CONTROL OF GRID-FORMING POWER ELECTRONIC CONVERTERS IN A MICROGRID

Authors

  • Дејан Јовић Autor
  • Марко Векић Elektrotehnika Autor

DOI:

https://doi.org/10.24867/22BE08Jovic

Keywords:

Grid-forming converters, inverter, droop control

Abstract

This paper describes the control of grid-forming converters in a microgrid using droop control. Simulations were performed on models with one and two grid-forming converters connected to different loads. At the end of the paper, simulation results were given that describe the behavior of the grid-forming converters during droop control.

References

[1] Modeling Techniques and Control Strategies for Inverter Dominated Microgrids – Aris Gkountaras, Universitätsverlag der TU Berlin
[2] Small-signal stability modelling, sensitivity analysis and optimization of droop controlled inverters in LV microgrids – Simon Eberlein, Krzysztof Rudion, University of Stuttgart, Pfaffenwaldring 47A, 70569 Stuttgart, Germany
[3] Modelling and analysis of Shunt-connected Voltage Source Converter for voltage dip mitigation – PAOLO CILONA, Göteborg, Sweden 2010
[4] R. Teodorescu, M. Liserre, and P. Rodriguez, Grid converters for photovoltaic and wind power systems. Wiley Ltd, 2011
[5] A. Rockhill, M. Liserre, R. Teodorescu, and P. Rodriguez, “Grid-filter design for a multimegawatt medium-voltage voltage-source inverter,” Industrial Electronics, IEEE Transactions on, vol. 58, pp. 1205–1217, April 2011
[6] L. Malesani, L. Rossetto, P. Tenti, and P. Tomasin, “Ac/dc/ac pwm converter with reduced energy storage in the dc link,” Industry Applications, IEEE Transactions on, vol. 31, pp. 287–292, Mar 1995.
[7] M. Winkelnkemper, Reduzierung von Zwischenkreiskapazitäten in Frequenzumrichtern für Niederspannungsantriebe. PhD thesis, FG Leistungselektronik, Technische Universität Berlin, 2005. (na nemačkom).
[8] He J, Li YW. Analysis, design, and implementation of virtual impedance for power electronics interfaced distributed generation. IEEE Trans Ind Appl 2011;47:2525–38
[9] Wu X, Shen C, Iravani R. Feasible range and optimal value of the virtual impedance for droop-based control of microgrids. IEEE Trans Smart Grid 2017; 8: 1242–51
[10] Hans F, Schumacher W, Harnefors L. Small-signal modeling of three-phase synchronous reference frame phase-locked loops. IEEE Trans Power Electron 2018;33:5556–60.
[11] Zou Z, Liserre M. Modeling phase-locked loop-based synchronization in grid-interfaced converters. IEEE Trans Energy Convers 2019. pp. 1–1.
[12] Nagliero A, Mastromauro RA, Liserre M, Dell’Aquila A. Synchronization techniques for grid connected wind turbines. In: 2009 35th annual conference of IEEE industrial electronics, Nov. 2009. p. 4606–13.

[13] Midtsund T, Suul JA, Undeland T. Evaluation of current controller performance and stability for voltage source converters connected to a weak grid. In: The 2nd international symposium on power electronics for distributed generation systems, (Hefei, China), IEEE, June 2010. p. 382–8.
[14] Chung S. Phase-locked loop for grid-connected three-phase power conversion systems. IEE Proc-Electric Power Appl 2000;147:213–9
[15] Golestan S, Guerrero JM. Conventional synchronous reference frame phase-locked loop is an adaptive complex filter. IEEE Trans Industr Electron 2015;62:1679–82.
[16] Power Quality in Modern Power Systems – edited by P.Sanjeevikumar, C. Sharmeela, Jens Bo Holm-Nielsen, P.Sivaraman
[17] F. Jenni and D. Wüest, Steuerverfahren für selbstgeführte Stromrichter. vdf Hochschulverlag an der ETH Zürich, 1995. (in German).

Published

2023-03-04

Issue

Section

Electrotechnical and Computer Engineering