UTICAJ NEORGANSKIH ANJONA NA FOTOKATALITIČKI TRETMAN FARMACEUTIKA
DOI:
https://doi.org/10.24867/16HZ04AleksandrovskiKeywords:
Farmaceutici, Fotokatalitička degradacija, Neorganski anjoniAbstract
This paper includes the study of photocatalytic degradation of pharmaceuticals in the presence of inorganic anions. Presence of inorganic anions and their influence on degradation processes is thoroughly elucidated, following with possible removal processes of pharmaceuticals from water, where advanced oxidation processes and photocatalysis are emphasized. Influence of nitrate, phosphate, sulfate and chloride ions on photocatalytic degradation of naproxen, ibuprofen, ketoprofen and diclofenac in water is experimentally examined.
References
[1] Nguyen D.N, Manh Bui H, Nguyen H.Q. 2020. Heterogeneous photocatalysis for the removal of pharmaceutical compounds. In: Current Developments in Biotechnology and Bioengineering, ed. Varjani S, Pandey A, Tyagi R.D, Ngo H.H, Larroche C, ch. 7, 161-183. Elsevier. Amsterdam. Netherlands.
[2] Wӧhler L, Hoekstra A.Y, Heboom R.J, Brugnach M, Krol M.S. 2020. Alternative societal solutions to pharmaceuticals in the aquatic environment. Journal of Cleaner Production. Journal of Cleaner Production 277: 1-13.
[3] Khalil A.M.E, Memon F.A, Tabish T.A, Salom D, Zhang S, Butler D. 2020. Nanostructured porous graphene for efficient removal of emerging contaminants (pharmaceuticals) from water. Chemical Engineering Journal 398: 125440.
[4] Rosenfeld P.E, Feng L.G.H. 2011. Emerging Contaminants. In: Risks of Hazardous Wastes, ed. Rosenfeld P.E, Feng L.G.H, ch. 16, 215-222. William Andrew Publishing. Norwich. United States.
[5] World Health Organization. 2011. Pharmaceuticals in Drinking-water. WHO Press. Geneva. Switzerland.
[6] Khan A, Ali J. 2018. Chemical analysis of air and water. In: Bioassays Advanced Methods and Applications, ed. Häder D.P, Erzinger G.S, ch. 2, 21-39. Elsevier. Amsterdam. The Netherlands.
[7] Bharathi P.A.L. 2008. Sulfur Cycle. In: Encyclopedia of Ecology, ed. Jørgensen S.E, Fath B.D, 3424-3431. Academic Press. Cambridge. United States.
[8] Sievert S.M, Kiene R.P, Schulz-Vogt H.N. 2007. The Sulfur Cycle. Oceanography, 2 (2):117-123.
[9] Yang Q.Z, Zhou b, Liu J.W, Shen W.R, Jia X.D, He X.J, Zhao H.Z. 2021. Nitrate removal from water via self-flocculation of genetically engineered bacteria. Chemical Engineering Science 242: 116750.
[10] Dodds W.K, Whiles M.R. Nitrogen, Sulfur, Phosphorus, and other Nutrients. In: Freshwater Ecology, ed. Dodds W.K, Whiles M.R, ch. 14, 395-424. Academic Press. Cambridge. United States.
[11] Kudlek E, Dudziak M, Bohdziewicz J. 2016. Influence of Inorganic Ions and Organic Substances on the Degradation of Pharmaceutical Compound in Water Matrix. Water 8 (532).
[12] Chládková B, Evgenidou E, Kvíftek L, Panáček A, Zbořil R, Kovář P, Lambropoulou D. 2015. Adsorption and photocatalysis of nanocrystalline TiO2 particles for Reactive Red 195 removal: Effect of humic acids, anions and scavengers. Environ. Sci. Pollut. Res. 22: 16514-16524.
[13] Zhang J, Wang X, Wang J, Wang J, Ji Z. 2016. Effect of sufate ions on the crystallization and photocatalytic activity of TiO2/diatomite composite photocatalyst. Chem. Phys. Lett. 643: 53-60.
[14] Zhang X, Xiong X, Xu Y. 2016. Brookite TiO2 photocatalyzed degradation of phenol in presence of phosphate, fluoride, sulfate and borate anions. RSC Adv 6: 61830.
