DETECTION OF INDUSTRIAL COMPONENTS WITH YOLOv3 MODEL
DOI:
https://doi.org/10.24867/26IH01BrujicKeywords:
Machine learning, convolutional neural networks, pneumatic components, computer visionAbstract
This paper describes the general principles of machine learning, convolutional neural networks, and computer vision. It also outlines the process of creating a dataset for training, validation, and testing of artificial intelligence models. Based on this dataset, the problem of industrial component detection is addressed using a convolutional neural network. The objects for detection include pneumatic cylinders, distribution valves, and push buttons.
References
[1] Младен Николић, Анђелка Зачевић, Машинско учење, Београд, 2019.
[2] D. Michie, D.J. Spiegelhalter, C.C. Taylor, Machine Learning, Neural and Statistical Classification, February 17, 1994.
[3] https://machinelearningspace.com/yolov3-tensorflow-2-part-1/ (приступљено у Септембру 2023.)
[2] D. Michie, D.J. Spiegelhalter, C.C. Taylor, Machine Learning, Neural and Statistical Classification, February 17, 1994.
[3] https://machinelearningspace.com/yolov3-tensorflow-2-part-1/ (приступљено у Септембру 2023.)
Downloads
Published
2024-04-04
Issue
Section
Mechatronics