ITERATIVE GENERATION OF FRACTALS ON THE EXAMPLE OF SIERPINSKI TRIANGLE AND SIERPINSKI TETRAHEDRON
DOI:
https://doi.org/10.24867/26SA04DimitrijevicKeywords:
fractal, Sierpinski triangle, Sierpinski tetrahedronAbstract
This paper describes fractal geometry, in particular Sierpinski fractals, their history, generation and applications. The generation of the Sierpinski triangle and Sierpinski tetrahedron using the Matplotlib library in Google Colaboratory is also explored, offering different ways to visualize these fractals through iterative processes and animations.
References
[1] Barnsley, Michael F, “Fractals Everywhere”, 2nd Edition, Academic Press Professional, 1993
[2] Aleksandra Ivković, “Fraktalna geometrija Koch-ove krive”, master rad
[3] Taylor R, Micolich A, Jonas D, “Fractal analysis of Pollock`s drip paintings”, Nature 399, 422 (1999). https://doi.org/10.1038/20833
[4] Michael F, Benoit M, Fractals, Graphics, and Mathematics Education, Cambridge University Press, 2002
[5] Kuratowski, Kazimiez, “Waclaw Sierpisnki”, Acta Arithmetica, 21(1): 1-5. doi:10.4064/aa-21-1-1-5, 2022
[6] Bannon, Thomas. "Fractals and Transformations," Mathematics Teacher, March 1991
[7] Vinod S, Ergun A, "Connected & Manifold Sierpinsky Polyhedra", ACM Symposium on Solid Modeling and Applications
[2] Aleksandra Ivković, “Fraktalna geometrija Koch-ove krive”, master rad
[3] Taylor R, Micolich A, Jonas D, “Fractal analysis of Pollock`s drip paintings”, Nature 399, 422 (1999). https://doi.org/10.1038/20833
[4] Michael F, Benoit M, Fractals, Graphics, and Mathematics Education, Cambridge University Press, 2002
[5] Kuratowski, Kazimiez, “Waclaw Sierpisnki”, Acta Arithmetica, 21(1): 1-5. doi:10.4064/aa-21-1-1-5, 2022
[6] Bannon, Thomas. "Fractals and Transformations," Mathematics Teacher, March 1991
[7] Vinod S, Ergun A, "Connected & Manifold Sierpinsky Polyhedra", ACM Symposium on Solid Modeling and Applications
Downloads
Published
2024-05-08
Issue
Section
Engineering Animation