OPTIMAL CONTROL METHODS FOR THE OPTIMIZATION OF RACE CAR PERFORMANCE
DOI:
https://doi.org/10.24867/03AM07VujicicKeywords:
Optimal control theory, Vehicle dynamics, OptimizationAbstract
An optimal control lap time simulation method is developed. The vehicle model used is a kinematic single track model. The problem is solved with the direct collocation method. An example lap time minimisation study with simultaneous parameter optmization is performed..
References
[1] D. Casanova, “On minimum time manouvering: The theoretical optimal lap”, PhD Thesis, Cranfield University, 2000.
[2] T. Völkl, “Erweiterte quasistatische Simulation zur Bestimmung des Einflusses transienten Fahrzeugverhaltens auf die Rundenzeit von Rennfahrzeugen”, PhD Thesis, Tehnische Universität Darmstadt, 2013.
[3] G. Perantoni, D.J.N. Limebeer, “Optimal control for a formula one car with variable parameters”, Vehicle System Dynamics, Vol. 52, pp. 653-678, September 2014.
[4] J. Kong, M. Pfeiffer, G. Schildbach. F. Borrelli, “Kinematic and Dynamic Vehicle Models for Autonomous Driving Control Design”, IEEE Inteligent Vehicles Symposium, 2015
[5] J.T. Betts, “Practical Methods for Optimal Control and Estimation using Nonlinear Programming: Second Edition, Advances in Design and Control”, Society for Industrial and Applied Mathematics, 2010.
[6] J. Bezanson, A. Edelman, S. Karpinski, V. Shah, “Julia: A Fresh Approach to Numerical Computing”, SIAM Review, Vol. 59, pp. 65-98, 2017.
[7] I. Dunning, J. Huchette, M. Lubin, “JuMP: A modeling language for Mathematical Optimization”, SIAM Review, Vol. 59, pp. 295-320, 2017.
[8] A. Wächter, L.T. Biegler, “On the Implementation of a Primal-dual Interior Point Filter Line Search Algorithm for Large-scale Nonlinear Programming”, Mathematical Programming, Vol. 106, pp. 25-57, 2006.
[2] T. Völkl, “Erweiterte quasistatische Simulation zur Bestimmung des Einflusses transienten Fahrzeugverhaltens auf die Rundenzeit von Rennfahrzeugen”, PhD Thesis, Tehnische Universität Darmstadt, 2013.
[3] G. Perantoni, D.J.N. Limebeer, “Optimal control for a formula one car with variable parameters”, Vehicle System Dynamics, Vol. 52, pp. 653-678, September 2014.
[4] J. Kong, M. Pfeiffer, G. Schildbach. F. Borrelli, “Kinematic and Dynamic Vehicle Models for Autonomous Driving Control Design”, IEEE Inteligent Vehicles Symposium, 2015
[5] J.T. Betts, “Practical Methods for Optimal Control and Estimation using Nonlinear Programming: Second Edition, Advances in Design and Control”, Society for Industrial and Applied Mathematics, 2010.
[6] J. Bezanson, A. Edelman, S. Karpinski, V. Shah, “Julia: A Fresh Approach to Numerical Computing”, SIAM Review, Vol. 59, pp. 65-98, 2017.
[7] I. Dunning, J. Huchette, M. Lubin, “JuMP: A modeling language for Mathematical Optimization”, SIAM Review, Vol. 59, pp. 295-320, 2017.
[8] A. Wächter, L.T. Biegler, “On the Implementation of a Primal-dual Interior Point Filter Line Search Algorithm for Large-scale Nonlinear Programming”, Mathematical Programming, Vol. 106, pp. 25-57, 2006.
Downloads
Published
2019-05-20
Issue
Section
Mechanical Engineering