[15] Krivec M, Dillert R, Bahnemann D.W, Mehle A, Štrancar J, Dražić G. 2014. The nature of chlorine-inhibition of photocatalytic degradation of dichloroacetic acid in a TiO2-based microreactor. Phys. Chem. Chem. Phys. 16: 14867.
[16] Lindner M, Hirthe B, Griebler W.D, Bahnemann D.W. 1997. Solar water detoxification: Novel TiO2 powders as highly active photocatalysts. J. Solar Energy Eng. 119: 120-125.
[2] Wӧhler L, Hoekstra A.Y, Heboom R.J, Brugnach M, Krol M.S. 2020. Alternative societal solutions to pharmaceuticals in the aquatic environment. Journal of Cleaner Production. Journal of Cleaner Production 277: 1-13.
[3] Khalil A.M.E, Memon F.A, Tabish T.A, Salom D, Zhang S, Butler D. 2020. Nanostructured porous graphene for efficient removal of emerging contaminants (pharmaceuticals) from water. Chemical Engineering Journal 398: 125440.
[4] Rosenfeld P.E, Feng L.G.H. 2011. Emerging Contaminants. In: Risks of Hazardous Wastes, ed. Rosenfeld P.E, Feng L.G.H, ch. 16, 215-222. William Andrew Publishing. Norwich. United States.
[5] World Health Organization. 2011. Pharmaceuticals in Drinking-water. WHO Press. Geneva. Switzerland.
[6] Khan A, Ali J. 2018. Chemical analysis of air and water. In: Bioassays Advanced Methods and Applications, ed. Häder D.P, Erzinger G.S, ch. 2, 21-39. Elsevier. Amsterdam. The Netherlands.
[7] Bharathi P.A.L. 2008. Sulfur Cycle. In: Encyclopedia of Ecology, ed. Jørgensen S.E, Fath B.D, 3424-3431. Academic Press. Cambridge. United States.
[8] Sievert S.M, Kiene R.P, Schulz-Vogt H.N. 2007. The Sulfur Cycle. Oceanography, 2 (2):117-123.
[9] Yang Q.Z, Zhou b, Liu J.W, Shen W.R, Jia X.D, He X.J, Zhao H.Z. 2021. Nitrate removal from water via self-flocculation of genetically engineered bacteria. Chemical Engineering Science 242: 116750.
[10] Dodds W.K, Whiles M.R. Nitrogen, Sulfur, Phosphorus, and other Nutrients. In: Freshwater Ecology, ed. Dodds W.K, Whiles M.R, ch. 14, 395-424. Academic Press. Cambridge. United States.
[11] Kudlek E, Dudziak M, Bohdziewicz J. 2016. Influence of Inorganic Ions and Organic Substances on the Degradation of Pharmaceutical Compound in Water Matrix. Water 8 (532).
[12] Chládková B, Evgenidou E, Kvíftek L, Panáček A, Zbořil R, Kovář P, Lambropoulou D. 2015. Adsorption and photocatalysis of nanocrystalline TiO2 particles for Reactive Red 195 removal: Effect of humic acids, anions and scavengers. Environ. Sci. Pollut. Res. 22: 16514-16524.
[13] Zhang J, Wang X, Wang J, Wang J, Ji Z. 2016. Effect of sufate ions on the crystallization and photocatalytic activity of TiO2/diatomite composite photocatalyst. Chem. Phys. Lett. 643: 53-60.
[14] Zhang X, Xiong X, Xu Y. 2016. Brookite TiO2 photocatalyzed degradation of phenol in presence of phosphate, fluoride, sulfate and borate anions. RSC Adv 6: 61830.
[15] Krivec M, Dillert R, Bahnemann D.W, Mehle A, Štrancar J, Dražić G. 2014. The nature of chlorine-inhibition of photocatalytic degradation of dichloroacetic acid in a TiO2-based microreactor. Phys. Chem. Chem. Phys. 16: 14867.
[16] Lindner M, Hirthe B, Griebler W.D, Bahnemann D.W. 1997. Solar water detoxification: Novel TiO2 powders as highly active photocatalysts. J. Solar Energy Eng. 119: 120-125.
Downloads
Published
2022-03-05
Issue
Section
Environment and Occupational Safety Engineering