DIGITAL TOOLS, DATA ANALYTICS AND MACHINE LEARNING APPLIED IN INTERNAL AUDIT

Authors

  • Јелена Попара Autor

DOI:

https://doi.org/10.24867/23GI21Popara

Keywords:

Internal audit, risk management, internal audit maturity model, digital tools, data analytics

Abstract

The paper presents a theoretical and practical analysis of the current level of development and use of digital tools by internal audit in the oil industry. It includes comparative analysis of various IT solutions and the application of digital tools, advanced analytics and machine learning tools at various stages of auditing process in order to automate trend analysis, testing of internal controls and as the ultimate goal of reaching the level of predictive analytics and data-driven decision-making.

References

[1] Udruženje internih revizora Srbije, definicija interne revizije, https://uirs.rs/standardi-i- smernice/obavezne-smernice/definicija-interne-revizije/.
[2] Н.Симеуновић, Б.Лалић “Оператициони менаџмент,” пп. 264, 2016.
[3] Компетенција за рад интерних ревизора у јавном сектору и алати за процену компетенција, Министарство финансија РС, УНДП, пп 11-19, 2022.
[4] D. L. Rogers, Vodič kroz digitalnu transformaciju. 2019.
[5] Наука о подацима, https://builtin.com/data-science/2022.
[6] CFA 2020, Kaplan Schweser, level 2, book1, Ethical and Professional standards, Quantitive methods and Economics, reading 7, Machine learning, пп 209-217, 2022.

Published

2023-08-02

Issue

Section

Industrial Engineering and Management