. 4, pp. 645-658, 2008.
[8] G. Gross, F.D. Galiana, „Short-term load forecasting“, Proceedings of the IEEE, vol. 75, no.12, pp. 1558-1572, 1987.
[9] N. Amjady, F. Keynia, „Mid-term load forecasting of power systems by a new prediction method“, Energy Conversion and Management, vol. 49, no. 10, pp. 2678-2687, 2008.
[10] H. Daneshi, M. Shahidehpour, A. L. Choobbar, „Long-term load forecasting in electricity market“, IEEE International Conference on Electro/Information Technology, USA, 2008.
[11] Harsh H. Patel, Purvi Prajapati, „Study and Analysis of Decision Tree Base Classification Algorithms“, Dept. Of Information Technology, CSPIT, Charotar University of Science and Technology, Changa, Gujarat, India.
[12] Lior Rokach, Oded Maimon, „The Data Mining and Knowledhe Discovery Handbook Chapter:Decision Trees“, DOI:10.1007/-387-25465-X_9.
[13] https://lightgbm.readthedocs.io/en/v3.3.2/ (pristupljeno u martu 2023.)
[14] https://data.cityofnewyork.us/Housing-Development/Electric-Consumption-And-Cost-2010-April-2020-/jr24-e7cr (pristupljeno u martu 2023.)
[15] https://www.ncdc.noaa.gov/cdo-web/datasets/GSOM/locations/CITY:US360019/detail (pristupljeno u martu 2023.)
[16] https://dotnet.microsoft.com/en-us/apps/machinelearning-ai/ml-dotnet/model-builder (pristupljeno u martu 2023.)
[17] https://lightgbm.readthedocs.io/en/latest/index.html (pristupljeno u martu 2023.)

Published

2023-07-08

Issue

Section

Electrotechnical and Computer Engineering