MODIFICATION OF THE PSO ALGORITHM: VARIABLE POPULATION SIZE, HYBRIDIZATION WITH THE NELDER-MEAD METHOD, AND SOLVING A PERMUTATION PROBLEM

Authors

  • Stefan Topalov Autor

DOI:

https://doi.org/10.24867/30BE16Topalov

Keywords:

PSO algorithm, Nelder-Mead algorithm, Travelling Salesman Problem

Abstract

This paper discusses solving optimization problems using modified versions of the PSO algorithm, aiming to reduce computational resource consumption. The first approach presented combines the PSO algorithm, featuring a variable population size as proposed in [1], with the Nelder-Mead method. The second part of the paper demonstrates a solution to the Travelling Salesman Problem. The effectiveness of these algorithms is validated through numerical experiments.

References

[1] Стефан Топалов, „Модификовање PSO алгоритма променљивом величином популациjе”, Факултет техничких наука, Универзитет у Новом Саду, 2023.
[2] J. Kennedy and R. Eberhart, „Particle swarm optimization”, Proceedings of ICNN’95 - International Conference on Neural Networks, Perth, WA, Australia, 1995, pp. 1942-1948 vol.4, doi: 10.1109/ICNN.1995.488968.
[3] Жељко Кановић, Зоран Jеличић, Милан Рапаић, „Еволутивни оптимизациони алгоритми у инжењерскоj пракси”, Факултет техничких наука, Нови Сад, 2017.
[4] Nelder, John A. and Roger Mead, “A Simplex Method for Function Minimization,” Comput. J. 7 (1965): 308-313.
[5] Dantzig, G. B., Fulkerson, R., and Johnson, S. M., „Solution of a large-scale traveling-salesman problem,” Operations Research, 2(4), 1954, pp. 393–410.

Published

2025-03-09

Issue

Section

Electrotechnical and Computer Engineering