ITERATIVE GENERATION OF FRACTALS ON THE EXAMPLE OF SIERPINSKI TRIANGLE AND SIERPINSKI TETRAHEDRON

Authors

  • Marta Dimitrijević Fakultet tehničkih nauka, Novi Sad Autor

DOI:

https://doi.org/10.24867/26SA04Dimitrijevic

Keywords:

fractal, Sierpinski triangle, Sierpinski tetrahedron

Abstract

This paper describes fractal geometry, in particular Sierpinski fractals, their history, generation and applications. The generation of the Sierpinski triangle and Sierpinski tetrahedron using the Matplotlib library in Google Colaboratory is also explored, offering different ways to visualize these fractals through iterative processes and animations.

References

[1] Barnsley, Michael F, “Fractals Everywhere”, 2nd Edition, Academic Press Professional, 1993
[2] Aleksandra Ivković, “Fraktalna geometrija Koch-ove krive”, master rad
[3] Taylor R, Micolich A, Jonas D, “Fractal analysis of Pollock`s drip paintings”, Nature 399, 422 (1999). https://doi.org/10.1038/20833
[4] Michael F, Benoit M, Fractals, Graphics, and Mathematics Education, Cambridge University Press, 2002
[5] Kuratowski, Kazimiez, “Waclaw Sierpisnki”, Acta Arithmetica, 21(1): 1-5. doi:10.4064/aa-21-1-1-5, 2022
[6] Bannon, Thomas. "Fractals and Transformations," Mathematics Teacher, March 1991
[7] Vinod S, Ergun A, "Connected & Manifold Sierpinsky Polyhedra", ACM Symposium on Solid Modeling and Applications

Published

2024-05-08